1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * kaslr.c 4 * 5 * This contains the routines needed to generate a reasonable level of 6 * entropy to choose a randomized kernel base address offset in support 7 * of Kernel Address Space Layout Randomization (KASLR). Additionally 8 * handles walking the physical memory maps (and tracking memory regions 9 * to avoid) in order to select a physical memory location that can 10 * contain the entire properly aligned running kernel image. 11 * 12 */ 13 14 /* 15 * isspace() in linux/ctype.h is expected by next_args() to filter 16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h, 17 * since isdigit() is implemented in both of them. Hence disable it 18 * here. 19 */ 20 #define BOOT_CTYPE_H 21 22 #include "misc.h" 23 #include "error.h" 24 #include "../string.h" 25 #include "efi.h" 26 27 #include <generated/compile.h> 28 #include <linux/module.h> 29 #include <linux/uts.h> 30 #include <linux/utsname.h> 31 #include <linux/ctype.h> 32 #include <generated/utsversion.h> 33 #include <generated/utsrelease.h> 34 35 #define _SETUP 36 #include <asm/setup.h> /* For COMMAND_LINE_SIZE */ 37 #undef _SETUP 38 39 extern unsigned long get_cmd_line_ptr(void); 40 41 /* Simplified build-specific string for starting entropy. */ 42 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" 43 LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; 44 45 static unsigned long rotate_xor(unsigned long hash, const void *area, 46 size_t size) 47 { 48 size_t i; 49 unsigned long *ptr = (unsigned long *)area; 50 51 for (i = 0; i < size / sizeof(hash); i++) { 52 /* Rotate by odd number of bits and XOR. */ 53 hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); 54 hash ^= ptr[i]; 55 } 56 57 return hash; 58 } 59 60 /* Attempt to create a simple but unpredictable starting entropy. */ 61 static unsigned long get_boot_seed(void) 62 { 63 unsigned long hash = 0; 64 65 hash = rotate_xor(hash, build_str, sizeof(build_str)); 66 hash = rotate_xor(hash, boot_params_ptr, sizeof(*boot_params_ptr)); 67 68 return hash; 69 } 70 71 #define KASLR_COMPRESSED_BOOT 72 #include "../../lib/kaslr.c" 73 74 75 /* Only supporting at most 4 unusable memmap regions with kaslr */ 76 #define MAX_MEMMAP_REGIONS 4 77 78 static bool memmap_too_large; 79 80 81 /* 82 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit. 83 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options. 84 */ 85 static u64 mem_limit; 86 87 /* Number of immovable memory regions */ 88 static int num_immovable_mem; 89 90 enum mem_avoid_index { 91 MEM_AVOID_ZO_RANGE = 0, 92 MEM_AVOID_INITRD, 93 MEM_AVOID_CMDLINE, 94 MEM_AVOID_BOOTPARAMS, 95 MEM_AVOID_MEMMAP_BEGIN, 96 MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1, 97 MEM_AVOID_MAX, 98 }; 99 100 static struct mem_vector mem_avoid[MEM_AVOID_MAX]; 101 102 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) 103 { 104 /* Item one is entirely before item two. */ 105 if (one->start + one->size <= two->start) 106 return false; 107 /* Item one is entirely after item two. */ 108 if (one->start >= two->start + two->size) 109 return false; 110 return true; 111 } 112 113 char *skip_spaces(const char *str) 114 { 115 while (isspace(*str)) 116 ++str; 117 return (char *)str; 118 } 119 #include "../../../../lib/ctype.c" 120 #include "../../../../lib/cmdline.c" 121 122 static int 123 parse_memmap(char *p, u64 *start, u64 *size) 124 { 125 char *oldp; 126 127 if (!p) 128 return -EINVAL; 129 130 /* We don't care about this option here */ 131 if (!strncmp(p, "exactmap", 8)) 132 return -EINVAL; 133 134 oldp = p; 135 *size = memparse(p, &p); 136 if (p == oldp) 137 return -EINVAL; 138 139 switch (*p) { 140 case '#': 141 case '$': 142 case '!': 143 *start = memparse(p + 1, &p); 144 return 0; 145 case '@': 146 /* 147 * memmap=nn@ss specifies usable region, should 148 * be skipped 149 */ 150 *size = 0; 151 fallthrough; 152 default: 153 /* 154 * If w/o offset, only size specified, memmap=nn[KMG] has the 155 * same behaviour as mem=nn[KMG]. It limits the max address 156 * system can use. Region above the limit should be avoided. 157 */ 158 *start = 0; 159 return 0; 160 } 161 162 return -EINVAL; 163 } 164 165 static void mem_avoid_memmap(char *str) 166 { 167 static int i; 168 169 if (i >= MAX_MEMMAP_REGIONS) 170 return; 171 172 while (str && (i < MAX_MEMMAP_REGIONS)) { 173 int rc; 174 u64 start, size; 175 char *k = strchr(str, ','); 176 177 if (k) 178 *k++ = 0; 179 180 rc = parse_memmap(str, &start, &size); 181 if (rc < 0) 182 break; 183 str = k; 184 185 if (start == 0) { 186 /* Store the specified memory limit if size > 0 */ 187 if (size > 0 && size < mem_limit) 188 mem_limit = size; 189 190 continue; 191 } 192 193 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start; 194 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size; 195 i++; 196 } 197 198 /* More than 4 memmaps, fail kaslr */ 199 if ((i >= MAX_MEMMAP_REGIONS) && str) 200 memmap_too_large = true; 201 } 202 203 /* Store the number of 1GB huge pages which users specified: */ 204 static unsigned long max_gb_huge_pages; 205 206 static void parse_gb_huge_pages(char *param, char *val) 207 { 208 static bool gbpage_sz; 209 char *p; 210 211 if (!strcmp(param, "hugepagesz")) { 212 p = val; 213 if (memparse(p, &p) != PUD_SIZE) { 214 gbpage_sz = false; 215 return; 216 } 217 218 if (gbpage_sz) 219 warn("Repeatedly set hugeTLB page size of 1G!\n"); 220 gbpage_sz = true; 221 return; 222 } 223 224 if (!strcmp(param, "hugepages") && gbpage_sz) { 225 p = val; 226 max_gb_huge_pages = simple_strtoull(p, &p, 0); 227 return; 228 } 229 } 230 231 static void handle_mem_options(void) 232 { 233 char *args = (char *)get_cmd_line_ptr(); 234 size_t len; 235 char *tmp_cmdline; 236 char *param, *val; 237 u64 mem_size; 238 239 if (!args) 240 return; 241 242 len = strnlen(args, COMMAND_LINE_SIZE-1); 243 tmp_cmdline = malloc(len + 1); 244 if (!tmp_cmdline) 245 error("Failed to allocate space for tmp_cmdline"); 246 247 memcpy(tmp_cmdline, args, len); 248 tmp_cmdline[len] = 0; 249 args = tmp_cmdline; 250 251 /* Chew leading spaces */ 252 args = skip_spaces(args); 253 254 while (*args) { 255 args = next_arg(args, ¶m, &val); 256 /* Stop at -- */ 257 if (!val && strcmp(param, "--") == 0) 258 break; 259 260 if (!strcmp(param, "memmap")) { 261 mem_avoid_memmap(val); 262 } else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) { 263 parse_gb_huge_pages(param, val); 264 } else if (!strcmp(param, "mem")) { 265 char *p = val; 266 267 if (!strcmp(p, "nopentium")) 268 continue; 269 mem_size = memparse(p, &p); 270 if (mem_size == 0) 271 break; 272 273 if (mem_size < mem_limit) 274 mem_limit = mem_size; 275 } 276 } 277 278 free(tmp_cmdline); 279 return; 280 } 281 282 /* 283 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM) 284 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit. 285 * 286 * The mem_avoid array is used to store the ranges that need to be avoided 287 * when KASLR searches for an appropriate random address. We must avoid any 288 * regions that are unsafe to overlap with during decompression, and other 289 * things like the initrd, cmdline and boot_params. This comment seeks to 290 * explain mem_avoid as clearly as possible since incorrect mem_avoid 291 * memory ranges lead to really hard to debug boot failures. 292 * 293 * The initrd, cmdline, and boot_params are trivial to identify for 294 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and 295 * MEM_AVOID_BOOTPARAMS respectively below. 296 * 297 * What is not obvious how to avoid is the range of memory that is used 298 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover 299 * the compressed kernel (ZO) and its run space, which is used to extract 300 * the uncompressed kernel (VO) and relocs. 301 * 302 * ZO's full run size sits against the end of the decompression buffer, so 303 * we can calculate where text, data, bss, etc of ZO are positioned more 304 * easily. 305 * 306 * For additional background, the decompression calculations can be found 307 * in header.S, and the memory diagram is based on the one found in misc.c. 308 * 309 * The following conditions are already enforced by the image layouts and 310 * associated code: 311 * - input + input_size >= output + output_size 312 * - kernel_total_size <= init_size 313 * - kernel_total_size <= output_size (see Note below) 314 * - output + init_size >= output + output_size 315 * 316 * (Note that kernel_total_size and output_size have no fundamental 317 * relationship, but output_size is passed to choose_random_location 318 * as a maximum of the two. The diagram is showing a case where 319 * kernel_total_size is larger than output_size, but this case is 320 * handled by bumping output_size.) 321 * 322 * The above conditions can be illustrated by a diagram: 323 * 324 * 0 output input input+input_size output+init_size 325 * | | | | | 326 * | | | | | 327 * |-----|--------|--------|--------------|-----------|--|-------------| 328 * | | | 329 * | | | 330 * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size 331 * 332 * [output, output+init_size) is the entire memory range used for 333 * extracting the compressed image. 334 * 335 * [output, output+kernel_total_size) is the range needed for the 336 * uncompressed kernel (VO) and its run size (bss, brk, etc). 337 * 338 * [output, output+output_size) is VO plus relocs (i.e. the entire 339 * uncompressed payload contained by ZO). This is the area of the buffer 340 * written to during decompression. 341 * 342 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case 343 * range of the copied ZO and decompression code. (i.e. the range 344 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) 345 * 346 * [input, input+input_size) is the original copied compressed image (ZO) 347 * (i.e. it does not include its run size). This range must be avoided 348 * because it contains the data used for decompression. 349 * 350 * [input+input_size, output+init_size) is [_text, _end) for ZO. This 351 * range includes ZO's heap and stack, and must be avoided since it 352 * performs the decompression. 353 * 354 * Since the above two ranges need to be avoided and they are adjacent, 355 * they can be merged, resulting in: [input, output+init_size) which 356 * becomes the MEM_AVOID_ZO_RANGE below. 357 */ 358 static void mem_avoid_init(unsigned long input, unsigned long input_size, 359 unsigned long output) 360 { 361 unsigned long init_size = boot_params_ptr->hdr.init_size; 362 u64 initrd_start, initrd_size; 363 unsigned long cmd_line, cmd_line_size; 364 365 /* 366 * Avoid the region that is unsafe to overlap during 367 * decompression. 368 */ 369 mem_avoid[MEM_AVOID_ZO_RANGE].start = input; 370 mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; 371 372 /* Avoid initrd. */ 373 initrd_start = (u64)boot_params_ptr->ext_ramdisk_image << 32; 374 initrd_start |= boot_params_ptr->hdr.ramdisk_image; 375 initrd_size = (u64)boot_params_ptr->ext_ramdisk_size << 32; 376 initrd_size |= boot_params_ptr->hdr.ramdisk_size; 377 mem_avoid[MEM_AVOID_INITRD].start = initrd_start; 378 mem_avoid[MEM_AVOID_INITRD].size = initrd_size; 379 /* No need to set mapping for initrd, it will be handled in VO. */ 380 381 /* Avoid kernel command line. */ 382 cmd_line = get_cmd_line_ptr(); 383 /* Calculate size of cmd_line. */ 384 if (cmd_line) { 385 cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1; 386 mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; 387 mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; 388 } 389 390 /* Avoid boot parameters. */ 391 mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params_ptr; 392 mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params_ptr); 393 394 /* We don't need to set a mapping for setup_data. */ 395 396 /* Mark the memmap regions we need to avoid */ 397 handle_mem_options(); 398 399 /* Enumerate the immovable memory regions */ 400 num_immovable_mem = count_immovable_mem_regions(); 401 } 402 403 /* 404 * Does this memory vector overlap a known avoided area? If so, record the 405 * overlap region with the lowest address. 406 */ 407 static bool mem_avoid_overlap(struct mem_vector *img, 408 struct mem_vector *overlap) 409 { 410 int i; 411 struct setup_data *ptr; 412 u64 earliest = img->start + img->size; 413 bool is_overlapping = false; 414 415 for (i = 0; i < MEM_AVOID_MAX; i++) { 416 if (mem_overlaps(img, &mem_avoid[i]) && 417 mem_avoid[i].start < earliest) { 418 *overlap = mem_avoid[i]; 419 earliest = overlap->start; 420 is_overlapping = true; 421 } 422 } 423 424 /* Avoid all entries in the setup_data linked list. */ 425 ptr = (struct setup_data *)(unsigned long)boot_params_ptr->hdr.setup_data; 426 while (ptr) { 427 struct mem_vector avoid; 428 429 avoid.start = (unsigned long)ptr; 430 avoid.size = sizeof(*ptr) + ptr->len; 431 432 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { 433 *overlap = avoid; 434 earliest = overlap->start; 435 is_overlapping = true; 436 } 437 438 if (ptr->type == SETUP_INDIRECT && 439 ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) { 440 avoid.start = ((struct setup_indirect *)ptr->data)->addr; 441 avoid.size = ((struct setup_indirect *)ptr->data)->len; 442 443 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { 444 *overlap = avoid; 445 earliest = overlap->start; 446 is_overlapping = true; 447 } 448 } 449 450 ptr = (struct setup_data *)(unsigned long)ptr->next; 451 } 452 453 return is_overlapping; 454 } 455 456 struct slot_area { 457 u64 addr; 458 unsigned long num; 459 }; 460 461 #define MAX_SLOT_AREA 100 462 463 static struct slot_area slot_areas[MAX_SLOT_AREA]; 464 static unsigned int slot_area_index; 465 static unsigned long slot_max; 466 467 static void store_slot_info(struct mem_vector *region, unsigned long image_size) 468 { 469 struct slot_area slot_area; 470 471 if (slot_area_index == MAX_SLOT_AREA) 472 return; 473 474 slot_area.addr = region->start; 475 slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN; 476 477 slot_areas[slot_area_index++] = slot_area; 478 slot_max += slot_area.num; 479 } 480 481 /* 482 * Skip as many 1GB huge pages as possible in the passed region 483 * according to the number which users specified: 484 */ 485 static void 486 process_gb_huge_pages(struct mem_vector *region, unsigned long image_size) 487 { 488 u64 pud_start, pud_end; 489 unsigned long gb_huge_pages; 490 struct mem_vector tmp; 491 492 if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) { 493 store_slot_info(region, image_size); 494 return; 495 } 496 497 /* Are there any 1GB pages in the region? */ 498 pud_start = ALIGN(region->start, PUD_SIZE); 499 pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE); 500 501 /* No good 1GB huge pages found: */ 502 if (pud_start >= pud_end) { 503 store_slot_info(region, image_size); 504 return; 505 } 506 507 /* Check if the head part of the region is usable. */ 508 if (pud_start >= region->start + image_size) { 509 tmp.start = region->start; 510 tmp.size = pud_start - region->start; 511 store_slot_info(&tmp, image_size); 512 } 513 514 /* Skip the good 1GB pages. */ 515 gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT; 516 if (gb_huge_pages > max_gb_huge_pages) { 517 pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT); 518 max_gb_huge_pages = 0; 519 } else { 520 max_gb_huge_pages -= gb_huge_pages; 521 } 522 523 /* Check if the tail part of the region is usable. */ 524 if (region->start + region->size >= pud_end + image_size) { 525 tmp.start = pud_end; 526 tmp.size = region->start + region->size - pud_end; 527 store_slot_info(&tmp, image_size); 528 } 529 } 530 531 static u64 slots_fetch_random(void) 532 { 533 unsigned long slot; 534 unsigned int i; 535 536 /* Handle case of no slots stored. */ 537 if (slot_max == 0) 538 return 0; 539 540 slot = kaslr_get_random_long("Physical") % slot_max; 541 542 for (i = 0; i < slot_area_index; i++) { 543 if (slot >= slot_areas[i].num) { 544 slot -= slot_areas[i].num; 545 continue; 546 } 547 return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN); 548 } 549 550 if (i == slot_area_index) 551 debug_putstr("slots_fetch_random() failed!?\n"); 552 return 0; 553 } 554 555 static void __process_mem_region(struct mem_vector *entry, 556 unsigned long minimum, 557 unsigned long image_size) 558 { 559 struct mem_vector region, overlap; 560 u64 region_end; 561 562 /* Enforce minimum and memory limit. */ 563 region.start = max_t(u64, entry->start, minimum); 564 region_end = min(entry->start + entry->size, mem_limit); 565 566 /* Give up if slot area array is full. */ 567 while (slot_area_index < MAX_SLOT_AREA) { 568 /* Potentially raise address to meet alignment needs. */ 569 region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); 570 571 /* Did we raise the address above the passed in memory entry? */ 572 if (region.start > region_end) 573 return; 574 575 /* Reduce size by any delta from the original address. */ 576 region.size = region_end - region.start; 577 578 /* Return if region can't contain decompressed kernel */ 579 if (region.size < image_size) 580 return; 581 582 /* If nothing overlaps, store the region and return. */ 583 if (!mem_avoid_overlap(®ion, &overlap)) { 584 process_gb_huge_pages(®ion, image_size); 585 return; 586 } 587 588 /* Store beginning of region if holds at least image_size. */ 589 if (overlap.start >= region.start + image_size) { 590 region.size = overlap.start - region.start; 591 process_gb_huge_pages(®ion, image_size); 592 } 593 594 /* Clip off the overlapping region and start over. */ 595 region.start = overlap.start + overlap.size; 596 } 597 } 598 599 static bool process_mem_region(struct mem_vector *region, 600 unsigned long minimum, 601 unsigned long image_size) 602 { 603 int i; 604 /* 605 * If no immovable memory found, or MEMORY_HOTREMOVE disabled, 606 * use @region directly. 607 */ 608 if (!num_immovable_mem) { 609 __process_mem_region(region, minimum, image_size); 610 611 if (slot_area_index == MAX_SLOT_AREA) { 612 debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n"); 613 return true; 614 } 615 return false; 616 } 617 618 #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI) 619 /* 620 * If immovable memory found, filter the intersection between 621 * immovable memory and @region. 622 */ 623 for (i = 0; i < num_immovable_mem; i++) { 624 u64 start, end, entry_end, region_end; 625 struct mem_vector entry; 626 627 if (!mem_overlaps(region, &immovable_mem[i])) 628 continue; 629 630 start = immovable_mem[i].start; 631 end = start + immovable_mem[i].size; 632 region_end = region->start + region->size; 633 634 entry.start = clamp(region->start, start, end); 635 entry_end = clamp(region_end, start, end); 636 entry.size = entry_end - entry.start; 637 638 __process_mem_region(&entry, minimum, image_size); 639 640 if (slot_area_index == MAX_SLOT_AREA) { 641 debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n"); 642 return true; 643 } 644 } 645 #endif 646 return false; 647 } 648 649 #ifdef CONFIG_EFI 650 651 /* 652 * Only EFI_CONVENTIONAL_MEMORY and EFI_UNACCEPTED_MEMORY (if supported) are 653 * guaranteed to be free. 654 * 655 * Pick free memory more conservatively than the EFI spec allows: according to 656 * the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also free memory and thus 657 * available to place the kernel image into, but in practice there's firmware 658 * where using that memory leads to crashes. Buggy vendor EFI code registers 659 * for an event that triggers on SetVirtualAddressMap(). The handler assumes 660 * that EFI_BOOT_SERVICES_DATA memory has not been touched by loader yet, which 661 * is probably true for Windows. 662 * 663 * Preserve EFI_BOOT_SERVICES_* regions until after SetVirtualAddressMap(). 664 */ 665 static inline bool memory_type_is_free(efi_memory_desc_t *md) 666 { 667 if (md->type == EFI_CONVENTIONAL_MEMORY) 668 return true; 669 670 if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) && 671 md->type == EFI_UNACCEPTED_MEMORY) 672 return true; 673 674 return false; 675 } 676 677 /* 678 * Returns true if we processed the EFI memmap, which we prefer over the E820 679 * table if it is available. 680 */ 681 static bool 682 process_efi_entries(unsigned long minimum, unsigned long image_size) 683 { 684 struct efi_info *e = &boot_params_ptr->efi_info; 685 bool efi_mirror_found = false; 686 struct mem_vector region; 687 efi_memory_desc_t *md; 688 unsigned long pmap; 689 char *signature; 690 u32 nr_desc; 691 int i; 692 693 signature = (char *)&e->efi_loader_signature; 694 if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) && 695 strncmp(signature, EFI64_LOADER_SIGNATURE, 4)) 696 return false; 697 698 #ifdef CONFIG_X86_32 699 /* Can't handle data above 4GB at this time */ 700 if (e->efi_memmap_hi) { 701 warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n"); 702 return false; 703 } 704 pmap = e->efi_memmap; 705 #else 706 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); 707 #endif 708 709 nr_desc = e->efi_memmap_size / e->efi_memdesc_size; 710 for (i = 0; i < nr_desc; i++) { 711 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 712 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 713 efi_mirror_found = true; 714 break; 715 } 716 } 717 718 for (i = 0; i < nr_desc; i++) { 719 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 720 721 if (!memory_type_is_free(md)) 722 continue; 723 724 if (efi_soft_reserve_enabled() && 725 (md->attribute & EFI_MEMORY_SP)) 726 continue; 727 728 if (efi_mirror_found && 729 !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) 730 continue; 731 732 region.start = md->phys_addr; 733 region.size = md->num_pages << EFI_PAGE_SHIFT; 734 if (process_mem_region(®ion, minimum, image_size)) 735 break; 736 } 737 return true; 738 } 739 #else 740 static inline bool 741 process_efi_entries(unsigned long minimum, unsigned long image_size) 742 { 743 return false; 744 } 745 #endif 746 747 static void process_e820_entries(unsigned long minimum, 748 unsigned long image_size) 749 { 750 int i; 751 struct mem_vector region; 752 struct boot_e820_entry *entry; 753 754 /* Verify potential e820 positions, appending to slots list. */ 755 for (i = 0; i < boot_params_ptr->e820_entries; i++) { 756 entry = &boot_params_ptr->e820_table[i]; 757 /* Skip non-RAM entries. */ 758 if (entry->type != E820_TYPE_RAM) 759 continue; 760 region.start = entry->addr; 761 region.size = entry->size; 762 if (process_mem_region(®ion, minimum, image_size)) 763 break; 764 } 765 } 766 767 static unsigned long find_random_phys_addr(unsigned long minimum, 768 unsigned long image_size) 769 { 770 u64 phys_addr; 771 772 /* Bail out early if it's impossible to succeed. */ 773 if (minimum + image_size > mem_limit) 774 return 0; 775 776 /* Check if we had too many memmaps. */ 777 if (memmap_too_large) { 778 debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n"); 779 return 0; 780 } 781 782 if (!process_efi_entries(minimum, image_size)) 783 process_e820_entries(minimum, image_size); 784 785 phys_addr = slots_fetch_random(); 786 787 /* Perform a final check to make sure the address is in range. */ 788 if (phys_addr < minimum || phys_addr + image_size > mem_limit) { 789 warn("Invalid physical address chosen!\n"); 790 return 0; 791 } 792 793 return (unsigned long)phys_addr; 794 } 795 796 static unsigned long find_random_virt_addr(unsigned long minimum, 797 unsigned long image_size) 798 { 799 unsigned long slots, random_addr; 800 801 /* 802 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots 803 * that can hold image_size within the range of minimum to 804 * KERNEL_IMAGE_SIZE? 805 */ 806 slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN; 807 808 random_addr = kaslr_get_random_long("Virtual") % slots; 809 810 return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; 811 } 812 813 /* 814 * Since this function examines addresses much more numerically, 815 * it takes the input and output pointers as 'unsigned long'. 816 */ 817 void choose_random_location(unsigned long input, 818 unsigned long input_size, 819 unsigned long *output, 820 unsigned long output_size, 821 unsigned long *virt_addr) 822 { 823 unsigned long random_addr, min_addr; 824 825 if (cmdline_find_option_bool("nokaslr")) { 826 warn("KASLR disabled: 'nokaslr' on cmdline."); 827 return; 828 } 829 830 boot_params_ptr->hdr.loadflags |= KASLR_FLAG; 831 832 if (IS_ENABLED(CONFIG_X86_32)) 833 mem_limit = KERNEL_IMAGE_SIZE; 834 else 835 mem_limit = MAXMEM; 836 837 /* Record the various known unsafe memory ranges. */ 838 mem_avoid_init(input, input_size, *output); 839 840 /* 841 * Low end of the randomization range should be the 842 * smaller of 512M or the initial kernel image 843 * location: 844 */ 845 min_addr = min(*output, 512UL << 20); 846 /* Make sure minimum is aligned. */ 847 min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN); 848 849 /* Walk available memory entries to find a random address. */ 850 random_addr = find_random_phys_addr(min_addr, output_size); 851 if (!random_addr) { 852 warn("Physical KASLR disabled: no suitable memory region!"); 853 } else { 854 /* Update the new physical address location. */ 855 if (*output != random_addr) 856 *output = random_addr; 857 } 858 859 860 /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */ 861 if (IS_ENABLED(CONFIG_X86_64)) 862 random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size); 863 *virt_addr = random_addr; 864 } 865
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.