~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/um/drivers/vector_kern.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2017 - 2019 Cambridge Greys Limited
  4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
  5  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  6  * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
  7  * James Leu (jleu@mindspring.net).
  8  * Copyright (C) 2001 by various other people who didn't put their name here.
  9  */
 10 
 11 #include <linux/memblock.h>
 12 #include <linux/etherdevice.h>
 13 #include <linux/ethtool.h>
 14 #include <linux/inetdevice.h>
 15 #include <linux/init.h>
 16 #include <linux/list.h>
 17 #include <linux/netdevice.h>
 18 #include <linux/platform_device.h>
 19 #include <linux/rtnetlink.h>
 20 #include <linux/skbuff.h>
 21 #include <linux/slab.h>
 22 #include <linux/interrupt.h>
 23 #include <linux/firmware.h>
 24 #include <linux/fs.h>
 25 #include <uapi/linux/filter.h>
 26 #include <init.h>
 27 #include <irq_kern.h>
 28 #include <irq_user.h>
 29 #include <net_kern.h>
 30 #include <os.h>
 31 #include "mconsole_kern.h"
 32 #include "vector_user.h"
 33 #include "vector_kern.h"
 34 
 35 /*
 36  * Adapted from network devices with the following major changes:
 37  * All transports are static - simplifies the code significantly
 38  * Multiple FDs/IRQs per device
 39  * Vector IO optionally used for read/write, falling back to legacy
 40  * based on configuration and/or availability
 41  * Configuration is no longer positional - L2TPv3 and GRE require up to
 42  * 10 parameters, passing this as positional is not fit for purpose.
 43  * Only socket transports are supported
 44  */
 45 
 46 
 47 #define DRIVER_NAME "uml-vector"
 48 struct vector_cmd_line_arg {
 49         struct list_head list;
 50         int unit;
 51         char *arguments;
 52 };
 53 
 54 struct vector_device {
 55         struct list_head list;
 56         struct net_device *dev;
 57         struct platform_device pdev;
 58         int unit;
 59         int opened;
 60 };
 61 
 62 static LIST_HEAD(vec_cmd_line);
 63 
 64 static DEFINE_SPINLOCK(vector_devices_lock);
 65 static LIST_HEAD(vector_devices);
 66 
 67 static int driver_registered;
 68 
 69 static void vector_eth_configure(int n, struct arglist *def);
 70 static int vector_mmsg_rx(struct vector_private *vp, int budget);
 71 
 72 /* Argument accessors to set variables (and/or set default values)
 73  * mtu, buffer sizing, default headroom, etc
 74  */
 75 
 76 #define DEFAULT_HEADROOM 2
 77 #define SAFETY_MARGIN 32
 78 #define DEFAULT_VECTOR_SIZE 64
 79 #define TX_SMALL_PACKET 128
 80 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
 81 
 82 static const struct {
 83         const char string[ETH_GSTRING_LEN];
 84 } ethtool_stats_keys[] = {
 85         { "rx_queue_max" },
 86         { "rx_queue_running_average" },
 87         { "tx_queue_max" },
 88         { "tx_queue_running_average" },
 89         { "rx_encaps_errors" },
 90         { "tx_timeout_count" },
 91         { "tx_restart_queue" },
 92         { "tx_kicks" },
 93         { "tx_flow_control_xon" },
 94         { "tx_flow_control_xoff" },
 95         { "rx_csum_offload_good" },
 96         { "rx_csum_offload_errors"},
 97         { "sg_ok"},
 98         { "sg_linearized"},
 99 };
100 
101 #define VECTOR_NUM_STATS        ARRAY_SIZE(ethtool_stats_keys)
102 
103 static void vector_reset_stats(struct vector_private *vp)
104 {
105         vp->estats.rx_queue_max = 0;
106         vp->estats.rx_queue_running_average = 0;
107         vp->estats.tx_queue_max = 0;
108         vp->estats.tx_queue_running_average = 0;
109         vp->estats.rx_encaps_errors = 0;
110         vp->estats.tx_timeout_count = 0;
111         vp->estats.tx_restart_queue = 0;
112         vp->estats.tx_kicks = 0;
113         vp->estats.tx_flow_control_xon = 0;
114         vp->estats.tx_flow_control_xoff = 0;
115         vp->estats.sg_ok = 0;
116         vp->estats.sg_linearized = 0;
117 }
118 
119 static int get_mtu(struct arglist *def)
120 {
121         char *mtu = uml_vector_fetch_arg(def, "mtu");
122         long result;
123 
124         if (mtu != NULL) {
125                 if (kstrtoul(mtu, 10, &result) == 0)
126                         if ((result < (1 << 16) - 1) && (result >= 576))
127                                 return result;
128         }
129         return ETH_MAX_PACKET;
130 }
131 
132 static char *get_bpf_file(struct arglist *def)
133 {
134         return uml_vector_fetch_arg(def, "bpffile");
135 }
136 
137 static bool get_bpf_flash(struct arglist *def)
138 {
139         char *allow = uml_vector_fetch_arg(def, "bpfflash");
140         long result;
141 
142         if (allow != NULL) {
143                 if (kstrtoul(allow, 10, &result) == 0)
144                         return result > 0;
145         }
146         return false;
147 }
148 
149 static int get_depth(struct arglist *def)
150 {
151         char *mtu = uml_vector_fetch_arg(def, "depth");
152         long result;
153 
154         if (mtu != NULL) {
155                 if (kstrtoul(mtu, 10, &result) == 0)
156                         return result;
157         }
158         return DEFAULT_VECTOR_SIZE;
159 }
160 
161 static int get_headroom(struct arglist *def)
162 {
163         char *mtu = uml_vector_fetch_arg(def, "headroom");
164         long result;
165 
166         if (mtu != NULL) {
167                 if (kstrtoul(mtu, 10, &result) == 0)
168                         return result;
169         }
170         return DEFAULT_HEADROOM;
171 }
172 
173 static int get_req_size(struct arglist *def)
174 {
175         char *gro = uml_vector_fetch_arg(def, "gro");
176         long result;
177 
178         if (gro != NULL) {
179                 if (kstrtoul(gro, 10, &result) == 0) {
180                         if (result > 0)
181                                 return 65536;
182                 }
183         }
184         return get_mtu(def) + ETH_HEADER_OTHER +
185                 get_headroom(def) + SAFETY_MARGIN;
186 }
187 
188 
189 static int get_transport_options(struct arglist *def)
190 {
191         char *transport = uml_vector_fetch_arg(def, "transport");
192         char *vector = uml_vector_fetch_arg(def, "vec");
193 
194         int vec_rx = VECTOR_RX;
195         int vec_tx = VECTOR_TX;
196         long parsed;
197         int result = 0;
198 
199         if (transport == NULL)
200                 return -EINVAL;
201 
202         if (vector != NULL) {
203                 if (kstrtoul(vector, 10, &parsed) == 0) {
204                         if (parsed == 0) {
205                                 vec_rx = 0;
206                                 vec_tx = 0;
207                         }
208                 }
209         }
210 
211         if (get_bpf_flash(def))
212                 result = VECTOR_BPF_FLASH;
213 
214         if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
215                 return result;
216         if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
217                 return (result | vec_rx | VECTOR_BPF);
218         if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
219                 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
220         return (result | vec_rx | vec_tx);
221 }
222 
223 
224 /* A mini-buffer for packet drop read
225  * All of our supported transports are datagram oriented and we always
226  * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
227  * than the packet size it still counts as full packet read and will
228  * clean the incoming stream to keep sigio/epoll happy
229  */
230 
231 #define DROP_BUFFER_SIZE 32
232 
233 static char *drop_buffer;
234 
235 /* Array backed queues optimized for bulk enqueue/dequeue and
236  * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
237  * For more details and full design rationale see
238  * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
239  */
240 
241 
242 /*
243  * Advance the mmsg queue head by n = advance. Resets the queue to
244  * maximum enqueue/dequeue-at-once capacity if possible. Called by
245  * dequeuers. Caller must hold the head_lock!
246  */
247 
248 static int vector_advancehead(struct vector_queue *qi, int advance)
249 {
250         int queue_depth;
251 
252         qi->head =
253                 (qi->head + advance)
254                         % qi->max_depth;
255 
256 
257         spin_lock(&qi->tail_lock);
258         qi->queue_depth -= advance;
259 
260         /* we are at 0, use this to
261          * reset head and tail so we can use max size vectors
262          */
263 
264         if (qi->queue_depth == 0) {
265                 qi->head = 0;
266                 qi->tail = 0;
267         }
268         queue_depth = qi->queue_depth;
269         spin_unlock(&qi->tail_lock);
270         return queue_depth;
271 }
272 
273 /*      Advance the queue tail by n = advance.
274  *      This is called by enqueuers which should hold the
275  *      head lock already
276  */
277 
278 static int vector_advancetail(struct vector_queue *qi, int advance)
279 {
280         int queue_depth;
281 
282         qi->tail =
283                 (qi->tail + advance)
284                         % qi->max_depth;
285         spin_lock(&qi->head_lock);
286         qi->queue_depth += advance;
287         queue_depth = qi->queue_depth;
288         spin_unlock(&qi->head_lock);
289         return queue_depth;
290 }
291 
292 static int prep_msg(struct vector_private *vp,
293         struct sk_buff *skb,
294         struct iovec *iov)
295 {
296         int iov_index = 0;
297         int nr_frags, frag;
298         skb_frag_t *skb_frag;
299 
300         nr_frags = skb_shinfo(skb)->nr_frags;
301         if (nr_frags > MAX_IOV_SIZE) {
302                 if (skb_linearize(skb) != 0)
303                         goto drop;
304         }
305         if (vp->header_size > 0) {
306                 iov[iov_index].iov_len = vp->header_size;
307                 vp->form_header(iov[iov_index].iov_base, skb, vp);
308                 iov_index++;
309         }
310         iov[iov_index].iov_base = skb->data;
311         if (nr_frags > 0) {
312                 iov[iov_index].iov_len = skb->len - skb->data_len;
313                 vp->estats.sg_ok++;
314         } else
315                 iov[iov_index].iov_len = skb->len;
316         iov_index++;
317         for (frag = 0; frag < nr_frags; frag++) {
318                 skb_frag = &skb_shinfo(skb)->frags[frag];
319                 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
320                 iov[iov_index].iov_len = skb_frag_size(skb_frag);
321                 iov_index++;
322         }
323         return iov_index;
324 drop:
325         return -1;
326 }
327 /*
328  * Generic vector enqueue with support for forming headers using transport
329  * specific callback. Allows GRE, L2TPv3, RAW and other transports
330  * to use a common enqueue procedure in vector mode
331  */
332 
333 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
334 {
335         struct vector_private *vp = netdev_priv(qi->dev);
336         int queue_depth;
337         int packet_len;
338         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
339         int iov_count;
340 
341         spin_lock(&qi->tail_lock);
342         spin_lock(&qi->head_lock);
343         queue_depth = qi->queue_depth;
344         spin_unlock(&qi->head_lock);
345 
346         if (skb)
347                 packet_len = skb->len;
348 
349         if (queue_depth < qi->max_depth) {
350 
351                 *(qi->skbuff_vector + qi->tail) = skb;
352                 mmsg_vector += qi->tail;
353                 iov_count = prep_msg(
354                         vp,
355                         skb,
356                         mmsg_vector->msg_hdr.msg_iov
357                 );
358                 if (iov_count < 1)
359                         goto drop;
360                 mmsg_vector->msg_hdr.msg_iovlen = iov_count;
361                 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
362                 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
363                 queue_depth = vector_advancetail(qi, 1);
364         } else
365                 goto drop;
366         spin_unlock(&qi->tail_lock);
367         return queue_depth;
368 drop:
369         qi->dev->stats.tx_dropped++;
370         if (skb != NULL) {
371                 packet_len = skb->len;
372                 dev_consume_skb_any(skb);
373                 netdev_completed_queue(qi->dev, 1, packet_len);
374         }
375         spin_unlock(&qi->tail_lock);
376         return queue_depth;
377 }
378 
379 static int consume_vector_skbs(struct vector_queue *qi, int count)
380 {
381         struct sk_buff *skb;
382         int skb_index;
383         int bytes_compl = 0;
384 
385         for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
386                 skb = *(qi->skbuff_vector + skb_index);
387                 /* mark as empty to ensure correct destruction if
388                  * needed
389                  */
390                 bytes_compl += skb->len;
391                 *(qi->skbuff_vector + skb_index) = NULL;
392                 dev_consume_skb_any(skb);
393         }
394         qi->dev->stats.tx_bytes += bytes_compl;
395         qi->dev->stats.tx_packets += count;
396         netdev_completed_queue(qi->dev, count, bytes_compl);
397         return vector_advancehead(qi, count);
398 }
399 
400 /*
401  * Generic vector deque via sendmmsg with support for forming headers
402  * using transport specific callback. Allows GRE, L2TPv3, RAW and
403  * other transports to use a common dequeue procedure in vector mode
404  */
405 
406 
407 static int vector_send(struct vector_queue *qi)
408 {
409         struct vector_private *vp = netdev_priv(qi->dev);
410         struct mmsghdr *send_from;
411         int result = 0, send_len, queue_depth = qi->max_depth;
412 
413         if (spin_trylock(&qi->head_lock)) {
414                 if (spin_trylock(&qi->tail_lock)) {
415                         /* update queue_depth to current value */
416                         queue_depth = qi->queue_depth;
417                         spin_unlock(&qi->tail_lock);
418                         while (queue_depth > 0) {
419                                 /* Calculate the start of the vector */
420                                 send_len = queue_depth;
421                                 send_from = qi->mmsg_vector;
422                                 send_from += qi->head;
423                                 /* Adjust vector size if wraparound */
424                                 if (send_len + qi->head > qi->max_depth)
425                                         send_len = qi->max_depth - qi->head;
426                                 /* Try to TX as many packets as possible */
427                                 if (send_len > 0) {
428                                         result = uml_vector_sendmmsg(
429                                                  vp->fds->tx_fd,
430                                                  send_from,
431                                                  send_len,
432                                                  0
433                                         );
434                                         vp->in_write_poll =
435                                                 (result != send_len);
436                                 }
437                                 /* For some of the sendmmsg error scenarios
438                                  * we may end being unsure in the TX success
439                                  * for all packets. It is safer to declare
440                                  * them all TX-ed and blame the network.
441                                  */
442                                 if (result < 0) {
443                                         if (net_ratelimit())
444                                                 netdev_err(vp->dev, "sendmmsg err=%i\n",
445                                                         result);
446                                         vp->in_error = true;
447                                         result = send_len;
448                                 }
449                                 if (result > 0) {
450                                         queue_depth =
451                                                 consume_vector_skbs(qi, result);
452                                         /* This is equivalent to an TX IRQ.
453                                          * Restart the upper layers to feed us
454                                          * more packets.
455                                          */
456                                         if (result > vp->estats.tx_queue_max)
457                                                 vp->estats.tx_queue_max = result;
458                                         vp->estats.tx_queue_running_average =
459                                                 (vp->estats.tx_queue_running_average + result) >> 1;
460                                 }
461                                 netif_wake_queue(qi->dev);
462                                 /* if TX is busy, break out of the send loop,
463                                  *  poll write IRQ will reschedule xmit for us
464                                  */
465                                 if (result != send_len) {
466                                         vp->estats.tx_restart_queue++;
467                                         break;
468                                 }
469                         }
470                 }
471                 spin_unlock(&qi->head_lock);
472         }
473         return queue_depth;
474 }
475 
476 /* Queue destructor. Deliberately stateless so we can use
477  * it in queue cleanup if initialization fails.
478  */
479 
480 static void destroy_queue(struct vector_queue *qi)
481 {
482         int i;
483         struct iovec *iov;
484         struct vector_private *vp = netdev_priv(qi->dev);
485         struct mmsghdr *mmsg_vector;
486 
487         if (qi == NULL)
488                 return;
489         /* deallocate any skbuffs - we rely on any unused to be
490          * set to NULL.
491          */
492         if (qi->skbuff_vector != NULL) {
493                 for (i = 0; i < qi->max_depth; i++) {
494                         if (*(qi->skbuff_vector + i) != NULL)
495                                 dev_kfree_skb_any(*(qi->skbuff_vector + i));
496                 }
497                 kfree(qi->skbuff_vector);
498         }
499         /* deallocate matching IOV structures including header buffs */
500         if (qi->mmsg_vector != NULL) {
501                 mmsg_vector = qi->mmsg_vector;
502                 for (i = 0; i < qi->max_depth; i++) {
503                         iov = mmsg_vector->msg_hdr.msg_iov;
504                         if (iov != NULL) {
505                                 if ((vp->header_size > 0) &&
506                                         (iov->iov_base != NULL))
507                                         kfree(iov->iov_base);
508                                 kfree(iov);
509                         }
510                         mmsg_vector++;
511                 }
512                 kfree(qi->mmsg_vector);
513         }
514         kfree(qi);
515 }
516 
517 /*
518  * Queue constructor. Create a queue with a given side.
519  */
520 static struct vector_queue *create_queue(
521         struct vector_private *vp,
522         int max_size,
523         int header_size,
524         int num_extra_frags)
525 {
526         struct vector_queue *result;
527         int i;
528         struct iovec *iov;
529         struct mmsghdr *mmsg_vector;
530 
531         result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
532         if (result == NULL)
533                 return NULL;
534         result->max_depth = max_size;
535         result->dev = vp->dev;
536         result->mmsg_vector = kmalloc(
537                 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
538         if (result->mmsg_vector == NULL)
539                 goto out_mmsg_fail;
540         result->skbuff_vector = kmalloc(
541                 (sizeof(void *) * max_size), GFP_KERNEL);
542         if (result->skbuff_vector == NULL)
543                 goto out_skb_fail;
544 
545         /* further failures can be handled safely by destroy_queue*/
546 
547         mmsg_vector = result->mmsg_vector;
548         for (i = 0; i < max_size; i++) {
549                 /* Clear all pointers - we use non-NULL as marking on
550                  * what to free on destruction
551                  */
552                 *(result->skbuff_vector + i) = NULL;
553                 mmsg_vector->msg_hdr.msg_iov = NULL;
554                 mmsg_vector++;
555         }
556         mmsg_vector = result->mmsg_vector;
557         result->max_iov_frags = num_extra_frags;
558         for (i = 0; i < max_size; i++) {
559                 if (vp->header_size > 0)
560                         iov = kmalloc_array(3 + num_extra_frags,
561                                             sizeof(struct iovec),
562                                             GFP_KERNEL
563                         );
564                 else
565                         iov = kmalloc_array(2 + num_extra_frags,
566                                             sizeof(struct iovec),
567                                             GFP_KERNEL
568                         );
569                 if (iov == NULL)
570                         goto out_fail;
571                 mmsg_vector->msg_hdr.msg_iov = iov;
572                 mmsg_vector->msg_hdr.msg_iovlen = 1;
573                 mmsg_vector->msg_hdr.msg_control = NULL;
574                 mmsg_vector->msg_hdr.msg_controllen = 0;
575                 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
576                 mmsg_vector->msg_hdr.msg_name = NULL;
577                 mmsg_vector->msg_hdr.msg_namelen = 0;
578                 if (vp->header_size > 0) {
579                         iov->iov_base = kmalloc(header_size, GFP_KERNEL);
580                         if (iov->iov_base == NULL)
581                                 goto out_fail;
582                         iov->iov_len = header_size;
583                         mmsg_vector->msg_hdr.msg_iovlen = 2;
584                         iov++;
585                 }
586                 iov->iov_base = NULL;
587                 iov->iov_len = 0;
588                 mmsg_vector++;
589         }
590         spin_lock_init(&result->head_lock);
591         spin_lock_init(&result->tail_lock);
592         result->queue_depth = 0;
593         result->head = 0;
594         result->tail = 0;
595         return result;
596 out_skb_fail:
597         kfree(result->mmsg_vector);
598 out_mmsg_fail:
599         kfree(result);
600         return NULL;
601 out_fail:
602         destroy_queue(result);
603         return NULL;
604 }
605 
606 /*
607  * We do not use the RX queue as a proper wraparound queue for now
608  * This is not necessary because the consumption via napi_gro_receive()
609  * happens in-line. While we can try using the return code of
610  * netif_rx() for flow control there are no drivers doing this today.
611  * For this RX specific use we ignore the tail/head locks and
612  * just read into a prepared queue filled with skbuffs.
613  */
614 
615 static struct sk_buff *prep_skb(
616         struct vector_private *vp,
617         struct user_msghdr *msg)
618 {
619         int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
620         struct sk_buff *result;
621         int iov_index = 0, len;
622         struct iovec *iov = msg->msg_iov;
623         int err, nr_frags, frag;
624         skb_frag_t *skb_frag;
625 
626         if (vp->req_size <= linear)
627                 len = linear;
628         else
629                 len = vp->req_size;
630         result = alloc_skb_with_frags(
631                 linear,
632                 len - vp->max_packet,
633                 3,
634                 &err,
635                 GFP_ATOMIC
636         );
637         if (vp->header_size > 0)
638                 iov_index++;
639         if (result == NULL) {
640                 iov[iov_index].iov_base = NULL;
641                 iov[iov_index].iov_len = 0;
642                 goto done;
643         }
644         skb_reserve(result, vp->headroom);
645         result->dev = vp->dev;
646         skb_put(result, vp->max_packet);
647         result->data_len = len - vp->max_packet;
648         result->len += len - vp->max_packet;
649         skb_reset_mac_header(result);
650         result->ip_summed = CHECKSUM_NONE;
651         iov[iov_index].iov_base = result->data;
652         iov[iov_index].iov_len = vp->max_packet;
653         iov_index++;
654 
655         nr_frags = skb_shinfo(result)->nr_frags;
656         for (frag = 0; frag < nr_frags; frag++) {
657                 skb_frag = &skb_shinfo(result)->frags[frag];
658                 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
659                 if (iov[iov_index].iov_base != NULL)
660                         iov[iov_index].iov_len = skb_frag_size(skb_frag);
661                 else
662                         iov[iov_index].iov_len = 0;
663                 iov_index++;
664         }
665 done:
666         msg->msg_iovlen = iov_index;
667         return result;
668 }
669 
670 
671 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
672 
673 static void prep_queue_for_rx(struct vector_queue *qi)
674 {
675         struct vector_private *vp = netdev_priv(qi->dev);
676         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
677         void **skbuff_vector = qi->skbuff_vector;
678         int i;
679 
680         if (qi->queue_depth == 0)
681                 return;
682         for (i = 0; i < qi->queue_depth; i++) {
683                 /* it is OK if allocation fails - recvmmsg with NULL data in
684                  * iov argument still performs an RX, just drops the packet
685                  * This allows us stop faffing around with a "drop buffer"
686                  */
687 
688                 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
689                 skbuff_vector++;
690                 mmsg_vector++;
691         }
692         qi->queue_depth = 0;
693 }
694 
695 static struct vector_device *find_device(int n)
696 {
697         struct vector_device *device;
698         struct list_head *ele;
699 
700         spin_lock(&vector_devices_lock);
701         list_for_each(ele, &vector_devices) {
702                 device = list_entry(ele, struct vector_device, list);
703                 if (device->unit == n)
704                         goto out;
705         }
706         device = NULL;
707  out:
708         spin_unlock(&vector_devices_lock);
709         return device;
710 }
711 
712 static int vector_parse(char *str, int *index_out, char **str_out,
713                         char **error_out)
714 {
715         int n, err;
716         char *start = str;
717 
718         while ((*str != ':') && (strlen(str) > 1))
719                 str++;
720         if (*str != ':') {
721                 *error_out = "Expected ':' after device number";
722                 return -EINVAL;
723         }
724         *str = '\0';
725 
726         err = kstrtouint(start, 0, &n);
727         if (err < 0) {
728                 *error_out = "Bad device number";
729                 return err;
730         }
731 
732         str++;
733         if (find_device(n)) {
734                 *error_out = "Device already configured";
735                 return -EINVAL;
736         }
737 
738         *index_out = n;
739         *str_out = str;
740         return 0;
741 }
742 
743 static int vector_config(char *str, char **error_out)
744 {
745         int err, n;
746         char *params;
747         struct arglist *parsed;
748 
749         err = vector_parse(str, &n, &params, error_out);
750         if (err != 0)
751                 return err;
752 
753         /* This string is broken up and the pieces used by the underlying
754          * driver. We should copy it to make sure things do not go wrong
755          * later.
756          */
757 
758         params = kstrdup(params, GFP_KERNEL);
759         if (params == NULL) {
760                 *error_out = "vector_config failed to strdup string";
761                 return -ENOMEM;
762         }
763 
764         parsed = uml_parse_vector_ifspec(params);
765 
766         if (parsed == NULL) {
767                 *error_out = "vector_config failed to parse parameters";
768                 kfree(params);
769                 return -EINVAL;
770         }
771 
772         vector_eth_configure(n, parsed);
773         return 0;
774 }
775 
776 static int vector_id(char **str, int *start_out, int *end_out)
777 {
778         char *end;
779         int n;
780 
781         n = simple_strtoul(*str, &end, 0);
782         if ((*end != '\0') || (end == *str))
783                 return -1;
784 
785         *start_out = n;
786         *end_out = n;
787         *str = end;
788         return n;
789 }
790 
791 static int vector_remove(int n, char **error_out)
792 {
793         struct vector_device *vec_d;
794         struct net_device *dev;
795         struct vector_private *vp;
796 
797         vec_d = find_device(n);
798         if (vec_d == NULL)
799                 return -ENODEV;
800         dev = vec_d->dev;
801         vp = netdev_priv(dev);
802         if (vp->fds != NULL)
803                 return -EBUSY;
804         unregister_netdev(dev);
805         platform_device_unregister(&vec_d->pdev);
806         return 0;
807 }
808 
809 /*
810  * There is no shared per-transport initialization code, so
811  * we will just initialize each interface one by one and
812  * add them to a list
813  */
814 
815 static struct platform_driver uml_net_driver = {
816         .driver = {
817                 .name = DRIVER_NAME,
818         },
819 };
820 
821 
822 static void vector_device_release(struct device *dev)
823 {
824         struct vector_device *device = dev_get_drvdata(dev);
825         struct net_device *netdev = device->dev;
826 
827         list_del(&device->list);
828         kfree(device);
829         free_netdev(netdev);
830 }
831 
832 /* Bog standard recv using recvmsg - not used normally unless the user
833  * explicitly specifies not to use recvmmsg vector RX.
834  */
835 
836 static int vector_legacy_rx(struct vector_private *vp)
837 {
838         int pkt_len;
839         struct user_msghdr hdr;
840         struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
841         int iovpos = 0;
842         struct sk_buff *skb;
843         int header_check;
844 
845         hdr.msg_name = NULL;
846         hdr.msg_namelen = 0;
847         hdr.msg_iov = (struct iovec *) &iov;
848         hdr.msg_control = NULL;
849         hdr.msg_controllen = 0;
850         hdr.msg_flags = 0;
851 
852         if (vp->header_size > 0) {
853                 iov[0].iov_base = vp->header_rxbuffer;
854                 iov[0].iov_len = vp->header_size;
855         }
856 
857         skb = prep_skb(vp, &hdr);
858 
859         if (skb == NULL) {
860                 /* Read a packet into drop_buffer and don't do
861                  * anything with it.
862                  */
863                 iov[iovpos].iov_base = drop_buffer;
864                 iov[iovpos].iov_len = DROP_BUFFER_SIZE;
865                 hdr.msg_iovlen = 1;
866                 vp->dev->stats.rx_dropped++;
867         }
868 
869         pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
870         if (pkt_len < 0) {
871                 vp->in_error = true;
872                 return pkt_len;
873         }
874 
875         if (skb != NULL) {
876                 if (pkt_len > vp->header_size) {
877                         if (vp->header_size > 0) {
878                                 header_check = vp->verify_header(
879                                         vp->header_rxbuffer, skb, vp);
880                                 if (header_check < 0) {
881                                         dev_kfree_skb_irq(skb);
882                                         vp->dev->stats.rx_dropped++;
883                                         vp->estats.rx_encaps_errors++;
884                                         return 0;
885                                 }
886                                 if (header_check > 0) {
887                                         vp->estats.rx_csum_offload_good++;
888                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
889                                 }
890                         }
891                         pskb_trim(skb, pkt_len - vp->rx_header_size);
892                         skb->protocol = eth_type_trans(skb, skb->dev);
893                         vp->dev->stats.rx_bytes += skb->len;
894                         vp->dev->stats.rx_packets++;
895                         napi_gro_receive(&vp->napi, skb);
896                 } else {
897                         dev_kfree_skb_irq(skb);
898                 }
899         }
900         return pkt_len;
901 }
902 
903 /*
904  * Packet at a time TX which falls back to vector TX if the
905  * underlying transport is busy.
906  */
907 
908 
909 
910 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
911 {
912         struct iovec iov[3 + MAX_IOV_SIZE];
913         int iov_count, pkt_len = 0;
914 
915         iov[0].iov_base = vp->header_txbuffer;
916         iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
917 
918         if (iov_count < 1)
919                 goto drop;
920 
921         pkt_len = uml_vector_writev(
922                 vp->fds->tx_fd,
923                 (struct iovec *) &iov,
924                 iov_count
925         );
926 
927         if (pkt_len < 0)
928                 goto drop;
929 
930         netif_trans_update(vp->dev);
931         netif_wake_queue(vp->dev);
932 
933         if (pkt_len > 0) {
934                 vp->dev->stats.tx_bytes += skb->len;
935                 vp->dev->stats.tx_packets++;
936         } else {
937                 vp->dev->stats.tx_dropped++;
938         }
939         consume_skb(skb);
940         return pkt_len;
941 drop:
942         vp->dev->stats.tx_dropped++;
943         consume_skb(skb);
944         if (pkt_len < 0)
945                 vp->in_error = true;
946         return pkt_len;
947 }
948 
949 /*
950  * Receive as many messages as we can in one call using the special
951  * mmsg vector matched to an skb vector which we prepared earlier.
952  */
953 
954 static int vector_mmsg_rx(struct vector_private *vp, int budget)
955 {
956         int packet_count, i;
957         struct vector_queue *qi = vp->rx_queue;
958         struct sk_buff *skb;
959         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
960         void **skbuff_vector = qi->skbuff_vector;
961         int header_check;
962 
963         /* Refresh the vector and make sure it is with new skbs and the
964          * iovs are updated to point to them.
965          */
966 
967         prep_queue_for_rx(qi);
968 
969         /* Fire the Lazy Gun - get as many packets as we can in one go. */
970 
971         if (budget > qi->max_depth)
972                 budget = qi->max_depth;
973 
974         packet_count = uml_vector_recvmmsg(
975                 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
976 
977         if (packet_count < 0)
978                 vp->in_error = true;
979 
980         if (packet_count <= 0)
981                 return packet_count;
982 
983         /* We treat packet processing as enqueue, buffer refresh as dequeue
984          * The queue_depth tells us how many buffers have been used and how
985          * many do we need to prep the next time prep_queue_for_rx() is called.
986          */
987 
988         qi->queue_depth = packet_count;
989 
990         for (i = 0; i < packet_count; i++) {
991                 skb = (*skbuff_vector);
992                 if (mmsg_vector->msg_len > vp->header_size) {
993                         if (vp->header_size > 0) {
994                                 header_check = vp->verify_header(
995                                         mmsg_vector->msg_hdr.msg_iov->iov_base,
996                                         skb,
997                                         vp
998                                 );
999                                 if (header_check < 0) {
1000                                 /* Overlay header failed to verify - discard.
1001                                  * We can actually keep this skb and reuse it,
1002                                  * but that will make the prep logic too
1003                                  * complex.
1004                                  */
1005                                         dev_kfree_skb_irq(skb);
1006                                         vp->estats.rx_encaps_errors++;
1007                                         continue;
1008                                 }
1009                                 if (header_check > 0) {
1010                                         vp->estats.rx_csum_offload_good++;
1011                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1012                                 }
1013                         }
1014                         pskb_trim(skb,
1015                                 mmsg_vector->msg_len - vp->rx_header_size);
1016                         skb->protocol = eth_type_trans(skb, skb->dev);
1017                         /*
1018                          * We do not need to lock on updating stats here
1019                          * The interrupt loop is non-reentrant.
1020                          */
1021                         vp->dev->stats.rx_bytes += skb->len;
1022                         vp->dev->stats.rx_packets++;
1023                         napi_gro_receive(&vp->napi, skb);
1024                 } else {
1025                         /* Overlay header too short to do anything - discard.
1026                          * We can actually keep this skb and reuse it,
1027                          * but that will make the prep logic too complex.
1028                          */
1029                         if (skb != NULL)
1030                                 dev_kfree_skb_irq(skb);
1031                 }
1032                 (*skbuff_vector) = NULL;
1033                 /* Move to the next buffer element */
1034                 mmsg_vector++;
1035                 skbuff_vector++;
1036         }
1037         if (packet_count > 0) {
1038                 if (vp->estats.rx_queue_max < packet_count)
1039                         vp->estats.rx_queue_max = packet_count;
1040                 vp->estats.rx_queue_running_average =
1041                         (vp->estats.rx_queue_running_average + packet_count) >> 1;
1042         }
1043         return packet_count;
1044 }
1045 
1046 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1047 {
1048         struct vector_private *vp = netdev_priv(dev);
1049         int queue_depth = 0;
1050 
1051         if (vp->in_error) {
1052                 deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1053                 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1054                         deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1055                 return NETDEV_TX_BUSY;
1056         }
1057 
1058         if ((vp->options & VECTOR_TX) == 0) {
1059                 writev_tx(vp, skb);
1060                 return NETDEV_TX_OK;
1061         }
1062 
1063         /* We do BQL only in the vector path, no point doing it in
1064          * packet at a time mode as there is no device queue
1065          */
1066 
1067         netdev_sent_queue(vp->dev, skb->len);
1068         queue_depth = vector_enqueue(vp->tx_queue, skb);
1069 
1070         if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1071                 mod_timer(&vp->tl, vp->coalesce);
1072                 return NETDEV_TX_OK;
1073         } else {
1074                 queue_depth = vector_send(vp->tx_queue);
1075                 if (queue_depth > 0)
1076                         napi_schedule(&vp->napi);
1077         }
1078 
1079         return NETDEV_TX_OK;
1080 }
1081 
1082 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1083 {
1084         struct net_device *dev = dev_id;
1085         struct vector_private *vp = netdev_priv(dev);
1086 
1087         if (!netif_running(dev))
1088                 return IRQ_NONE;
1089         napi_schedule(&vp->napi);
1090         return IRQ_HANDLED;
1091 
1092 }
1093 
1094 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1095 {
1096         struct net_device *dev = dev_id;
1097         struct vector_private *vp = netdev_priv(dev);
1098 
1099         if (!netif_running(dev))
1100                 return IRQ_NONE;
1101         /* We need to pay attention to it only if we got
1102          * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1103          * we ignore it. In the future, it may be worth
1104          * it to improve the IRQ controller a bit to make
1105          * tweaking the IRQ mask less costly
1106          */
1107 
1108         napi_schedule(&vp->napi);
1109         return IRQ_HANDLED;
1110 
1111 }
1112 
1113 static int irq_rr;
1114 
1115 static int vector_net_close(struct net_device *dev)
1116 {
1117         struct vector_private *vp = netdev_priv(dev);
1118 
1119         netif_stop_queue(dev);
1120         del_timer(&vp->tl);
1121 
1122         vp->opened = false;
1123 
1124         if (vp->fds == NULL)
1125                 return 0;
1126 
1127         /* Disable and free all IRQS */
1128         if (vp->rx_irq > 0) {
1129                 um_free_irq(vp->rx_irq, dev);
1130                 vp->rx_irq = 0;
1131         }
1132         if (vp->tx_irq > 0) {
1133                 um_free_irq(vp->tx_irq, dev);
1134                 vp->tx_irq = 0;
1135         }
1136         napi_disable(&vp->napi);
1137         netif_napi_del(&vp->napi);
1138         if (vp->fds->rx_fd > 0) {
1139                 if (vp->bpf)
1140                         uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1141                 os_close_file(vp->fds->rx_fd);
1142                 vp->fds->rx_fd = -1;
1143         }
1144         if (vp->fds->tx_fd > 0) {
1145                 os_close_file(vp->fds->tx_fd);
1146                 vp->fds->tx_fd = -1;
1147         }
1148         if (vp->bpf != NULL)
1149                 kfree(vp->bpf->filter);
1150         kfree(vp->bpf);
1151         vp->bpf = NULL;
1152         kfree(vp->fds->remote_addr);
1153         kfree(vp->transport_data);
1154         kfree(vp->header_rxbuffer);
1155         kfree(vp->header_txbuffer);
1156         if (vp->rx_queue != NULL)
1157                 destroy_queue(vp->rx_queue);
1158         if (vp->tx_queue != NULL)
1159                 destroy_queue(vp->tx_queue);
1160         kfree(vp->fds);
1161         vp->fds = NULL;
1162         vp->in_error = false;
1163         return 0;
1164 }
1165 
1166 static int vector_poll(struct napi_struct *napi, int budget)
1167 {
1168         struct vector_private *vp = container_of(napi, struct vector_private, napi);
1169         int work_done = 0;
1170         int err;
1171         bool tx_enqueued = false;
1172 
1173         if ((vp->options & VECTOR_TX) != 0)
1174                 tx_enqueued = (vector_send(vp->tx_queue) > 0);
1175         if ((vp->options & VECTOR_RX) > 0)
1176                 err = vector_mmsg_rx(vp, budget);
1177         else {
1178                 err = vector_legacy_rx(vp);
1179                 if (err > 0)
1180                         err = 1;
1181         }
1182         if (err > 0)
1183                 work_done += err;
1184 
1185         if (tx_enqueued || err > 0)
1186                 napi_schedule(napi);
1187         if (work_done < budget)
1188                 napi_complete_done(napi, work_done);
1189         return work_done;
1190 }
1191 
1192 static void vector_reset_tx(struct work_struct *work)
1193 {
1194         struct vector_private *vp =
1195                 container_of(work, struct vector_private, reset_tx);
1196         netdev_reset_queue(vp->dev);
1197         netif_start_queue(vp->dev);
1198         netif_wake_queue(vp->dev);
1199 }
1200 
1201 static int vector_net_open(struct net_device *dev)
1202 {
1203         struct vector_private *vp = netdev_priv(dev);
1204         int err = -EINVAL;
1205         struct vector_device *vdevice;
1206 
1207         if (vp->opened)
1208                 return -ENXIO;
1209         vp->opened = true;
1210 
1211         vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1212 
1213         vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1214 
1215         if (vp->fds == NULL)
1216                 goto out_close;
1217 
1218         if (build_transport_data(vp) < 0)
1219                 goto out_close;
1220 
1221         if ((vp->options & VECTOR_RX) > 0) {
1222                 vp->rx_queue = create_queue(
1223                         vp,
1224                         get_depth(vp->parsed),
1225                         vp->rx_header_size,
1226                         MAX_IOV_SIZE
1227                 );
1228                 vp->rx_queue->queue_depth = get_depth(vp->parsed);
1229         } else {
1230                 vp->header_rxbuffer = kmalloc(
1231                         vp->rx_header_size,
1232                         GFP_KERNEL
1233                 );
1234                 if (vp->header_rxbuffer == NULL)
1235                         goto out_close;
1236         }
1237         if ((vp->options & VECTOR_TX) > 0) {
1238                 vp->tx_queue = create_queue(
1239                         vp,
1240                         get_depth(vp->parsed),
1241                         vp->header_size,
1242                         MAX_IOV_SIZE
1243                 );
1244         } else {
1245                 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1246                 if (vp->header_txbuffer == NULL)
1247                         goto out_close;
1248         }
1249 
1250         netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1251                               get_depth(vp->parsed));
1252         napi_enable(&vp->napi);
1253 
1254         /* READ IRQ */
1255         err = um_request_irq(
1256                 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1257                         IRQ_READ, vector_rx_interrupt,
1258                         IRQF_SHARED, dev->name, dev);
1259         if (err < 0) {
1260                 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1261                 err = -ENETUNREACH;
1262                 goto out_close;
1263         }
1264         vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1265         dev->irq = irq_rr + VECTOR_BASE_IRQ;
1266         irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1267 
1268         /* WRITE IRQ - we need it only if we have vector TX */
1269         if ((vp->options & VECTOR_TX) > 0) {
1270                 err = um_request_irq(
1271                         irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1272                                 IRQ_WRITE, vector_tx_interrupt,
1273                                 IRQF_SHARED, dev->name, dev);
1274                 if (err < 0) {
1275                         netdev_err(dev,
1276                                 "vector_open: failed to get tx irq(%d)\n", err);
1277                         err = -ENETUNREACH;
1278                         goto out_close;
1279                 }
1280                 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1281                 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1282         }
1283 
1284         if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1285                 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1286                         vp->options |= VECTOR_BPF;
1287         }
1288         if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1289                 vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1290 
1291         if (vp->bpf != NULL)
1292                 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1293 
1294         netif_start_queue(dev);
1295         vector_reset_stats(vp);
1296 
1297         /* clear buffer - it can happen that the host side of the interface
1298          * is full when we get here. In this case, new data is never queued,
1299          * SIGIOs never arrive, and the net never works.
1300          */
1301 
1302         napi_schedule(&vp->napi);
1303 
1304         vdevice = find_device(vp->unit);
1305         vdevice->opened = 1;
1306 
1307         if ((vp->options & VECTOR_TX) != 0)
1308                 add_timer(&vp->tl);
1309         return 0;
1310 out_close:
1311         vector_net_close(dev);
1312         return err;
1313 }
1314 
1315 
1316 static void vector_net_set_multicast_list(struct net_device *dev)
1317 {
1318         /* TODO: - we can do some BPF games here */
1319         return;
1320 }
1321 
1322 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1323 {
1324         struct vector_private *vp = netdev_priv(dev);
1325 
1326         vp->estats.tx_timeout_count++;
1327         netif_trans_update(dev);
1328         schedule_work(&vp->reset_tx);
1329 }
1330 
1331 static netdev_features_t vector_fix_features(struct net_device *dev,
1332         netdev_features_t features)
1333 {
1334         features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1335         return features;
1336 }
1337 
1338 static int vector_set_features(struct net_device *dev,
1339         netdev_features_t features)
1340 {
1341         struct vector_private *vp = netdev_priv(dev);
1342         /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1343          * no way to negotiate it on raw sockets, so we can change
1344          * only our side.
1345          */
1346         if (features & NETIF_F_GRO)
1347                 /* All new frame buffers will be GRO-sized */
1348                 vp->req_size = 65536;
1349         else
1350                 /* All new frame buffers will be normal sized */
1351                 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1352         return 0;
1353 }
1354 
1355 #ifdef CONFIG_NET_POLL_CONTROLLER
1356 static void vector_net_poll_controller(struct net_device *dev)
1357 {
1358         disable_irq(dev->irq);
1359         vector_rx_interrupt(dev->irq, dev);
1360         enable_irq(dev->irq);
1361 }
1362 #endif
1363 
1364 static void vector_net_get_drvinfo(struct net_device *dev,
1365                                 struct ethtool_drvinfo *info)
1366 {
1367         strscpy(info->driver, DRIVER_NAME);
1368 }
1369 
1370 static int vector_net_load_bpf_flash(struct net_device *dev,
1371                                 struct ethtool_flash *efl)
1372 {
1373         struct vector_private *vp = netdev_priv(dev);
1374         struct vector_device *vdevice;
1375         const struct firmware *fw;
1376         int result = 0;
1377 
1378         if (!(vp->options & VECTOR_BPF_FLASH)) {
1379                 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1380                 return -1;
1381         }
1382 
1383         if (vp->bpf != NULL) {
1384                 if (vp->opened)
1385                         uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1386                 kfree(vp->bpf->filter);
1387                 vp->bpf->filter = NULL;
1388         } else {
1389                 vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1390                 if (vp->bpf == NULL) {
1391                         netdev_err(dev, "failed to allocate memory for firmware\n");
1392                         goto flash_fail;
1393                 }
1394         }
1395 
1396         vdevice = find_device(vp->unit);
1397 
1398         if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1399                 goto flash_fail;
1400 
1401         vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1402         if (!vp->bpf->filter)
1403                 goto free_buffer;
1404 
1405         vp->bpf->len = fw->size / sizeof(struct sock_filter);
1406         release_firmware(fw);
1407 
1408         if (vp->opened)
1409                 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1410 
1411         return result;
1412 
1413 free_buffer:
1414         release_firmware(fw);
1415 
1416 flash_fail:
1417         if (vp->bpf != NULL)
1418                 kfree(vp->bpf->filter);
1419         kfree(vp->bpf);
1420         vp->bpf = NULL;
1421         return -1;
1422 }
1423 
1424 static void vector_get_ringparam(struct net_device *netdev,
1425                                  struct ethtool_ringparam *ring,
1426                                  struct kernel_ethtool_ringparam *kernel_ring,
1427                                  struct netlink_ext_ack *extack)
1428 {
1429         struct vector_private *vp = netdev_priv(netdev);
1430 
1431         ring->rx_max_pending = vp->rx_queue->max_depth;
1432         ring->tx_max_pending = vp->tx_queue->max_depth;
1433         ring->rx_pending = vp->rx_queue->max_depth;
1434         ring->tx_pending = vp->tx_queue->max_depth;
1435 }
1436 
1437 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1438 {
1439         switch (stringset) {
1440         case ETH_SS_TEST:
1441                 *buf = '\0';
1442                 break;
1443         case ETH_SS_STATS:
1444                 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1445                 break;
1446         default:
1447                 WARN_ON(1);
1448                 break;
1449         }
1450 }
1451 
1452 static int vector_get_sset_count(struct net_device *dev, int sset)
1453 {
1454         switch (sset) {
1455         case ETH_SS_TEST:
1456                 return 0;
1457         case ETH_SS_STATS:
1458                 return VECTOR_NUM_STATS;
1459         default:
1460                 return -EOPNOTSUPP;
1461         }
1462 }
1463 
1464 static void vector_get_ethtool_stats(struct net_device *dev,
1465         struct ethtool_stats *estats,
1466         u64 *tmp_stats)
1467 {
1468         struct vector_private *vp = netdev_priv(dev);
1469 
1470         memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1471 }
1472 
1473 static int vector_get_coalesce(struct net_device *netdev,
1474                                struct ethtool_coalesce *ec,
1475                                struct kernel_ethtool_coalesce *kernel_coal,
1476                                struct netlink_ext_ack *extack)
1477 {
1478         struct vector_private *vp = netdev_priv(netdev);
1479 
1480         ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1481         return 0;
1482 }
1483 
1484 static int vector_set_coalesce(struct net_device *netdev,
1485                                struct ethtool_coalesce *ec,
1486                                struct kernel_ethtool_coalesce *kernel_coal,
1487                                struct netlink_ext_ack *extack)
1488 {
1489         struct vector_private *vp = netdev_priv(netdev);
1490 
1491         vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1492         if (vp->coalesce == 0)
1493                 vp->coalesce = 1;
1494         return 0;
1495 }
1496 
1497 static const struct ethtool_ops vector_net_ethtool_ops = {
1498         .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1499         .get_drvinfo    = vector_net_get_drvinfo,
1500         .get_link       = ethtool_op_get_link,
1501         .get_ts_info    = ethtool_op_get_ts_info,
1502         .get_ringparam  = vector_get_ringparam,
1503         .get_strings    = vector_get_strings,
1504         .get_sset_count = vector_get_sset_count,
1505         .get_ethtool_stats = vector_get_ethtool_stats,
1506         .get_coalesce   = vector_get_coalesce,
1507         .set_coalesce   = vector_set_coalesce,
1508         .flash_device   = vector_net_load_bpf_flash,
1509 };
1510 
1511 
1512 static const struct net_device_ops vector_netdev_ops = {
1513         .ndo_open               = vector_net_open,
1514         .ndo_stop               = vector_net_close,
1515         .ndo_start_xmit         = vector_net_start_xmit,
1516         .ndo_set_rx_mode        = vector_net_set_multicast_list,
1517         .ndo_tx_timeout         = vector_net_tx_timeout,
1518         .ndo_set_mac_address    = eth_mac_addr,
1519         .ndo_validate_addr      = eth_validate_addr,
1520         .ndo_fix_features       = vector_fix_features,
1521         .ndo_set_features       = vector_set_features,
1522 #ifdef CONFIG_NET_POLL_CONTROLLER
1523         .ndo_poll_controller = vector_net_poll_controller,
1524 #endif
1525 };
1526 
1527 static void vector_timer_expire(struct timer_list *t)
1528 {
1529         struct vector_private *vp = from_timer(vp, t, tl);
1530 
1531         vp->estats.tx_kicks++;
1532         napi_schedule(&vp->napi);
1533 }
1534 
1535 
1536 
1537 static void vector_eth_configure(
1538                 int n,
1539                 struct arglist *def
1540         )
1541 {
1542         struct vector_device *device;
1543         struct net_device *dev;
1544         struct vector_private *vp;
1545         int err;
1546 
1547         device = kzalloc(sizeof(*device), GFP_KERNEL);
1548         if (device == NULL) {
1549                 printk(KERN_ERR "eth_configure failed to allocate struct "
1550                                  "vector_device\n");
1551                 return;
1552         }
1553         dev = alloc_etherdev(sizeof(struct vector_private));
1554         if (dev == NULL) {
1555                 printk(KERN_ERR "eth_configure: failed to allocate struct "
1556                                  "net_device for vec%d\n", n);
1557                 goto out_free_device;
1558         }
1559 
1560         dev->mtu = get_mtu(def);
1561 
1562         INIT_LIST_HEAD(&device->list);
1563         device->unit = n;
1564 
1565         /* If this name ends up conflicting with an existing registered
1566          * netdevice, that is OK, register_netdev{,ice}() will notice this
1567          * and fail.
1568          */
1569         snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1570         uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1571         vp = netdev_priv(dev);
1572 
1573         /* sysfs register */
1574         if (!driver_registered) {
1575                 platform_driver_register(&uml_net_driver);
1576                 driver_registered = 1;
1577         }
1578         device->pdev.id = n;
1579         device->pdev.name = DRIVER_NAME;
1580         device->pdev.dev.release = vector_device_release;
1581         dev_set_drvdata(&device->pdev.dev, device);
1582         if (platform_device_register(&device->pdev))
1583                 goto out_free_netdev;
1584         SET_NETDEV_DEV(dev, &device->pdev.dev);
1585 
1586         device->dev = dev;
1587 
1588         *vp = ((struct vector_private)
1589                 {
1590                 .list                   = LIST_HEAD_INIT(vp->list),
1591                 .dev                    = dev,
1592                 .unit                   = n,
1593                 .options                = get_transport_options(def),
1594                 .rx_irq                 = 0,
1595                 .tx_irq                 = 0,
1596                 .parsed                 = def,
1597                 .max_packet             = get_mtu(def) + ETH_HEADER_OTHER,
1598                 /* TODO - we need to calculate headroom so that ip header
1599                  * is 16 byte aligned all the time
1600                  */
1601                 .headroom               = get_headroom(def),
1602                 .form_header            = NULL,
1603                 .verify_header          = NULL,
1604                 .header_rxbuffer        = NULL,
1605                 .header_txbuffer        = NULL,
1606                 .header_size            = 0,
1607                 .rx_header_size         = 0,
1608                 .rexmit_scheduled       = false,
1609                 .opened                 = false,
1610                 .transport_data         = NULL,
1611                 .in_write_poll          = false,
1612                 .coalesce               = 2,
1613                 .req_size               = get_req_size(def),
1614                 .in_error               = false,
1615                 .bpf                    = NULL
1616         });
1617 
1618         dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1619         INIT_WORK(&vp->reset_tx, vector_reset_tx);
1620 
1621         timer_setup(&vp->tl, vector_timer_expire, 0);
1622 
1623         /* FIXME */
1624         dev->netdev_ops = &vector_netdev_ops;
1625         dev->ethtool_ops = &vector_net_ethtool_ops;
1626         dev->watchdog_timeo = (HZ >> 1);
1627         /* primary IRQ - fixme */
1628         dev->irq = 0; /* we will adjust this once opened */
1629 
1630         rtnl_lock();
1631         err = register_netdevice(dev);
1632         rtnl_unlock();
1633         if (err)
1634                 goto out_undo_user_init;
1635 
1636         spin_lock(&vector_devices_lock);
1637         list_add(&device->list, &vector_devices);
1638         spin_unlock(&vector_devices_lock);
1639 
1640         return;
1641 
1642 out_undo_user_init:
1643         return;
1644 out_free_netdev:
1645         free_netdev(dev);
1646 out_free_device:
1647         kfree(device);
1648 }
1649 
1650 
1651 
1652 
1653 /*
1654  * Invoked late in the init
1655  */
1656 
1657 static int __init vector_init(void)
1658 {
1659         struct list_head *ele;
1660         struct vector_cmd_line_arg *def;
1661         struct arglist *parsed;
1662 
1663         list_for_each(ele, &vec_cmd_line) {
1664                 def = list_entry(ele, struct vector_cmd_line_arg, list);
1665                 parsed = uml_parse_vector_ifspec(def->arguments);
1666                 if (parsed != NULL)
1667                         vector_eth_configure(def->unit, parsed);
1668         }
1669         return 0;
1670 }
1671 
1672 
1673 /* Invoked at initial argument parsing, only stores
1674  * arguments until a proper vector_init is called
1675  * later
1676  */
1677 
1678 static int __init vector_setup(char *str)
1679 {
1680         char *error;
1681         int n, err;
1682         struct vector_cmd_line_arg *new;
1683 
1684         err = vector_parse(str, &n, &str, &error);
1685         if (err) {
1686                 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1687                                  str, error);
1688                 return 1;
1689         }
1690         new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1691         if (!new)
1692                 panic("%s: Failed to allocate %zu bytes\n", __func__,
1693                       sizeof(*new));
1694         INIT_LIST_HEAD(&new->list);
1695         new->unit = n;
1696         new->arguments = str;
1697         list_add_tail(&new->list, &vec_cmd_line);
1698         return 1;
1699 }
1700 
1701 __setup("vec", vector_setup);
1702 __uml_help(vector_setup,
1703 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1704 "        Configure a vector io network device.\n\n"
1705 );
1706 
1707 late_initcall(vector_init);
1708 
1709 static struct mc_device vector_mc = {
1710         .list           = LIST_HEAD_INIT(vector_mc.list),
1711         .name           = "vec",
1712         .config         = vector_config,
1713         .get_config     = NULL,
1714         .id             = vector_id,
1715         .remove         = vector_remove,
1716 };
1717 
1718 #ifdef CONFIG_INET
1719 static int vector_inetaddr_event(
1720         struct notifier_block *this,
1721         unsigned long event,
1722         void *ptr)
1723 {
1724         return NOTIFY_DONE;
1725 }
1726 
1727 static struct notifier_block vector_inetaddr_notifier = {
1728         .notifier_call          = vector_inetaddr_event,
1729 };
1730 
1731 static void inet_register(void)
1732 {
1733         register_inetaddr_notifier(&vector_inetaddr_notifier);
1734 }
1735 #else
1736 static inline void inet_register(void)
1737 {
1738 }
1739 #endif
1740 
1741 static int vector_net_init(void)
1742 {
1743         mconsole_register_dev(&vector_mc);
1744         inet_register();
1745         return 0;
1746 }
1747 
1748 __initcall(vector_net_init);
1749 
1750 
1751 
1752 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php