~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/coco/tdx/tdx.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /* Copyright (C) 2021-2022 Intel Corporation */
  3 
  4 #undef pr_fmt
  5 #define pr_fmt(fmt)     "tdx: " fmt
  6 
  7 #include <linux/cpufeature.h>
  8 #include <linux/export.h>
  9 #include <linux/io.h>
 10 #include <linux/kexec.h>
 11 #include <asm/coco.h>
 12 #include <asm/tdx.h>
 13 #include <asm/vmx.h>
 14 #include <asm/ia32.h>
 15 #include <asm/insn.h>
 16 #include <asm/insn-eval.h>
 17 #include <asm/pgtable.h>
 18 #include <asm/set_memory.h>
 19 #include <asm/traps.h>
 20 
 21 /* MMIO direction */
 22 #define EPT_READ        0
 23 #define EPT_WRITE       1
 24 
 25 /* Port I/O direction */
 26 #define PORT_READ       0
 27 #define PORT_WRITE      1
 28 
 29 /* See Exit Qualification for I/O Instructions in VMX documentation */
 30 #define VE_IS_IO_IN(e)          ((e) & BIT(3))
 31 #define VE_GET_IO_SIZE(e)       (((e) & GENMASK(2, 0)) + 1)
 32 #define VE_GET_PORT_NUM(e)      ((e) >> 16)
 33 #define VE_IS_IO_STRING(e)      ((e) & BIT(4))
 34 
 35 #define ATTR_DEBUG              BIT(0)
 36 #define ATTR_SEPT_VE_DISABLE    BIT(28)
 37 
 38 /* TDX Module call error codes */
 39 #define TDCALL_RETURN_CODE(a)   ((a) >> 32)
 40 #define TDCALL_INVALID_OPERAND  0xc0000100
 41 
 42 #define TDREPORT_SUBTYPE_0      0
 43 
 44 static atomic_long_t nr_shared;
 45 
 46 /* Called from __tdx_hypercall() for unrecoverable failure */
 47 noinstr void __noreturn __tdx_hypercall_failed(void)
 48 {
 49         instrumentation_begin();
 50         panic("TDVMCALL failed. TDX module bug?");
 51 }
 52 
 53 #ifdef CONFIG_KVM_GUEST
 54 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
 55                        unsigned long p3, unsigned long p4)
 56 {
 57         struct tdx_module_args args = {
 58                 .r10 = nr,
 59                 .r11 = p1,
 60                 .r12 = p2,
 61                 .r13 = p3,
 62                 .r14 = p4,
 63         };
 64 
 65         return __tdx_hypercall(&args);
 66 }
 67 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
 68 #endif
 69 
 70 /*
 71  * Used for TDX guests to make calls directly to the TD module.  This
 72  * should only be used for calls that have no legitimate reason to fail
 73  * or where the kernel can not survive the call failing.
 74  */
 75 static inline void tdcall(u64 fn, struct tdx_module_args *args)
 76 {
 77         if (__tdcall_ret(fn, args))
 78                 panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
 79 }
 80 
 81 /**
 82  * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
 83  *                           subtype 0) using TDG.MR.REPORT TDCALL.
 84  * @reportdata: Address of the input buffer which contains user-defined
 85  *              REPORTDATA to be included into TDREPORT.
 86  * @tdreport: Address of the output buffer to store TDREPORT.
 87  *
 88  * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
 89  * v1.0 specification for more information on TDG.MR.REPORT TDCALL.
 90  * It is used in the TDX guest driver module to get the TDREPORT0.
 91  *
 92  * Return 0 on success, -EINVAL for invalid operands, or -EIO on
 93  * other TDCALL failures.
 94  */
 95 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
 96 {
 97         struct tdx_module_args args = {
 98                 .rcx = virt_to_phys(tdreport),
 99                 .rdx = virt_to_phys(reportdata),
100                 .r8 = TDREPORT_SUBTYPE_0,
101         };
102         u64 ret;
103 
104         ret = __tdcall(TDG_MR_REPORT, &args);
105         if (ret) {
106                 if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
107                         return -EINVAL;
108                 return -EIO;
109         }
110 
111         return 0;
112 }
113 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
114 
115 /**
116  * tdx_hcall_get_quote() - Wrapper to request TD Quote using GetQuote
117  *                         hypercall.
118  * @buf: Address of the directly mapped shared kernel buffer which
119  *       contains TDREPORT. The same buffer will be used by VMM to
120  *       store the generated TD Quote output.
121  * @size: size of the tdquote buffer (4KB-aligned).
122  *
123  * Refer to section titled "TDG.VP.VMCALL<GetQuote>" in the TDX GHCI
124  * v1.0 specification for more information on GetQuote hypercall.
125  * It is used in the TDX guest driver module to get the TD Quote.
126  *
127  * Return 0 on success or error code on failure.
128  */
129 u64 tdx_hcall_get_quote(u8 *buf, size_t size)
130 {
131         /* Since buf is a shared memory, set the shared (decrypted) bits */
132         return _tdx_hypercall(TDVMCALL_GET_QUOTE, cc_mkdec(virt_to_phys(buf)), size, 0, 0);
133 }
134 EXPORT_SYMBOL_GPL(tdx_hcall_get_quote);
135 
136 static void __noreturn tdx_panic(const char *msg)
137 {
138         struct tdx_module_args args = {
139                 .r10 = TDX_HYPERCALL_STANDARD,
140                 .r11 = TDVMCALL_REPORT_FATAL_ERROR,
141                 .r12 = 0, /* Error code: 0 is Panic */
142         };
143         union {
144                 /* Define register order according to the GHCI */
145                 struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; };
146 
147                 char str[64];
148         } message;
149 
150         /* VMM assumes '\0' in byte 65, if the message took all 64 bytes */
151         strtomem_pad(message.str, msg, '\0');
152 
153         args.r8  = message.r8;
154         args.r9  = message.r9;
155         args.r14 = message.r14;
156         args.r15 = message.r15;
157         args.rdi = message.rdi;
158         args.rsi = message.rsi;
159         args.rbx = message.rbx;
160         args.rdx = message.rdx;
161 
162         /*
163          * This hypercall should never return and it is not safe
164          * to keep the guest running. Call it forever if it
165          * happens to return.
166          */
167         while (1)
168                 __tdx_hypercall(&args);
169 }
170 
171 static void tdx_parse_tdinfo(u64 *cc_mask)
172 {
173         struct tdx_module_args args = {};
174         unsigned int gpa_width;
175         u64 td_attr;
176 
177         /*
178          * TDINFO TDX module call is used to get the TD execution environment
179          * information like GPA width, number of available vcpus, debug mode
180          * information, etc. More details about the ABI can be found in TDX
181          * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
182          * [TDG.VP.INFO].
183          */
184         tdcall(TDG_VP_INFO, &args);
185 
186         /*
187          * The highest bit of a guest physical address is the "sharing" bit.
188          * Set it for shared pages and clear it for private pages.
189          *
190          * The GPA width that comes out of this call is critical. TDX guests
191          * can not meaningfully run without it.
192          */
193         gpa_width = args.rcx & GENMASK(5, 0);
194         *cc_mask = BIT_ULL(gpa_width - 1);
195 
196         /*
197          * The kernel can not handle #VE's when accessing normal kernel
198          * memory.  Ensure that no #VE will be delivered for accesses to
199          * TD-private memory.  Only VMM-shared memory (MMIO) will #VE.
200          */
201         td_attr = args.rdx;
202         if (!(td_attr & ATTR_SEPT_VE_DISABLE)) {
203                 const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set.";
204 
205                 /* Relax SEPT_VE_DISABLE check for debug TD. */
206                 if (td_attr & ATTR_DEBUG)
207                         pr_warn("%s\n", msg);
208                 else
209                         tdx_panic(msg);
210         }
211 }
212 
213 /*
214  * The TDX module spec states that #VE may be injected for a limited set of
215  * reasons:
216  *
217  *  - Emulation of the architectural #VE injection on EPT violation;
218  *
219  *  - As a result of guest TD execution of a disallowed instruction,
220  *    a disallowed MSR access, or CPUID virtualization;
221  *
222  *  - A notification to the guest TD about anomalous behavior;
223  *
224  * The last one is opt-in and is not used by the kernel.
225  *
226  * The Intel Software Developer's Manual describes cases when instruction
227  * length field can be used in section "Information for VM Exits Due to
228  * Instruction Execution".
229  *
230  * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
231  * information if #VE occurred due to instruction execution, but not for EPT
232  * violations.
233  */
234 static int ve_instr_len(struct ve_info *ve)
235 {
236         switch (ve->exit_reason) {
237         case EXIT_REASON_HLT:
238         case EXIT_REASON_MSR_READ:
239         case EXIT_REASON_MSR_WRITE:
240         case EXIT_REASON_CPUID:
241         case EXIT_REASON_IO_INSTRUCTION:
242                 /* It is safe to use ve->instr_len for #VE due instructions */
243                 return ve->instr_len;
244         case EXIT_REASON_EPT_VIOLATION:
245                 /*
246                  * For EPT violations, ve->insn_len is not defined. For those,
247                  * the kernel must decode instructions manually and should not
248                  * be using this function.
249                  */
250                 WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
251                 return 0;
252         default:
253                 WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
254                 return ve->instr_len;
255         }
256 }
257 
258 static u64 __cpuidle __halt(const bool irq_disabled)
259 {
260         struct tdx_module_args args = {
261                 .r10 = TDX_HYPERCALL_STANDARD,
262                 .r11 = hcall_func(EXIT_REASON_HLT),
263                 .r12 = irq_disabled,
264         };
265 
266         /*
267          * Emulate HLT operation via hypercall. More info about ABI
268          * can be found in TDX Guest-Host-Communication Interface
269          * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
270          *
271          * The VMM uses the "IRQ disabled" param to understand IRQ
272          * enabled status (RFLAGS.IF) of the TD guest and to determine
273          * whether or not it should schedule the halted vCPU if an
274          * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
275          * can keep the vCPU in virtual HLT, even if an IRQ is
276          * pending, without hanging/breaking the guest.
277          */
278         return __tdx_hypercall(&args);
279 }
280 
281 static int handle_halt(struct ve_info *ve)
282 {
283         const bool irq_disabled = irqs_disabled();
284 
285         if (__halt(irq_disabled))
286                 return -EIO;
287 
288         return ve_instr_len(ve);
289 }
290 
291 void __cpuidle tdx_safe_halt(void)
292 {
293         const bool irq_disabled = false;
294 
295         /*
296          * Use WARN_ONCE() to report the failure.
297          */
298         if (__halt(irq_disabled))
299                 WARN_ONCE(1, "HLT instruction emulation failed\n");
300 }
301 
302 static int read_msr(struct pt_regs *regs, struct ve_info *ve)
303 {
304         struct tdx_module_args args = {
305                 .r10 = TDX_HYPERCALL_STANDARD,
306                 .r11 = hcall_func(EXIT_REASON_MSR_READ),
307                 .r12 = regs->cx,
308         };
309 
310         /*
311          * Emulate the MSR read via hypercall. More info about ABI
312          * can be found in TDX Guest-Host-Communication Interface
313          * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
314          */
315         if (__tdx_hypercall(&args))
316                 return -EIO;
317 
318         regs->ax = lower_32_bits(args.r11);
319         regs->dx = upper_32_bits(args.r11);
320         return ve_instr_len(ve);
321 }
322 
323 static int write_msr(struct pt_regs *regs, struct ve_info *ve)
324 {
325         struct tdx_module_args args = {
326                 .r10 = TDX_HYPERCALL_STANDARD,
327                 .r11 = hcall_func(EXIT_REASON_MSR_WRITE),
328                 .r12 = regs->cx,
329                 .r13 = (u64)regs->dx << 32 | regs->ax,
330         };
331 
332         /*
333          * Emulate the MSR write via hypercall. More info about ABI
334          * can be found in TDX Guest-Host-Communication Interface
335          * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
336          */
337         if (__tdx_hypercall(&args))
338                 return -EIO;
339 
340         return ve_instr_len(ve);
341 }
342 
343 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
344 {
345         struct tdx_module_args args = {
346                 .r10 = TDX_HYPERCALL_STANDARD,
347                 .r11 = hcall_func(EXIT_REASON_CPUID),
348                 .r12 = regs->ax,
349                 .r13 = regs->cx,
350         };
351 
352         /*
353          * Only allow VMM to control range reserved for hypervisor
354          * communication.
355          *
356          * Return all-zeros for any CPUID outside the range. It matches CPU
357          * behaviour for non-supported leaf.
358          */
359         if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
360                 regs->ax = regs->bx = regs->cx = regs->dx = 0;
361                 return ve_instr_len(ve);
362         }
363 
364         /*
365          * Emulate the CPUID instruction via a hypercall. More info about
366          * ABI can be found in TDX Guest-Host-Communication Interface
367          * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
368          */
369         if (__tdx_hypercall(&args))
370                 return -EIO;
371 
372         /*
373          * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
374          * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
375          * So copy the register contents back to pt_regs.
376          */
377         regs->ax = args.r12;
378         regs->bx = args.r13;
379         regs->cx = args.r14;
380         regs->dx = args.r15;
381 
382         return ve_instr_len(ve);
383 }
384 
385 static bool mmio_read(int size, unsigned long addr, unsigned long *val)
386 {
387         struct tdx_module_args args = {
388                 .r10 = TDX_HYPERCALL_STANDARD,
389                 .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
390                 .r12 = size,
391                 .r13 = EPT_READ,
392                 .r14 = addr,
393         };
394 
395         if (__tdx_hypercall(&args))
396                 return false;
397 
398         *val = args.r11;
399         return true;
400 }
401 
402 static bool mmio_write(int size, unsigned long addr, unsigned long val)
403 {
404         return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
405                                EPT_WRITE, addr, val);
406 }
407 
408 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
409 {
410         unsigned long *reg, val, vaddr;
411         char buffer[MAX_INSN_SIZE];
412         enum insn_mmio_type mmio;
413         struct insn insn = {};
414         int size, extend_size;
415         u8 extend_val = 0;
416 
417         /* Only in-kernel MMIO is supported */
418         if (WARN_ON_ONCE(user_mode(regs)))
419                 return -EFAULT;
420 
421         if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
422                 return -EFAULT;
423 
424         if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
425                 return -EINVAL;
426 
427         mmio = insn_decode_mmio(&insn, &size);
428         if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
429                 return -EINVAL;
430 
431         if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
432                 reg = insn_get_modrm_reg_ptr(&insn, regs);
433                 if (!reg)
434                         return -EINVAL;
435         }
436 
437         if (!fault_in_kernel_space(ve->gla)) {
438                 WARN_ONCE(1, "Access to userspace address is not supported");
439                 return -EINVAL;
440         }
441 
442         /*
443          * Reject EPT violation #VEs that split pages.
444          *
445          * MMIO accesses are supposed to be naturally aligned and therefore
446          * never cross page boundaries. Seeing split page accesses indicates
447          * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
448          *
449          * load_unaligned_zeropad() will recover using exception fixups.
450          */
451         vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
452         if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
453                 return -EFAULT;
454 
455         /* Handle writes first */
456         switch (mmio) {
457         case INSN_MMIO_WRITE:
458                 memcpy(&val, reg, size);
459                 if (!mmio_write(size, ve->gpa, val))
460                         return -EIO;
461                 return insn.length;
462         case INSN_MMIO_WRITE_IMM:
463                 val = insn.immediate.value;
464                 if (!mmio_write(size, ve->gpa, val))
465                         return -EIO;
466                 return insn.length;
467         case INSN_MMIO_READ:
468         case INSN_MMIO_READ_ZERO_EXTEND:
469         case INSN_MMIO_READ_SIGN_EXTEND:
470                 /* Reads are handled below */
471                 break;
472         case INSN_MMIO_MOVS:
473         case INSN_MMIO_DECODE_FAILED:
474                 /*
475                  * MMIO was accessed with an instruction that could not be
476                  * decoded or handled properly. It was likely not using io.h
477                  * helpers or accessed MMIO accidentally.
478                  */
479                 return -EINVAL;
480         default:
481                 WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
482                 return -EINVAL;
483         }
484 
485         /* Handle reads */
486         if (!mmio_read(size, ve->gpa, &val))
487                 return -EIO;
488 
489         switch (mmio) {
490         case INSN_MMIO_READ:
491                 /* Zero-extend for 32-bit operation */
492                 extend_size = size == 4 ? sizeof(*reg) : 0;
493                 break;
494         case INSN_MMIO_READ_ZERO_EXTEND:
495                 /* Zero extend based on operand size */
496                 extend_size = insn.opnd_bytes;
497                 break;
498         case INSN_MMIO_READ_SIGN_EXTEND:
499                 /* Sign extend based on operand size */
500                 extend_size = insn.opnd_bytes;
501                 if (size == 1 && val & BIT(7))
502                         extend_val = 0xFF;
503                 else if (size > 1 && val & BIT(15))
504                         extend_val = 0xFF;
505                 break;
506         default:
507                 /* All other cases has to be covered with the first switch() */
508                 WARN_ON_ONCE(1);
509                 return -EINVAL;
510         }
511 
512         if (extend_size)
513                 memset(reg, extend_val, extend_size);
514         memcpy(reg, &val, size);
515         return insn.length;
516 }
517 
518 static bool handle_in(struct pt_regs *regs, int size, int port)
519 {
520         struct tdx_module_args args = {
521                 .r10 = TDX_HYPERCALL_STANDARD,
522                 .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
523                 .r12 = size,
524                 .r13 = PORT_READ,
525                 .r14 = port,
526         };
527         u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
528         bool success;
529 
530         /*
531          * Emulate the I/O read via hypercall. More info about ABI can be found
532          * in TDX Guest-Host-Communication Interface (GHCI) section titled
533          * "TDG.VP.VMCALL<Instruction.IO>".
534          */
535         success = !__tdx_hypercall(&args);
536 
537         /* Update part of the register affected by the emulated instruction */
538         regs->ax &= ~mask;
539         if (success)
540                 regs->ax |= args.r11 & mask;
541 
542         return success;
543 }
544 
545 static bool handle_out(struct pt_regs *regs, int size, int port)
546 {
547         u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
548 
549         /*
550          * Emulate the I/O write via hypercall. More info about ABI can be found
551          * in TDX Guest-Host-Communication Interface (GHCI) section titled
552          * "TDG.VP.VMCALL<Instruction.IO>".
553          */
554         return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
555                                PORT_WRITE, port, regs->ax & mask);
556 }
557 
558 /*
559  * Emulate I/O using hypercall.
560  *
561  * Assumes the IO instruction was using ax, which is enforced
562  * by the standard io.h macros.
563  *
564  * Return True on success or False on failure.
565  */
566 static int handle_io(struct pt_regs *regs, struct ve_info *ve)
567 {
568         u32 exit_qual = ve->exit_qual;
569         int size, port;
570         bool in, ret;
571 
572         if (VE_IS_IO_STRING(exit_qual))
573                 return -EIO;
574 
575         in   = VE_IS_IO_IN(exit_qual);
576         size = VE_GET_IO_SIZE(exit_qual);
577         port = VE_GET_PORT_NUM(exit_qual);
578 
579 
580         if (in)
581                 ret = handle_in(regs, size, port);
582         else
583                 ret = handle_out(regs, size, port);
584         if (!ret)
585                 return -EIO;
586 
587         return ve_instr_len(ve);
588 }
589 
590 /*
591  * Early #VE exception handler. Only handles a subset of port I/O.
592  * Intended only for earlyprintk. If failed, return false.
593  */
594 __init bool tdx_early_handle_ve(struct pt_regs *regs)
595 {
596         struct ve_info ve;
597         int insn_len;
598 
599         tdx_get_ve_info(&ve);
600 
601         if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
602                 return false;
603 
604         insn_len = handle_io(regs, &ve);
605         if (insn_len < 0)
606                 return false;
607 
608         regs->ip += insn_len;
609         return true;
610 }
611 
612 void tdx_get_ve_info(struct ve_info *ve)
613 {
614         struct tdx_module_args args = {};
615 
616         /*
617          * Called during #VE handling to retrieve the #VE info from the
618          * TDX module.
619          *
620          * This has to be called early in #VE handling.  A "nested" #VE which
621          * occurs before this will raise a #DF and is not recoverable.
622          *
623          * The call retrieves the #VE info from the TDX module, which also
624          * clears the "#VE valid" flag. This must be done before anything else
625          * because any #VE that occurs while the valid flag is set will lead to
626          * #DF.
627          *
628          * Note, the TDX module treats virtual NMIs as inhibited if the #VE
629          * valid flag is set. It means that NMI=>#VE will not result in a #DF.
630          */
631         tdcall(TDG_VP_VEINFO_GET, &args);
632 
633         /* Transfer the output parameters */
634         ve->exit_reason = args.rcx;
635         ve->exit_qual   = args.rdx;
636         ve->gla         = args.r8;
637         ve->gpa         = args.r9;
638         ve->instr_len   = lower_32_bits(args.r10);
639         ve->instr_info  = upper_32_bits(args.r10);
640 }
641 
642 /*
643  * Handle the user initiated #VE.
644  *
645  * On success, returns the number of bytes RIP should be incremented (>=0)
646  * or -errno on error.
647  */
648 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
649 {
650         switch (ve->exit_reason) {
651         case EXIT_REASON_CPUID:
652                 return handle_cpuid(regs, ve);
653         default:
654                 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
655                 return -EIO;
656         }
657 }
658 
659 static inline bool is_private_gpa(u64 gpa)
660 {
661         return gpa == cc_mkenc(gpa);
662 }
663 
664 /*
665  * Handle the kernel #VE.
666  *
667  * On success, returns the number of bytes RIP should be incremented (>=0)
668  * or -errno on error.
669  */
670 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
671 {
672         switch (ve->exit_reason) {
673         case EXIT_REASON_HLT:
674                 return handle_halt(ve);
675         case EXIT_REASON_MSR_READ:
676                 return read_msr(regs, ve);
677         case EXIT_REASON_MSR_WRITE:
678                 return write_msr(regs, ve);
679         case EXIT_REASON_CPUID:
680                 return handle_cpuid(regs, ve);
681         case EXIT_REASON_EPT_VIOLATION:
682                 if (is_private_gpa(ve->gpa))
683                         panic("Unexpected EPT-violation on private memory.");
684                 return handle_mmio(regs, ve);
685         case EXIT_REASON_IO_INSTRUCTION:
686                 return handle_io(regs, ve);
687         default:
688                 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
689                 return -EIO;
690         }
691 }
692 
693 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
694 {
695         int insn_len;
696 
697         if (user_mode(regs))
698                 insn_len = virt_exception_user(regs, ve);
699         else
700                 insn_len = virt_exception_kernel(regs, ve);
701         if (insn_len < 0)
702                 return false;
703 
704         /* After successful #VE handling, move the IP */
705         regs->ip += insn_len;
706 
707         return true;
708 }
709 
710 static bool tdx_tlb_flush_required(bool private)
711 {
712         /*
713          * TDX guest is responsible for flushing TLB on private->shared
714          * transition. VMM is responsible for flushing on shared->private.
715          *
716          * The VMM _can't_ flush private addresses as it can't generate PAs
717          * with the guest's HKID.  Shared memory isn't subject to integrity
718          * checking, i.e. the VMM doesn't need to flush for its own protection.
719          *
720          * There's no need to flush when converting from shared to private,
721          * as flushing is the VMM's responsibility in this case, e.g. it must
722          * flush to avoid integrity failures in the face of a buggy or
723          * malicious guest.
724          */
725         return !private;
726 }
727 
728 static bool tdx_cache_flush_required(void)
729 {
730         /*
731          * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
732          * TDX doesn't have such capability.
733          *
734          * Flush cache unconditionally.
735          */
736         return true;
737 }
738 
739 /*
740  * Notify the VMM about page mapping conversion. More info about ABI
741  * can be found in TDX Guest-Host-Communication Interface (GHCI),
742  * section "TDG.VP.VMCALL<MapGPA>".
743  */
744 static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc)
745 {
746         /* Retrying the hypercall a second time should succeed; use 3 just in case */
747         const int max_retries_per_page = 3;
748         int retry_count = 0;
749 
750         if (!enc) {
751                 /* Set the shared (decrypted) bits: */
752                 start |= cc_mkdec(0);
753                 end   |= cc_mkdec(0);
754         }
755 
756         while (retry_count < max_retries_per_page) {
757                 struct tdx_module_args args = {
758                         .r10 = TDX_HYPERCALL_STANDARD,
759                         .r11 = TDVMCALL_MAP_GPA,
760                         .r12 = start,
761                         .r13 = end - start };
762 
763                 u64 map_fail_paddr;
764                 u64 ret = __tdx_hypercall(&args);
765 
766                 if (ret != TDVMCALL_STATUS_RETRY)
767                         return !ret;
768                 /*
769                  * The guest must retry the operation for the pages in the
770                  * region starting at the GPA specified in R11. R11 comes
771                  * from the untrusted VMM. Sanity check it.
772                  */
773                 map_fail_paddr = args.r11;
774                 if (map_fail_paddr < start || map_fail_paddr >= end)
775                         return false;
776 
777                 /* "Consume" a retry without forward progress */
778                 if (map_fail_paddr == start) {
779                         retry_count++;
780                         continue;
781                 }
782 
783                 start = map_fail_paddr;
784                 retry_count = 0;
785         }
786 
787         return false;
788 }
789 
790 /*
791  * Inform the VMM of the guest's intent for this physical page: shared with
792  * the VMM or private to the guest.  The VMM is expected to change its mapping
793  * of the page in response.
794  */
795 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
796 {
797         phys_addr_t start = __pa(vaddr);
798         phys_addr_t end   = __pa(vaddr + numpages * PAGE_SIZE);
799 
800         if (!tdx_map_gpa(start, end, enc))
801                 return false;
802 
803         /* shared->private conversion requires memory to be accepted before use */
804         if (enc)
805                 return tdx_accept_memory(start, end);
806 
807         return true;
808 }
809 
810 static int tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
811                                          bool enc)
812 {
813         /*
814          * Only handle shared->private conversion here.
815          * See the comment in tdx_early_init().
816          */
817         if (enc && !tdx_enc_status_changed(vaddr, numpages, enc))
818                 return -EIO;
819 
820         return 0;
821 }
822 
823 static int tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
824                                          bool enc)
825 {
826         /*
827          * Only handle private->shared conversion here.
828          * See the comment in tdx_early_init().
829          */
830         if (!enc && !tdx_enc_status_changed(vaddr, numpages, enc))
831                 return -EIO;
832 
833         if (enc)
834                 atomic_long_sub(numpages, &nr_shared);
835         else
836                 atomic_long_add(numpages, &nr_shared);
837 
838         return 0;
839 }
840 
841 /* Stop new private<->shared conversions */
842 static void tdx_kexec_begin(void)
843 {
844         if (!IS_ENABLED(CONFIG_KEXEC_CORE))
845                 return;
846 
847         /*
848          * Crash kernel reaches here with interrupts disabled: can't wait for
849          * conversions to finish.
850          *
851          * If race happened, just report and proceed.
852          */
853         if (!set_memory_enc_stop_conversion())
854                 pr_warn("Failed to stop shared<->private conversions\n");
855 }
856 
857 /* Walk direct mapping and convert all shared memory back to private */
858 static void tdx_kexec_finish(void)
859 {
860         unsigned long addr, end;
861         long found = 0, shared;
862 
863         if (!IS_ENABLED(CONFIG_KEXEC_CORE))
864                 return;
865 
866         lockdep_assert_irqs_disabled();
867 
868         addr = PAGE_OFFSET;
869         end  = PAGE_OFFSET + get_max_mapped();
870 
871         while (addr < end) {
872                 unsigned long size;
873                 unsigned int level;
874                 pte_t *pte;
875 
876                 pte = lookup_address(addr, &level);
877                 size = page_level_size(level);
878 
879                 if (pte && pte_decrypted(*pte)) {
880                         int pages = size / PAGE_SIZE;
881 
882                         /*
883                          * Touching memory with shared bit set triggers implicit
884                          * conversion to shared.
885                          *
886                          * Make sure nobody touches the shared range from
887                          * now on.
888                          */
889                         set_pte(pte, __pte(0));
890 
891                         /*
892                          * Memory encryption state persists across kexec.
893                          * If tdx_enc_status_changed() fails in the first
894                          * kernel, it leaves memory in an unknown state.
895                          *
896                          * If that memory remains shared, accessing it in the
897                          * *next* kernel through a private mapping will result
898                          * in an unrecoverable guest shutdown.
899                          *
900                          * The kdump kernel boot is not impacted as it uses
901                          * a pre-reserved memory range that is always private.
902                          * However, gathering crash information could lead to
903                          * a crash if it accesses unconverted memory through
904                          * a private mapping which is possible when accessing
905                          * that memory through /proc/vmcore, for example.
906                          *
907                          * In all cases, print error info in order to leave
908                          * enough bread crumbs for debugging.
909                          */
910                         if (!tdx_enc_status_changed(addr, pages, true)) {
911                                 pr_err("Failed to unshare range %#lx-%#lx\n",
912                                        addr, addr + size);
913                         }
914 
915                         found += pages;
916                 }
917 
918                 addr += size;
919         }
920 
921         __flush_tlb_all();
922 
923         shared = atomic_long_read(&nr_shared);
924         if (shared != found) {
925                 pr_err("shared page accounting is off\n");
926                 pr_err("nr_shared = %ld, nr_found = %ld\n", shared, found);
927         }
928 }
929 
930 void __init tdx_early_init(void)
931 {
932         struct tdx_module_args args = {
933                 .rdx = TDCS_NOTIFY_ENABLES,
934                 .r9 = -1ULL,
935         };
936         u64 cc_mask;
937         u32 eax, sig[3];
938 
939         cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2],  &sig[1]);
940 
941         if (memcmp(TDX_IDENT, sig, sizeof(sig)))
942                 return;
943 
944         setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
945 
946         /* TSC is the only reliable clock in TDX guest */
947         setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
948 
949         cc_vendor = CC_VENDOR_INTEL;
950         tdx_parse_tdinfo(&cc_mask);
951         cc_set_mask(cc_mask);
952 
953         /* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */
954         tdcall(TDG_VM_WR, &args);
955 
956         /*
957          * All bits above GPA width are reserved and kernel treats shared bit
958          * as flag, not as part of physical address.
959          *
960          * Adjust physical mask to only cover valid GPA bits.
961          */
962         physical_mask &= cc_mask - 1;
963 
964         /*
965          * The kernel mapping should match the TDX metadata for the page.
966          * load_unaligned_zeropad() can touch memory *adjacent* to that which is
967          * owned by the caller and can catch even _momentary_ mismatches.  Bad
968          * things happen on mismatch:
969          *
970          *   - Private mapping => Shared Page  == Guest shutdown
971          *   - Shared mapping  => Private Page == Recoverable #VE
972          *
973          * guest.enc_status_change_prepare() converts the page from
974          * shared=>private before the mapping becomes private.
975          *
976          * guest.enc_status_change_finish() converts the page from
977          * private=>shared after the mapping becomes private.
978          *
979          * In both cases there is a temporary shared mapping to a private page,
980          * which can result in a #VE.  But, there is never a private mapping to
981          * a shared page.
982          */
983         x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
984         x86_platform.guest.enc_status_change_finish  = tdx_enc_status_change_finish;
985 
986         x86_platform.guest.enc_cache_flush_required  = tdx_cache_flush_required;
987         x86_platform.guest.enc_tlb_flush_required    = tdx_tlb_flush_required;
988 
989         x86_platform.guest.enc_kexec_begin           = tdx_kexec_begin;
990         x86_platform.guest.enc_kexec_finish          = tdx_kexec_finish;
991 
992         /*
993          * TDX intercepts the RDMSR to read the X2APIC ID in the parallel
994          * bringup low level code. That raises #VE which cannot be handled
995          * there.
996          *
997          * Intel-TDX has a secure RDMSR hypercall, but that needs to be
998          * implemented separately in the low level startup ASM code.
999          * Until that is in place, disable parallel bringup for TDX.
1000          */
1001         x86_cpuinit.parallel_bringup = false;
1002 
1003         pr_info("Guest detected\n");
1004 }
1005 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php