1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited 4 * Copyright (C) 2011 - 2014 Cisco Systems Inc 5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and 7 * James Leu (jleu@mindspring.net). 8 * Copyright (C) 2001 by various other people who didn't put their name here. 9 */ 10 11 #include <linux/memblock.h> 12 #include <linux/etherdevice.h> 13 #include <linux/ethtool.h> 14 #include <linux/inetdevice.h> 15 #include <linux/init.h> 16 #include <linux/list.h> 17 #include <linux/netdevice.h> 18 #include <linux/platform_device.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/skbuff.h> 21 #include <linux/slab.h> 22 #include <linux/interrupt.h> 23 #include <linux/firmware.h> 24 #include <linux/fs.h> 25 #include <uapi/linux/filter.h> 26 #include <init.h> 27 #include <irq_kern.h> 28 #include <irq_user.h> 29 #include <net_kern.h> 30 #include <os.h> 31 #include "mconsole_kern.h" 32 #include "vector_user.h" 33 #include "vector_kern.h" 34 35 /* 36 * Adapted from network devices with the following major changes: 37 * All transports are static - simplifies the code significantly 38 * Multiple FDs/IRQs per device 39 * Vector IO optionally used for read/write, falling back to legacy 40 * based on configuration and/or availability 41 * Configuration is no longer positional - L2TPv3 and GRE require up to 42 * 10 parameters, passing this as positional is not fit for purpose. 43 * Only socket transports are supported 44 */ 45 46 47 #define DRIVER_NAME "uml-vector" 48 struct vector_cmd_line_arg { 49 struct list_head list; 50 int unit; 51 char *arguments; 52 }; 53 54 struct vector_device { 55 struct list_head list; 56 struct net_device *dev; 57 struct platform_device pdev; 58 int unit; 59 int opened; 60 }; 61 62 static LIST_HEAD(vec_cmd_line); 63 64 static DEFINE_SPINLOCK(vector_devices_lock); 65 static LIST_HEAD(vector_devices); 66 67 static int driver_registered; 68 69 static void vector_eth_configure(int n, struct arglist *def); 70 static int vector_mmsg_rx(struct vector_private *vp, int budget); 71 72 /* Argument accessors to set variables (and/or set default values) 73 * mtu, buffer sizing, default headroom, etc 74 */ 75 76 #define DEFAULT_HEADROOM 2 77 #define SAFETY_MARGIN 32 78 #define DEFAULT_VECTOR_SIZE 64 79 #define TX_SMALL_PACKET 128 80 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1) 81 82 static const struct { 83 const char string[ETH_GSTRING_LEN]; 84 } ethtool_stats_keys[] = { 85 { "rx_queue_max" }, 86 { "rx_queue_running_average" }, 87 { "tx_queue_max" }, 88 { "tx_queue_running_average" }, 89 { "rx_encaps_errors" }, 90 { "tx_timeout_count" }, 91 { "tx_restart_queue" }, 92 { "tx_kicks" }, 93 { "tx_flow_control_xon" }, 94 { "tx_flow_control_xoff" }, 95 { "rx_csum_offload_good" }, 96 { "rx_csum_offload_errors"}, 97 { "sg_ok"}, 98 { "sg_linearized"}, 99 }; 100 101 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys) 102 103 static void vector_reset_stats(struct vector_private *vp) 104 { 105 vp->estats.rx_queue_max = 0; 106 vp->estats.rx_queue_running_average = 0; 107 vp->estats.tx_queue_max = 0; 108 vp->estats.tx_queue_running_average = 0; 109 vp->estats.rx_encaps_errors = 0; 110 vp->estats.tx_timeout_count = 0; 111 vp->estats.tx_restart_queue = 0; 112 vp->estats.tx_kicks = 0; 113 vp->estats.tx_flow_control_xon = 0; 114 vp->estats.tx_flow_control_xoff = 0; 115 vp->estats.sg_ok = 0; 116 vp->estats.sg_linearized = 0; 117 } 118 119 static int get_mtu(struct arglist *def) 120 { 121 char *mtu = uml_vector_fetch_arg(def, "mtu"); 122 long result; 123 124 if (mtu != NULL) { 125 if (kstrtoul(mtu, 10, &result) == 0) 126 if ((result < (1 << 16) - 1) && (result >= 576)) 127 return result; 128 } 129 return ETH_MAX_PACKET; 130 } 131 132 static char *get_bpf_file(struct arglist *def) 133 { 134 return uml_vector_fetch_arg(def, "bpffile"); 135 } 136 137 static bool get_bpf_flash(struct arglist *def) 138 { 139 char *allow = uml_vector_fetch_arg(def, "bpfflash"); 140 long result; 141 142 if (allow != NULL) { 143 if (kstrtoul(allow, 10, &result) == 0) 144 return result > 0; 145 } 146 return false; 147 } 148 149 static int get_depth(struct arglist *def) 150 { 151 char *mtu = uml_vector_fetch_arg(def, "depth"); 152 long result; 153 154 if (mtu != NULL) { 155 if (kstrtoul(mtu, 10, &result) == 0) 156 return result; 157 } 158 return DEFAULT_VECTOR_SIZE; 159 } 160 161 static int get_headroom(struct arglist *def) 162 { 163 char *mtu = uml_vector_fetch_arg(def, "headroom"); 164 long result; 165 166 if (mtu != NULL) { 167 if (kstrtoul(mtu, 10, &result) == 0) 168 return result; 169 } 170 return DEFAULT_HEADROOM; 171 } 172 173 static int get_req_size(struct arglist *def) 174 { 175 char *gro = uml_vector_fetch_arg(def, "gro"); 176 long result; 177 178 if (gro != NULL) { 179 if (kstrtoul(gro, 10, &result) == 0) { 180 if (result > 0) 181 return 65536; 182 } 183 } 184 return get_mtu(def) + ETH_HEADER_OTHER + 185 get_headroom(def) + SAFETY_MARGIN; 186 } 187 188 189 static int get_transport_options(struct arglist *def) 190 { 191 char *transport = uml_vector_fetch_arg(def, "transport"); 192 char *vector = uml_vector_fetch_arg(def, "vec"); 193 194 int vec_rx = VECTOR_RX; 195 int vec_tx = VECTOR_TX; 196 long parsed; 197 int result = 0; 198 199 if (transport == NULL) 200 return -EINVAL; 201 202 if (vector != NULL) { 203 if (kstrtoul(vector, 10, &parsed) == 0) { 204 if (parsed == 0) { 205 vec_rx = 0; 206 vec_tx = 0; 207 } 208 } 209 } 210 211 if (get_bpf_flash(def)) 212 result = VECTOR_BPF_FLASH; 213 214 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0) 215 return result; 216 if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0) 217 return (result | vec_rx | VECTOR_BPF); 218 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0) 219 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS); 220 return (result | vec_rx | vec_tx); 221 } 222 223 224 /* A mini-buffer for packet drop read 225 * All of our supported transports are datagram oriented and we always 226 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller 227 * than the packet size it still counts as full packet read and will 228 * clean the incoming stream to keep sigio/epoll happy 229 */ 230 231 #define DROP_BUFFER_SIZE 32 232 233 static char *drop_buffer; 234 235 /* Array backed queues optimized for bulk enqueue/dequeue and 236 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios. 237 * For more details and full design rationale see 238 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt 239 */ 240 241 242 /* 243 * Advance the mmsg queue head by n = advance. Resets the queue to 244 * maximum enqueue/dequeue-at-once capacity if possible. Called by 245 * dequeuers. Caller must hold the head_lock! 246 */ 247 248 static int vector_advancehead(struct vector_queue *qi, int advance) 249 { 250 int queue_depth; 251 252 qi->head = 253 (qi->head + advance) 254 % qi->max_depth; 255 256 257 spin_lock(&qi->tail_lock); 258 qi->queue_depth -= advance; 259 260 /* we are at 0, use this to 261 * reset head and tail so we can use max size vectors 262 */ 263 264 if (qi->queue_depth == 0) { 265 qi->head = 0; 266 qi->tail = 0; 267 } 268 queue_depth = qi->queue_depth; 269 spin_unlock(&qi->tail_lock); 270 return queue_depth; 271 } 272 273 /* Advance the queue tail by n = advance. 274 * This is called by enqueuers which should hold the 275 * head lock already 276 */ 277 278 static int vector_advancetail(struct vector_queue *qi, int advance) 279 { 280 int queue_depth; 281 282 qi->tail = 283 (qi->tail + advance) 284 % qi->max_depth; 285 spin_lock(&qi->head_lock); 286 qi->queue_depth += advance; 287 queue_depth = qi->queue_depth; 288 spin_unlock(&qi->head_lock); 289 return queue_depth; 290 } 291 292 static int prep_msg(struct vector_private *vp, 293 struct sk_buff *skb, 294 struct iovec *iov) 295 { 296 int iov_index = 0; 297 int nr_frags, frag; 298 skb_frag_t *skb_frag; 299 300 nr_frags = skb_shinfo(skb)->nr_frags; 301 if (nr_frags > MAX_IOV_SIZE) { 302 if (skb_linearize(skb) != 0) 303 goto drop; 304 } 305 if (vp->header_size > 0) { 306 iov[iov_index].iov_len = vp->header_size; 307 vp->form_header(iov[iov_index].iov_base, skb, vp); 308 iov_index++; 309 } 310 iov[iov_index].iov_base = skb->data; 311 if (nr_frags > 0) { 312 iov[iov_index].iov_len = skb->len - skb->data_len; 313 vp->estats.sg_ok++; 314 } else 315 iov[iov_index].iov_len = skb->len; 316 iov_index++; 317 for (frag = 0; frag < nr_frags; frag++) { 318 skb_frag = &skb_shinfo(skb)->frags[frag]; 319 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 320 iov[iov_index].iov_len = skb_frag_size(skb_frag); 321 iov_index++; 322 } 323 return iov_index; 324 drop: 325 return -1; 326 } 327 /* 328 * Generic vector enqueue with support for forming headers using transport 329 * specific callback. Allows GRE, L2TPv3, RAW and other transports 330 * to use a common enqueue procedure in vector mode 331 */ 332 333 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb) 334 { 335 struct vector_private *vp = netdev_priv(qi->dev); 336 int queue_depth; 337 int packet_len; 338 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 339 int iov_count; 340 341 spin_lock(&qi->tail_lock); 342 spin_lock(&qi->head_lock); 343 queue_depth = qi->queue_depth; 344 spin_unlock(&qi->head_lock); 345 346 if (skb) 347 packet_len = skb->len; 348 349 if (queue_depth < qi->max_depth) { 350 351 *(qi->skbuff_vector + qi->tail) = skb; 352 mmsg_vector += qi->tail; 353 iov_count = prep_msg( 354 vp, 355 skb, 356 mmsg_vector->msg_hdr.msg_iov 357 ); 358 if (iov_count < 1) 359 goto drop; 360 mmsg_vector->msg_hdr.msg_iovlen = iov_count; 361 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr; 362 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size; 363 queue_depth = vector_advancetail(qi, 1); 364 } else 365 goto drop; 366 spin_unlock(&qi->tail_lock); 367 return queue_depth; 368 drop: 369 qi->dev->stats.tx_dropped++; 370 if (skb != NULL) { 371 packet_len = skb->len; 372 dev_consume_skb_any(skb); 373 netdev_completed_queue(qi->dev, 1, packet_len); 374 } 375 spin_unlock(&qi->tail_lock); 376 return queue_depth; 377 } 378 379 static int consume_vector_skbs(struct vector_queue *qi, int count) 380 { 381 struct sk_buff *skb; 382 int skb_index; 383 int bytes_compl = 0; 384 385 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) { 386 skb = *(qi->skbuff_vector + skb_index); 387 /* mark as empty to ensure correct destruction if 388 * needed 389 */ 390 bytes_compl += skb->len; 391 *(qi->skbuff_vector + skb_index) = NULL; 392 dev_consume_skb_any(skb); 393 } 394 qi->dev->stats.tx_bytes += bytes_compl; 395 qi->dev->stats.tx_packets += count; 396 netdev_completed_queue(qi->dev, count, bytes_compl); 397 return vector_advancehead(qi, count); 398 } 399 400 /* 401 * Generic vector deque via sendmmsg with support for forming headers 402 * using transport specific callback. Allows GRE, L2TPv3, RAW and 403 * other transports to use a common dequeue procedure in vector mode 404 */ 405 406 407 static int vector_send(struct vector_queue *qi) 408 { 409 struct vector_private *vp = netdev_priv(qi->dev); 410 struct mmsghdr *send_from; 411 int result = 0, send_len, queue_depth = qi->max_depth; 412 413 if (spin_trylock(&qi->head_lock)) { 414 if (spin_trylock(&qi->tail_lock)) { 415 /* update queue_depth to current value */ 416 queue_depth = qi->queue_depth; 417 spin_unlock(&qi->tail_lock); 418 while (queue_depth > 0) { 419 /* Calculate the start of the vector */ 420 send_len = queue_depth; 421 send_from = qi->mmsg_vector; 422 send_from += qi->head; 423 /* Adjust vector size if wraparound */ 424 if (send_len + qi->head > qi->max_depth) 425 send_len = qi->max_depth - qi->head; 426 /* Try to TX as many packets as possible */ 427 if (send_len > 0) { 428 result = uml_vector_sendmmsg( 429 vp->fds->tx_fd, 430 send_from, 431 send_len, 432 0 433 ); 434 vp->in_write_poll = 435 (result != send_len); 436 } 437 /* For some of the sendmmsg error scenarios 438 * we may end being unsure in the TX success 439 * for all packets. It is safer to declare 440 * them all TX-ed and blame the network. 441 */ 442 if (result < 0) { 443 if (net_ratelimit()) 444 netdev_err(vp->dev, "sendmmsg err=%i\n", 445 result); 446 vp->in_error = true; 447 result = send_len; 448 } 449 if (result > 0) { 450 queue_depth = 451 consume_vector_skbs(qi, result); 452 /* This is equivalent to an TX IRQ. 453 * Restart the upper layers to feed us 454 * more packets. 455 */ 456 if (result > vp->estats.tx_queue_max) 457 vp->estats.tx_queue_max = result; 458 vp->estats.tx_queue_running_average = 459 (vp->estats.tx_queue_running_average + result) >> 1; 460 } 461 netif_wake_queue(qi->dev); 462 /* if TX is busy, break out of the send loop, 463 * poll write IRQ will reschedule xmit for us 464 */ 465 if (result != send_len) { 466 vp->estats.tx_restart_queue++; 467 break; 468 } 469 } 470 } 471 spin_unlock(&qi->head_lock); 472 } 473 return queue_depth; 474 } 475 476 /* Queue destructor. Deliberately stateless so we can use 477 * it in queue cleanup if initialization fails. 478 */ 479 480 static void destroy_queue(struct vector_queue *qi) 481 { 482 int i; 483 struct iovec *iov; 484 struct vector_private *vp = netdev_priv(qi->dev); 485 struct mmsghdr *mmsg_vector; 486 487 if (qi == NULL) 488 return; 489 /* deallocate any skbuffs - we rely on any unused to be 490 * set to NULL. 491 */ 492 if (qi->skbuff_vector != NULL) { 493 for (i = 0; i < qi->max_depth; i++) { 494 if (*(qi->skbuff_vector + i) != NULL) 495 dev_kfree_skb_any(*(qi->skbuff_vector + i)); 496 } 497 kfree(qi->skbuff_vector); 498 } 499 /* deallocate matching IOV structures including header buffs */ 500 if (qi->mmsg_vector != NULL) { 501 mmsg_vector = qi->mmsg_vector; 502 for (i = 0; i < qi->max_depth; i++) { 503 iov = mmsg_vector->msg_hdr.msg_iov; 504 if (iov != NULL) { 505 if ((vp->header_size > 0) && 506 (iov->iov_base != NULL)) 507 kfree(iov->iov_base); 508 kfree(iov); 509 } 510 mmsg_vector++; 511 } 512 kfree(qi->mmsg_vector); 513 } 514 kfree(qi); 515 } 516 517 /* 518 * Queue constructor. Create a queue with a given side. 519 */ 520 static struct vector_queue *create_queue( 521 struct vector_private *vp, 522 int max_size, 523 int header_size, 524 int num_extra_frags) 525 { 526 struct vector_queue *result; 527 int i; 528 struct iovec *iov; 529 struct mmsghdr *mmsg_vector; 530 531 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL); 532 if (result == NULL) 533 return NULL; 534 result->max_depth = max_size; 535 result->dev = vp->dev; 536 result->mmsg_vector = kmalloc( 537 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL); 538 if (result->mmsg_vector == NULL) 539 goto out_mmsg_fail; 540 result->skbuff_vector = kmalloc( 541 (sizeof(void *) * max_size), GFP_KERNEL); 542 if (result->skbuff_vector == NULL) 543 goto out_skb_fail; 544 545 /* further failures can be handled safely by destroy_queue*/ 546 547 mmsg_vector = result->mmsg_vector; 548 for (i = 0; i < max_size; i++) { 549 /* Clear all pointers - we use non-NULL as marking on 550 * what to free on destruction 551 */ 552 *(result->skbuff_vector + i) = NULL; 553 mmsg_vector->msg_hdr.msg_iov = NULL; 554 mmsg_vector++; 555 } 556 mmsg_vector = result->mmsg_vector; 557 result->max_iov_frags = num_extra_frags; 558 for (i = 0; i < max_size; i++) { 559 if (vp->header_size > 0) 560 iov = kmalloc_array(3 + num_extra_frags, 561 sizeof(struct iovec), 562 GFP_KERNEL 563 ); 564 else 565 iov = kmalloc_array(2 + num_extra_frags, 566 sizeof(struct iovec), 567 GFP_KERNEL 568 ); 569 if (iov == NULL) 570 goto out_fail; 571 mmsg_vector->msg_hdr.msg_iov = iov; 572 mmsg_vector->msg_hdr.msg_iovlen = 1; 573 mmsg_vector->msg_hdr.msg_control = NULL; 574 mmsg_vector->msg_hdr.msg_controllen = 0; 575 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT; 576 mmsg_vector->msg_hdr.msg_name = NULL; 577 mmsg_vector->msg_hdr.msg_namelen = 0; 578 if (vp->header_size > 0) { 579 iov->iov_base = kmalloc(header_size, GFP_KERNEL); 580 if (iov->iov_base == NULL) 581 goto out_fail; 582 iov->iov_len = header_size; 583 mmsg_vector->msg_hdr.msg_iovlen = 2; 584 iov++; 585 } 586 iov->iov_base = NULL; 587 iov->iov_len = 0; 588 mmsg_vector++; 589 } 590 spin_lock_init(&result->head_lock); 591 spin_lock_init(&result->tail_lock); 592 result->queue_depth = 0; 593 result->head = 0; 594 result->tail = 0; 595 return result; 596 out_skb_fail: 597 kfree(result->mmsg_vector); 598 out_mmsg_fail: 599 kfree(result); 600 return NULL; 601 out_fail: 602 destroy_queue(result); 603 return NULL; 604 } 605 606 /* 607 * We do not use the RX queue as a proper wraparound queue for now 608 * This is not necessary because the consumption via napi_gro_receive() 609 * happens in-line. While we can try using the return code of 610 * netif_rx() for flow control there are no drivers doing this today. 611 * For this RX specific use we ignore the tail/head locks and 612 * just read into a prepared queue filled with skbuffs. 613 */ 614 615 static struct sk_buff *prep_skb( 616 struct vector_private *vp, 617 struct user_msghdr *msg) 618 { 619 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN; 620 struct sk_buff *result; 621 int iov_index = 0, len; 622 struct iovec *iov = msg->msg_iov; 623 int err, nr_frags, frag; 624 skb_frag_t *skb_frag; 625 626 if (vp->req_size <= linear) 627 len = linear; 628 else 629 len = vp->req_size; 630 result = alloc_skb_with_frags( 631 linear, 632 len - vp->max_packet, 633 3, 634 &err, 635 GFP_ATOMIC 636 ); 637 if (vp->header_size > 0) 638 iov_index++; 639 if (result == NULL) { 640 iov[iov_index].iov_base = NULL; 641 iov[iov_index].iov_len = 0; 642 goto done; 643 } 644 skb_reserve(result, vp->headroom); 645 result->dev = vp->dev; 646 skb_put(result, vp->max_packet); 647 result->data_len = len - vp->max_packet; 648 result->len += len - vp->max_packet; 649 skb_reset_mac_header(result); 650 result->ip_summed = CHECKSUM_NONE; 651 iov[iov_index].iov_base = result->data; 652 iov[iov_index].iov_len = vp->max_packet; 653 iov_index++; 654 655 nr_frags = skb_shinfo(result)->nr_frags; 656 for (frag = 0; frag < nr_frags; frag++) { 657 skb_frag = &skb_shinfo(result)->frags[frag]; 658 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag); 659 if (iov[iov_index].iov_base != NULL) 660 iov[iov_index].iov_len = skb_frag_size(skb_frag); 661 else 662 iov[iov_index].iov_len = 0; 663 iov_index++; 664 } 665 done: 666 msg->msg_iovlen = iov_index; 667 return result; 668 } 669 670 671 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/ 672 673 static void prep_queue_for_rx(struct vector_queue *qi) 674 { 675 struct vector_private *vp = netdev_priv(qi->dev); 676 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 677 void **skbuff_vector = qi->skbuff_vector; 678 int i; 679 680 if (qi->queue_depth == 0) 681 return; 682 for (i = 0; i < qi->queue_depth; i++) { 683 /* it is OK if allocation fails - recvmmsg with NULL data in 684 * iov argument still performs an RX, just drops the packet 685 * This allows us stop faffing around with a "drop buffer" 686 */ 687 688 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr); 689 skbuff_vector++; 690 mmsg_vector++; 691 } 692 qi->queue_depth = 0; 693 } 694 695 static struct vector_device *find_device(int n) 696 { 697 struct vector_device *device; 698 struct list_head *ele; 699 700 spin_lock(&vector_devices_lock); 701 list_for_each(ele, &vector_devices) { 702 device = list_entry(ele, struct vector_device, list); 703 if (device->unit == n) 704 goto out; 705 } 706 device = NULL; 707 out: 708 spin_unlock(&vector_devices_lock); 709 return device; 710 } 711 712 static int vector_parse(char *str, int *index_out, char **str_out, 713 char **error_out) 714 { 715 int n, err; 716 char *start = str; 717 718 while ((*str != ':') && (strlen(str) > 1)) 719 str++; 720 if (*str != ':') { 721 *error_out = "Expected ':' after device number"; 722 return -EINVAL; 723 } 724 *str = '\0'; 725 726 err = kstrtouint(start, 0, &n); 727 if (err < 0) { 728 *error_out = "Bad device number"; 729 return err; 730 } 731 732 str++; 733 if (find_device(n)) { 734 *error_out = "Device already configured"; 735 return -EINVAL; 736 } 737 738 *index_out = n; 739 *str_out = str; 740 return 0; 741 } 742 743 static int vector_config(char *str, char **error_out) 744 { 745 int err, n; 746 char *params; 747 struct arglist *parsed; 748 749 err = vector_parse(str, &n, ¶ms, error_out); 750 if (err != 0) 751 return err; 752 753 /* This string is broken up and the pieces used by the underlying 754 * driver. We should copy it to make sure things do not go wrong 755 * later. 756 */ 757 758 params = kstrdup(params, GFP_KERNEL); 759 if (params == NULL) { 760 *error_out = "vector_config failed to strdup string"; 761 return -ENOMEM; 762 } 763 764 parsed = uml_parse_vector_ifspec(params); 765 766 if (parsed == NULL) { 767 *error_out = "vector_config failed to parse parameters"; 768 kfree(params); 769 return -EINVAL; 770 } 771 772 vector_eth_configure(n, parsed); 773 return 0; 774 } 775 776 static int vector_id(char **str, int *start_out, int *end_out) 777 { 778 char *end; 779 int n; 780 781 n = simple_strtoul(*str, &end, 0); 782 if ((*end != '\0') || (end == *str)) 783 return -1; 784 785 *start_out = n; 786 *end_out = n; 787 *str = end; 788 return n; 789 } 790 791 static int vector_remove(int n, char **error_out) 792 { 793 struct vector_device *vec_d; 794 struct net_device *dev; 795 struct vector_private *vp; 796 797 vec_d = find_device(n); 798 if (vec_d == NULL) 799 return -ENODEV; 800 dev = vec_d->dev; 801 vp = netdev_priv(dev); 802 if (vp->fds != NULL) 803 return -EBUSY; 804 unregister_netdev(dev); 805 platform_device_unregister(&vec_d->pdev); 806 return 0; 807 } 808 809 /* 810 * There is no shared per-transport initialization code, so 811 * we will just initialize each interface one by one and 812 * add them to a list 813 */ 814 815 static struct platform_driver uml_net_driver = { 816 .driver = { 817 .name = DRIVER_NAME, 818 }, 819 }; 820 821 822 static void vector_device_release(struct device *dev) 823 { 824 struct vector_device *device = dev_get_drvdata(dev); 825 struct net_device *netdev = device->dev; 826 827 list_del(&device->list); 828 kfree(device); 829 free_netdev(netdev); 830 } 831 832 /* Bog standard recv using recvmsg - not used normally unless the user 833 * explicitly specifies not to use recvmmsg vector RX. 834 */ 835 836 static int vector_legacy_rx(struct vector_private *vp) 837 { 838 int pkt_len; 839 struct user_msghdr hdr; 840 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */ 841 int iovpos = 0; 842 struct sk_buff *skb; 843 int header_check; 844 845 hdr.msg_name = NULL; 846 hdr.msg_namelen = 0; 847 hdr.msg_iov = (struct iovec *) &iov; 848 hdr.msg_control = NULL; 849 hdr.msg_controllen = 0; 850 hdr.msg_flags = 0; 851 852 if (vp->header_size > 0) { 853 iov[0].iov_base = vp->header_rxbuffer; 854 iov[0].iov_len = vp->header_size; 855 } 856 857 skb = prep_skb(vp, &hdr); 858 859 if (skb == NULL) { 860 /* Read a packet into drop_buffer and don't do 861 * anything with it. 862 */ 863 iov[iovpos].iov_base = drop_buffer; 864 iov[iovpos].iov_len = DROP_BUFFER_SIZE; 865 hdr.msg_iovlen = 1; 866 vp->dev->stats.rx_dropped++; 867 } 868 869 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0); 870 if (pkt_len < 0) { 871 vp->in_error = true; 872 return pkt_len; 873 } 874 875 if (skb != NULL) { 876 if (pkt_len > vp->header_size) { 877 if (vp->header_size > 0) { 878 header_check = vp->verify_header( 879 vp->header_rxbuffer, skb, vp); 880 if (header_check < 0) { 881 dev_kfree_skb_irq(skb); 882 vp->dev->stats.rx_dropped++; 883 vp->estats.rx_encaps_errors++; 884 return 0; 885 } 886 if (header_check > 0) { 887 vp->estats.rx_csum_offload_good++; 888 skb->ip_summed = CHECKSUM_UNNECESSARY; 889 } 890 } 891 pskb_trim(skb, pkt_len - vp->rx_header_size); 892 skb->protocol = eth_type_trans(skb, skb->dev); 893 vp->dev->stats.rx_bytes += skb->len; 894 vp->dev->stats.rx_packets++; 895 napi_gro_receive(&vp->napi, skb); 896 } else { 897 dev_kfree_skb_irq(skb); 898 } 899 } 900 return pkt_len; 901 } 902 903 /* 904 * Packet at a time TX which falls back to vector TX if the 905 * underlying transport is busy. 906 */ 907 908 909 910 static int writev_tx(struct vector_private *vp, struct sk_buff *skb) 911 { 912 struct iovec iov[3 + MAX_IOV_SIZE]; 913 int iov_count, pkt_len = 0; 914 915 iov[0].iov_base = vp->header_txbuffer; 916 iov_count = prep_msg(vp, skb, (struct iovec *) &iov); 917 918 if (iov_count < 1) 919 goto drop; 920 921 pkt_len = uml_vector_writev( 922 vp->fds->tx_fd, 923 (struct iovec *) &iov, 924 iov_count 925 ); 926 927 if (pkt_len < 0) 928 goto drop; 929 930 netif_trans_update(vp->dev); 931 netif_wake_queue(vp->dev); 932 933 if (pkt_len > 0) { 934 vp->dev->stats.tx_bytes += skb->len; 935 vp->dev->stats.tx_packets++; 936 } else { 937 vp->dev->stats.tx_dropped++; 938 } 939 consume_skb(skb); 940 return pkt_len; 941 drop: 942 vp->dev->stats.tx_dropped++; 943 consume_skb(skb); 944 if (pkt_len < 0) 945 vp->in_error = true; 946 return pkt_len; 947 } 948 949 /* 950 * Receive as many messages as we can in one call using the special 951 * mmsg vector matched to an skb vector which we prepared earlier. 952 */ 953 954 static int vector_mmsg_rx(struct vector_private *vp, int budget) 955 { 956 int packet_count, i; 957 struct vector_queue *qi = vp->rx_queue; 958 struct sk_buff *skb; 959 struct mmsghdr *mmsg_vector = qi->mmsg_vector; 960 void **skbuff_vector = qi->skbuff_vector; 961 int header_check; 962 963 /* Refresh the vector and make sure it is with new skbs and the 964 * iovs are updated to point to them. 965 */ 966 967 prep_queue_for_rx(qi); 968 969 /* Fire the Lazy Gun - get as many packets as we can in one go. */ 970 971 if (budget > qi->max_depth) 972 budget = qi->max_depth; 973 974 packet_count = uml_vector_recvmmsg( 975 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0); 976 977 if (packet_count < 0) 978 vp->in_error = true; 979 980 if (packet_count <= 0) 981 return packet_count; 982 983 /* We treat packet processing as enqueue, buffer refresh as dequeue 984 * The queue_depth tells us how many buffers have been used and how 985 * many do we need to prep the next time prep_queue_for_rx() is called. 986 */ 987 988 qi->queue_depth = packet_count; 989 990 for (i = 0; i < packet_count; i++) { 991 skb = (*skbuff_vector); 992 if (mmsg_vector->msg_len > vp->header_size) { 993 if (vp->header_size > 0) { 994 header_check = vp->verify_header( 995 mmsg_vector->msg_hdr.msg_iov->iov_base, 996 skb, 997 vp 998 ); 999 if (header_check < 0) { 1000 /* Overlay header failed to verify - discard. 1001 * We can actually keep this skb and reuse it, 1002 * but that will make the prep logic too 1003 * complex. 1004 */ 1005 dev_kfree_skb_irq(skb); 1006 vp->estats.rx_encaps_errors++; 1007 continue; 1008 } 1009 if (header_check > 0) { 1010 vp->estats.rx_csum_offload_good++; 1011 skb->ip_summed = CHECKSUM_UNNECESSARY; 1012 } 1013 } 1014 pskb_trim(skb, 1015 mmsg_vector->msg_len - vp->rx_header_size); 1016 skb->protocol = eth_type_trans(skb, skb->dev); 1017 /* 1018 * We do not need to lock on updating stats here 1019 * The interrupt loop is non-reentrant. 1020 */ 1021 vp->dev->stats.rx_bytes += skb->len; 1022 vp->dev->stats.rx_packets++; 1023 napi_gro_receive(&vp->napi, skb); 1024 } else { 1025 /* Overlay header too short to do anything - discard. 1026 * We can actually keep this skb and reuse it, 1027 * but that will make the prep logic too complex. 1028 */ 1029 if (skb != NULL) 1030 dev_kfree_skb_irq(skb); 1031 } 1032 (*skbuff_vector) = NULL; 1033 /* Move to the next buffer element */ 1034 mmsg_vector++; 1035 skbuff_vector++; 1036 } 1037 if (packet_count > 0) { 1038 if (vp->estats.rx_queue_max < packet_count) 1039 vp->estats.rx_queue_max = packet_count; 1040 vp->estats.rx_queue_running_average = 1041 (vp->estats.rx_queue_running_average + packet_count) >> 1; 1042 } 1043 return packet_count; 1044 } 1045 1046 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev) 1047 { 1048 struct vector_private *vp = netdev_priv(dev); 1049 int queue_depth = 0; 1050 1051 if (vp->in_error) { 1052 deactivate_fd(vp->fds->rx_fd, vp->rx_irq); 1053 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0)) 1054 deactivate_fd(vp->fds->tx_fd, vp->tx_irq); 1055 return NETDEV_TX_BUSY; 1056 } 1057 1058 if ((vp->options & VECTOR_TX) == 0) { 1059 writev_tx(vp, skb); 1060 return NETDEV_TX_OK; 1061 } 1062 1063 /* We do BQL only in the vector path, no point doing it in 1064 * packet at a time mode as there is no device queue 1065 */ 1066 1067 netdev_sent_queue(vp->dev, skb->len); 1068 queue_depth = vector_enqueue(vp->tx_queue, skb); 1069 1070 if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) { 1071 mod_timer(&vp->tl, vp->coalesce); 1072 return NETDEV_TX_OK; 1073 } else { 1074 queue_depth = vector_send(vp->tx_queue); 1075 if (queue_depth > 0) 1076 napi_schedule(&vp->napi); 1077 } 1078 1079 return NETDEV_TX_OK; 1080 } 1081 1082 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id) 1083 { 1084 struct net_device *dev = dev_id; 1085 struct vector_private *vp = netdev_priv(dev); 1086 1087 if (!netif_running(dev)) 1088 return IRQ_NONE; 1089 napi_schedule(&vp->napi); 1090 return IRQ_HANDLED; 1091 1092 } 1093 1094 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id) 1095 { 1096 struct net_device *dev = dev_id; 1097 struct vector_private *vp = netdev_priv(dev); 1098 1099 if (!netif_running(dev)) 1100 return IRQ_NONE; 1101 /* We need to pay attention to it only if we got 1102 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise 1103 * we ignore it. In the future, it may be worth 1104 * it to improve the IRQ controller a bit to make 1105 * tweaking the IRQ mask less costly 1106 */ 1107 1108 napi_schedule(&vp->napi); 1109 return IRQ_HANDLED; 1110 1111 } 1112 1113 static int irq_rr; 1114 1115 static int vector_net_close(struct net_device *dev) 1116 { 1117 struct vector_private *vp = netdev_priv(dev); 1118 1119 netif_stop_queue(dev); 1120 del_timer(&vp->tl); 1121 1122 vp->opened = false; 1123 1124 if (vp->fds == NULL) 1125 return 0; 1126 1127 /* Disable and free all IRQS */ 1128 if (vp->rx_irq > 0) { 1129 um_free_irq(vp->rx_irq, dev); 1130 vp->rx_irq = 0; 1131 } 1132 if (vp->tx_irq > 0) { 1133 um_free_irq(vp->tx_irq, dev); 1134 vp->tx_irq = 0; 1135 } 1136 napi_disable(&vp->napi); 1137 netif_napi_del(&vp->napi); 1138 if (vp->fds->rx_fd > 0) { 1139 if (vp->bpf) 1140 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); 1141 os_close_file(vp->fds->rx_fd); 1142 vp->fds->rx_fd = -1; 1143 } 1144 if (vp->fds->tx_fd > 0) { 1145 os_close_file(vp->fds->tx_fd); 1146 vp->fds->tx_fd = -1; 1147 } 1148 if (vp->bpf != NULL) 1149 kfree(vp->bpf->filter); 1150 kfree(vp->bpf); 1151 vp->bpf = NULL; 1152 kfree(vp->fds->remote_addr); 1153 kfree(vp->transport_data); 1154 kfree(vp->header_rxbuffer); 1155 kfree(vp->header_txbuffer); 1156 if (vp->rx_queue != NULL) 1157 destroy_queue(vp->rx_queue); 1158 if (vp->tx_queue != NULL) 1159 destroy_queue(vp->tx_queue); 1160 kfree(vp->fds); 1161 vp->fds = NULL; 1162 vp->in_error = false; 1163 return 0; 1164 } 1165 1166 static int vector_poll(struct napi_struct *napi, int budget) 1167 { 1168 struct vector_private *vp = container_of(napi, struct vector_private, napi); 1169 int work_done = 0; 1170 int err; 1171 bool tx_enqueued = false; 1172 1173 if ((vp->options & VECTOR_TX) != 0) 1174 tx_enqueued = (vector_send(vp->tx_queue) > 0); 1175 if ((vp->options & VECTOR_RX) > 0) 1176 err = vector_mmsg_rx(vp, budget); 1177 else { 1178 err = vector_legacy_rx(vp); 1179 if (err > 0) 1180 err = 1; 1181 } 1182 if (err > 0) 1183 work_done += err; 1184 1185 if (tx_enqueued || err > 0) 1186 napi_schedule(napi); 1187 if (work_done < budget) 1188 napi_complete_done(napi, work_done); 1189 return work_done; 1190 } 1191 1192 static void vector_reset_tx(struct work_struct *work) 1193 { 1194 struct vector_private *vp = 1195 container_of(work, struct vector_private, reset_tx); 1196 netdev_reset_queue(vp->dev); 1197 netif_start_queue(vp->dev); 1198 netif_wake_queue(vp->dev); 1199 } 1200 1201 static int vector_net_open(struct net_device *dev) 1202 { 1203 struct vector_private *vp = netdev_priv(dev); 1204 int err = -EINVAL; 1205 struct vector_device *vdevice; 1206 1207 if (vp->opened) 1208 return -ENXIO; 1209 vp->opened = true; 1210 1211 vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed)); 1212 1213 vp->fds = uml_vector_user_open(vp->unit, vp->parsed); 1214 1215 if (vp->fds == NULL) 1216 goto out_close; 1217 1218 if (build_transport_data(vp) < 0) 1219 goto out_close; 1220 1221 if ((vp->options & VECTOR_RX) > 0) { 1222 vp->rx_queue = create_queue( 1223 vp, 1224 get_depth(vp->parsed), 1225 vp->rx_header_size, 1226 MAX_IOV_SIZE 1227 ); 1228 vp->rx_queue->queue_depth = get_depth(vp->parsed); 1229 } else { 1230 vp->header_rxbuffer = kmalloc( 1231 vp->rx_header_size, 1232 GFP_KERNEL 1233 ); 1234 if (vp->header_rxbuffer == NULL) 1235 goto out_close; 1236 } 1237 if ((vp->options & VECTOR_TX) > 0) { 1238 vp->tx_queue = create_queue( 1239 vp, 1240 get_depth(vp->parsed), 1241 vp->header_size, 1242 MAX_IOV_SIZE 1243 ); 1244 } else { 1245 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL); 1246 if (vp->header_txbuffer == NULL) 1247 goto out_close; 1248 } 1249 1250 netif_napi_add_weight(vp->dev, &vp->napi, vector_poll, 1251 get_depth(vp->parsed)); 1252 napi_enable(&vp->napi); 1253 1254 /* READ IRQ */ 1255 err = um_request_irq( 1256 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd, 1257 IRQ_READ, vector_rx_interrupt, 1258 IRQF_SHARED, dev->name, dev); 1259 if (err < 0) { 1260 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err); 1261 err = -ENETUNREACH; 1262 goto out_close; 1263 } 1264 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ; 1265 dev->irq = irq_rr + VECTOR_BASE_IRQ; 1266 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1267 1268 /* WRITE IRQ - we need it only if we have vector TX */ 1269 if ((vp->options & VECTOR_TX) > 0) { 1270 err = um_request_irq( 1271 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd, 1272 IRQ_WRITE, vector_tx_interrupt, 1273 IRQF_SHARED, dev->name, dev); 1274 if (err < 0) { 1275 netdev_err(dev, 1276 "vector_open: failed to get tx irq(%d)\n", err); 1277 err = -ENETUNREACH; 1278 goto out_close; 1279 } 1280 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ; 1281 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE; 1282 } 1283 1284 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) { 1285 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd)) 1286 vp->options |= VECTOR_BPF; 1287 } 1288 if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL)) 1289 vp->bpf = uml_vector_default_bpf(dev->dev_addr); 1290 1291 if (vp->bpf != NULL) 1292 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); 1293 1294 netif_start_queue(dev); 1295 vector_reset_stats(vp); 1296 1297 /* clear buffer - it can happen that the host side of the interface 1298 * is full when we get here. In this case, new data is never queued, 1299 * SIGIOs never arrive, and the net never works. 1300 */ 1301 1302 napi_schedule(&vp->napi); 1303 1304 vdevice = find_device(vp->unit); 1305 vdevice->opened = 1; 1306 1307 if ((vp->options & VECTOR_TX) != 0) 1308 add_timer(&vp->tl); 1309 return 0; 1310 out_close: 1311 vector_net_close(dev); 1312 return err; 1313 } 1314 1315 1316 static void vector_net_set_multicast_list(struct net_device *dev) 1317 { 1318 /* TODO: - we can do some BPF games here */ 1319 return; 1320 } 1321 1322 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue) 1323 { 1324 struct vector_private *vp = netdev_priv(dev); 1325 1326 vp->estats.tx_timeout_count++; 1327 netif_trans_update(dev); 1328 schedule_work(&vp->reset_tx); 1329 } 1330 1331 static netdev_features_t vector_fix_features(struct net_device *dev, 1332 netdev_features_t features) 1333 { 1334 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 1335 return features; 1336 } 1337 1338 static int vector_set_features(struct net_device *dev, 1339 netdev_features_t features) 1340 { 1341 struct vector_private *vp = netdev_priv(dev); 1342 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is 1343 * no way to negotiate it on raw sockets, so we can change 1344 * only our side. 1345 */ 1346 if (features & NETIF_F_GRO) 1347 /* All new frame buffers will be GRO-sized */ 1348 vp->req_size = 65536; 1349 else 1350 /* All new frame buffers will be normal sized */ 1351 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN; 1352 return 0; 1353 } 1354 1355 #ifdef CONFIG_NET_POLL_CONTROLLER 1356 static void vector_net_poll_controller(struct net_device *dev) 1357 { 1358 disable_irq(dev->irq); 1359 vector_rx_interrupt(dev->irq, dev); 1360 enable_irq(dev->irq); 1361 } 1362 #endif 1363 1364 static void vector_net_get_drvinfo(struct net_device *dev, 1365 struct ethtool_drvinfo *info) 1366 { 1367 strscpy(info->driver, DRIVER_NAME); 1368 } 1369 1370 static int vector_net_load_bpf_flash(struct net_device *dev, 1371 struct ethtool_flash *efl) 1372 { 1373 struct vector_private *vp = netdev_priv(dev); 1374 struct vector_device *vdevice; 1375 const struct firmware *fw; 1376 int result = 0; 1377 1378 if (!(vp->options & VECTOR_BPF_FLASH)) { 1379 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data); 1380 return -1; 1381 } 1382 1383 if (vp->bpf != NULL) { 1384 if (vp->opened) 1385 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf); 1386 kfree(vp->bpf->filter); 1387 vp->bpf->filter = NULL; 1388 } else { 1389 vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC); 1390 if (vp->bpf == NULL) { 1391 netdev_err(dev, "failed to allocate memory for firmware\n"); 1392 goto flash_fail; 1393 } 1394 } 1395 1396 vdevice = find_device(vp->unit); 1397 1398 if (request_firmware(&fw, efl->data, &vdevice->pdev.dev)) 1399 goto flash_fail; 1400 1401 vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC); 1402 if (!vp->bpf->filter) 1403 goto free_buffer; 1404 1405 vp->bpf->len = fw->size / sizeof(struct sock_filter); 1406 release_firmware(fw); 1407 1408 if (vp->opened) 1409 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf); 1410 1411 return result; 1412 1413 free_buffer: 1414 release_firmware(fw); 1415 1416 flash_fail: 1417 if (vp->bpf != NULL) 1418 kfree(vp->bpf->filter); 1419 kfree(vp->bpf); 1420 vp->bpf = NULL; 1421 return -1; 1422 } 1423 1424 static void vector_get_ringparam(struct net_device *netdev, 1425 struct ethtool_ringparam *ring, 1426 struct kernel_ethtool_ringparam *kernel_ring, 1427 struct netlink_ext_ack *extack) 1428 { 1429 struct vector_private *vp = netdev_priv(netdev); 1430 1431 ring->rx_max_pending = vp->rx_queue->max_depth; 1432 ring->tx_max_pending = vp->tx_queue->max_depth; 1433 ring->rx_pending = vp->rx_queue->max_depth; 1434 ring->tx_pending = vp->tx_queue->max_depth; 1435 } 1436 1437 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 1438 { 1439 switch (stringset) { 1440 case ETH_SS_TEST: 1441 *buf = '\0'; 1442 break; 1443 case ETH_SS_STATS: 1444 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 1445 break; 1446 default: 1447 WARN_ON(1); 1448 break; 1449 } 1450 } 1451 1452 static int vector_get_sset_count(struct net_device *dev, int sset) 1453 { 1454 switch (sset) { 1455 case ETH_SS_TEST: 1456 return 0; 1457 case ETH_SS_STATS: 1458 return VECTOR_NUM_STATS; 1459 default: 1460 return -EOPNOTSUPP; 1461 } 1462 } 1463 1464 static void vector_get_ethtool_stats(struct net_device *dev, 1465 struct ethtool_stats *estats, 1466 u64 *tmp_stats) 1467 { 1468 struct vector_private *vp = netdev_priv(dev); 1469 1470 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats)); 1471 } 1472 1473 static int vector_get_coalesce(struct net_device *netdev, 1474 struct ethtool_coalesce *ec, 1475 struct kernel_ethtool_coalesce *kernel_coal, 1476 struct netlink_ext_ack *extack) 1477 { 1478 struct vector_private *vp = netdev_priv(netdev); 1479 1480 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ; 1481 return 0; 1482 } 1483 1484 static int vector_set_coalesce(struct net_device *netdev, 1485 struct ethtool_coalesce *ec, 1486 struct kernel_ethtool_coalesce *kernel_coal, 1487 struct netlink_ext_ack *extack) 1488 { 1489 struct vector_private *vp = netdev_priv(netdev); 1490 1491 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000; 1492 if (vp->coalesce == 0) 1493 vp->coalesce = 1; 1494 return 0; 1495 } 1496 1497 static const struct ethtool_ops vector_net_ethtool_ops = { 1498 .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS, 1499 .get_drvinfo = vector_net_get_drvinfo, 1500 .get_link = ethtool_op_get_link, 1501 .get_ts_info = ethtool_op_get_ts_info, 1502 .get_ringparam = vector_get_ringparam, 1503 .get_strings = vector_get_strings, 1504 .get_sset_count = vector_get_sset_count, 1505 .get_ethtool_stats = vector_get_ethtool_stats, 1506 .get_coalesce = vector_get_coalesce, 1507 .set_coalesce = vector_set_coalesce, 1508 .flash_device = vector_net_load_bpf_flash, 1509 }; 1510 1511 1512 static const struct net_device_ops vector_netdev_ops = { 1513 .ndo_open = vector_net_open, 1514 .ndo_stop = vector_net_close, 1515 .ndo_start_xmit = vector_net_start_xmit, 1516 .ndo_set_rx_mode = vector_net_set_multicast_list, 1517 .ndo_tx_timeout = vector_net_tx_timeout, 1518 .ndo_set_mac_address = eth_mac_addr, 1519 .ndo_validate_addr = eth_validate_addr, 1520 .ndo_fix_features = vector_fix_features, 1521 .ndo_set_features = vector_set_features, 1522 #ifdef CONFIG_NET_POLL_CONTROLLER 1523 .ndo_poll_controller = vector_net_poll_controller, 1524 #endif 1525 }; 1526 1527 static void vector_timer_expire(struct timer_list *t) 1528 { 1529 struct vector_private *vp = from_timer(vp, t, tl); 1530 1531 vp->estats.tx_kicks++; 1532 napi_schedule(&vp->napi); 1533 } 1534 1535 1536 1537 static void vector_eth_configure( 1538 int n, 1539 struct arglist *def 1540 ) 1541 { 1542 struct vector_device *device; 1543 struct net_device *dev; 1544 struct vector_private *vp; 1545 int err; 1546 1547 device = kzalloc(sizeof(*device), GFP_KERNEL); 1548 if (device == NULL) { 1549 printk(KERN_ERR "eth_configure failed to allocate struct " 1550 "vector_device\n"); 1551 return; 1552 } 1553 dev = alloc_etherdev(sizeof(struct vector_private)); 1554 if (dev == NULL) { 1555 printk(KERN_ERR "eth_configure: failed to allocate struct " 1556 "net_device for vec%d\n", n); 1557 goto out_free_device; 1558 } 1559 1560 dev->mtu = get_mtu(def); 1561 1562 INIT_LIST_HEAD(&device->list); 1563 device->unit = n; 1564 1565 /* If this name ends up conflicting with an existing registered 1566 * netdevice, that is OK, register_netdev{,ice}() will notice this 1567 * and fail. 1568 */ 1569 snprintf(dev->name, sizeof(dev->name), "vec%d", n); 1570 uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac")); 1571 vp = netdev_priv(dev); 1572 1573 /* sysfs register */ 1574 if (!driver_registered) { 1575 platform_driver_register(¨_net_driver); 1576 driver_registered = 1; 1577 } 1578 device->pdev.id = n; 1579 device->pdev.name = DRIVER_NAME; 1580 device->pdev.dev.release = vector_device_release; 1581 dev_set_drvdata(&device->pdev.dev, device); 1582 if (platform_device_register(&device->pdev)) 1583 goto out_free_netdev; 1584 SET_NETDEV_DEV(dev, &device->pdev.dev); 1585 1586 device->dev = dev; 1587 1588 *vp = ((struct vector_private) 1589 { 1590 .list = LIST_HEAD_INIT(vp->list), 1591 .dev = dev, 1592 .unit = n, 1593 .options = get_transport_options(def), 1594 .rx_irq = 0, 1595 .tx_irq = 0, 1596 .parsed = def, 1597 .max_packet = get_mtu(def) + ETH_HEADER_OTHER, 1598 /* TODO - we need to calculate headroom so that ip header 1599 * is 16 byte aligned all the time 1600 */ 1601 .headroom = get_headroom(def), 1602 .form_header = NULL, 1603 .verify_header = NULL, 1604 .header_rxbuffer = NULL, 1605 .header_txbuffer = NULL, 1606 .header_size = 0, 1607 .rx_header_size = 0, 1608 .rexmit_scheduled = false, 1609 .opened = false, 1610 .transport_data = NULL, 1611 .in_write_poll = false, 1612 .coalesce = 2, 1613 .req_size = get_req_size(def), 1614 .in_error = false, 1615 .bpf = NULL 1616 }); 1617 1618 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST); 1619 INIT_WORK(&vp->reset_tx, vector_reset_tx); 1620 1621 timer_setup(&vp->tl, vector_timer_expire, 0); 1622 1623 /* FIXME */ 1624 dev->netdev_ops = &vector_netdev_ops; 1625 dev->ethtool_ops = &vector_net_ethtool_ops; 1626 dev->watchdog_timeo = (HZ >> 1); 1627 /* primary IRQ - fixme */ 1628 dev->irq = 0; /* we will adjust this once opened */ 1629 1630 rtnl_lock(); 1631 err = register_netdevice(dev); 1632 rtnl_unlock(); 1633 if (err) 1634 goto out_undo_user_init; 1635 1636 spin_lock(&vector_devices_lock); 1637 list_add(&device->list, &vector_devices); 1638 spin_unlock(&vector_devices_lock); 1639 1640 return; 1641 1642 out_undo_user_init: 1643 return; 1644 out_free_netdev: 1645 free_netdev(dev); 1646 out_free_device: 1647 kfree(device); 1648 } 1649 1650 1651 1652 1653 /* 1654 * Invoked late in the init 1655 */ 1656 1657 static int __init vector_init(void) 1658 { 1659 struct list_head *ele; 1660 struct vector_cmd_line_arg *def; 1661 struct arglist *parsed; 1662 1663 list_for_each(ele, &vec_cmd_line) { 1664 def = list_entry(ele, struct vector_cmd_line_arg, list); 1665 parsed = uml_parse_vector_ifspec(def->arguments); 1666 if (parsed != NULL) 1667 vector_eth_configure(def->unit, parsed); 1668 } 1669 return 0; 1670 } 1671 1672 1673 /* Invoked at initial argument parsing, only stores 1674 * arguments until a proper vector_init is called 1675 * later 1676 */ 1677 1678 static int __init vector_setup(char *str) 1679 { 1680 char *error; 1681 int n, err; 1682 struct vector_cmd_line_arg *new; 1683 1684 err = vector_parse(str, &n, &str, &error); 1685 if (err) { 1686 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n", 1687 str, error); 1688 return 1; 1689 } 1690 new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES); 1691 if (!new) 1692 panic("%s: Failed to allocate %zu bytes\n", __func__, 1693 sizeof(*new)); 1694 INIT_LIST_HEAD(&new->list); 1695 new->unit = n; 1696 new->arguments = str; 1697 list_add_tail(&new->list, &vec_cmd_line); 1698 return 1; 1699 } 1700 1701 __setup("vec", vector_setup); 1702 __uml_help(vector_setup, 1703 "vec[0-9]+:<option>=<value>,<option>=<value>\n" 1704 " Configure a vector io network device.\n\n" 1705 ); 1706 1707 late_initcall(vector_init); 1708 1709 static struct mc_device vector_mc = { 1710 .list = LIST_HEAD_INIT(vector_mc.list), 1711 .name = "vec", 1712 .config = vector_config, 1713 .get_config = NULL, 1714 .id = vector_id, 1715 .remove = vector_remove, 1716 }; 1717 1718 #ifdef CONFIG_INET 1719 static int vector_inetaddr_event( 1720 struct notifier_block *this, 1721 unsigned long event, 1722 void *ptr) 1723 { 1724 return NOTIFY_DONE; 1725 } 1726 1727 static struct notifier_block vector_inetaddr_notifier = { 1728 .notifier_call = vector_inetaddr_event, 1729 }; 1730 1731 static void inet_register(void) 1732 { 1733 register_inetaddr_notifier(&vector_inetaddr_notifier); 1734 } 1735 #else 1736 static inline void inet_register(void) 1737 { 1738 } 1739 #endif 1740 1741 static int vector_net_init(void) 1742 { 1743 mconsole_register_dev(&vector_mc); 1744 inet_register(); 1745 return 0; 1746 } 1747 1748 __initcall(vector_net_init); 1749 1750 1751 1752
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.