~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/crypto/crct10dif-pcl-asm_64.S

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 ########################################################################
  2 # Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
  3 #
  4 # Copyright (c) 2013, Intel Corporation
  5 #
  6 # Authors:
  7 #     Erdinc Ozturk <erdinc.ozturk@intel.com>
  8 #     Vinodh Gopal <vinodh.gopal@intel.com>
  9 #     James Guilford <james.guilford@intel.com>
 10 #     Tim Chen <tim.c.chen@linux.intel.com>
 11 #
 12 # This software is available to you under a choice of one of two
 13 # licenses.  You may choose to be licensed under the terms of the GNU
 14 # General Public License (GPL) Version 2, available from the file
 15 # COPYING in the main directory of this source tree, or the
 16 # OpenIB.org BSD license below:
 17 #
 18 # Redistribution and use in source and binary forms, with or without
 19 # modification, are permitted provided that the following conditions are
 20 # met:
 21 #
 22 # * Redistributions of source code must retain the above copyright
 23 #   notice, this list of conditions and the following disclaimer.
 24 #
 25 # * Redistributions in binary form must reproduce the above copyright
 26 #   notice, this list of conditions and the following disclaimer in the
 27 #   documentation and/or other materials provided with the
 28 #   distribution.
 29 #
 30 # * Neither the name of the Intel Corporation nor the names of its
 31 #   contributors may be used to endorse or promote products derived from
 32 #   this software without specific prior written permission.
 33 #
 34 #
 35 # THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
 36 # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 37 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 38 # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
 39 # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 40 # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 41 # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 42 # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 43 # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 44 # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 45 # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 46 #
 47 #       Reference paper titled "Fast CRC Computation for Generic
 48 #       Polynomials Using PCLMULQDQ Instruction"
 49 #       URL: http://www.intel.com/content/dam/www/public/us/en/documents
 50 #  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
 51 #
 52 
 53 #include <linux/linkage.h>
 54 
 55 .text
 56 
 57 #define         init_crc        %edi
 58 #define         buf             %rsi
 59 #define         len             %rdx
 60 
 61 #define         FOLD_CONSTS     %xmm10
 62 #define         BSWAP_MASK      %xmm11
 63 
 64 # Fold reg1, reg2 into the next 32 data bytes, storing the result back into
 65 # reg1, reg2.
 66 .macro  fold_32_bytes   offset, reg1, reg2
 67         movdqu  \offset(buf), %xmm9
 68         movdqu  \offset+16(buf), %xmm12
 69         pshufb  BSWAP_MASK, %xmm9
 70         pshufb  BSWAP_MASK, %xmm12
 71         movdqa  \reg1, %xmm8
 72         movdqa  \reg2, %xmm13
 73         pclmulqdq       $0x00, FOLD_CONSTS, \reg1
 74         pclmulqdq       $0x11, FOLD_CONSTS, %xmm8
 75         pclmulqdq       $0x00, FOLD_CONSTS, \reg2
 76         pclmulqdq       $0x11, FOLD_CONSTS, %xmm13
 77         pxor    %xmm9 , \reg1
 78         xorps   %xmm8 , \reg1
 79         pxor    %xmm12, \reg2
 80         xorps   %xmm13, \reg2
 81 .endm
 82 
 83 # Fold src_reg into dst_reg.
 84 .macro  fold_16_bytes   src_reg, dst_reg
 85         movdqa  \src_reg, %xmm8
 86         pclmulqdq       $0x11, FOLD_CONSTS, \src_reg
 87         pclmulqdq       $0x00, FOLD_CONSTS, %xmm8
 88         pxor    %xmm8, \dst_reg
 89         xorps   \src_reg, \dst_reg
 90 .endm
 91 
 92 #
 93 # u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len);
 94 #
 95 # Assumes len >= 16.
 96 #
 97 SYM_FUNC_START(crc_t10dif_pcl)
 98 
 99         movdqa  .Lbswap_mask(%rip), BSWAP_MASK
100 
101         # For sizes less than 256 bytes, we can't fold 128 bytes at a time.
102         cmp     $256, len
103         jl      .Lless_than_256_bytes
104 
105         # Load the first 128 data bytes.  Byte swapping is necessary to make the
106         # bit order match the polynomial coefficient order.
107         movdqu  16*0(buf), %xmm0
108         movdqu  16*1(buf), %xmm1
109         movdqu  16*2(buf), %xmm2
110         movdqu  16*3(buf), %xmm3
111         movdqu  16*4(buf), %xmm4
112         movdqu  16*5(buf), %xmm5
113         movdqu  16*6(buf), %xmm6
114         movdqu  16*7(buf), %xmm7
115         add     $128, buf
116         pshufb  BSWAP_MASK, %xmm0
117         pshufb  BSWAP_MASK, %xmm1
118         pshufb  BSWAP_MASK, %xmm2
119         pshufb  BSWAP_MASK, %xmm3
120         pshufb  BSWAP_MASK, %xmm4
121         pshufb  BSWAP_MASK, %xmm5
122         pshufb  BSWAP_MASK, %xmm6
123         pshufb  BSWAP_MASK, %xmm7
124 
125         # XOR the first 16 data *bits* with the initial CRC value.
126         pxor    %xmm8, %xmm8
127         pinsrw  $7, init_crc, %xmm8
128         pxor    %xmm8, %xmm0
129 
130         movdqa  .Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS
131 
132         # Subtract 128 for the 128 data bytes just consumed.  Subtract another
133         # 128 to simplify the termination condition of the following loop.
134         sub     $256, len
135 
136         # While >= 128 data bytes remain (not counting xmm0-7), fold the 128
137         # bytes xmm0-7 into them, storing the result back into xmm0-7.
138 .Lfold_128_bytes_loop:
139         fold_32_bytes   0, %xmm0, %xmm1
140         fold_32_bytes   32, %xmm2, %xmm3
141         fold_32_bytes   64, %xmm4, %xmm5
142         fold_32_bytes   96, %xmm6, %xmm7
143         add     $128, buf
144         sub     $128, len
145         jge     .Lfold_128_bytes_loop
146 
147         # Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7.
148 
149         # Fold across 64 bytes.
150         movdqa  .Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS
151         fold_16_bytes   %xmm0, %xmm4
152         fold_16_bytes   %xmm1, %xmm5
153         fold_16_bytes   %xmm2, %xmm6
154         fold_16_bytes   %xmm3, %xmm7
155         # Fold across 32 bytes.
156         movdqa  .Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS
157         fold_16_bytes   %xmm4, %xmm6
158         fold_16_bytes   %xmm5, %xmm7
159         # Fold across 16 bytes.
160         movdqa  .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
161         fold_16_bytes   %xmm6, %xmm7
162 
163         # Add 128 to get the correct number of data bytes remaining in 0...127
164         # (not counting xmm7), following the previous extra subtraction by 128.
165         # Then subtract 16 to simplify the termination condition of the
166         # following loop.
167         add     $128-16, len
168 
169         # While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes
170         # xmm7 into them, storing the result back into xmm7.
171         jl      .Lfold_16_bytes_loop_done
172 .Lfold_16_bytes_loop:
173         movdqa  %xmm7, %xmm8
174         pclmulqdq       $0x11, FOLD_CONSTS, %xmm7
175         pclmulqdq       $0x00, FOLD_CONSTS, %xmm8
176         pxor    %xmm8, %xmm7
177         movdqu  (buf), %xmm0
178         pshufb  BSWAP_MASK, %xmm0
179         pxor    %xmm0 , %xmm7
180         add     $16, buf
181         sub     $16, len
182         jge     .Lfold_16_bytes_loop
183 
184 .Lfold_16_bytes_loop_done:
185         # Add 16 to get the correct number of data bytes remaining in 0...15
186         # (not counting xmm7), following the previous extra subtraction by 16.
187         add     $16, len
188         je      .Lreduce_final_16_bytes
189 
190 .Lhandle_partial_segment:
191         # Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16
192         # bytes are in xmm7 and the rest are the remaining data in 'buf'.  To do
193         # this without needing a fold constant for each possible 'len', redivide
194         # the bytes into a first chunk of 'len' bytes and a second chunk of 16
195         # bytes, then fold the first chunk into the second.
196 
197         movdqa  %xmm7, %xmm2
198 
199         # xmm1 = last 16 original data bytes
200         movdqu  -16(buf, len), %xmm1
201         pshufb  BSWAP_MASK, %xmm1
202 
203         # xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes.
204         lea     .Lbyteshift_table+16(%rip), %rax
205         sub     len, %rax
206         movdqu  (%rax), %xmm0
207         pshufb  %xmm0, %xmm2
208 
209         # xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes.
210         pxor    .Lmask1(%rip), %xmm0
211         pshufb  %xmm0, %xmm7
212 
213         # xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes),
214         # then '16-len' bytes from xmm2 (high-order bytes).
215         pblendvb        %xmm2, %xmm1    #xmm0 is implicit
216 
217         # Fold the first chunk into the second chunk, storing the result in xmm7.
218         movdqa  %xmm7, %xmm8
219         pclmulqdq       $0x11, FOLD_CONSTS, %xmm7
220         pclmulqdq       $0x00, FOLD_CONSTS, %xmm8
221         pxor    %xmm8, %xmm7
222         pxor    %xmm1, %xmm7
223 
224 .Lreduce_final_16_bytes:
225         # Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC
226 
227         # Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
228         movdqa  .Lfinal_fold_consts(%rip), FOLD_CONSTS
229 
230         # Fold the high 64 bits into the low 64 bits, while also multiplying by
231         # x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
232         # whose low 48 bits are 0.
233         movdqa  %xmm7, %xmm0
234         pclmulqdq       $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x))
235         pslldq  $8, %xmm0
236         pxor    %xmm0, %xmm7                      # + low bits * x^64
237 
238         # Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
239         # value congruent to x^64 * M(x) and whose low 48 bits are 0.
240         movdqa  %xmm7, %xmm0
241         pand    .Lmask2(%rip), %xmm0              # zero high 32 bits
242         psrldq  $12, %xmm7                        # extract high 32 bits
243         pclmulqdq       $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x))
244         pxor    %xmm0, %xmm7                      # + low bits
245 
246         # Load G(x) and floor(x^48 / G(x)).
247         movdqa  .Lbarrett_reduction_consts(%rip), FOLD_CONSTS
248 
249         # Use Barrett reduction to compute the final CRC value.
250         movdqa  %xmm7, %xmm0
251         pclmulqdq       $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x))
252         psrlq   $32, %xmm7                        # /= x^32
253         pclmulqdq       $0x00, FOLD_CONSTS, %xmm7 # *= G(x)
254         psrlq   $48, %xmm0
255         pxor    %xmm7, %xmm0                 # + low 16 nonzero bits
256         # Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0.
257 
258         pextrw  $0, %xmm0, %eax
259         RET
260 
261 .align 16
262 .Lless_than_256_bytes:
263         # Checksumming a buffer of length 16...255 bytes
264 
265         # Load the first 16 data bytes.
266         movdqu  (buf), %xmm7
267         pshufb  BSWAP_MASK, %xmm7
268         add     $16, buf
269 
270         # XOR the first 16 data *bits* with the initial CRC value.
271         pxor    %xmm0, %xmm0
272         pinsrw  $7, init_crc, %xmm0
273         pxor    %xmm0, %xmm7
274 
275         movdqa  .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
276         cmp     $16, len
277         je      .Lreduce_final_16_bytes         # len == 16
278         sub     $32, len
279         jge     .Lfold_16_bytes_loop            # 32 <= len <= 255
280         add     $16, len
281         jmp     .Lhandle_partial_segment        # 17 <= len <= 31
282 SYM_FUNC_END(crc_t10dif_pcl)
283 
284 .section        .rodata, "a", @progbits
285 .align 16
286 
287 # Fold constants precomputed from the polynomial 0x18bb7
288 # G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
289 .Lfold_across_128_bytes_consts:
290         .quad           0x0000000000006123      # x^(8*128)     mod G(x)
291         .quad           0x0000000000002295      # x^(8*128+64)  mod G(x)
292 .Lfold_across_64_bytes_consts:
293         .quad           0x0000000000001069      # x^(4*128)     mod G(x)
294         .quad           0x000000000000dd31      # x^(4*128+64)  mod G(x)
295 .Lfold_across_32_bytes_consts:
296         .quad           0x000000000000857d      # x^(2*128)     mod G(x)
297         .quad           0x0000000000007acc      # x^(2*128+64)  mod G(x)
298 .Lfold_across_16_bytes_consts:
299         .quad           0x000000000000a010      # x^(1*128)     mod G(x)
300         .quad           0x0000000000001faa      # x^(1*128+64)  mod G(x)
301 .Lfinal_fold_consts:
302         .quad           0x1368000000000000      # x^48 * (x^48 mod G(x))
303         .quad           0x2d56000000000000      # x^48 * (x^80 mod G(x))
304 .Lbarrett_reduction_consts:
305         .quad           0x0000000000018bb7      # G(x)
306         .quad           0x00000001f65a57f8      # floor(x^48 / G(x))
307 
308 .section        .rodata.cst16.mask1, "aM", @progbits, 16
309 .align 16
310 .Lmask1:
311         .octa   0x80808080808080808080808080808080
312 
313 .section        .rodata.cst16.mask2, "aM", @progbits, 16
314 .align 16
315 .Lmask2:
316         .octa   0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
317 
318 .section        .rodata.cst16.bswap_mask, "aM", @progbits, 16
319 .align 16
320 .Lbswap_mask:
321         .octa   0x000102030405060708090A0B0C0D0E0F
322 
323 .section        .rodata.cst32.byteshift_table, "aM", @progbits, 32
324 .align 16
325 # For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len]
326 # is the index vector to shift left by 'len' bytes, and is also {0x80, ...,
327 # 0x80} XOR the index vector to shift right by '16 - len' bytes.
328 .Lbyteshift_table:
329         .byte            0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
330         .byte           0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
331         .byte            0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
332         .byte            0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php