1 ######################################################################## 2 # Implement fast SHA-512 with SSSE3 instructions. (x86_64) 3 # 4 # Copyright (C) 2013 Intel Corporation. 5 # 6 # Authors: 7 # James Guilford <james.guilford@intel.com> 8 # Kirk Yap <kirk.s.yap@intel.com> 9 # David Cote <david.m.cote@intel.com> 10 # Tim Chen <tim.c.chen@linux.intel.com> 11 # 12 # This software is available to you under a choice of one of two 13 # licenses. You may choose to be licensed under the terms of the GNU 14 # General Public License (GPL) Version 2, available from the file 15 # COPYING in the main directory of this source tree, or the 16 # OpenIB.org BSD license below: 17 # 18 # Redistribution and use in source and binary forms, with or 19 # without modification, are permitted provided that the following 20 # conditions are met: 21 # 22 # - Redistributions of source code must retain the above 23 # copyright notice, this list of conditions and the following 24 # disclaimer. 25 # 26 # - Redistributions in binary form must reproduce the above 27 # copyright notice, this list of conditions and the following 28 # disclaimer in the documentation and/or other materials 29 # provided with the distribution. 30 # 31 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 32 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 33 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 34 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 35 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 36 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 37 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 38 # SOFTWARE. 39 # 40 ######################################################################## 41 # 42 # This code is described in an Intel White-Paper: 43 # "Fast SHA-512 Implementations on Intel Architecture Processors" 44 # 45 # To find it, surf to http://www.intel.com/p/en_US/embedded 46 # and search for that title. 47 # 48 ######################################################################## 49 50 #include <linux/linkage.h> 51 #include <linux/cfi_types.h> 52 53 .text 54 55 # Virtual Registers 56 # ARG1 57 digest = %rdi 58 # ARG2 59 msg = %rsi 60 # ARG3 61 msglen = %rdx 62 T1 = %rcx 63 T2 = %r8 64 a_64 = %r9 65 b_64 = %r10 66 c_64 = %r11 67 d_64 = %r12 68 e_64 = %r13 69 f_64 = %r14 70 g_64 = %r15 71 h_64 = %rbx 72 tmp0 = %rax 73 74 # Local variables (stack frame) 75 76 W_SIZE = 80*8 77 WK_SIZE = 2*8 78 79 frame_W = 0 80 frame_WK = frame_W + W_SIZE 81 frame_size = frame_WK + WK_SIZE 82 83 # Useful QWORD "arrays" for simpler memory references 84 # MSG, DIGEST, K_t, W_t are arrays 85 # WK_2(t) points to 1 of 2 qwords at frame.WK depending on t being odd/even 86 87 # Input message (arg1) 88 #define MSG(i) 8*i(msg) 89 90 # Output Digest (arg2) 91 #define DIGEST(i) 8*i(digest) 92 93 # SHA Constants (static mem) 94 #define K_t(i) 8*i+K512(%rip) 95 96 # Message Schedule (stack frame) 97 #define W_t(i) 8*i+frame_W(%rsp) 98 99 # W[t]+K[t] (stack frame) 100 #define WK_2(i) 8*((i%2))+frame_WK(%rsp) 101 102 .macro RotateState 103 # Rotate symbols a..h right 104 TMP = h_64 105 h_64 = g_64 106 g_64 = f_64 107 f_64 = e_64 108 e_64 = d_64 109 d_64 = c_64 110 c_64 = b_64 111 b_64 = a_64 112 a_64 = TMP 113 .endm 114 115 .macro SHA512_Round rnd 116 117 # Compute Round %%t 118 mov f_64, T1 # T1 = f 119 mov e_64, tmp0 # tmp = e 120 xor g_64, T1 # T1 = f ^ g 121 ror $23, tmp0 # 41 # tmp = e ror 23 122 and e_64, T1 # T1 = (f ^ g) & e 123 xor e_64, tmp0 # tmp = (e ror 23) ^ e 124 xor g_64, T1 # T1 = ((f ^ g) & e) ^ g = CH(e,f,g) 125 idx = \rnd 126 add WK_2(idx), T1 # W[t] + K[t] from message scheduler 127 ror $4, tmp0 # 18 # tmp = ((e ror 23) ^ e) ror 4 128 xor e_64, tmp0 # tmp = (((e ror 23) ^ e) ror 4) ^ e 129 mov a_64, T2 # T2 = a 130 add h_64, T1 # T1 = CH(e,f,g) + W[t] + K[t] + h 131 ror $14, tmp0 # 14 # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e) 132 add tmp0, T1 # T1 = CH(e,f,g) + W[t] + K[t] + S1(e) 133 mov a_64, tmp0 # tmp = a 134 xor c_64, T2 # T2 = a ^ c 135 and c_64, tmp0 # tmp = a & c 136 and b_64, T2 # T2 = (a ^ c) & b 137 xor tmp0, T2 # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c) 138 mov a_64, tmp0 # tmp = a 139 ror $5, tmp0 # 39 # tmp = a ror 5 140 xor a_64, tmp0 # tmp = (a ror 5) ^ a 141 add T1, d_64 # e(next_state) = d + T1 142 ror $6, tmp0 # 34 # tmp = ((a ror 5) ^ a) ror 6 143 xor a_64, tmp0 # tmp = (((a ror 5) ^ a) ror 6) ^ a 144 lea (T1, T2), h_64 # a(next_state) = T1 + Maj(a,b,c) 145 ror $28, tmp0 # 28 # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a) 146 add tmp0, h_64 # a(next_state) = T1 + Maj(a,b,c) S0(a) 147 RotateState 148 .endm 149 150 .macro SHA512_2Sched_2Round_sse rnd 151 152 # Compute rounds t-2 and t-1 153 # Compute message schedule QWORDS t and t+1 154 155 # Two rounds are computed based on the values for K[t-2]+W[t-2] and 156 # K[t-1]+W[t-1] which were previously stored at WK_2 by the message 157 # scheduler. 158 # The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)]. 159 # They are then added to their respective SHA512 constants at 160 # [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)] 161 # For brievity, the comments following vectored instructions only refer to 162 # the first of a pair of QWORDS. 163 # Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]} 164 # The computation of the message schedule and the rounds are tightly 165 # stitched to take advantage of instruction-level parallelism. 166 # For clarity, integer instructions (for the rounds calculation) are indented 167 # by one tab. Vectored instructions (for the message scheduler) are indented 168 # by two tabs. 169 170 mov f_64, T1 171 idx = \rnd -2 172 movdqa W_t(idx), %xmm2 # XMM2 = W[t-2] 173 xor g_64, T1 174 and e_64, T1 175 movdqa %xmm2, %xmm0 # XMM0 = W[t-2] 176 xor g_64, T1 177 idx = \rnd 178 add WK_2(idx), T1 179 idx = \rnd - 15 180 movdqu W_t(idx), %xmm5 # XMM5 = W[t-15] 181 mov e_64, tmp0 182 ror $23, tmp0 # 41 183 movdqa %xmm5, %xmm3 # XMM3 = W[t-15] 184 xor e_64, tmp0 185 ror $4, tmp0 # 18 186 psrlq $61-19, %xmm0 # XMM0 = W[t-2] >> 42 187 xor e_64, tmp0 188 ror $14, tmp0 # 14 189 psrlq $(8-7), %xmm3 # XMM3 = W[t-15] >> 1 190 add tmp0, T1 191 add h_64, T1 192 pxor %xmm2, %xmm0 # XMM0 = (W[t-2] >> 42) ^ W[t-2] 193 mov a_64, T2 194 xor c_64, T2 195 pxor %xmm5, %xmm3 # XMM3 = (W[t-15] >> 1) ^ W[t-15] 196 and b_64, T2 197 mov a_64, tmp0 198 psrlq $(19-6), %xmm0 # XMM0 = ((W[t-2]>>42)^W[t-2])>>13 199 and c_64, tmp0 200 xor tmp0, T2 201 psrlq $(7-1), %xmm3 # XMM3 = ((W[t-15]>>1)^W[t-15])>>6 202 mov a_64, tmp0 203 ror $5, tmp0 # 39 204 pxor %xmm2, %xmm0 # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2] 205 xor a_64, tmp0 206 ror $6, tmp0 # 34 207 pxor %xmm5, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15] 208 xor a_64, tmp0 209 ror $28, tmp0 # 28 210 psrlq $6, %xmm0 # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6 211 add tmp0, T2 212 add T1, d_64 213 psrlq $1, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1 214 lea (T1, T2), h_64 215 RotateState 216 movdqa %xmm2, %xmm1 # XMM1 = W[t-2] 217 mov f_64, T1 218 xor g_64, T1 219 movdqa %xmm5, %xmm4 # XMM4 = W[t-15] 220 and e_64, T1 221 xor g_64, T1 222 psllq $(64-19)-(64-61) , %xmm1 # XMM1 = W[t-2] << 42 223 idx = \rnd + 1 224 add WK_2(idx), T1 225 mov e_64, tmp0 226 psllq $(64-1)-(64-8), %xmm4 # XMM4 = W[t-15] << 7 227 ror $23, tmp0 # 41 228 xor e_64, tmp0 229 pxor %xmm2, %xmm1 # XMM1 = (W[t-2] << 42)^W[t-2] 230 ror $4, tmp0 # 18 231 xor e_64, tmp0 232 pxor %xmm5, %xmm4 # XMM4 = (W[t-15]<<7)^W[t-15] 233 ror $14, tmp0 # 14 234 add tmp0, T1 235 psllq $(64-61), %xmm1 # XMM1 = ((W[t-2] << 42)^W[t-2])<<3 236 add h_64, T1 237 mov a_64, T2 238 psllq $(64-8), %xmm4 # XMM4 = ((W[t-15]<<7)^W[t-15])<<56 239 xor c_64, T2 240 and b_64, T2 241 pxor %xmm1, %xmm0 # XMM0 = s1(W[t-2]) 242 mov a_64, tmp0 243 and c_64, tmp0 244 idx = \rnd - 7 245 movdqu W_t(idx), %xmm1 # XMM1 = W[t-7] 246 xor tmp0, T2 247 pxor %xmm4, %xmm3 # XMM3 = s0(W[t-15]) 248 mov a_64, tmp0 249 paddq %xmm3, %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15]) 250 ror $5, tmp0 # 39 251 idx =\rnd-16 252 paddq W_t(idx), %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16] 253 xor a_64, tmp0 254 paddq %xmm1, %xmm0 # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16] 255 ror $6, tmp0 # 34 256 movdqa %xmm0, W_t(\rnd) # Store scheduled qwords 257 xor a_64, tmp0 258 paddq K_t(\rnd), %xmm0 # Compute W[t]+K[t] 259 ror $28, tmp0 # 28 260 idx = \rnd 261 movdqa %xmm0, WK_2(idx) # Store W[t]+K[t] for next rounds 262 add tmp0, T2 263 add T1, d_64 264 lea (T1, T2), h_64 265 RotateState 266 .endm 267 268 ######################################################################## 269 ## void sha512_transform_ssse3(struct sha512_state *state, const u8 *data, 270 ## int blocks); 271 # (struct sha512_state is assumed to begin with u64 state[8]) 272 # Purpose: Updates the SHA512 digest stored at "state" with the message 273 # stored in "data". 274 # The size of the message pointed to by "data" must be an integer multiple 275 # of SHA512 message blocks. 276 # "blocks" is the message length in SHA512 blocks. 277 ######################################################################## 278 SYM_TYPED_FUNC_START(sha512_transform_ssse3) 279 280 test msglen, msglen 281 je .Lnowork 282 283 # Save GPRs 284 push %rbx 285 push %r12 286 push %r13 287 push %r14 288 push %r15 289 290 # Allocate Stack Space 291 push %rbp 292 mov %rsp, %rbp 293 sub $frame_size, %rsp 294 and $~(0x20 - 1), %rsp 295 296 .Lupdateblock: 297 298 # Load state variables 299 mov DIGEST(0), a_64 300 mov DIGEST(1), b_64 301 mov DIGEST(2), c_64 302 mov DIGEST(3), d_64 303 mov DIGEST(4), e_64 304 mov DIGEST(5), f_64 305 mov DIGEST(6), g_64 306 mov DIGEST(7), h_64 307 308 t = 0 309 .rept 80/2 + 1 310 # (80 rounds) / (2 rounds/iteration) + (1 iteration) 311 # +1 iteration because the scheduler leads hashing by 1 iteration 312 .if t < 2 313 # BSWAP 2 QWORDS 314 movdqa XMM_QWORD_BSWAP(%rip), %xmm1 315 movdqu MSG(t), %xmm0 316 pshufb %xmm1, %xmm0 # BSWAP 317 movdqa %xmm0, W_t(t) # Store Scheduled Pair 318 paddq K_t(t), %xmm0 # Compute W[t]+K[t] 319 movdqa %xmm0, WK_2(t) # Store into WK for rounds 320 .elseif t < 16 321 # BSWAP 2 QWORDS# Compute 2 Rounds 322 movdqu MSG(t), %xmm0 323 pshufb %xmm1, %xmm0 # BSWAP 324 SHA512_Round t-2 # Round t-2 325 movdqa %xmm0, W_t(t) # Store Scheduled Pair 326 paddq K_t(t), %xmm0 # Compute W[t]+K[t] 327 SHA512_Round t-1 # Round t-1 328 movdqa %xmm0, WK_2(t) # Store W[t]+K[t] into WK 329 .elseif t < 79 330 # Schedule 2 QWORDS# Compute 2 Rounds 331 SHA512_2Sched_2Round_sse t 332 .else 333 # Compute 2 Rounds 334 SHA512_Round t-2 335 SHA512_Round t-1 336 .endif 337 t = t+2 338 .endr 339 340 # Update digest 341 add a_64, DIGEST(0) 342 add b_64, DIGEST(1) 343 add c_64, DIGEST(2) 344 add d_64, DIGEST(3) 345 add e_64, DIGEST(4) 346 add f_64, DIGEST(5) 347 add g_64, DIGEST(6) 348 add h_64, DIGEST(7) 349 350 # Advance to next message block 351 add $16*8, msg 352 dec msglen 353 jnz .Lupdateblock 354 355 # Restore Stack Pointer 356 mov %rbp, %rsp 357 pop %rbp 358 359 # Restore GPRs 360 pop %r15 361 pop %r14 362 pop %r13 363 pop %r12 364 pop %rbx 365 366 .Lnowork: 367 RET 368 SYM_FUNC_END(sha512_transform_ssse3) 369 370 ######################################################################## 371 ### Binary Data 372 373 .section .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16 374 .align 16 375 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 376 XMM_QWORD_BSWAP: 377 .octa 0x08090a0b0c0d0e0f0001020304050607 378 379 # Mergeable 640-byte rodata section. This allows linker to merge the table 380 # with other, exactly the same 640-byte fragment of another rodata section 381 # (if such section exists). 382 .section .rodata.cst640.K512, "aM", @progbits, 640 383 .align 64 384 # K[t] used in SHA512 hashing 385 K512: 386 .quad 0x428a2f98d728ae22,0x7137449123ef65cd 387 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc 388 .quad 0x3956c25bf348b538,0x59f111f1b605d019 389 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 390 .quad 0xd807aa98a3030242,0x12835b0145706fbe 391 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 392 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 393 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 394 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 395 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 396 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 397 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 398 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 399 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 400 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 401 .quad 0x06ca6351e003826f,0x142929670a0e6e70 402 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 403 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df 404 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 405 .quad 0x81c2c92e47edaee6,0x92722c851482353b 406 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 407 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 408 .quad 0xd192e819d6ef5218,0xd69906245565a910 409 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 410 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 411 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 412 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb 413 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 414 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 415 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec 416 .quad 0x90befffa23631e28,0xa4506cebde82bde9 417 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b 418 .quad 0xca273eceea26619c,0xd186b8c721c0c207 419 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 420 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 421 .quad 0x113f9804bef90dae,0x1b710b35131c471b 422 .quad 0x28db77f523047d84,0x32caab7b40c72493 423 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c 424 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a 425 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.