~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/crypto/polyval-clmulni_asm.S

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  * Copyright 2021 Google LLC
  4  */
  5 /*
  6  * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI
  7  * instructions. It works on 8 blocks at a time, by precomputing the first 8
  8  * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation
  9  * allows us to split finite field multiplication into two steps.
 10  *
 11  * In the first step, we consider h^i, m_i as normal polynomials of degree less
 12  * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
 13  * is simply polynomial multiplication.
 14  *
 15  * In the second step, we compute the reduction of p(x) modulo the finite field
 16  * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
 17  *
 18  * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
 19  * multiplication is finite field multiplication. The advantage is that the
 20  * two-step process  only requires 1 finite field reduction for every 8
 21  * polynomial multiplications. Further parallelism is gained by interleaving the
 22  * multiplications and polynomial reductions.
 23  */
 24 
 25 #include <linux/linkage.h>
 26 #include <asm/frame.h>
 27 
 28 #define STRIDE_BLOCKS 8
 29 
 30 #define GSTAR %xmm7
 31 #define PL %xmm8
 32 #define PH %xmm9
 33 #define TMP_XMM %xmm11
 34 #define LO %xmm12
 35 #define HI %xmm13
 36 #define MI %xmm14
 37 #define SUM %xmm15
 38 
 39 #define KEY_POWERS %rdi
 40 #define MSG %rsi
 41 #define BLOCKS_LEFT %rdx
 42 #define ACCUMULATOR %rcx
 43 #define TMP %rax
 44 
 45 .section    .rodata.cst16.gstar, "aM", @progbits, 16
 46 .align 16
 47 
 48 .Lgstar:
 49         .quad 0xc200000000000000, 0xc200000000000000
 50 
 51 .text
 52 
 53 /*
 54  * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length
 55  * count pointed to by MSG and KEY_POWERS.
 56  */
 57 .macro schoolbook1 count
 58         .set i, 0
 59         .rept (\count)
 60                 schoolbook1_iteration i 0
 61                 .set i, (i +1)
 62         .endr
 63 .endm
 64 
 65 /*
 66  * Computes the product of two 128-bit polynomials at the memory locations
 67  * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of
 68  * the 256-bit product into LO, MI, HI.
 69  *
 70  * Given:
 71  *   X = [X_1 : X_0]
 72  *   Y = [Y_1 : Y_0]
 73  *
 74  * We compute:
 75  *   LO += X_0 * Y_0
 76  *   MI += X_0 * Y_1 + X_1 * Y_0
 77  *   HI += X_1 * Y_1
 78  *
 79  * Later, the 256-bit result can be extracted as:
 80  *   [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
 81  * This step is done when computing the polynomial reduction for efficiency
 82  * reasons.
 83  *
 84  * If xor_sum == 1, then also XOR the value of SUM into m_0.  This avoids an
 85  * extra multiplication of SUM and h^8.
 86  */
 87 .macro schoolbook1_iteration i xor_sum
 88         movups (16*\i)(MSG), %xmm0
 89         .if (\i == 0 && \xor_sum == 1)
 90                 pxor SUM, %xmm0
 91         .endif
 92         vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2
 93         vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1
 94         vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3
 95         vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4
 96         vpxor %xmm2, MI, MI
 97         vpxor %xmm1, LO, LO
 98         vpxor %xmm4, HI, HI
 99         vpxor %xmm3, MI, MI
100 .endm
101 
102 /*
103  * Performs the same computation as schoolbook1_iteration, except we expect the
104  * arguments to already be loaded into xmm0 and xmm1 and we set the result
105  * registers LO, MI, and HI directly rather than XOR'ing into them.
106  */
107 .macro schoolbook1_noload
108         vpclmulqdq $0x01, %xmm0, %xmm1, MI
109         vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2
110         vpclmulqdq $0x00, %xmm0, %xmm1, LO
111         vpclmulqdq $0x11, %xmm0, %xmm1, HI
112         vpxor %xmm2, MI, MI
113 .endm
114 
115 /*
116  * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
117  * the result in PL, PH.
118  *   [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
119  */
120 .macro schoolbook2
121         vpslldq $8, MI, PL
122         vpsrldq $8, MI, PH
123         pxor LO, PL
124         pxor HI, PH
125 .endm
126 
127 /*
128  * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
129  *
130  * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
131  * x^128 + x^127 + x^126 + x^121 + 1.
132  *
133  * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
134  * product of two 128-bit polynomials in Montgomery form.  We need to reduce it
135  * mod g(x).  Also, since polynomials in Montgomery form have an "extra" factor
136  * of x^128, this product has two extra factors of x^128.  To get it back into
137  * Montgomery form, we need to remove one of these factors by dividing by x^128.
138  *
139  * To accomplish both of these goals, we add multiples of g(x) that cancel out
140  * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
141  * bits are zero, the polynomial division by x^128 can be done by right shifting.
142  *
143  * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
144  * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x).  The CPU can
145  * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
146  * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x).  Adding this to
147  * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
148  * = T_1 : T_0 = g*(x) * P_0.  Thus, bits 0-63 got "folded" into bits 64-191.
149  *
150  * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
151  * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
152  * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
153  * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
154  * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
155  *
156  * So our final computation is:
157  *   T = T_1 : T_0 = g*(x) * P_0
158  *   V = V_1 : V_0 = g*(x) * (P_1 + T_0)
159  *   p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
160  *
161  * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
162  * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
163  * T_1 into dest.  This allows us to reuse P_1 + T_0 when computing V.
164  */
165 .macro montgomery_reduction dest
166         vpclmulqdq $0x00, PL, GSTAR, TMP_XMM    # TMP_XMM = T_1 : T_0 = P_0 * g*(x)
167         pshufd $0b01001110, TMP_XMM, TMP_XMM    # TMP_XMM = T_0 : T_1
168         pxor PL, TMP_XMM                        # TMP_XMM = P_1 + T_0 : P_0 + T_1
169         pxor TMP_XMM, PH                        # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
170         pclmulqdq $0x11, GSTAR, TMP_XMM         # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)]
171         vpxor TMP_XMM, PH, \dest
172 .endm
173 
174 /*
175  * Compute schoolbook multiplication for 8 blocks
176  * m_0h^8 + ... + m_7h^1
177  *
178  * If reduce is set, also computes the montgomery reduction of the
179  * previous full_stride call and XORs with the first message block.
180  * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
181  * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
182  */
183 .macro full_stride reduce
184         pxor LO, LO
185         pxor HI, HI
186         pxor MI, MI
187 
188         schoolbook1_iteration 7 0
189         .if \reduce
190                 vpclmulqdq $0x00, PL, GSTAR, TMP_XMM
191         .endif
192 
193         schoolbook1_iteration 6 0
194         .if \reduce
195                 pshufd $0b01001110, TMP_XMM, TMP_XMM
196         .endif
197 
198         schoolbook1_iteration 5 0
199         .if \reduce
200                 pxor PL, TMP_XMM
201         .endif
202 
203         schoolbook1_iteration 4 0
204         .if \reduce
205                 pxor TMP_XMM, PH
206         .endif
207 
208         schoolbook1_iteration 3 0
209         .if \reduce
210                 pclmulqdq $0x11, GSTAR, TMP_XMM
211         .endif
212 
213         schoolbook1_iteration 2 0
214         .if \reduce
215                 vpxor TMP_XMM, PH, SUM
216         .endif
217 
218         schoolbook1_iteration 1 0
219 
220         schoolbook1_iteration 0 1
221 
222         addq $(8*16), MSG
223         schoolbook2
224 .endm
225 
226 /*
227  * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS
228  */
229 .macro partial_stride
230         mov BLOCKS_LEFT, TMP
231         shlq $4, TMP
232         addq $(16*STRIDE_BLOCKS), KEY_POWERS
233         subq TMP, KEY_POWERS
234 
235         movups (MSG), %xmm0
236         pxor SUM, %xmm0
237         movaps (KEY_POWERS), %xmm1
238         schoolbook1_noload
239         dec BLOCKS_LEFT
240         addq $16, MSG
241         addq $16, KEY_POWERS
242 
243         test $4, BLOCKS_LEFT
244         jz .Lpartial4BlocksDone
245         schoolbook1 4
246         addq $(4*16), MSG
247         addq $(4*16), KEY_POWERS
248 .Lpartial4BlocksDone:
249         test $2, BLOCKS_LEFT
250         jz .Lpartial2BlocksDone
251         schoolbook1 2
252         addq $(2*16), MSG
253         addq $(2*16), KEY_POWERS
254 .Lpartial2BlocksDone:
255         test $1, BLOCKS_LEFT
256         jz .LpartialDone
257         schoolbook1 1
258 .LpartialDone:
259         schoolbook2
260         montgomery_reduction SUM
261 .endm
262 
263 /*
264  * Perform montgomery multiplication in GF(2^128) and store result in op1.
265  *
266  * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
267  * If op1, op2 are in montgomery form, this computes the montgomery
268  * form of op1*op2.
269  *
270  * void clmul_polyval_mul(u8 *op1, const u8 *op2);
271  */
272 SYM_FUNC_START(clmul_polyval_mul)
273         FRAME_BEGIN
274         vmovdqa .Lgstar(%rip), GSTAR
275         movups (%rdi), %xmm0
276         movups (%rsi), %xmm1
277         schoolbook1_noload
278         schoolbook2
279         montgomery_reduction SUM
280         movups SUM, (%rdi)
281         FRAME_END
282         RET
283 SYM_FUNC_END(clmul_polyval_mul)
284 
285 /*
286  * Perform polynomial evaluation as specified by POLYVAL.  This computes:
287  *      h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
288  * where n=nblocks, h is the hash key, and m_i are the message blocks.
289  *
290  * rdi - pointer to precomputed key powers h^8 ... h^1
291  * rsi - pointer to message blocks
292  * rdx - number of blocks to hash
293  * rcx - pointer to the accumulator
294  *
295  * void clmul_polyval_update(const struct polyval_tfm_ctx *keys,
296  *      const u8 *in, size_t nblocks, u8 *accumulator);
297  */
298 SYM_FUNC_START(clmul_polyval_update)
299         FRAME_BEGIN
300         vmovdqa .Lgstar(%rip), GSTAR
301         movups (ACCUMULATOR), SUM
302         subq $STRIDE_BLOCKS, BLOCKS_LEFT
303         js .LstrideLoopExit
304         full_stride 0
305         subq $STRIDE_BLOCKS, BLOCKS_LEFT
306         js .LstrideLoopExitReduce
307 .LstrideLoop:
308         full_stride 1
309         subq $STRIDE_BLOCKS, BLOCKS_LEFT
310         jns .LstrideLoop
311 .LstrideLoopExitReduce:
312         montgomery_reduction SUM
313 .LstrideLoopExit:
314         add $STRIDE_BLOCKS, BLOCKS_LEFT
315         jz .LskipPartial
316         partial_stride
317 .LskipPartial:
318         movups SUM, (ACCUMULATOR)
319         FRAME_END
320         RET
321 SYM_FUNC_END(clmul_polyval_update)

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php