~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/entry/entry_32.S

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  *  Copyright (C) 1991,1992  Linus Torvalds
  4  *
  5  * entry_32.S contains the system-call and low-level fault and trap handling routines.
  6  *
  7  * Stack layout while running C code:
  8  *      ptrace needs to have all registers on the stack.
  9  *      If the order here is changed, it needs to be
 10  *      updated in fork.c:copy_process(), signal.c:do_signal(),
 11  *      ptrace.c and ptrace.h
 12  *
 13  *       0(%esp) - %ebx
 14  *       4(%esp) - %ecx
 15  *       8(%esp) - %edx
 16  *       C(%esp) - %esi
 17  *      10(%esp) - %edi
 18  *      14(%esp) - %ebp
 19  *      18(%esp) - %eax
 20  *      1C(%esp) - %ds
 21  *      20(%esp) - %es
 22  *      24(%esp) - %fs
 23  *      28(%esp) - unused -- was %gs on old stackprotector kernels
 24  *      2C(%esp) - orig_eax
 25  *      30(%esp) - %eip
 26  *      34(%esp) - %cs
 27  *      38(%esp) - %eflags
 28  *      3C(%esp) - %oldesp
 29  *      40(%esp) - %oldss
 30  */
 31 
 32 #include <linux/linkage.h>
 33 #include <linux/err.h>
 34 #include <asm/thread_info.h>
 35 #include <asm/irqflags.h>
 36 #include <asm/errno.h>
 37 #include <asm/segment.h>
 38 #include <asm/smp.h>
 39 #include <asm/percpu.h>
 40 #include <asm/processor-flags.h>
 41 #include <asm/irq_vectors.h>
 42 #include <asm/cpufeatures.h>
 43 #include <asm/alternative.h>
 44 #include <asm/asm.h>
 45 #include <asm/smap.h>
 46 #include <asm/frame.h>
 47 #include <asm/trapnr.h>
 48 #include <asm/nospec-branch.h>
 49 
 50 #include "calling.h"
 51 
 52         .section .entry.text, "ax"
 53 
 54 #define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
 55 
 56 /* Unconditionally switch to user cr3 */
 57 .macro SWITCH_TO_USER_CR3 scratch_reg:req
 58         ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
 59 
 60         movl    %cr3, \scratch_reg
 61         orl     $PTI_SWITCH_MASK, \scratch_reg
 62         movl    \scratch_reg, %cr3
 63 .Lend_\@:
 64 .endm
 65 
 66 .macro BUG_IF_WRONG_CR3 no_user_check=0
 67 #ifdef CONFIG_DEBUG_ENTRY
 68         ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
 69         .if \no_user_check == 0
 70         /* coming from usermode? */
 71         testl   $USER_SEGMENT_RPL_MASK, PT_CS(%esp)
 72         jz      .Lend_\@
 73         .endif
 74         /* On user-cr3? */
 75         movl    %cr3, %eax
 76         testl   $PTI_SWITCH_MASK, %eax
 77         jnz     .Lend_\@
 78         /* From userspace with kernel cr3 - BUG */
 79         ud2
 80 .Lend_\@:
 81 #endif
 82 .endm
 83 
 84 /*
 85  * Switch to kernel cr3 if not already loaded and return current cr3 in
 86  * \scratch_reg
 87  */
 88 .macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
 89         ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
 90         movl    %cr3, \scratch_reg
 91         /* Test if we are already on kernel CR3 */
 92         testl   $PTI_SWITCH_MASK, \scratch_reg
 93         jz      .Lend_\@
 94         andl    $(~PTI_SWITCH_MASK), \scratch_reg
 95         movl    \scratch_reg, %cr3
 96         /* Return original CR3 in \scratch_reg */
 97         orl     $PTI_SWITCH_MASK, \scratch_reg
 98 .Lend_\@:
 99 .endm
100 
101 #define CS_FROM_ENTRY_STACK     (1 << 31)
102 #define CS_FROM_USER_CR3        (1 << 30)
103 #define CS_FROM_KERNEL          (1 << 29)
104 #define CS_FROM_ESPFIX          (1 << 28)
105 
106 .macro FIXUP_FRAME
107         /*
108          * The high bits of the CS dword (__csh) are used for CS_FROM_*.
109          * Clear them in case hardware didn't do this for us.
110          */
111         andl    $0x0000ffff, 4*4(%esp)
112 
113 #ifdef CONFIG_VM86
114         testl   $X86_EFLAGS_VM, 5*4(%esp)
115         jnz     .Lfrom_usermode_no_fixup_\@
116 #endif
117         testl   $USER_SEGMENT_RPL_MASK, 4*4(%esp)
118         jnz     .Lfrom_usermode_no_fixup_\@
119 
120         orl     $CS_FROM_KERNEL, 4*4(%esp)
121 
122         /*
123          * When we're here from kernel mode; the (exception) stack looks like:
124          *
125          *  6*4(%esp) - <previous context>
126          *  5*4(%esp) - flags
127          *  4*4(%esp) - cs
128          *  3*4(%esp) - ip
129          *  2*4(%esp) - orig_eax
130          *  1*4(%esp) - gs / function
131          *  0*4(%esp) - fs
132          *
133          * Lets build a 5 entry IRET frame after that, such that struct pt_regs
134          * is complete and in particular regs->sp is correct. This gives us
135          * the original 6 entries as gap:
136          *
137          * 14*4(%esp) - <previous context>
138          * 13*4(%esp) - gap / flags
139          * 12*4(%esp) - gap / cs
140          * 11*4(%esp) - gap / ip
141          * 10*4(%esp) - gap / orig_eax
142          *  9*4(%esp) - gap / gs / function
143          *  8*4(%esp) - gap / fs
144          *  7*4(%esp) - ss
145          *  6*4(%esp) - sp
146          *  5*4(%esp) - flags
147          *  4*4(%esp) - cs
148          *  3*4(%esp) - ip
149          *  2*4(%esp) - orig_eax
150          *  1*4(%esp) - gs / function
151          *  0*4(%esp) - fs
152          */
153 
154         pushl   %ss             # ss
155         pushl   %esp            # sp (points at ss)
156         addl    $7*4, (%esp)    # point sp back at the previous context
157         pushl   7*4(%esp)       # flags
158         pushl   7*4(%esp)       # cs
159         pushl   7*4(%esp)       # ip
160         pushl   7*4(%esp)       # orig_eax
161         pushl   7*4(%esp)       # gs / function
162         pushl   7*4(%esp)       # fs
163 .Lfrom_usermode_no_fixup_\@:
164 .endm
165 
166 .macro IRET_FRAME
167         /*
168          * We're called with %ds, %es, %fs, and %gs from the interrupted
169          * frame, so we shouldn't use them.  Also, we may be in ESPFIX
170          * mode and therefore have a nonzero SS base and an offset ESP,
171          * so any attempt to access the stack needs to use SS.  (except for
172          * accesses through %esp, which automatically use SS.)
173          */
174         testl $CS_FROM_KERNEL, 1*4(%esp)
175         jz .Lfinished_frame_\@
176 
177         /*
178          * Reconstruct the 3 entry IRET frame right after the (modified)
179          * regs->sp without lowering %esp in between, such that an NMI in the
180          * middle doesn't scribble our stack.
181          */
182         pushl   %eax
183         pushl   %ecx
184         movl    5*4(%esp), %eax         # (modified) regs->sp
185 
186         movl    4*4(%esp), %ecx         # flags
187         movl    %ecx, %ss:-1*4(%eax)
188 
189         movl    3*4(%esp), %ecx         # cs
190         andl    $0x0000ffff, %ecx
191         movl    %ecx, %ss:-2*4(%eax)
192 
193         movl    2*4(%esp), %ecx         # ip
194         movl    %ecx, %ss:-3*4(%eax)
195 
196         movl    1*4(%esp), %ecx         # eax
197         movl    %ecx, %ss:-4*4(%eax)
198 
199         popl    %ecx
200         lea     -4*4(%eax), %esp
201         popl    %eax
202 .Lfinished_frame_\@:
203 .endm
204 
205 .macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
206         cld
207 .if \skip_gs == 0
208         pushl   $0
209 .endif
210         pushl   %fs
211 
212         pushl   %eax
213         movl    $(__KERNEL_PERCPU), %eax
214         movl    %eax, %fs
215 .if \unwind_espfix > 0
216         UNWIND_ESPFIX_STACK
217 .endif
218         popl    %eax
219 
220         FIXUP_FRAME
221         pushl   %es
222         pushl   %ds
223         pushl   \pt_regs_ax
224         pushl   %ebp
225         pushl   %edi
226         pushl   %esi
227         pushl   %edx
228         pushl   %ecx
229         pushl   %ebx
230         movl    $(__USER_DS), %edx
231         movl    %edx, %ds
232         movl    %edx, %es
233         /* Switch to kernel stack if necessary */
234 .if \switch_stacks > 0
235         SWITCH_TO_KERNEL_STACK
236 .endif
237 .endm
238 
239 .macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
240         SAVE_ALL unwind_espfix=\unwind_espfix
241 
242         BUG_IF_WRONG_CR3
243 
244         /*
245          * Now switch the CR3 when PTI is enabled.
246          *
247          * We can enter with either user or kernel cr3, the code will
248          * store the old cr3 in \cr3_reg and switches to the kernel cr3
249          * if necessary.
250          */
251         SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
252 
253 .Lend_\@:
254 .endm
255 
256 .macro RESTORE_INT_REGS
257         popl    %ebx
258         popl    %ecx
259         popl    %edx
260         popl    %esi
261         popl    %edi
262         popl    %ebp
263         popl    %eax
264 .endm
265 
266 .macro RESTORE_REGS pop=0
267         RESTORE_INT_REGS
268 1:      popl    %ds
269 2:      popl    %es
270 3:      popl    %fs
271 4:      addl    $(4 + \pop), %esp       /* pop the unused "gs" slot */
272         IRET_FRAME
273 
274         /*
275          * There is no _ASM_EXTABLE_TYPE_REG() for ASM, however since this is
276          * ASM the registers are known and we can trivially hard-code them.
277          */
278         _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_POP_ZERO|EX_REG_DS)
279         _ASM_EXTABLE_TYPE(2b, 3b, EX_TYPE_POP_ZERO|EX_REG_ES)
280         _ASM_EXTABLE_TYPE(3b, 4b, EX_TYPE_POP_ZERO|EX_REG_FS)
281 .endm
282 
283 .macro RESTORE_ALL_NMI cr3_reg:req pop=0
284         /*
285          * Now switch the CR3 when PTI is enabled.
286          *
287          * We enter with kernel cr3 and switch the cr3 to the value
288          * stored on \cr3_reg, which is either a user or a kernel cr3.
289          */
290         ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
291 
292         testl   $PTI_SWITCH_MASK, \cr3_reg
293         jz      .Lswitched_\@
294 
295         /* User cr3 in \cr3_reg - write it to hardware cr3 */
296         movl    \cr3_reg, %cr3
297 
298 .Lswitched_\@:
299 
300         BUG_IF_WRONG_CR3
301 
302         RESTORE_REGS pop=\pop
303 .endm
304 
305 .macro CHECK_AND_APPLY_ESPFIX
306 #ifdef CONFIG_X86_ESPFIX32
307 #define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
308 #define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page + GDT_ESPFIX_OFFSET)
309 
310         ALTERNATIVE     "jmp .Lend_\@", "", X86_BUG_ESPFIX
311 
312         movl    PT_EFLAGS(%esp), %eax           # mix EFLAGS, SS and CS
313         /*
314          * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
315          * are returning to the kernel.
316          * See comments in process.c:copy_thread() for details.
317          */
318         movb    PT_OLDSS(%esp), %ah
319         movb    PT_CS(%esp), %al
320         andl    $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
321         cmpl    $((SEGMENT_LDT << 8) | USER_RPL), %eax
322         jne     .Lend_\@        # returning to user-space with LDT SS
323 
324         /*
325          * Setup and switch to ESPFIX stack
326          *
327          * We're returning to userspace with a 16 bit stack. The CPU will not
328          * restore the high word of ESP for us on executing iret... This is an
329          * "official" bug of all the x86-compatible CPUs, which we can work
330          * around to make dosemu and wine happy. We do this by preloading the
331          * high word of ESP with the high word of the userspace ESP while
332          * compensating for the offset by changing to the ESPFIX segment with
333          * a base address that matches for the difference.
334          */
335         mov     %esp, %edx                      /* load kernel esp */
336         mov     PT_OLDESP(%esp), %eax           /* load userspace esp */
337         mov     %dx, %ax                        /* eax: new kernel esp */
338         sub     %eax, %edx                      /* offset (low word is 0) */
339         shr     $16, %edx
340         mov     %dl, GDT_ESPFIX_SS + 4          /* bits 16..23 */
341         mov     %dh, GDT_ESPFIX_SS + 7          /* bits 24..31 */
342         pushl   $__ESPFIX_SS
343         pushl   %eax                            /* new kernel esp */
344         /*
345          * Disable interrupts, but do not irqtrace this section: we
346          * will soon execute iret and the tracer was already set to
347          * the irqstate after the IRET:
348          */
349         cli
350         lss     (%esp), %esp                    /* switch to espfix segment */
351 .Lend_\@:
352 #endif /* CONFIG_X86_ESPFIX32 */
353 .endm
354 
355 /*
356  * Called with pt_regs fully populated and kernel segments loaded,
357  * so we can access PER_CPU and use the integer registers.
358  *
359  * We need to be very careful here with the %esp switch, because an NMI
360  * can happen everywhere. If the NMI handler finds itself on the
361  * entry-stack, it will overwrite the task-stack and everything we
362  * copied there. So allocate the stack-frame on the task-stack and
363  * switch to it before we do any copying.
364  */
365 
366 .macro SWITCH_TO_KERNEL_STACK
367 
368         BUG_IF_WRONG_CR3
369 
370         SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
371 
372         /*
373          * %eax now contains the entry cr3 and we carry it forward in
374          * that register for the time this macro runs
375          */
376 
377         /* Are we on the entry stack? Bail out if not! */
378         movl    PER_CPU_VAR(cpu_entry_area), %ecx
379         addl    $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
380         subl    %esp, %ecx      /* ecx = (end of entry_stack) - esp */
381         cmpl    $SIZEOF_entry_stack, %ecx
382         jae     .Lend_\@
383 
384         /* Load stack pointer into %esi and %edi */
385         movl    %esp, %esi
386         movl    %esi, %edi
387 
388         /* Move %edi to the top of the entry stack */
389         andl    $(MASK_entry_stack), %edi
390         addl    $(SIZEOF_entry_stack), %edi
391 
392         /* Load top of task-stack into %edi */
393         movl    TSS_entry2task_stack(%edi), %edi
394 
395         /* Special case - entry from kernel mode via entry stack */
396 #ifdef CONFIG_VM86
397         movl    PT_EFLAGS(%esp), %ecx           # mix EFLAGS and CS
398         movb    PT_CS(%esp), %cl
399         andl    $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
400 #else
401         movl    PT_CS(%esp), %ecx
402         andl    $SEGMENT_RPL_MASK, %ecx
403 #endif
404         cmpl    $USER_RPL, %ecx
405         jb      .Lentry_from_kernel_\@
406 
407         /* Bytes to copy */
408         movl    $PTREGS_SIZE, %ecx
409 
410 #ifdef CONFIG_VM86
411         testl   $X86_EFLAGS_VM, PT_EFLAGS(%esi)
412         jz      .Lcopy_pt_regs_\@
413 
414         /*
415          * Stack-frame contains 4 additional segment registers when
416          * coming from VM86 mode
417          */
418         addl    $(4 * 4), %ecx
419 
420 #endif
421 .Lcopy_pt_regs_\@:
422 
423         /* Allocate frame on task-stack */
424         subl    %ecx, %edi
425 
426         /* Switch to task-stack */
427         movl    %edi, %esp
428 
429         /*
430          * We are now on the task-stack and can safely copy over the
431          * stack-frame
432          */
433         shrl    $2, %ecx
434         cld
435         rep movsl
436 
437         jmp .Lend_\@
438 
439 .Lentry_from_kernel_\@:
440 
441         /*
442          * This handles the case when we enter the kernel from
443          * kernel-mode and %esp points to the entry-stack. When this
444          * happens we need to switch to the task-stack to run C code,
445          * but switch back to the entry-stack again when we approach
446          * iret and return to the interrupted code-path. This usually
447          * happens when we hit an exception while restoring user-space
448          * segment registers on the way back to user-space or when the
449          * sysenter handler runs with eflags.tf set.
450          *
451          * When we switch to the task-stack here, we can't trust the
452          * contents of the entry-stack anymore, as the exception handler
453          * might be scheduled out or moved to another CPU. Therefore we
454          * copy the complete entry-stack to the task-stack and set a
455          * marker in the iret-frame (bit 31 of the CS dword) to detect
456          * what we've done on the iret path.
457          *
458          * On the iret path we copy everything back and switch to the
459          * entry-stack, so that the interrupted kernel code-path
460          * continues on the same stack it was interrupted with.
461          *
462          * Be aware that an NMI can happen anytime in this code.
463          *
464          * %esi: Entry-Stack pointer (same as %esp)
465          * %edi: Top of the task stack
466          * %eax: CR3 on kernel entry
467          */
468 
469         /* Calculate number of bytes on the entry stack in %ecx */
470         movl    %esi, %ecx
471 
472         /* %ecx to the top of entry-stack */
473         andl    $(MASK_entry_stack), %ecx
474         addl    $(SIZEOF_entry_stack), %ecx
475 
476         /* Number of bytes on the entry stack to %ecx */
477         sub     %esi, %ecx
478 
479         /* Mark stackframe as coming from entry stack */
480         orl     $CS_FROM_ENTRY_STACK, PT_CS(%esp)
481 
482         /*
483          * Test the cr3 used to enter the kernel and add a marker
484          * so that we can switch back to it before iret.
485          */
486         testl   $PTI_SWITCH_MASK, %eax
487         jz      .Lcopy_pt_regs_\@
488         orl     $CS_FROM_USER_CR3, PT_CS(%esp)
489 
490         /*
491          * %esi and %edi are unchanged, %ecx contains the number of
492          * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
493          * the stack-frame on task-stack and copy everything over
494          */
495         jmp .Lcopy_pt_regs_\@
496 
497 .Lend_\@:
498 .endm
499 
500 /*
501  * Switch back from the kernel stack to the entry stack.
502  *
503  * The %esp register must point to pt_regs on the task stack. It will
504  * first calculate the size of the stack-frame to copy, depending on
505  * whether we return to VM86 mode or not. With that it uses 'rep movsl'
506  * to copy the contents of the stack over to the entry stack.
507  *
508  * We must be very careful here, as we can't trust the contents of the
509  * task-stack once we switched to the entry-stack. When an NMI happens
510  * while on the entry-stack, the NMI handler will switch back to the top
511  * of the task stack, overwriting our stack-frame we are about to copy.
512  * Therefore we switch the stack only after everything is copied over.
513  */
514 .macro SWITCH_TO_ENTRY_STACK
515 
516         /* Bytes to copy */
517         movl    $PTREGS_SIZE, %ecx
518 
519 #ifdef CONFIG_VM86
520         testl   $(X86_EFLAGS_VM), PT_EFLAGS(%esp)
521         jz      .Lcopy_pt_regs_\@
522 
523         /* Additional 4 registers to copy when returning to VM86 mode */
524         addl    $(4 * 4), %ecx
525 
526 .Lcopy_pt_regs_\@:
527 #endif
528 
529         /* Initialize source and destination for movsl */
530         movl    PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
531         subl    %ecx, %edi
532         movl    %esp, %esi
533 
534         /* Save future stack pointer in %ebx */
535         movl    %edi, %ebx
536 
537         /* Copy over the stack-frame */
538         shrl    $2, %ecx
539         cld
540         rep movsl
541 
542         /*
543          * Switch to entry-stack - needs to happen after everything is
544          * copied because the NMI handler will overwrite the task-stack
545          * when on entry-stack
546          */
547         movl    %ebx, %esp
548 
549 .Lend_\@:
550 .endm
551 
552 /*
553  * This macro handles the case when we return to kernel-mode on the iret
554  * path and have to switch back to the entry stack and/or user-cr3
555  *
556  * See the comments below the .Lentry_from_kernel_\@ label in the
557  * SWITCH_TO_KERNEL_STACK macro for more details.
558  */
559 .macro PARANOID_EXIT_TO_KERNEL_MODE
560 
561         /*
562          * Test if we entered the kernel with the entry-stack. Most
563          * likely we did not, because this code only runs on the
564          * return-to-kernel path.
565          */
566         testl   $CS_FROM_ENTRY_STACK, PT_CS(%esp)
567         jz      .Lend_\@
568 
569         /* Unlikely slow-path */
570 
571         /* Clear marker from stack-frame */
572         andl    $(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
573 
574         /* Copy the remaining task-stack contents to entry-stack */
575         movl    %esp, %esi
576         movl    PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
577 
578         /* Bytes on the task-stack to ecx */
579         movl    PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
580         subl    %esi, %ecx
581 
582         /* Allocate stack-frame on entry-stack */
583         subl    %ecx, %edi
584 
585         /*
586          * Save future stack-pointer, we must not switch until the
587          * copy is done, otherwise the NMI handler could destroy the
588          * contents of the task-stack we are about to copy.
589          */
590         movl    %edi, %ebx
591 
592         /* Do the copy */
593         shrl    $2, %ecx
594         cld
595         rep movsl
596 
597         /* Safe to switch to entry-stack now */
598         movl    %ebx, %esp
599 
600         /*
601          * We came from entry-stack and need to check if we also need to
602          * switch back to user cr3.
603          */
604         testl   $CS_FROM_USER_CR3, PT_CS(%esp)
605         jz      .Lend_\@
606 
607         /* Clear marker from stack-frame */
608         andl    $(~CS_FROM_USER_CR3), PT_CS(%esp)
609 
610         SWITCH_TO_USER_CR3 scratch_reg=%eax
611 
612 .Lend_\@:
613 .endm
614 
615 /**
616  * idtentry - Macro to generate entry stubs for simple IDT entries
617  * @vector:             Vector number
618  * @asmsym:             ASM symbol for the entry point
619  * @cfunc:              C function to be called
620  * @has_error_code:     Hardware pushed error code on stack
621  */
622 .macro idtentry vector asmsym cfunc has_error_code:req
623 SYM_CODE_START(\asmsym)
624         ASM_CLAC
625         cld
626 
627         .if \has_error_code == 0
628                 pushl   $0              /* Clear the error code */
629         .endif
630 
631         /* Push the C-function address into the GS slot */
632         pushl   $\cfunc
633         /* Invoke the common exception entry */
634         jmp     handle_exception
635 SYM_CODE_END(\asmsym)
636 .endm
637 
638 .macro idtentry_irq vector cfunc
639         .p2align CONFIG_X86_L1_CACHE_SHIFT
640 SYM_CODE_START_LOCAL(asm_\cfunc)
641         ASM_CLAC
642         SAVE_ALL switch_stacks=1
643         ENCODE_FRAME_POINTER
644         movl    %esp, %eax
645         movl    PT_ORIG_EAX(%esp), %edx         /* get the vector from stack */
646         movl    $-1, PT_ORIG_EAX(%esp)          /* no syscall to restart */
647         call    \cfunc
648         jmp     handle_exception_return
649 SYM_CODE_END(asm_\cfunc)
650 .endm
651 
652 /*
653  * Include the defines which emit the idt entries which are shared
654  * shared between 32 and 64 bit and emit the __irqentry_text_* markers
655  * so the stacktrace boundary checks work.
656  */
657         .align 16
658         .globl __irqentry_text_start
659 __irqentry_text_start:
660 
661 #include <asm/idtentry.h>
662 
663         .align 16
664         .globl __irqentry_text_end
665 __irqentry_text_end:
666 
667 /*
668  * %eax: prev task
669  * %edx: next task
670  */
671 .pushsection .text, "ax"
672 SYM_CODE_START(__switch_to_asm)
673         /*
674          * Save callee-saved registers
675          * This must match the order in struct inactive_task_frame
676          */
677         pushl   %ebp
678         pushl   %ebx
679         pushl   %edi
680         pushl   %esi
681         /*
682          * Flags are saved to prevent AC leakage. This could go
683          * away if objtool would have 32bit support to verify
684          * the STAC/CLAC correctness.
685          */
686         pushfl
687 
688         /* switch stack */
689         movl    %esp, TASK_threadsp(%eax)
690         movl    TASK_threadsp(%edx), %esp
691 
692 #ifdef CONFIG_STACKPROTECTOR
693         movl    TASK_stack_canary(%edx), %ebx
694         movl    %ebx, PER_CPU_VAR(__stack_chk_guard)
695 #endif
696 
697         /*
698          * When switching from a shallower to a deeper call stack
699          * the RSB may either underflow or use entries populated
700          * with userspace addresses. On CPUs where those concerns
701          * exist, overwrite the RSB with entries which capture
702          * speculative execution to prevent attack.
703          */
704         FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
705 
706         /* Restore flags or the incoming task to restore AC state. */
707         popfl
708         /* restore callee-saved registers */
709         popl    %esi
710         popl    %edi
711         popl    %ebx
712         popl    %ebp
713 
714         jmp     __switch_to
715 SYM_CODE_END(__switch_to_asm)
716 .popsection
717 
718 /*
719  * A newly forked process directly context switches into this address.
720  *
721  * eax: prev task we switched from
722  * ebx: kernel thread func (NULL for user thread)
723  * edi: kernel thread arg
724  */
725 .pushsection .text, "ax"
726 SYM_CODE_START(ret_from_fork_asm)
727         movl    %esp, %edx      /* regs */
728 
729         /* return address for the stack unwinder */
730         pushl   $.Lsyscall_32_done
731 
732         FRAME_BEGIN
733         /* prev already in EAX */
734         movl    %ebx, %ecx      /* fn */
735         pushl   %edi            /* fn_arg */
736         call    ret_from_fork
737         addl    $4, %esp
738         FRAME_END
739 
740         RET
741 SYM_CODE_END(ret_from_fork_asm)
742 .popsection
743 
744 SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
745 /*
746  * All code from here through __end_SYSENTER_singlestep_region is subject
747  * to being single-stepped if a user program sets TF and executes SYSENTER.
748  * There is absolutely nothing that we can do to prevent this from happening
749  * (thanks Intel!).  To keep our handling of this situation as simple as
750  * possible, we handle TF just like AC and NT, except that our #DB handler
751  * will ignore all of the single-step traps generated in this range.
752  */
753 
754 /*
755  * 32-bit SYSENTER entry.
756  *
757  * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
758  * if X86_FEATURE_SEP is available.  This is the preferred system call
759  * entry on 32-bit systems.
760  *
761  * The SYSENTER instruction, in principle, should *only* occur in the
762  * vDSO.  In practice, a small number of Android devices were shipped
763  * with a copy of Bionic that inlined a SYSENTER instruction.  This
764  * never happened in any of Google's Bionic versions -- it only happened
765  * in a narrow range of Intel-provided versions.
766  *
767  * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
768  * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
769  * SYSENTER does not save anything on the stack,
770  * and does not save old EIP (!!!), ESP, or EFLAGS.
771  *
772  * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
773  * user and/or vm86 state), we explicitly disable the SYSENTER
774  * instruction in vm86 mode by reprogramming the MSRs.
775  *
776  * Arguments:
777  * eax  system call number
778  * ebx  arg1
779  * ecx  arg2
780  * edx  arg3
781  * esi  arg4
782  * edi  arg5
783  * ebp  user stack
784  * 0(%ebp) arg6
785  */
786 SYM_FUNC_START(entry_SYSENTER_32)
787         /*
788          * On entry-stack with all userspace-regs live - save and
789          * restore eflags and %eax to use it as scratch-reg for the cr3
790          * switch.
791          */
792         pushfl
793         pushl   %eax
794         BUG_IF_WRONG_CR3 no_user_check=1
795         SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
796         popl    %eax
797         popfl
798 
799         /* Stack empty again, switch to task stack */
800         movl    TSS_entry2task_stack(%esp), %esp
801 
802 .Lsysenter_past_esp:
803         pushl   $__USER_DS              /* pt_regs->ss */
804         pushl   $0                      /* pt_regs->sp (placeholder) */
805         pushfl                          /* pt_regs->flags (except IF = 0) */
806         pushl   $__USER_CS              /* pt_regs->cs */
807         pushl   $0                      /* pt_regs->ip = 0 (placeholder) */
808         pushl   %eax                    /* pt_regs->orig_ax */
809         SAVE_ALL pt_regs_ax=$-ENOSYS    /* save rest, stack already switched */
810 
811         /*
812          * SYSENTER doesn't filter flags, so we need to clear NT, AC
813          * and TF ourselves.  To save a few cycles, we can check whether
814          * either was set instead of doing an unconditional popfq.
815          * This needs to happen before enabling interrupts so that
816          * we don't get preempted with NT set.
817          *
818          * If TF is set, we will single-step all the way to here -- do_debug
819          * will ignore all the traps.  (Yes, this is slow, but so is
820          * single-stepping in general.  This allows us to avoid having
821          * a more complicated code to handle the case where a user program
822          * forces us to single-step through the SYSENTER entry code.)
823          *
824          * NB.: .Lsysenter_fix_flags is a label with the code under it moved
825          * out-of-line as an optimization: NT is unlikely to be set in the
826          * majority of the cases and instead of polluting the I$ unnecessarily,
827          * we're keeping that code behind a branch which will predict as
828          * not-taken and therefore its instructions won't be fetched.
829          */
830         testl   $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
831         jnz     .Lsysenter_fix_flags
832 .Lsysenter_flags_fixed:
833 
834         movl    %esp, %eax
835         call    do_SYSENTER_32
836         testb   %al, %al
837         jz      .Lsyscall_32_done
838 
839         STACKLEAK_ERASE
840 
841         /* Opportunistic SYSEXIT */
842 
843         /*
844          * Setup entry stack - we keep the pointer in %eax and do the
845          * switch after almost all user-state is restored.
846          */
847 
848         /* Load entry stack pointer and allocate frame for eflags/eax */
849         movl    PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
850         subl    $(2*4), %eax
851 
852         /* Copy eflags and eax to entry stack */
853         movl    PT_EFLAGS(%esp), %edi
854         movl    PT_EAX(%esp), %esi
855         movl    %edi, (%eax)
856         movl    %esi, 4(%eax)
857 
858         /* Restore user registers and segments */
859         movl    PT_EIP(%esp), %edx      /* pt_regs->ip */
860         movl    PT_OLDESP(%esp), %ecx   /* pt_regs->sp */
861 1:      mov     PT_FS(%esp), %fs
862 
863         popl    %ebx                    /* pt_regs->bx */
864         addl    $2*4, %esp              /* skip pt_regs->cx and pt_regs->dx */
865         popl    %esi                    /* pt_regs->si */
866         popl    %edi                    /* pt_regs->di */
867         popl    %ebp                    /* pt_regs->bp */
868 
869         /* Switch to entry stack */
870         movl    %eax, %esp
871 
872         /* Now ready to switch the cr3 */
873         SWITCH_TO_USER_CR3 scratch_reg=%eax
874         /* Clobbers ZF */
875         CLEAR_CPU_BUFFERS
876 
877         /*
878          * Restore all flags except IF. (We restore IF separately because
879          * STI gives a one-instruction window in which we won't be interrupted,
880          * whereas POPF does not.)
881          */
882         btrl    $X86_EFLAGS_IF_BIT, (%esp)
883         BUG_IF_WRONG_CR3 no_user_check=1
884         popfl
885         popl    %eax
886 
887         /*
888          * Return back to the vDSO, which will pop ecx and edx.
889          * Don't bother with DS and ES (they already contain __USER_DS).
890          */
891         sti
892         sysexit
893 
894 2:      movl    $0, PT_FS(%esp)
895         jmp     1b
896         _ASM_EXTABLE(1b, 2b)
897 
898 .Lsysenter_fix_flags:
899         pushl   $X86_EFLAGS_FIXED
900         popfl
901         jmp     .Lsysenter_flags_fixed
902 SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
903 SYM_FUNC_END(entry_SYSENTER_32)
904 
905 /*
906  * 32-bit legacy system call entry.
907  *
908  * 32-bit x86 Linux system calls traditionally used the INT $0x80
909  * instruction.  INT $0x80 lands here.
910  *
911  * This entry point can be used by any 32-bit perform system calls.
912  * Instances of INT $0x80 can be found inline in various programs and
913  * libraries.  It is also used by the vDSO's __kernel_vsyscall
914  * fallback for hardware that doesn't support a faster entry method.
915  * Restarted 32-bit system calls also fall back to INT $0x80
916  * regardless of what instruction was originally used to do the system
917  * call.  (64-bit programs can use INT $0x80 as well, but they can
918  * only run on 64-bit kernels and therefore land in
919  * entry_INT80_compat.)
920  *
921  * This is considered a slow path.  It is not used by most libc
922  * implementations on modern hardware except during process startup.
923  *
924  * Arguments:
925  * eax  system call number
926  * ebx  arg1
927  * ecx  arg2
928  * edx  arg3
929  * esi  arg4
930  * edi  arg5
931  * ebp  arg6
932  */
933 SYM_FUNC_START(entry_INT80_32)
934         ASM_CLAC
935         pushl   %eax                    /* pt_regs->orig_ax */
936 
937         SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1    /* save rest */
938 
939         movl    %esp, %eax
940         call    do_int80_syscall_32
941 .Lsyscall_32_done:
942         STACKLEAK_ERASE
943 
944 restore_all_switch_stack:
945         SWITCH_TO_ENTRY_STACK
946         CHECK_AND_APPLY_ESPFIX
947 
948         /* Switch back to user CR3 */
949         SWITCH_TO_USER_CR3 scratch_reg=%eax
950 
951         BUG_IF_WRONG_CR3
952 
953         /* Restore user state */
954         RESTORE_REGS pop=4                      # skip orig_eax/error_code
955         CLEAR_CPU_BUFFERS
956 .Lirq_return:
957         /*
958          * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
959          * when returning from IPI handler and when returning from
960          * scheduler to user-space.
961          */
962         iret
963 
964 .Lasm_iret_error:
965         pushl   $0                              # no error code
966         pushl   $iret_error
967 
968 #ifdef CONFIG_DEBUG_ENTRY
969         /*
970          * The stack-frame here is the one that iret faulted on, so its a
971          * return-to-user frame. We are on kernel-cr3 because we come here from
972          * the fixup code. This confuses the CR3 checker, so switch to user-cr3
973          * as the checker expects it.
974          */
975         pushl   %eax
976         SWITCH_TO_USER_CR3 scratch_reg=%eax
977         popl    %eax
978 #endif
979 
980         jmp     handle_exception
981 
982         _ASM_EXTABLE(.Lirq_return, .Lasm_iret_error)
983 SYM_FUNC_END(entry_INT80_32)
984 
985 .macro FIXUP_ESPFIX_STACK
986 /*
987  * Switch back for ESPFIX stack to the normal zerobased stack
988  *
989  * We can't call C functions using the ESPFIX stack. This code reads
990  * the high word of the segment base from the GDT and swiches to the
991  * normal stack and adjusts ESP with the matching offset.
992  *
993  * We might be on user CR3 here, so percpu data is not mapped and we can't
994  * access the GDT through the percpu segment.  Instead, use SGDT to find
995  * the cpu_entry_area alias of the GDT.
996  */
997 #ifdef CONFIG_X86_ESPFIX32
998         /* fixup the stack */
999         pushl   %ecx
1000         subl    $2*4, %esp
1001         sgdt    (%esp)
1002         movl    2(%esp), %ecx                           /* GDT address */
1003         /*
1004          * Careful: ECX is a linear pointer, so we need to force base
1005          * zero.  %cs is the only known-linear segment we have right now.
1006          */
1007         mov     %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al    /* bits 16..23 */
1008         mov     %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah    /* bits 24..31 */
1009         shl     $16, %eax
1010         addl    $2*4, %esp
1011         popl    %ecx
1012         addl    %esp, %eax                      /* the adjusted stack pointer */
1013         pushl   $__KERNEL_DS
1014         pushl   %eax
1015         lss     (%esp), %esp                    /* switch to the normal stack segment */
1016 #endif
1017 .endm
1018 
1019 .macro UNWIND_ESPFIX_STACK
1020         /* It's safe to clobber %eax, all other regs need to be preserved */
1021 #ifdef CONFIG_X86_ESPFIX32
1022         movl    %ss, %eax
1023         /* see if on espfix stack */
1024         cmpw    $__ESPFIX_SS, %ax
1025         jne     .Lno_fixup_\@
1026         /* switch to normal stack */
1027         FIXUP_ESPFIX_STACK
1028 .Lno_fixup_\@:
1029 #endif
1030 .endm
1031 
1032 SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1033         /* the function address is in %gs's slot on the stack */
1034         SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1035         ENCODE_FRAME_POINTER
1036 
1037         movl    PT_GS(%esp), %edi               # get the function address
1038 
1039         /* fixup orig %eax */
1040         movl    PT_ORIG_EAX(%esp), %edx         # get the error code
1041         movl    $-1, PT_ORIG_EAX(%esp)          # no syscall to restart
1042 
1043         movl    %esp, %eax                      # pt_regs pointer
1044         CALL_NOSPEC edi
1045 
1046 handle_exception_return:
1047 #ifdef CONFIG_VM86
1048         movl    PT_EFLAGS(%esp), %eax           # mix EFLAGS and CS
1049         movb    PT_CS(%esp), %al
1050         andl    $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1051 #else
1052         /*
1053          * We can be coming here from child spawned by kernel_thread().
1054          */
1055         movl    PT_CS(%esp), %eax
1056         andl    $SEGMENT_RPL_MASK, %eax
1057 #endif
1058         cmpl    $USER_RPL, %eax                 # returning to v8086 or userspace ?
1059         jnb     ret_to_user
1060 
1061         PARANOID_EXIT_TO_KERNEL_MODE
1062         BUG_IF_WRONG_CR3
1063         RESTORE_REGS 4
1064         jmp     .Lirq_return
1065 
1066 ret_to_user:
1067         movl    %esp, %eax
1068         jmp     restore_all_switch_stack
1069 SYM_CODE_END(handle_exception)
1070 
1071 SYM_CODE_START(asm_exc_double_fault)
1072 1:
1073         /*
1074          * This is a task gate handler, not an interrupt gate handler.
1075          * The error code is on the stack, but the stack is otherwise
1076          * empty.  Interrupts are off.  Our state is sane with the following
1077          * exceptions:
1078          *
1079          *  - CR0.TS is set.  "TS" literally means "task switched".
1080          *  - EFLAGS.NT is set because we're a "nested task".
1081          *  - The doublefault TSS has back_link set and has been marked busy.
1082          *  - TR points to the doublefault TSS and the normal TSS is busy.
1083          *  - CR3 is the normal kernel PGD.  This would be delightful, except
1084          *    that the CPU didn't bother to save the old CR3 anywhere.  This
1085          *    would make it very awkward to return back to the context we came
1086          *    from.
1087          *
1088          * The rest of EFLAGS is sanitized for us, so we don't need to
1089          * worry about AC or DF.
1090          *
1091          * Don't even bother popping the error code.  It's always zero,
1092          * and ignoring it makes us a bit more robust against buggy
1093          * hypervisor task gate implementations.
1094          *
1095          * We will manually undo the task switch instead of doing a
1096          * task-switching IRET.
1097          */
1098 
1099         clts                            /* clear CR0.TS */
1100         pushl   $X86_EFLAGS_FIXED
1101         popfl                           /* clear EFLAGS.NT */
1102 
1103         call    doublefault_shim
1104 
1105         /* We don't support returning, so we have no IRET here. */
1106 1:
1107         hlt
1108         jmp 1b
1109 SYM_CODE_END(asm_exc_double_fault)
1110 
1111 /*
1112  * NMI is doubly nasty.  It can happen on the first instruction of
1113  * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1114  * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1115  * switched stacks.  We handle both conditions by simply checking whether we
1116  * interrupted kernel code running on the SYSENTER stack.
1117  */
1118 SYM_CODE_START(asm_exc_nmi)
1119         ASM_CLAC
1120 
1121 #ifdef CONFIG_X86_ESPFIX32
1122         /*
1123          * ESPFIX_SS is only ever set on the return to user path
1124          * after we've switched to the entry stack.
1125          */
1126         pushl   %eax
1127         movl    %ss, %eax
1128         cmpw    $__ESPFIX_SS, %ax
1129         popl    %eax
1130         je      .Lnmi_espfix_stack
1131 #endif
1132 
1133         pushl   %eax                            # pt_regs->orig_ax
1134         SAVE_ALL_NMI cr3_reg=%edi
1135         ENCODE_FRAME_POINTER
1136         xorl    %edx, %edx                      # zero error code
1137         movl    %esp, %eax                      # pt_regs pointer
1138 
1139         /* Are we currently on the SYSENTER stack? */
1140         movl    PER_CPU_VAR(cpu_entry_area), %ecx
1141         addl    $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1142         subl    %eax, %ecx      /* ecx = (end of entry_stack) - esp */
1143         cmpl    $SIZEOF_entry_stack, %ecx
1144         jb      .Lnmi_from_sysenter_stack
1145 
1146         /* Not on SYSENTER stack. */
1147         call    exc_nmi
1148         jmp     .Lnmi_return
1149 
1150 .Lnmi_from_sysenter_stack:
1151         /*
1152          * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1153          * is using the thread stack right now, so it's safe for us to use it.
1154          */
1155         movl    %esp, %ebx
1156         movl    PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esp
1157         call    exc_nmi
1158         movl    %ebx, %esp
1159 
1160 .Lnmi_return:
1161 #ifdef CONFIG_X86_ESPFIX32
1162         testl   $CS_FROM_ESPFIX, PT_CS(%esp)
1163         jnz     .Lnmi_from_espfix
1164 #endif
1165 
1166         CHECK_AND_APPLY_ESPFIX
1167         RESTORE_ALL_NMI cr3_reg=%edi pop=4
1168         CLEAR_CPU_BUFFERS
1169         jmp     .Lirq_return
1170 
1171 #ifdef CONFIG_X86_ESPFIX32
1172 .Lnmi_espfix_stack:
1173         /*
1174          * Create the pointer to LSS back
1175          */
1176         pushl   %ss
1177         pushl   %esp
1178         addl    $4, (%esp)
1179 
1180         /* Copy the (short) IRET frame */
1181         pushl   4*4(%esp)       # flags
1182         pushl   4*4(%esp)       # cs
1183         pushl   4*4(%esp)       # ip
1184 
1185         pushl   %eax            # orig_ax
1186 
1187         SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1188         ENCODE_FRAME_POINTER
1189 
1190         /* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1191         xorl    $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1192 
1193         xorl    %edx, %edx                      # zero error code
1194         movl    %esp, %eax                      # pt_regs pointer
1195         jmp     .Lnmi_from_sysenter_stack
1196 
1197 .Lnmi_from_espfix:
1198         RESTORE_ALL_NMI cr3_reg=%edi
1199         /*
1200          * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1201          * fix up the gap and long frame:
1202          *
1203          *  3 - original frame  (exception)
1204          *  2 - ESPFIX block    (above)
1205          *  6 - gap             (FIXUP_FRAME)
1206          *  5 - long frame      (FIXUP_FRAME)
1207          *  1 - orig_ax
1208          */
1209         lss     (1+5+6)*4(%esp), %esp                   # back to espfix stack
1210         CLEAR_CPU_BUFFERS
1211         jmp     .Lirq_return
1212 #endif
1213 SYM_CODE_END(asm_exc_nmi)
1214 
1215 .pushsection .text, "ax"
1216 SYM_CODE_START(rewind_stack_and_make_dead)
1217         /* Prevent any naive code from trying to unwind to our caller. */
1218         xorl    %ebp, %ebp
1219 
1220         movl    PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esi
1221         leal    -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1222 
1223         call    make_task_dead
1224 1:      jmp 1b
1225 SYM_CODE_END(rewind_stack_and_make_dead)
1226 .popsection

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php