~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/coco/sev/core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * AMD Memory Encryption Support
  4  *
  5  * Copyright (C) 2019 SUSE
  6  *
  7  * Author: Joerg Roedel <jroedel@suse.de>
  8  */
  9 
 10 #define pr_fmt(fmt)     "SEV: " fmt
 11 
 12 #include <linux/sched/debug.h>  /* For show_regs() */
 13 #include <linux/percpu-defs.h>
 14 #include <linux/cc_platform.h>
 15 #include <linux/printk.h>
 16 #include <linux/mm_types.h>
 17 #include <linux/set_memory.h>
 18 #include <linux/memblock.h>
 19 #include <linux/kernel.h>
 20 #include <linux/mm.h>
 21 #include <linux/cpumask.h>
 22 #include <linux/efi.h>
 23 #include <linux/platform_device.h>
 24 #include <linux/io.h>
 25 #include <linux/psp-sev.h>
 26 #include <linux/dmi.h>
 27 #include <uapi/linux/sev-guest.h>
 28 
 29 #include <asm/init.h>
 30 #include <asm/cpu_entry_area.h>
 31 #include <asm/stacktrace.h>
 32 #include <asm/sev.h>
 33 #include <asm/insn-eval.h>
 34 #include <asm/fpu/xcr.h>
 35 #include <asm/processor.h>
 36 #include <asm/realmode.h>
 37 #include <asm/setup.h>
 38 #include <asm/traps.h>
 39 #include <asm/svm.h>
 40 #include <asm/smp.h>
 41 #include <asm/cpu.h>
 42 #include <asm/apic.h>
 43 #include <asm/cpuid.h>
 44 #include <asm/cmdline.h>
 45 
 46 #define DR7_RESET_VALUE        0x400
 47 
 48 /* AP INIT values as documented in the APM2  section "Processor Initialization State" */
 49 #define AP_INIT_CS_LIMIT                0xffff
 50 #define AP_INIT_DS_LIMIT                0xffff
 51 #define AP_INIT_LDTR_LIMIT              0xffff
 52 #define AP_INIT_GDTR_LIMIT              0xffff
 53 #define AP_INIT_IDTR_LIMIT              0xffff
 54 #define AP_INIT_TR_LIMIT                0xffff
 55 #define AP_INIT_RFLAGS_DEFAULT          0x2
 56 #define AP_INIT_DR6_DEFAULT             0xffff0ff0
 57 #define AP_INIT_GPAT_DEFAULT            0x0007040600070406ULL
 58 #define AP_INIT_XCR0_DEFAULT            0x1
 59 #define AP_INIT_X87_FTW_DEFAULT         0x5555
 60 #define AP_INIT_X87_FCW_DEFAULT         0x0040
 61 #define AP_INIT_CR0_DEFAULT             0x60000010
 62 #define AP_INIT_MXCSR_DEFAULT           0x1f80
 63 
 64 static const char * const sev_status_feat_names[] = {
 65         [MSR_AMD64_SEV_ENABLED_BIT]             = "SEV",
 66         [MSR_AMD64_SEV_ES_ENABLED_BIT]          = "SEV-ES",
 67         [MSR_AMD64_SEV_SNP_ENABLED_BIT]         = "SEV-SNP",
 68         [MSR_AMD64_SNP_VTOM_BIT]                = "vTom",
 69         [MSR_AMD64_SNP_REFLECT_VC_BIT]          = "ReflectVC",
 70         [MSR_AMD64_SNP_RESTRICTED_INJ_BIT]      = "RI",
 71         [MSR_AMD64_SNP_ALT_INJ_BIT]             = "AI",
 72         [MSR_AMD64_SNP_DEBUG_SWAP_BIT]          = "DebugSwap",
 73         [MSR_AMD64_SNP_PREVENT_HOST_IBS_BIT]    = "NoHostIBS",
 74         [MSR_AMD64_SNP_BTB_ISOLATION_BIT]       = "BTBIsol",
 75         [MSR_AMD64_SNP_VMPL_SSS_BIT]            = "VmplSSS",
 76         [MSR_AMD64_SNP_SECURE_TSC_BIT]          = "SecureTSC",
 77         [MSR_AMD64_SNP_VMGEXIT_PARAM_BIT]       = "VMGExitParam",
 78         [MSR_AMD64_SNP_IBS_VIRT_BIT]            = "IBSVirt",
 79         [MSR_AMD64_SNP_VMSA_REG_PROT_BIT]       = "VMSARegProt",
 80         [MSR_AMD64_SNP_SMT_PROT_BIT]            = "SMTProt",
 81 };
 82 
 83 /* For early boot hypervisor communication in SEV-ES enabled guests */
 84 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
 85 
 86 /*
 87  * Needs to be in the .data section because we need it NULL before bss is
 88  * cleared
 89  */
 90 static struct ghcb *boot_ghcb __section(".data");
 91 
 92 /* Bitmap of SEV features supported by the hypervisor */
 93 static u64 sev_hv_features __ro_after_init;
 94 
 95 /* #VC handler runtime per-CPU data */
 96 struct sev_es_runtime_data {
 97         struct ghcb ghcb_page;
 98 
 99         /*
100          * Reserve one page per CPU as backup storage for the unencrypted GHCB.
101          * It is needed when an NMI happens while the #VC handler uses the real
102          * GHCB, and the NMI handler itself is causing another #VC exception. In
103          * that case the GHCB content of the first handler needs to be backed up
104          * and restored.
105          */
106         struct ghcb backup_ghcb;
107 
108         /*
109          * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
110          * There is no need for it to be atomic, because nothing is written to
111          * the GHCB between the read and the write of ghcb_active. So it is safe
112          * to use it when a nested #VC exception happens before the write.
113          *
114          * This is necessary for example in the #VC->NMI->#VC case when the NMI
115          * happens while the first #VC handler uses the GHCB. When the NMI code
116          * raises a second #VC handler it might overwrite the contents of the
117          * GHCB written by the first handler. To avoid this the content of the
118          * GHCB is saved and restored when the GHCB is detected to be in use
119          * already.
120          */
121         bool ghcb_active;
122         bool backup_ghcb_active;
123 
124         /*
125          * Cached DR7 value - write it on DR7 writes and return it on reads.
126          * That value will never make it to the real hardware DR7 as debugging
127          * is currently unsupported in SEV-ES guests.
128          */
129         unsigned long dr7;
130 };
131 
132 struct ghcb_state {
133         struct ghcb *ghcb;
134 };
135 
136 /* For early boot SVSM communication */
137 static struct svsm_ca boot_svsm_ca_page __aligned(PAGE_SIZE);
138 
139 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
140 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
141 static DEFINE_PER_CPU(struct svsm_ca *, svsm_caa);
142 static DEFINE_PER_CPU(u64, svsm_caa_pa);
143 
144 struct sev_config {
145         __u64 debug             : 1,
146 
147               /*
148                * Indicates when the per-CPU GHCB has been created and registered
149                * and thus can be used by the BSP instead of the early boot GHCB.
150                *
151                * For APs, the per-CPU GHCB is created before they are started
152                * and registered upon startup, so this flag can be used globally
153                * for the BSP and APs.
154                */
155               ghcbs_initialized : 1,
156 
157               /*
158                * Indicates when the per-CPU SVSM CA is to be used instead of the
159                * boot SVSM CA.
160                *
161                * For APs, the per-CPU SVSM CA is created as part of the AP
162                * bringup, so this flag can be used globally for the BSP and APs.
163                */
164               use_cas           : 1,
165 
166               __reserved        : 61;
167 };
168 
169 static struct sev_config sev_cfg __read_mostly;
170 
171 static __always_inline bool on_vc_stack(struct pt_regs *regs)
172 {
173         unsigned long sp = regs->sp;
174 
175         /* User-mode RSP is not trusted */
176         if (user_mode(regs))
177                 return false;
178 
179         /* SYSCALL gap still has user-mode RSP */
180         if (ip_within_syscall_gap(regs))
181                 return false;
182 
183         return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
184 }
185 
186 /*
187  * This function handles the case when an NMI is raised in the #VC
188  * exception handler entry code, before the #VC handler has switched off
189  * its IST stack. In this case, the IST entry for #VC must be adjusted,
190  * so that any nested #VC exception will not overwrite the stack
191  * contents of the interrupted #VC handler.
192  *
193  * The IST entry is adjusted unconditionally so that it can be also be
194  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
195  * nested sev_es_ist_exit() call may adjust back the IST entry too
196  * early.
197  *
198  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
199  * on the NMI IST stack, as they are only called from NMI handling code
200  * right now.
201  */
202 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
203 {
204         unsigned long old_ist, new_ist;
205 
206         /* Read old IST entry */
207         new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
208 
209         /*
210          * If NMI happened while on the #VC IST stack, set the new IST
211          * value below regs->sp, so that the interrupted stack frame is
212          * not overwritten by subsequent #VC exceptions.
213          */
214         if (on_vc_stack(regs))
215                 new_ist = regs->sp;
216 
217         /*
218          * Reserve additional 8 bytes and store old IST value so this
219          * adjustment can be unrolled in __sev_es_ist_exit().
220          */
221         new_ist -= sizeof(old_ist);
222         *(unsigned long *)new_ist = old_ist;
223 
224         /* Set new IST entry */
225         this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
226 }
227 
228 void noinstr __sev_es_ist_exit(void)
229 {
230         unsigned long ist;
231 
232         /* Read IST entry */
233         ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
234 
235         if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
236                 return;
237 
238         /* Read back old IST entry and write it to the TSS */
239         this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
240 }
241 
242 /*
243  * Nothing shall interrupt this code path while holding the per-CPU
244  * GHCB. The backup GHCB is only for NMIs interrupting this path.
245  *
246  * Callers must disable local interrupts around it.
247  */
248 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
249 {
250         struct sev_es_runtime_data *data;
251         struct ghcb *ghcb;
252 
253         WARN_ON(!irqs_disabled());
254 
255         data = this_cpu_read(runtime_data);
256         ghcb = &data->ghcb_page;
257 
258         if (unlikely(data->ghcb_active)) {
259                 /* GHCB is already in use - save its contents */
260 
261                 if (unlikely(data->backup_ghcb_active)) {
262                         /*
263                          * Backup-GHCB is also already in use. There is no way
264                          * to continue here so just kill the machine. To make
265                          * panic() work, mark GHCBs inactive so that messages
266                          * can be printed out.
267                          */
268                         data->ghcb_active        = false;
269                         data->backup_ghcb_active = false;
270 
271                         instrumentation_begin();
272                         panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
273                         instrumentation_end();
274                 }
275 
276                 /* Mark backup_ghcb active before writing to it */
277                 data->backup_ghcb_active = true;
278 
279                 state->ghcb = &data->backup_ghcb;
280 
281                 /* Backup GHCB content */
282                 *state->ghcb = *ghcb;
283         } else {
284                 state->ghcb = NULL;
285                 data->ghcb_active = true;
286         }
287 
288         return ghcb;
289 }
290 
291 static inline u64 sev_es_rd_ghcb_msr(void)
292 {
293         return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
294 }
295 
296 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
297 {
298         u32 low, high;
299 
300         low  = (u32)(val);
301         high = (u32)(val >> 32);
302 
303         native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
304 }
305 
306 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
307                                 unsigned char *buffer)
308 {
309         return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
310 }
311 
312 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
313 {
314         char buffer[MAX_INSN_SIZE];
315         int insn_bytes;
316 
317         insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
318         if (insn_bytes == 0) {
319                 /* Nothing could be copied */
320                 ctxt->fi.vector     = X86_TRAP_PF;
321                 ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
322                 ctxt->fi.cr2        = ctxt->regs->ip;
323                 return ES_EXCEPTION;
324         } else if (insn_bytes == -EINVAL) {
325                 /* Effective RIP could not be calculated */
326                 ctxt->fi.vector     = X86_TRAP_GP;
327                 ctxt->fi.error_code = 0;
328                 ctxt->fi.cr2        = 0;
329                 return ES_EXCEPTION;
330         }
331 
332         if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
333                 return ES_DECODE_FAILED;
334 
335         if (ctxt->insn.immediate.got)
336                 return ES_OK;
337         else
338                 return ES_DECODE_FAILED;
339 }
340 
341 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
342 {
343         char buffer[MAX_INSN_SIZE];
344         int res, ret;
345 
346         res = vc_fetch_insn_kernel(ctxt, buffer);
347         if (res) {
348                 ctxt->fi.vector     = X86_TRAP_PF;
349                 ctxt->fi.error_code = X86_PF_INSTR;
350                 ctxt->fi.cr2        = ctxt->regs->ip;
351                 return ES_EXCEPTION;
352         }
353 
354         ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
355         if (ret < 0)
356                 return ES_DECODE_FAILED;
357         else
358                 return ES_OK;
359 }
360 
361 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
362 {
363         if (user_mode(ctxt->regs))
364                 return __vc_decode_user_insn(ctxt);
365         else
366                 return __vc_decode_kern_insn(ctxt);
367 }
368 
369 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
370                                    char *dst, char *buf, size_t size)
371 {
372         unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
373 
374         /*
375          * This function uses __put_user() independent of whether kernel or user
376          * memory is accessed. This works fine because __put_user() does no
377          * sanity checks of the pointer being accessed. All that it does is
378          * to report when the access failed.
379          *
380          * Also, this function runs in atomic context, so __put_user() is not
381          * allowed to sleep. The page-fault handler detects that it is running
382          * in atomic context and will not try to take mmap_sem and handle the
383          * fault, so additional pagefault_enable()/disable() calls are not
384          * needed.
385          *
386          * The access can't be done via copy_to_user() here because
387          * vc_write_mem() must not use string instructions to access unsafe
388          * memory. The reason is that MOVS is emulated by the #VC handler by
389          * splitting the move up into a read and a write and taking a nested #VC
390          * exception on whatever of them is the MMIO access. Using string
391          * instructions here would cause infinite nesting.
392          */
393         switch (size) {
394         case 1: {
395                 u8 d1;
396                 u8 __user *target = (u8 __user *)dst;
397 
398                 memcpy(&d1, buf, 1);
399                 if (__put_user(d1, target))
400                         goto fault;
401                 break;
402         }
403         case 2: {
404                 u16 d2;
405                 u16 __user *target = (u16 __user *)dst;
406 
407                 memcpy(&d2, buf, 2);
408                 if (__put_user(d2, target))
409                         goto fault;
410                 break;
411         }
412         case 4: {
413                 u32 d4;
414                 u32 __user *target = (u32 __user *)dst;
415 
416                 memcpy(&d4, buf, 4);
417                 if (__put_user(d4, target))
418                         goto fault;
419                 break;
420         }
421         case 8: {
422                 u64 d8;
423                 u64 __user *target = (u64 __user *)dst;
424 
425                 memcpy(&d8, buf, 8);
426                 if (__put_user(d8, target))
427                         goto fault;
428                 break;
429         }
430         default:
431                 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
432                 return ES_UNSUPPORTED;
433         }
434 
435         return ES_OK;
436 
437 fault:
438         if (user_mode(ctxt->regs))
439                 error_code |= X86_PF_USER;
440 
441         ctxt->fi.vector = X86_TRAP_PF;
442         ctxt->fi.error_code = error_code;
443         ctxt->fi.cr2 = (unsigned long)dst;
444 
445         return ES_EXCEPTION;
446 }
447 
448 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
449                                   char *src, char *buf, size_t size)
450 {
451         unsigned long error_code = X86_PF_PROT;
452 
453         /*
454          * This function uses __get_user() independent of whether kernel or user
455          * memory is accessed. This works fine because __get_user() does no
456          * sanity checks of the pointer being accessed. All that it does is
457          * to report when the access failed.
458          *
459          * Also, this function runs in atomic context, so __get_user() is not
460          * allowed to sleep. The page-fault handler detects that it is running
461          * in atomic context and will not try to take mmap_sem and handle the
462          * fault, so additional pagefault_enable()/disable() calls are not
463          * needed.
464          *
465          * The access can't be done via copy_from_user() here because
466          * vc_read_mem() must not use string instructions to access unsafe
467          * memory. The reason is that MOVS is emulated by the #VC handler by
468          * splitting the move up into a read and a write and taking a nested #VC
469          * exception on whatever of them is the MMIO access. Using string
470          * instructions here would cause infinite nesting.
471          */
472         switch (size) {
473         case 1: {
474                 u8 d1;
475                 u8 __user *s = (u8 __user *)src;
476 
477                 if (__get_user(d1, s))
478                         goto fault;
479                 memcpy(buf, &d1, 1);
480                 break;
481         }
482         case 2: {
483                 u16 d2;
484                 u16 __user *s = (u16 __user *)src;
485 
486                 if (__get_user(d2, s))
487                         goto fault;
488                 memcpy(buf, &d2, 2);
489                 break;
490         }
491         case 4: {
492                 u32 d4;
493                 u32 __user *s = (u32 __user *)src;
494 
495                 if (__get_user(d4, s))
496                         goto fault;
497                 memcpy(buf, &d4, 4);
498                 break;
499         }
500         case 8: {
501                 u64 d8;
502                 u64 __user *s = (u64 __user *)src;
503                 if (__get_user(d8, s))
504                         goto fault;
505                 memcpy(buf, &d8, 8);
506                 break;
507         }
508         default:
509                 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
510                 return ES_UNSUPPORTED;
511         }
512 
513         return ES_OK;
514 
515 fault:
516         if (user_mode(ctxt->regs))
517                 error_code |= X86_PF_USER;
518 
519         ctxt->fi.vector = X86_TRAP_PF;
520         ctxt->fi.error_code = error_code;
521         ctxt->fi.cr2 = (unsigned long)src;
522 
523         return ES_EXCEPTION;
524 }
525 
526 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
527                                            unsigned long vaddr, phys_addr_t *paddr)
528 {
529         unsigned long va = (unsigned long)vaddr;
530         unsigned int level;
531         phys_addr_t pa;
532         pgd_t *pgd;
533         pte_t *pte;
534 
535         pgd = __va(read_cr3_pa());
536         pgd = &pgd[pgd_index(va)];
537         pte = lookup_address_in_pgd(pgd, va, &level);
538         if (!pte) {
539                 ctxt->fi.vector     = X86_TRAP_PF;
540                 ctxt->fi.cr2        = vaddr;
541                 ctxt->fi.error_code = 0;
542 
543                 if (user_mode(ctxt->regs))
544                         ctxt->fi.error_code |= X86_PF_USER;
545 
546                 return ES_EXCEPTION;
547         }
548 
549         if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
550                 /* Emulated MMIO to/from encrypted memory not supported */
551                 return ES_UNSUPPORTED;
552 
553         pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
554         pa |= va & ~page_level_mask(level);
555 
556         *paddr = pa;
557 
558         return ES_OK;
559 }
560 
561 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
562 {
563         BUG_ON(size > 4);
564 
565         if (user_mode(ctxt->regs)) {
566                 struct thread_struct *t = &current->thread;
567                 struct io_bitmap *iobm = t->io_bitmap;
568                 size_t idx;
569 
570                 if (!iobm)
571                         goto fault;
572 
573                 for (idx = port; idx < port + size; ++idx) {
574                         if (test_bit(idx, iobm->bitmap))
575                                 goto fault;
576                 }
577         }
578 
579         return ES_OK;
580 
581 fault:
582         ctxt->fi.vector = X86_TRAP_GP;
583         ctxt->fi.error_code = 0;
584 
585         return ES_EXCEPTION;
586 }
587 
588 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
589 {
590         long error_code = ctxt->fi.error_code;
591         int trapnr = ctxt->fi.vector;
592 
593         ctxt->regs->orig_ax = ctxt->fi.error_code;
594 
595         switch (trapnr) {
596         case X86_TRAP_GP:
597                 exc_general_protection(ctxt->regs, error_code);
598                 break;
599         case X86_TRAP_UD:
600                 exc_invalid_op(ctxt->regs);
601                 break;
602         case X86_TRAP_PF:
603                 write_cr2(ctxt->fi.cr2);
604                 exc_page_fault(ctxt->regs, error_code);
605                 break;
606         case X86_TRAP_AC:
607                 exc_alignment_check(ctxt->regs, error_code);
608                 break;
609         default:
610                 pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
611                 BUG();
612         }
613 }
614 
615 /* Include code shared with pre-decompression boot stage */
616 #include "shared.c"
617 
618 static inline struct svsm_ca *svsm_get_caa(void)
619 {
620         /*
621          * Use rIP-relative references when called early in the boot. If
622          * ->use_cas is set, then it is late in the boot and no need
623          * to worry about rIP-relative references.
624          */
625         if (RIP_REL_REF(sev_cfg).use_cas)
626                 return this_cpu_read(svsm_caa);
627         else
628                 return RIP_REL_REF(boot_svsm_caa);
629 }
630 
631 static u64 svsm_get_caa_pa(void)
632 {
633         /*
634          * Use rIP-relative references when called early in the boot. If
635          * ->use_cas is set, then it is late in the boot and no need
636          * to worry about rIP-relative references.
637          */
638         if (RIP_REL_REF(sev_cfg).use_cas)
639                 return this_cpu_read(svsm_caa_pa);
640         else
641                 return RIP_REL_REF(boot_svsm_caa_pa);
642 }
643 
644 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
645 {
646         struct sev_es_runtime_data *data;
647         struct ghcb *ghcb;
648 
649         WARN_ON(!irqs_disabled());
650 
651         data = this_cpu_read(runtime_data);
652         ghcb = &data->ghcb_page;
653 
654         if (state->ghcb) {
655                 /* Restore GHCB from Backup */
656                 *ghcb = *state->ghcb;
657                 data->backup_ghcb_active = false;
658                 state->ghcb = NULL;
659         } else {
660                 /*
661                  * Invalidate the GHCB so a VMGEXIT instruction issued
662                  * from userspace won't appear to be valid.
663                  */
664                 vc_ghcb_invalidate(ghcb);
665                 data->ghcb_active = false;
666         }
667 }
668 
669 static int svsm_perform_call_protocol(struct svsm_call *call)
670 {
671         struct ghcb_state state;
672         unsigned long flags;
673         struct ghcb *ghcb;
674         int ret;
675 
676         /*
677          * This can be called very early in the boot, use native functions in
678          * order to avoid paravirt issues.
679          */
680         flags = native_local_irq_save();
681 
682         /*
683          * Use rip-relative references when called early in the boot. If
684          * ghcbs_initialized is set, then it is late in the boot and no need
685          * to worry about rip-relative references in called functions.
686          */
687         if (RIP_REL_REF(sev_cfg).ghcbs_initialized)
688                 ghcb = __sev_get_ghcb(&state);
689         else if (RIP_REL_REF(boot_ghcb))
690                 ghcb = RIP_REL_REF(boot_ghcb);
691         else
692                 ghcb = NULL;
693 
694         do {
695                 ret = ghcb ? svsm_perform_ghcb_protocol(ghcb, call)
696                            : svsm_perform_msr_protocol(call);
697         } while (ret == -EAGAIN);
698 
699         if (RIP_REL_REF(sev_cfg).ghcbs_initialized)
700                 __sev_put_ghcb(&state);
701 
702         native_local_irq_restore(flags);
703 
704         return ret;
705 }
706 
707 void noinstr __sev_es_nmi_complete(void)
708 {
709         struct ghcb_state state;
710         struct ghcb *ghcb;
711 
712         ghcb = __sev_get_ghcb(&state);
713 
714         vc_ghcb_invalidate(ghcb);
715         ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
716         ghcb_set_sw_exit_info_1(ghcb, 0);
717         ghcb_set_sw_exit_info_2(ghcb, 0);
718 
719         sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
720         VMGEXIT();
721 
722         __sev_put_ghcb(&state);
723 }
724 
725 static u64 __init get_secrets_page(void)
726 {
727         u64 pa_data = boot_params.cc_blob_address;
728         struct cc_blob_sev_info info;
729         void *map;
730 
731         /*
732          * The CC blob contains the address of the secrets page, check if the
733          * blob is present.
734          */
735         if (!pa_data)
736                 return 0;
737 
738         map = early_memremap(pa_data, sizeof(info));
739         if (!map) {
740                 pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
741                 return 0;
742         }
743         memcpy(&info, map, sizeof(info));
744         early_memunmap(map, sizeof(info));
745 
746         /* smoke-test the secrets page passed */
747         if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
748                 return 0;
749 
750         return info.secrets_phys;
751 }
752 
753 static u64 __init get_snp_jump_table_addr(void)
754 {
755         struct snp_secrets_page *secrets;
756         void __iomem *mem;
757         u64 pa, addr;
758 
759         pa = get_secrets_page();
760         if (!pa)
761                 return 0;
762 
763         mem = ioremap_encrypted(pa, PAGE_SIZE);
764         if (!mem) {
765                 pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
766                 return 0;
767         }
768 
769         secrets = (__force struct snp_secrets_page *)mem;
770 
771         addr = secrets->os_area.ap_jump_table_pa;
772         iounmap(mem);
773 
774         return addr;
775 }
776 
777 static u64 __init get_jump_table_addr(void)
778 {
779         struct ghcb_state state;
780         unsigned long flags;
781         struct ghcb *ghcb;
782         u64 ret = 0;
783 
784         if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
785                 return get_snp_jump_table_addr();
786 
787         local_irq_save(flags);
788 
789         ghcb = __sev_get_ghcb(&state);
790 
791         vc_ghcb_invalidate(ghcb);
792         ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
793         ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
794         ghcb_set_sw_exit_info_2(ghcb, 0);
795 
796         sev_es_wr_ghcb_msr(__pa(ghcb));
797         VMGEXIT();
798 
799         if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
800             ghcb_sw_exit_info_2_is_valid(ghcb))
801                 ret = ghcb->save.sw_exit_info_2;
802 
803         __sev_put_ghcb(&state);
804 
805         local_irq_restore(flags);
806 
807         return ret;
808 }
809 
810 static void __head
811 early_set_pages_state(unsigned long vaddr, unsigned long paddr,
812                       unsigned long npages, enum psc_op op)
813 {
814         unsigned long paddr_end;
815         u64 val;
816 
817         vaddr = vaddr & PAGE_MASK;
818 
819         paddr = paddr & PAGE_MASK;
820         paddr_end = paddr + (npages << PAGE_SHIFT);
821 
822         while (paddr < paddr_end) {
823                 /* Page validation must be rescinded before changing to shared */
824                 if (op == SNP_PAGE_STATE_SHARED)
825                         pvalidate_4k_page(vaddr, paddr, false);
826 
827                 /*
828                  * Use the MSR protocol because this function can be called before
829                  * the GHCB is established.
830                  */
831                 sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
832                 VMGEXIT();
833 
834                 val = sev_es_rd_ghcb_msr();
835 
836                 if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
837                          "Wrong PSC response code: 0x%x\n",
838                          (unsigned int)GHCB_RESP_CODE(val)))
839                         goto e_term;
840 
841                 if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
842                          "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
843                          op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
844                          paddr, GHCB_MSR_PSC_RESP_VAL(val)))
845                         goto e_term;
846 
847                 /* Page validation must be performed after changing to private */
848                 if (op == SNP_PAGE_STATE_PRIVATE)
849                         pvalidate_4k_page(vaddr, paddr, true);
850 
851                 vaddr += PAGE_SIZE;
852                 paddr += PAGE_SIZE;
853         }
854 
855         return;
856 
857 e_term:
858         sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
859 }
860 
861 void __head early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
862                                          unsigned long npages)
863 {
864         /*
865          * This can be invoked in early boot while running identity mapped, so
866          * use an open coded check for SNP instead of using cc_platform_has().
867          * This eliminates worries about jump tables or checking boot_cpu_data
868          * in the cc_platform_has() function.
869          */
870         if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
871                 return;
872 
873          /*
874           * Ask the hypervisor to mark the memory pages as private in the RMP
875           * table.
876           */
877         early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE);
878 }
879 
880 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
881                                         unsigned long npages)
882 {
883         /*
884          * This can be invoked in early boot while running identity mapped, so
885          * use an open coded check for SNP instead of using cc_platform_has().
886          * This eliminates worries about jump tables or checking boot_cpu_data
887          * in the cc_platform_has() function.
888          */
889         if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
890                 return;
891 
892          /* Ask hypervisor to mark the memory pages shared in the RMP table. */
893         early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED);
894 }
895 
896 static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
897                                        unsigned long vaddr_end, int op)
898 {
899         struct ghcb_state state;
900         bool use_large_entry;
901         struct psc_hdr *hdr;
902         struct psc_entry *e;
903         unsigned long flags;
904         unsigned long pfn;
905         struct ghcb *ghcb;
906         int i;
907 
908         hdr = &data->hdr;
909         e = data->entries;
910 
911         memset(data, 0, sizeof(*data));
912         i = 0;
913 
914         while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) {
915                 hdr->end_entry = i;
916 
917                 if (is_vmalloc_addr((void *)vaddr)) {
918                         pfn = vmalloc_to_pfn((void *)vaddr);
919                         use_large_entry = false;
920                 } else {
921                         pfn = __pa(vaddr) >> PAGE_SHIFT;
922                         use_large_entry = true;
923                 }
924 
925                 e->gfn = pfn;
926                 e->operation = op;
927 
928                 if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) &&
929                     (vaddr_end - vaddr) >= PMD_SIZE) {
930                         e->pagesize = RMP_PG_SIZE_2M;
931                         vaddr += PMD_SIZE;
932                 } else {
933                         e->pagesize = RMP_PG_SIZE_4K;
934                         vaddr += PAGE_SIZE;
935                 }
936 
937                 e++;
938                 i++;
939         }
940 
941         /* Page validation must be rescinded before changing to shared */
942         if (op == SNP_PAGE_STATE_SHARED)
943                 pvalidate_pages(data);
944 
945         local_irq_save(flags);
946 
947         if (sev_cfg.ghcbs_initialized)
948                 ghcb = __sev_get_ghcb(&state);
949         else
950                 ghcb = boot_ghcb;
951 
952         /* Invoke the hypervisor to perform the page state changes */
953         if (!ghcb || vmgexit_psc(ghcb, data))
954                 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
955 
956         if (sev_cfg.ghcbs_initialized)
957                 __sev_put_ghcb(&state);
958 
959         local_irq_restore(flags);
960 
961         /* Page validation must be performed after changing to private */
962         if (op == SNP_PAGE_STATE_PRIVATE)
963                 pvalidate_pages(data);
964 
965         return vaddr;
966 }
967 
968 static void set_pages_state(unsigned long vaddr, unsigned long npages, int op)
969 {
970         struct snp_psc_desc desc;
971         unsigned long vaddr_end;
972 
973         /* Use the MSR protocol when a GHCB is not available. */
974         if (!boot_ghcb)
975                 return early_set_pages_state(vaddr, __pa(vaddr), npages, op);
976 
977         vaddr = vaddr & PAGE_MASK;
978         vaddr_end = vaddr + (npages << PAGE_SHIFT);
979 
980         while (vaddr < vaddr_end)
981                 vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op);
982 }
983 
984 void snp_set_memory_shared(unsigned long vaddr, unsigned long npages)
985 {
986         if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
987                 return;
988 
989         set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
990 }
991 
992 void snp_set_memory_private(unsigned long vaddr, unsigned long npages)
993 {
994         if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
995                 return;
996 
997         set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
998 }
999 
1000 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
1001 {
1002         unsigned long vaddr, npages;
1003 
1004         if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1005                 return;
1006 
1007         vaddr = (unsigned long)__va(start);
1008         npages = (end - start) >> PAGE_SHIFT;
1009 
1010         set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
1011 }
1012 
1013 static int snp_set_vmsa(void *va, void *caa, int apic_id, bool make_vmsa)
1014 {
1015         int ret;
1016 
1017         if (snp_vmpl) {
1018                 struct svsm_call call = {};
1019                 unsigned long flags;
1020 
1021                 local_irq_save(flags);
1022 
1023                 call.caa = this_cpu_read(svsm_caa);
1024                 call.rcx = __pa(va);
1025 
1026                 if (make_vmsa) {
1027                         /* Protocol 0, Call ID 2 */
1028                         call.rax = SVSM_CORE_CALL(SVSM_CORE_CREATE_VCPU);
1029                         call.rdx = __pa(caa);
1030                         call.r8  = apic_id;
1031                 } else {
1032                         /* Protocol 0, Call ID 3 */
1033                         call.rax = SVSM_CORE_CALL(SVSM_CORE_DELETE_VCPU);
1034                 }
1035 
1036                 ret = svsm_perform_call_protocol(&call);
1037 
1038                 local_irq_restore(flags);
1039         } else {
1040                 /*
1041                  * If the kernel runs at VMPL0, it can change the VMSA
1042                  * bit for a page using the RMPADJUST instruction.
1043                  * However, for the instruction to succeed it must
1044                  * target the permissions of a lesser privileged (higher
1045                  * numbered) VMPL level, so use VMPL1.
1046                  */
1047                 u64 attrs = 1;
1048 
1049                 if (make_vmsa)
1050                         attrs |= RMPADJUST_VMSA_PAGE_BIT;
1051 
1052                 ret = rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
1053         }
1054 
1055         return ret;
1056 }
1057 
1058 #define __ATTR_BASE             (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
1059 #define INIT_CS_ATTRIBS         (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
1060 #define INIT_DS_ATTRIBS         (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
1061 
1062 #define INIT_LDTR_ATTRIBS       (SVM_SELECTOR_P_MASK | 2)
1063 #define INIT_TR_ATTRIBS         (SVM_SELECTOR_P_MASK | 3)
1064 
1065 static void *snp_alloc_vmsa_page(int cpu)
1066 {
1067         struct page *p;
1068 
1069         /*
1070          * Allocate VMSA page to work around the SNP erratum where the CPU will
1071          * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
1072          * collides with the RMP entry of VMSA page. The recommended workaround
1073          * is to not use a large page.
1074          *
1075          * Allocate an 8k page which is also 8k-aligned.
1076          */
1077         p = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
1078         if (!p)
1079                 return NULL;
1080 
1081         split_page(p, 1);
1082 
1083         /* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
1084         __free_page(p);
1085 
1086         return page_address(p + 1);
1087 }
1088 
1089 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa, int apic_id)
1090 {
1091         int err;
1092 
1093         err = snp_set_vmsa(vmsa, NULL, apic_id, false);
1094         if (err)
1095                 pr_err("clear VMSA page failed (%u), leaking page\n", err);
1096         else
1097                 free_page((unsigned long)vmsa);
1098 }
1099 
1100 static int wakeup_cpu_via_vmgexit(u32 apic_id, unsigned long start_ip)
1101 {
1102         struct sev_es_save_area *cur_vmsa, *vmsa;
1103         struct ghcb_state state;
1104         struct svsm_ca *caa;
1105         unsigned long flags;
1106         struct ghcb *ghcb;
1107         u8 sipi_vector;
1108         int cpu, ret;
1109         u64 cr4;
1110 
1111         /*
1112          * The hypervisor SNP feature support check has happened earlier, just check
1113          * the AP_CREATION one here.
1114          */
1115         if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
1116                 return -EOPNOTSUPP;
1117 
1118         /*
1119          * Verify the desired start IP against the known trampoline start IP
1120          * to catch any future new trampolines that may be introduced that
1121          * would require a new protected guest entry point.
1122          */
1123         if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
1124                       "Unsupported SNP start_ip: %lx\n", start_ip))
1125                 return -EINVAL;
1126 
1127         /* Override start_ip with known protected guest start IP */
1128         start_ip = real_mode_header->sev_es_trampoline_start;
1129 
1130         /* Find the logical CPU for the APIC ID */
1131         for_each_present_cpu(cpu) {
1132                 if (arch_match_cpu_phys_id(cpu, apic_id))
1133                         break;
1134         }
1135         if (cpu >= nr_cpu_ids)
1136                 return -EINVAL;
1137 
1138         cur_vmsa = per_cpu(sev_vmsa, cpu);
1139 
1140         /*
1141          * A new VMSA is created each time because there is no guarantee that
1142          * the current VMSA is the kernels or that the vCPU is not running. If
1143          * an attempt was done to use the current VMSA with a running vCPU, a
1144          * #VMEXIT of that vCPU would wipe out all of the settings being done
1145          * here.
1146          */
1147         vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page(cpu);
1148         if (!vmsa)
1149                 return -ENOMEM;
1150 
1151         /* If an SVSM is present, the SVSM per-CPU CAA will be !NULL */
1152         caa = per_cpu(svsm_caa, cpu);
1153 
1154         /* CR4 should maintain the MCE value */
1155         cr4 = native_read_cr4() & X86_CR4_MCE;
1156 
1157         /* Set the CS value based on the start_ip converted to a SIPI vector */
1158         sipi_vector             = (start_ip >> 12);
1159         vmsa->cs.base           = sipi_vector << 12;
1160         vmsa->cs.limit          = AP_INIT_CS_LIMIT;
1161         vmsa->cs.attrib         = INIT_CS_ATTRIBS;
1162         vmsa->cs.selector       = sipi_vector << 8;
1163 
1164         /* Set the RIP value based on start_ip */
1165         vmsa->rip               = start_ip & 0xfff;
1166 
1167         /* Set AP INIT defaults as documented in the APM */
1168         vmsa->ds.limit          = AP_INIT_DS_LIMIT;
1169         vmsa->ds.attrib         = INIT_DS_ATTRIBS;
1170         vmsa->es                = vmsa->ds;
1171         vmsa->fs                = vmsa->ds;
1172         vmsa->gs                = vmsa->ds;
1173         vmsa->ss                = vmsa->ds;
1174 
1175         vmsa->gdtr.limit        = AP_INIT_GDTR_LIMIT;
1176         vmsa->ldtr.limit        = AP_INIT_LDTR_LIMIT;
1177         vmsa->ldtr.attrib       = INIT_LDTR_ATTRIBS;
1178         vmsa->idtr.limit        = AP_INIT_IDTR_LIMIT;
1179         vmsa->tr.limit          = AP_INIT_TR_LIMIT;
1180         vmsa->tr.attrib         = INIT_TR_ATTRIBS;
1181 
1182         vmsa->cr4               = cr4;
1183         vmsa->cr0               = AP_INIT_CR0_DEFAULT;
1184         vmsa->dr7               = DR7_RESET_VALUE;
1185         vmsa->dr6               = AP_INIT_DR6_DEFAULT;
1186         vmsa->rflags            = AP_INIT_RFLAGS_DEFAULT;
1187         vmsa->g_pat             = AP_INIT_GPAT_DEFAULT;
1188         vmsa->xcr0              = AP_INIT_XCR0_DEFAULT;
1189         vmsa->mxcsr             = AP_INIT_MXCSR_DEFAULT;
1190         vmsa->x87_ftw           = AP_INIT_X87_FTW_DEFAULT;
1191         vmsa->x87_fcw           = AP_INIT_X87_FCW_DEFAULT;
1192 
1193         /* SVME must be set. */
1194         vmsa->efer              = EFER_SVME;
1195 
1196         /*
1197          * Set the SNP-specific fields for this VMSA:
1198          *   VMPL level
1199          *   SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1200          */
1201         vmsa->vmpl              = snp_vmpl;
1202         vmsa->sev_features      = sev_status >> 2;
1203 
1204         /* Switch the page over to a VMSA page now that it is initialized */
1205         ret = snp_set_vmsa(vmsa, caa, apic_id, true);
1206         if (ret) {
1207                 pr_err("set VMSA page failed (%u)\n", ret);
1208                 free_page((unsigned long)vmsa);
1209 
1210                 return -EINVAL;
1211         }
1212 
1213         /* Issue VMGEXIT AP Creation NAE event */
1214         local_irq_save(flags);
1215 
1216         ghcb = __sev_get_ghcb(&state);
1217 
1218         vc_ghcb_invalidate(ghcb);
1219         ghcb_set_rax(ghcb, vmsa->sev_features);
1220         ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1221         ghcb_set_sw_exit_info_1(ghcb,
1222                                 ((u64)apic_id << 32)    |
1223                                 ((u64)snp_vmpl << 16)   |
1224                                 SVM_VMGEXIT_AP_CREATE);
1225         ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1226 
1227         sev_es_wr_ghcb_msr(__pa(ghcb));
1228         VMGEXIT();
1229 
1230         if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1231             lower_32_bits(ghcb->save.sw_exit_info_1)) {
1232                 pr_err("SNP AP Creation error\n");
1233                 ret = -EINVAL;
1234         }
1235 
1236         __sev_put_ghcb(&state);
1237 
1238         local_irq_restore(flags);
1239 
1240         /* Perform cleanup if there was an error */
1241         if (ret) {
1242                 snp_cleanup_vmsa(vmsa, apic_id);
1243                 vmsa = NULL;
1244         }
1245 
1246         /* Free up any previous VMSA page */
1247         if (cur_vmsa)
1248                 snp_cleanup_vmsa(cur_vmsa, apic_id);
1249 
1250         /* Record the current VMSA page */
1251         per_cpu(sev_vmsa, cpu) = vmsa;
1252 
1253         return ret;
1254 }
1255 
1256 void __init snp_set_wakeup_secondary_cpu(void)
1257 {
1258         if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1259                 return;
1260 
1261         /*
1262          * Always set this override if SNP is enabled. This makes it the
1263          * required method to start APs under SNP. If the hypervisor does
1264          * not support AP creation, then no APs will be started.
1265          */
1266         apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit);
1267 }
1268 
1269 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1270 {
1271         u16 startup_cs, startup_ip;
1272         phys_addr_t jump_table_pa;
1273         u64 jump_table_addr;
1274         u16 __iomem *jump_table;
1275 
1276         jump_table_addr = get_jump_table_addr();
1277 
1278         /* On UP guests there is no jump table so this is not a failure */
1279         if (!jump_table_addr)
1280                 return 0;
1281 
1282         /* Check if AP Jump Table is page-aligned */
1283         if (jump_table_addr & ~PAGE_MASK)
1284                 return -EINVAL;
1285 
1286         jump_table_pa = jump_table_addr & PAGE_MASK;
1287 
1288         startup_cs = (u16)(rmh->trampoline_start >> 4);
1289         startup_ip = (u16)(rmh->sev_es_trampoline_start -
1290                            rmh->trampoline_start);
1291 
1292         jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1293         if (!jump_table)
1294                 return -EIO;
1295 
1296         writew(startup_ip, &jump_table[0]);
1297         writew(startup_cs, &jump_table[1]);
1298 
1299         iounmap(jump_table);
1300 
1301         return 0;
1302 }
1303 
1304 /*
1305  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1306  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1307  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1308  */
1309 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1310 {
1311         struct sev_es_runtime_data *data;
1312         unsigned long address, pflags;
1313         int cpu;
1314         u64 pfn;
1315 
1316         if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1317                 return 0;
1318 
1319         pflags = _PAGE_NX | _PAGE_RW;
1320 
1321         for_each_possible_cpu(cpu) {
1322                 data = per_cpu(runtime_data, cpu);
1323 
1324                 address = __pa(&data->ghcb_page);
1325                 pfn = address >> PAGE_SHIFT;
1326 
1327                 if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1328                         return 1;
1329         }
1330 
1331         return 0;
1332 }
1333 
1334 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1335 {
1336         struct pt_regs *regs = ctxt->regs;
1337         enum es_result ret;
1338         u64 exit_info_1;
1339 
1340         /* Is it a WRMSR? */
1341         exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
1342 
1343         if (regs->cx == MSR_SVSM_CAA) {
1344                 /* Writes to the SVSM CAA msr are ignored */
1345                 if (exit_info_1)
1346                         return ES_OK;
1347 
1348                 regs->ax = lower_32_bits(this_cpu_read(svsm_caa_pa));
1349                 regs->dx = upper_32_bits(this_cpu_read(svsm_caa_pa));
1350 
1351                 return ES_OK;
1352         }
1353 
1354         ghcb_set_rcx(ghcb, regs->cx);
1355         if (exit_info_1) {
1356                 ghcb_set_rax(ghcb, regs->ax);
1357                 ghcb_set_rdx(ghcb, regs->dx);
1358         }
1359 
1360         ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
1361 
1362         if ((ret == ES_OK) && (!exit_info_1)) {
1363                 regs->ax = ghcb->save.rax;
1364                 regs->dx = ghcb->save.rdx;
1365         }
1366 
1367         return ret;
1368 }
1369 
1370 static void snp_register_per_cpu_ghcb(void)
1371 {
1372         struct sev_es_runtime_data *data;
1373         struct ghcb *ghcb;
1374 
1375         data = this_cpu_read(runtime_data);
1376         ghcb = &data->ghcb_page;
1377 
1378         snp_register_ghcb_early(__pa(ghcb));
1379 }
1380 
1381 void setup_ghcb(void)
1382 {
1383         if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1384                 return;
1385 
1386         /*
1387          * Check whether the runtime #VC exception handler is active. It uses
1388          * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1389          *
1390          * If SNP is active, register the per-CPU GHCB page so that the runtime
1391          * exception handler can use it.
1392          */
1393         if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1394                 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1395                         snp_register_per_cpu_ghcb();
1396 
1397                 sev_cfg.ghcbs_initialized = true;
1398 
1399                 return;
1400         }
1401 
1402         /*
1403          * Make sure the hypervisor talks a supported protocol.
1404          * This gets called only in the BSP boot phase.
1405          */
1406         if (!sev_es_negotiate_protocol())
1407                 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1408 
1409         /*
1410          * Clear the boot_ghcb. The first exception comes in before the bss
1411          * section is cleared.
1412          */
1413         memset(&boot_ghcb_page, 0, PAGE_SIZE);
1414 
1415         /* Alright - Make the boot-ghcb public */
1416         boot_ghcb = &boot_ghcb_page;
1417 
1418         /* SNP guest requires that GHCB GPA must be registered. */
1419         if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1420                 snp_register_ghcb_early(__pa(&boot_ghcb_page));
1421 }
1422 
1423 #ifdef CONFIG_HOTPLUG_CPU
1424 static void sev_es_ap_hlt_loop(void)
1425 {
1426         struct ghcb_state state;
1427         struct ghcb *ghcb;
1428 
1429         ghcb = __sev_get_ghcb(&state);
1430 
1431         while (true) {
1432                 vc_ghcb_invalidate(ghcb);
1433                 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1434                 ghcb_set_sw_exit_info_1(ghcb, 0);
1435                 ghcb_set_sw_exit_info_2(ghcb, 0);
1436 
1437                 sev_es_wr_ghcb_msr(__pa(ghcb));
1438                 VMGEXIT();
1439 
1440                 /* Wakeup signal? */
1441                 if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1442                     ghcb->save.sw_exit_info_2)
1443                         break;
1444         }
1445 
1446         __sev_put_ghcb(&state);
1447 }
1448 
1449 /*
1450  * Play_dead handler when running under SEV-ES. This is needed because
1451  * the hypervisor can't deliver an SIPI request to restart the AP.
1452  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1453  * hypervisor wakes it up again.
1454  */
1455 static void sev_es_play_dead(void)
1456 {
1457         play_dead_common();
1458 
1459         /* IRQs now disabled */
1460 
1461         sev_es_ap_hlt_loop();
1462 
1463         /*
1464          * If we get here, the VCPU was woken up again. Jump to CPU
1465          * startup code to get it back online.
1466          */
1467         soft_restart_cpu();
1468 }
1469 #else  /* CONFIG_HOTPLUG_CPU */
1470 #define sev_es_play_dead        native_play_dead
1471 #endif /* CONFIG_HOTPLUG_CPU */
1472 
1473 #ifdef CONFIG_SMP
1474 static void __init sev_es_setup_play_dead(void)
1475 {
1476         smp_ops.play_dead = sev_es_play_dead;
1477 }
1478 #else
1479 static inline void sev_es_setup_play_dead(void) { }
1480 #endif
1481 
1482 static void __init alloc_runtime_data(int cpu)
1483 {
1484         struct sev_es_runtime_data *data;
1485 
1486         data = memblock_alloc_node(sizeof(*data), PAGE_SIZE, cpu_to_node(cpu));
1487         if (!data)
1488                 panic("Can't allocate SEV-ES runtime data");
1489 
1490         per_cpu(runtime_data, cpu) = data;
1491 
1492         if (snp_vmpl) {
1493                 struct svsm_ca *caa;
1494 
1495                 /* Allocate the SVSM CA page if an SVSM is present */
1496                 caa = memblock_alloc(sizeof(*caa), PAGE_SIZE);
1497                 if (!caa)
1498                         panic("Can't allocate SVSM CA page\n");
1499 
1500                 per_cpu(svsm_caa, cpu) = caa;
1501                 per_cpu(svsm_caa_pa, cpu) = __pa(caa);
1502         }
1503 }
1504 
1505 static void __init init_ghcb(int cpu)
1506 {
1507         struct sev_es_runtime_data *data;
1508         int err;
1509 
1510         data = per_cpu(runtime_data, cpu);
1511 
1512         err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1513                                          sizeof(data->ghcb_page));
1514         if (err)
1515                 panic("Can't map GHCBs unencrypted");
1516 
1517         memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1518 
1519         data->ghcb_active = false;
1520         data->backup_ghcb_active = false;
1521 }
1522 
1523 void __init sev_es_init_vc_handling(void)
1524 {
1525         int cpu;
1526 
1527         BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1528 
1529         if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1530                 return;
1531 
1532         if (!sev_es_check_cpu_features())
1533                 panic("SEV-ES CPU Features missing");
1534 
1535         /*
1536          * SNP is supported in v2 of the GHCB spec which mandates support for HV
1537          * features.
1538          */
1539         if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1540                 sev_hv_features = get_hv_features();
1541 
1542                 if (!(sev_hv_features & GHCB_HV_FT_SNP))
1543                         sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1544         }
1545 
1546         /* Initialize per-cpu GHCB pages */
1547         for_each_possible_cpu(cpu) {
1548                 alloc_runtime_data(cpu);
1549                 init_ghcb(cpu);
1550         }
1551 
1552         /* If running under an SVSM, switch to the per-cpu CA */
1553         if (snp_vmpl) {
1554                 struct svsm_call call = {};
1555                 unsigned long flags;
1556                 int ret;
1557 
1558                 local_irq_save(flags);
1559 
1560                 /*
1561                  * SVSM_CORE_REMAP_CA call:
1562                  *   RAX = 0 (Protocol=0, CallID=0)
1563                  *   RCX = New CA GPA
1564                  */
1565                 call.caa = svsm_get_caa();
1566                 call.rax = SVSM_CORE_CALL(SVSM_CORE_REMAP_CA);
1567                 call.rcx = this_cpu_read(svsm_caa_pa);
1568                 ret = svsm_perform_call_protocol(&call);
1569                 if (ret)
1570                         panic("Can't remap the SVSM CA, ret=%d, rax_out=0x%llx\n",
1571                               ret, call.rax_out);
1572 
1573                 sev_cfg.use_cas = true;
1574 
1575                 local_irq_restore(flags);
1576         }
1577 
1578         sev_es_setup_play_dead();
1579 
1580         /* Secondary CPUs use the runtime #VC handler */
1581         initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1582 }
1583 
1584 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1585 {
1586         int trapnr = ctxt->fi.vector;
1587 
1588         if (trapnr == X86_TRAP_PF)
1589                 native_write_cr2(ctxt->fi.cr2);
1590 
1591         ctxt->regs->orig_ax = ctxt->fi.error_code;
1592         do_early_exception(ctxt->regs, trapnr);
1593 }
1594 
1595 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1596 {
1597         long *reg_array;
1598         int offset;
1599 
1600         reg_array = (long *)ctxt->regs;
1601         offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1602 
1603         if (offset < 0)
1604                 return NULL;
1605 
1606         offset /= sizeof(long);
1607 
1608         return reg_array + offset;
1609 }
1610 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1611                                  unsigned int bytes, bool read)
1612 {
1613         u64 exit_code, exit_info_1, exit_info_2;
1614         unsigned long ghcb_pa = __pa(ghcb);
1615         enum es_result res;
1616         phys_addr_t paddr;
1617         void __user *ref;
1618 
1619         ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1620         if (ref == (void __user *)-1L)
1621                 return ES_UNSUPPORTED;
1622 
1623         exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1624 
1625         res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1626         if (res != ES_OK) {
1627                 if (res == ES_EXCEPTION && !read)
1628                         ctxt->fi.error_code |= X86_PF_WRITE;
1629 
1630                 return res;
1631         }
1632 
1633         exit_info_1 = paddr;
1634         /* Can never be greater than 8 */
1635         exit_info_2 = bytes;
1636 
1637         ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1638 
1639         return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
1640 }
1641 
1642 /*
1643  * The MOVS instruction has two memory operands, which raises the
1644  * problem that it is not known whether the access to the source or the
1645  * destination caused the #VC exception (and hence whether an MMIO read
1646  * or write operation needs to be emulated).
1647  *
1648  * Instead of playing games with walking page-tables and trying to guess
1649  * whether the source or destination is an MMIO range, split the move
1650  * into two operations, a read and a write with only one memory operand.
1651  * This will cause a nested #VC exception on the MMIO address which can
1652  * then be handled.
1653  *
1654  * This implementation has the benefit that it also supports MOVS where
1655  * source _and_ destination are MMIO regions.
1656  *
1657  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1658  * rare operation. If it turns out to be a performance problem the split
1659  * operations can be moved to memcpy_fromio() and memcpy_toio().
1660  */
1661 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1662                                           unsigned int bytes)
1663 {
1664         unsigned long ds_base, es_base;
1665         unsigned char *src, *dst;
1666         unsigned char buffer[8];
1667         enum es_result ret;
1668         bool rep;
1669         int off;
1670 
1671         ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1672         es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1673 
1674         if (ds_base == -1L || es_base == -1L) {
1675                 ctxt->fi.vector = X86_TRAP_GP;
1676                 ctxt->fi.error_code = 0;
1677                 return ES_EXCEPTION;
1678         }
1679 
1680         src = ds_base + (unsigned char *)ctxt->regs->si;
1681         dst = es_base + (unsigned char *)ctxt->regs->di;
1682 
1683         ret = vc_read_mem(ctxt, src, buffer, bytes);
1684         if (ret != ES_OK)
1685                 return ret;
1686 
1687         ret = vc_write_mem(ctxt, dst, buffer, bytes);
1688         if (ret != ES_OK)
1689                 return ret;
1690 
1691         if (ctxt->regs->flags & X86_EFLAGS_DF)
1692                 off = -bytes;
1693         else
1694                 off =  bytes;
1695 
1696         ctxt->regs->si += off;
1697         ctxt->regs->di += off;
1698 
1699         rep = insn_has_rep_prefix(&ctxt->insn);
1700         if (rep)
1701                 ctxt->regs->cx -= 1;
1702 
1703         if (!rep || ctxt->regs->cx == 0)
1704                 return ES_OK;
1705         else
1706                 return ES_RETRY;
1707 }
1708 
1709 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1710 {
1711         struct insn *insn = &ctxt->insn;
1712         enum insn_mmio_type mmio;
1713         unsigned int bytes = 0;
1714         enum es_result ret;
1715         u8 sign_byte;
1716         long *reg_data;
1717 
1718         mmio = insn_decode_mmio(insn, &bytes);
1719         if (mmio == INSN_MMIO_DECODE_FAILED)
1720                 return ES_DECODE_FAILED;
1721 
1722         if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
1723                 reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1724                 if (!reg_data)
1725                         return ES_DECODE_FAILED;
1726         }
1727 
1728         if (user_mode(ctxt->regs))
1729                 return ES_UNSUPPORTED;
1730 
1731         switch (mmio) {
1732         case INSN_MMIO_WRITE:
1733                 memcpy(ghcb->shared_buffer, reg_data, bytes);
1734                 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1735                 break;
1736         case INSN_MMIO_WRITE_IMM:
1737                 memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1738                 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1739                 break;
1740         case INSN_MMIO_READ:
1741                 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1742                 if (ret)
1743                         break;
1744 
1745                 /* Zero-extend for 32-bit operation */
1746                 if (bytes == 4)
1747                         *reg_data = 0;
1748 
1749                 memcpy(reg_data, ghcb->shared_buffer, bytes);
1750                 break;
1751         case INSN_MMIO_READ_ZERO_EXTEND:
1752                 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1753                 if (ret)
1754                         break;
1755 
1756                 /* Zero extend based on operand size */
1757                 memset(reg_data, 0, insn->opnd_bytes);
1758                 memcpy(reg_data, ghcb->shared_buffer, bytes);
1759                 break;
1760         case INSN_MMIO_READ_SIGN_EXTEND:
1761                 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1762                 if (ret)
1763                         break;
1764 
1765                 if (bytes == 1) {
1766                         u8 *val = (u8 *)ghcb->shared_buffer;
1767 
1768                         sign_byte = (*val & 0x80) ? 0xff : 0x00;
1769                 } else {
1770                         u16 *val = (u16 *)ghcb->shared_buffer;
1771 
1772                         sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1773                 }
1774 
1775                 /* Sign extend based on operand size */
1776                 memset(reg_data, sign_byte, insn->opnd_bytes);
1777                 memcpy(reg_data, ghcb->shared_buffer, bytes);
1778                 break;
1779         case INSN_MMIO_MOVS:
1780                 ret = vc_handle_mmio_movs(ctxt, bytes);
1781                 break;
1782         default:
1783                 ret = ES_UNSUPPORTED;
1784                 break;
1785         }
1786 
1787         return ret;
1788 }
1789 
1790 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1791                                           struct es_em_ctxt *ctxt)
1792 {
1793         struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1794         long val, *reg = vc_insn_get_rm(ctxt);
1795         enum es_result ret;
1796 
1797         if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1798                 return ES_VMM_ERROR;
1799 
1800         if (!reg)
1801                 return ES_DECODE_FAILED;
1802 
1803         val = *reg;
1804 
1805         /* Upper 32 bits must be written as zeroes */
1806         if (val >> 32) {
1807                 ctxt->fi.vector = X86_TRAP_GP;
1808                 ctxt->fi.error_code = 0;
1809                 return ES_EXCEPTION;
1810         }
1811 
1812         /* Clear out other reserved bits and set bit 10 */
1813         val = (val & 0xffff23ffL) | BIT(10);
1814 
1815         /* Early non-zero writes to DR7 are not supported */
1816         if (!data && (val & ~DR7_RESET_VALUE))
1817                 return ES_UNSUPPORTED;
1818 
1819         /* Using a value of 0 for ExitInfo1 means RAX holds the value */
1820         ghcb_set_rax(ghcb, val);
1821         ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1822         if (ret != ES_OK)
1823                 return ret;
1824 
1825         if (data)
1826                 data->dr7 = val;
1827 
1828         return ES_OK;
1829 }
1830 
1831 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1832                                          struct es_em_ctxt *ctxt)
1833 {
1834         struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1835         long *reg = vc_insn_get_rm(ctxt);
1836 
1837         if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1838                 return ES_VMM_ERROR;
1839 
1840         if (!reg)
1841                 return ES_DECODE_FAILED;
1842 
1843         if (data)
1844                 *reg = data->dr7;
1845         else
1846                 *reg = DR7_RESET_VALUE;
1847 
1848         return ES_OK;
1849 }
1850 
1851 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1852                                        struct es_em_ctxt *ctxt)
1853 {
1854         return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1855 }
1856 
1857 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1858 {
1859         enum es_result ret;
1860 
1861         ghcb_set_rcx(ghcb, ctxt->regs->cx);
1862 
1863         ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1864         if (ret != ES_OK)
1865                 return ret;
1866 
1867         if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1868                 return ES_VMM_ERROR;
1869 
1870         ctxt->regs->ax = ghcb->save.rax;
1871         ctxt->regs->dx = ghcb->save.rdx;
1872 
1873         return ES_OK;
1874 }
1875 
1876 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1877                                         struct es_em_ctxt *ctxt)
1878 {
1879         /*
1880          * Treat it as a NOP and do not leak a physical address to the
1881          * hypervisor.
1882          */
1883         return ES_OK;
1884 }
1885 
1886 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1887                                       struct es_em_ctxt *ctxt)
1888 {
1889         /* Treat the same as MONITOR/MONITORX */
1890         return ES_OK;
1891 }
1892 
1893 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1894                                         struct es_em_ctxt *ctxt)
1895 {
1896         enum es_result ret;
1897 
1898         ghcb_set_rax(ghcb, ctxt->regs->ax);
1899         ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1900 
1901         if (x86_platform.hyper.sev_es_hcall_prepare)
1902                 x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1903 
1904         ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1905         if (ret != ES_OK)
1906                 return ret;
1907 
1908         if (!ghcb_rax_is_valid(ghcb))
1909                 return ES_VMM_ERROR;
1910 
1911         ctxt->regs->ax = ghcb->save.rax;
1912 
1913         /*
1914          * Call sev_es_hcall_finish() after regs->ax is already set.
1915          * This allows the hypervisor handler to overwrite it again if
1916          * necessary.
1917          */
1918         if (x86_platform.hyper.sev_es_hcall_finish &&
1919             !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1920                 return ES_VMM_ERROR;
1921 
1922         return ES_OK;
1923 }
1924 
1925 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1926                                         struct es_em_ctxt *ctxt)
1927 {
1928         /*
1929          * Calling ecx_alignment_check() directly does not work, because it
1930          * enables IRQs and the GHCB is active. Forward the exception and call
1931          * it later from vc_forward_exception().
1932          */
1933         ctxt->fi.vector = X86_TRAP_AC;
1934         ctxt->fi.error_code = 0;
1935         return ES_EXCEPTION;
1936 }
1937 
1938 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1939                                          struct ghcb *ghcb,
1940                                          unsigned long exit_code)
1941 {
1942         enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);
1943 
1944         if (result != ES_OK)
1945                 return result;
1946 
1947         switch (exit_code) {
1948         case SVM_EXIT_READ_DR7:
1949                 result = vc_handle_dr7_read(ghcb, ctxt);
1950                 break;
1951         case SVM_EXIT_WRITE_DR7:
1952                 result = vc_handle_dr7_write(ghcb, ctxt);
1953                 break;
1954         case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1955                 result = vc_handle_trap_ac(ghcb, ctxt);
1956                 break;
1957         case SVM_EXIT_RDTSC:
1958         case SVM_EXIT_RDTSCP:
1959                 result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1960                 break;
1961         case SVM_EXIT_RDPMC:
1962                 result = vc_handle_rdpmc(ghcb, ctxt);
1963                 break;
1964         case SVM_EXIT_INVD:
1965                 pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1966                 result = ES_UNSUPPORTED;
1967                 break;
1968         case SVM_EXIT_CPUID:
1969                 result = vc_handle_cpuid(ghcb, ctxt);
1970                 break;
1971         case SVM_EXIT_IOIO:
1972                 result = vc_handle_ioio(ghcb, ctxt);
1973                 break;
1974         case SVM_EXIT_MSR:
1975                 result = vc_handle_msr(ghcb, ctxt);
1976                 break;
1977         case SVM_EXIT_VMMCALL:
1978                 result = vc_handle_vmmcall(ghcb, ctxt);
1979                 break;
1980         case SVM_EXIT_WBINVD:
1981                 result = vc_handle_wbinvd(ghcb, ctxt);
1982                 break;
1983         case SVM_EXIT_MONITOR:
1984                 result = vc_handle_monitor(ghcb, ctxt);
1985                 break;
1986         case SVM_EXIT_MWAIT:
1987                 result = vc_handle_mwait(ghcb, ctxt);
1988                 break;
1989         case SVM_EXIT_NPF:
1990                 result = vc_handle_mmio(ghcb, ctxt);
1991                 break;
1992         default:
1993                 /*
1994                  * Unexpected #VC exception
1995                  */
1996                 result = ES_UNSUPPORTED;
1997         }
1998 
1999         return result;
2000 }
2001 
2002 static __always_inline bool is_vc2_stack(unsigned long sp)
2003 {
2004         return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
2005 }
2006 
2007 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
2008 {
2009         unsigned long sp, prev_sp;
2010 
2011         sp      = (unsigned long)regs;
2012         prev_sp = regs->sp;
2013 
2014         /*
2015          * If the code was already executing on the VC2 stack when the #VC
2016          * happened, let it proceed to the normal handling routine. This way the
2017          * code executing on the VC2 stack can cause #VC exceptions to get handled.
2018          */
2019         return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
2020 }
2021 
2022 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
2023 {
2024         struct ghcb_state state;
2025         struct es_em_ctxt ctxt;
2026         enum es_result result;
2027         struct ghcb *ghcb;
2028         bool ret = true;
2029 
2030         ghcb = __sev_get_ghcb(&state);
2031 
2032         vc_ghcb_invalidate(ghcb);
2033         result = vc_init_em_ctxt(&ctxt, regs, error_code);
2034 
2035         if (result == ES_OK)
2036                 result = vc_handle_exitcode(&ctxt, ghcb, error_code);
2037 
2038         __sev_put_ghcb(&state);
2039 
2040         /* Done - now check the result */
2041         switch (result) {
2042         case ES_OK:
2043                 vc_finish_insn(&ctxt);
2044                 break;
2045         case ES_UNSUPPORTED:
2046                 pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
2047                                    error_code, regs->ip);
2048                 ret = false;
2049                 break;
2050         case ES_VMM_ERROR:
2051                 pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2052                                    error_code, regs->ip);
2053                 ret = false;
2054                 break;
2055         case ES_DECODE_FAILED:
2056                 pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2057                                    error_code, regs->ip);
2058                 ret = false;
2059                 break;
2060         case ES_EXCEPTION:
2061                 vc_forward_exception(&ctxt);
2062                 break;
2063         case ES_RETRY:
2064                 /* Nothing to do */
2065                 break;
2066         default:
2067                 pr_emerg("Unknown result in %s():%d\n", __func__, result);
2068                 /*
2069                  * Emulating the instruction which caused the #VC exception
2070                  * failed - can't continue so print debug information
2071                  */
2072                 BUG();
2073         }
2074 
2075         return ret;
2076 }
2077 
2078 static __always_inline bool vc_is_db(unsigned long error_code)
2079 {
2080         return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
2081 }
2082 
2083 /*
2084  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
2085  * and will panic when an error happens.
2086  */
2087 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
2088 {
2089         irqentry_state_t irq_state;
2090 
2091         /*
2092          * With the current implementation it is always possible to switch to a
2093          * safe stack because #VC exceptions only happen at known places, like
2094          * intercepted instructions or accesses to MMIO areas/IO ports. They can
2095          * also happen with code instrumentation when the hypervisor intercepts
2096          * #DB, but the critical paths are forbidden to be instrumented, so #DB
2097          * exceptions currently also only happen in safe places.
2098          *
2099          * But keep this here in case the noinstr annotations are violated due
2100          * to bug elsewhere.
2101          */
2102         if (unlikely(vc_from_invalid_context(regs))) {
2103                 instrumentation_begin();
2104                 panic("Can't handle #VC exception from unsupported context\n");
2105                 instrumentation_end();
2106         }
2107 
2108         /*
2109          * Handle #DB before calling into !noinstr code to avoid recursive #DB.
2110          */
2111         if (vc_is_db(error_code)) {
2112                 exc_debug(regs);
2113                 return;
2114         }
2115 
2116         irq_state = irqentry_nmi_enter(regs);
2117 
2118         instrumentation_begin();
2119 
2120         if (!vc_raw_handle_exception(regs, error_code)) {
2121                 /* Show some debug info */
2122                 show_regs(regs);
2123 
2124                 /* Ask hypervisor to sev_es_terminate */
2125                 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2126 
2127                 /* If that fails and we get here - just panic */
2128                 panic("Returned from Terminate-Request to Hypervisor\n");
2129         }
2130 
2131         instrumentation_end();
2132         irqentry_nmi_exit(regs, irq_state);
2133 }
2134 
2135 /*
2136  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
2137  * and will kill the current task with SIGBUS when an error happens.
2138  */
2139 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
2140 {
2141         /*
2142          * Handle #DB before calling into !noinstr code to avoid recursive #DB.
2143          */
2144         if (vc_is_db(error_code)) {
2145                 noist_exc_debug(regs);
2146                 return;
2147         }
2148 
2149         irqentry_enter_from_user_mode(regs);
2150         instrumentation_begin();
2151 
2152         if (!vc_raw_handle_exception(regs, error_code)) {
2153                 /*
2154                  * Do not kill the machine if user-space triggered the
2155                  * exception. Send SIGBUS instead and let user-space deal with
2156                  * it.
2157                  */
2158                 force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
2159         }
2160 
2161         instrumentation_end();
2162         irqentry_exit_to_user_mode(regs);
2163 }
2164 
2165 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
2166 {
2167         unsigned long exit_code = regs->orig_ax;
2168         struct es_em_ctxt ctxt;
2169         enum es_result result;
2170 
2171         vc_ghcb_invalidate(boot_ghcb);
2172 
2173         result = vc_init_em_ctxt(&ctxt, regs, exit_code);
2174         if (result == ES_OK)
2175                 result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2176 
2177         /* Done - now check the result */
2178         switch (result) {
2179         case ES_OK:
2180                 vc_finish_insn(&ctxt);
2181                 break;
2182         case ES_UNSUPPORTED:
2183                 early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2184                                 exit_code, regs->ip);
2185                 goto fail;
2186         case ES_VMM_ERROR:
2187                 early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2188                                 exit_code, regs->ip);
2189                 goto fail;
2190         case ES_DECODE_FAILED:
2191                 early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2192                                 exit_code, regs->ip);
2193                 goto fail;
2194         case ES_EXCEPTION:
2195                 vc_early_forward_exception(&ctxt);
2196                 break;
2197         case ES_RETRY:
2198                 /* Nothing to do */
2199                 break;
2200         default:
2201                 BUG();
2202         }
2203 
2204         return true;
2205 
2206 fail:
2207         show_regs(regs);
2208 
2209         sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2210 }
2211 
2212 /*
2213  * Initial set up of SNP relies on information provided by the
2214  * Confidential Computing blob, which can be passed to the kernel
2215  * in the following ways, depending on how it is booted:
2216  *
2217  * - when booted via the boot/decompress kernel:
2218  *   - via boot_params
2219  *
2220  * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2221  *   - via a setup_data entry, as defined by the Linux Boot Protocol
2222  *
2223  * Scan for the blob in that order.
2224  */
2225 static __head struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2226 {
2227         struct cc_blob_sev_info *cc_info;
2228 
2229         /* Boot kernel would have passed the CC blob via boot_params. */
2230         if (bp->cc_blob_address) {
2231                 cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2232                 goto found_cc_info;
2233         }
2234 
2235         /*
2236          * If kernel was booted directly, without the use of the
2237          * boot/decompression kernel, the CC blob may have been passed via
2238          * setup_data instead.
2239          */
2240         cc_info = find_cc_blob_setup_data(bp);
2241         if (!cc_info)
2242                 return NULL;
2243 
2244 found_cc_info:
2245         if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2246                 snp_abort();
2247 
2248         return cc_info;
2249 }
2250 
2251 static __head void svsm_setup(struct cc_blob_sev_info *cc_info)
2252 {
2253         struct svsm_call call = {};
2254         int ret;
2255         u64 pa;
2256 
2257         /*
2258          * Record the SVSM Calling Area address (CAA) if the guest is not
2259          * running at VMPL0. The CA will be used to communicate with the
2260          * SVSM to perform the SVSM services.
2261          */
2262         if (!svsm_setup_ca(cc_info))
2263                 return;
2264 
2265         /*
2266          * It is very early in the boot and the kernel is running identity
2267          * mapped but without having adjusted the pagetables to where the
2268          * kernel was loaded (physbase), so the get the CA address using
2269          * RIP-relative addressing.
2270          */
2271         pa = (u64)&RIP_REL_REF(boot_svsm_ca_page);
2272 
2273         /*
2274          * Switch over to the boot SVSM CA while the current CA is still
2275          * addressable. There is no GHCB at this point so use the MSR protocol.
2276          *
2277          * SVSM_CORE_REMAP_CA call:
2278          *   RAX = 0 (Protocol=0, CallID=0)
2279          *   RCX = New CA GPA
2280          */
2281         call.caa = svsm_get_caa();
2282         call.rax = SVSM_CORE_CALL(SVSM_CORE_REMAP_CA);
2283         call.rcx = pa;
2284         ret = svsm_perform_call_protocol(&call);
2285         if (ret)
2286                 panic("Can't remap the SVSM CA, ret=%d, rax_out=0x%llx\n", ret, call.rax_out);
2287 
2288         RIP_REL_REF(boot_svsm_caa) = (struct svsm_ca *)pa;
2289         RIP_REL_REF(boot_svsm_caa_pa) = pa;
2290 }
2291 
2292 bool __head snp_init(struct boot_params *bp)
2293 {
2294         struct cc_blob_sev_info *cc_info;
2295 
2296         if (!bp)
2297                 return false;
2298 
2299         cc_info = find_cc_blob(bp);
2300         if (!cc_info)
2301                 return false;
2302 
2303         setup_cpuid_table(cc_info);
2304 
2305         svsm_setup(cc_info);
2306 
2307         /*
2308          * The CC blob will be used later to access the secrets page. Cache
2309          * it here like the boot kernel does.
2310          */
2311         bp->cc_blob_address = (u32)(unsigned long)cc_info;
2312 
2313         return true;
2314 }
2315 
2316 void __head __noreturn snp_abort(void)
2317 {
2318         sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2319 }
2320 
2321 /*
2322  * SEV-SNP guests should only execute dmi_setup() if EFI_CONFIG_TABLES are
2323  * enabled, as the alternative (fallback) logic for DMI probing in the legacy
2324  * ROM region can cause a crash since this region is not pre-validated.
2325  */
2326 void __init snp_dmi_setup(void)
2327 {
2328         if (efi_enabled(EFI_CONFIG_TABLES))
2329                 dmi_setup();
2330 }
2331 
2332 static void dump_cpuid_table(void)
2333 {
2334         const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2335         int i = 0;
2336 
2337         pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2338                 cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2339 
2340         for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2341                 const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2342 
2343                 pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2344                         i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2345                         fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2346         }
2347 }
2348 
2349 /*
2350  * It is useful from an auditing/testing perspective to provide an easy way
2351  * for the guest owner to know that the CPUID table has been initialized as
2352  * expected, but that initialization happens too early in boot to print any
2353  * sort of indicator, and there's not really any other good place to do it,
2354  * so do it here.
2355  *
2356  * If running as an SNP guest, report the current VM privilege level (VMPL).
2357  */
2358 static int __init report_snp_info(void)
2359 {
2360         const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2361 
2362         if (cpuid_table->count) {
2363                 pr_info("Using SNP CPUID table, %d entries present.\n",
2364                         cpuid_table->count);
2365 
2366                 if (sev_cfg.debug)
2367                         dump_cpuid_table();
2368         }
2369 
2370         if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2371                 pr_info("SNP running at VMPL%u.\n", snp_vmpl);
2372 
2373         return 0;
2374 }
2375 arch_initcall(report_snp_info);
2376 
2377 static int __init init_sev_config(char *str)
2378 {
2379         char *s;
2380 
2381         while ((s = strsep(&str, ","))) {
2382                 if (!strcmp(s, "debug")) {
2383                         sev_cfg.debug = true;
2384                         continue;
2385                 }
2386 
2387                 pr_info("SEV command-line option '%s' was not recognized\n", s);
2388         }
2389 
2390         return 1;
2391 }
2392 __setup("sev=", init_sev_config);
2393 
2394 static void update_attest_input(struct svsm_call *call, struct svsm_attest_call *input)
2395 {
2396         /* If (new) lengths have been returned, propagate them up */
2397         if (call->rcx_out != call->rcx)
2398                 input->manifest_buf.len = call->rcx_out;
2399 
2400         if (call->rdx_out != call->rdx)
2401                 input->certificates_buf.len = call->rdx_out;
2402 
2403         if (call->r8_out != call->r8)
2404                 input->report_buf.len = call->r8_out;
2405 }
2406 
2407 int snp_issue_svsm_attest_req(u64 call_id, struct svsm_call *call,
2408                               struct svsm_attest_call *input)
2409 {
2410         struct svsm_attest_call *ac;
2411         unsigned long flags;
2412         u64 attest_call_pa;
2413         int ret;
2414 
2415         if (!snp_vmpl)
2416                 return -EINVAL;
2417 
2418         local_irq_save(flags);
2419 
2420         call->caa = svsm_get_caa();
2421 
2422         ac = (struct svsm_attest_call *)call->caa->svsm_buffer;
2423         attest_call_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer);
2424 
2425         *ac = *input;
2426 
2427         /*
2428          * Set input registers for the request and set RDX and R8 to known
2429          * values in order to detect length values being returned in them.
2430          */
2431         call->rax = call_id;
2432         call->rcx = attest_call_pa;
2433         call->rdx = -1;
2434         call->r8 = -1;
2435         ret = svsm_perform_call_protocol(call);
2436         update_attest_input(call, input);
2437 
2438         local_irq_restore(flags);
2439 
2440         return ret;
2441 }
2442 EXPORT_SYMBOL_GPL(snp_issue_svsm_attest_req);
2443 
2444 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, struct snp_guest_request_ioctl *rio)
2445 {
2446         struct ghcb_state state;
2447         struct es_em_ctxt ctxt;
2448         unsigned long flags;
2449         struct ghcb *ghcb;
2450         int ret;
2451 
2452         rio->exitinfo2 = SEV_RET_NO_FW_CALL;
2453 
2454         /*
2455          * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2456          * a per-CPU GHCB.
2457          */
2458         local_irq_save(flags);
2459 
2460         ghcb = __sev_get_ghcb(&state);
2461         if (!ghcb) {
2462                 ret = -EIO;
2463                 goto e_restore_irq;
2464         }
2465 
2466         vc_ghcb_invalidate(ghcb);
2467 
2468         if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2469                 ghcb_set_rax(ghcb, input->data_gpa);
2470                 ghcb_set_rbx(ghcb, input->data_npages);
2471         }
2472 
2473         ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
2474         if (ret)
2475                 goto e_put;
2476 
2477         rio->exitinfo2 = ghcb->save.sw_exit_info_2;
2478         switch (rio->exitinfo2) {
2479         case 0:
2480                 break;
2481 
2482         case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY):
2483                 ret = -EAGAIN;
2484                 break;
2485 
2486         case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN):
2487                 /* Number of expected pages are returned in RBX */
2488                 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2489                         input->data_npages = ghcb_get_rbx(ghcb);
2490                         ret = -ENOSPC;
2491                         break;
2492                 }
2493                 fallthrough;
2494         default:
2495                 ret = -EIO;
2496                 break;
2497         }
2498 
2499 e_put:
2500         __sev_put_ghcb(&state);
2501 e_restore_irq:
2502         local_irq_restore(flags);
2503 
2504         return ret;
2505 }
2506 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2507 
2508 static struct platform_device sev_guest_device = {
2509         .name           = "sev-guest",
2510         .id             = -1,
2511 };
2512 
2513 static int __init snp_init_platform_device(void)
2514 {
2515         struct sev_guest_platform_data data;
2516         u64 gpa;
2517 
2518         if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2519                 return -ENODEV;
2520 
2521         gpa = get_secrets_page();
2522         if (!gpa)
2523                 return -ENODEV;
2524 
2525         data.secrets_gpa = gpa;
2526         if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2527                 return -ENODEV;
2528 
2529         if (platform_device_register(&sev_guest_device))
2530                 return -ENODEV;
2531 
2532         pr_info("SNP guest platform device initialized.\n");
2533         return 0;
2534 }
2535 device_initcall(snp_init_platform_device);
2536 
2537 void sev_show_status(void)
2538 {
2539         int i;
2540 
2541         pr_info("Status: ");
2542         for (i = 0; i < MSR_AMD64_SNP_RESV_BIT; i++) {
2543                 if (sev_status & BIT_ULL(i)) {
2544                         if (!sev_status_feat_names[i])
2545                                 continue;
2546 
2547                         pr_cont("%s ", sev_status_feat_names[i]);
2548                 }
2549         }
2550         pr_cont("\n");
2551 }
2552 
2553 void __init snp_update_svsm_ca(void)
2554 {
2555         if (!snp_vmpl)
2556                 return;
2557 
2558         /* Update the CAA to a proper kernel address */
2559         boot_svsm_caa = &boot_svsm_ca_page;
2560 }
2561 
2562 #ifdef CONFIG_SYSFS
2563 static ssize_t vmpl_show(struct kobject *kobj,
2564                          struct kobj_attribute *attr, char *buf)
2565 {
2566         return sysfs_emit(buf, "%d\n", snp_vmpl);
2567 }
2568 
2569 static struct kobj_attribute vmpl_attr = __ATTR_RO(vmpl);
2570 
2571 static struct attribute *vmpl_attrs[] = {
2572         &vmpl_attr.attr,
2573         NULL
2574 };
2575 
2576 static struct attribute_group sev_attr_group = {
2577         .attrs = vmpl_attrs,
2578 };
2579 
2580 static int __init sev_sysfs_init(void)
2581 {
2582         struct kobject *sev_kobj;
2583         struct device *dev_root;
2584         int ret;
2585 
2586         if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2587                 return -ENODEV;
2588 
2589         dev_root = bus_get_dev_root(&cpu_subsys);
2590         if (!dev_root)
2591                 return -ENODEV;
2592 
2593         sev_kobj = kobject_create_and_add("sev", &dev_root->kobj);
2594         put_device(dev_root);
2595 
2596         if (!sev_kobj)
2597                 return -ENOMEM;
2598 
2599         ret = sysfs_create_group(sev_kobj, &sev_attr_group);
2600         if (ret)
2601                 kobject_put(sev_kobj);
2602 
2603         return ret;
2604 }
2605 arch_initcall(sev_sysfs_init);
2606 #endif // CONFIG_SYSFS
2607 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php