1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/arch/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21 #include <linux/export.h> 22 #include <linux/linkage.h> 23 #include <asm/segment.h> 24 #include <asm/cache.h> 25 #include <asm/errno.h> 26 #include <asm/asm-offsets.h> 27 #include <asm/msr.h> 28 #include <asm/unistd.h> 29 #include <asm/thread_info.h> 30 #include <asm/hw_irq.h> 31 #include <asm/page_types.h> 32 #include <asm/irqflags.h> 33 #include <asm/paravirt.h> 34 #include <asm/percpu.h> 35 #include <asm/asm.h> 36 #include <asm/smap.h> 37 #include <asm/pgtable_types.h> 38 #include <asm/frame.h> 39 #include <asm/trapnr.h> 40 #include <asm/nospec-branch.h> 41 #include <asm/fsgsbase.h> 42 #include <linux/err.h> 43 44 #include "calling.h" 45 46 .code64 47 .section .entry.text, "ax" 48 49 /* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87 SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_ENTRY 89 ENDBR 90 91 swapgs 92 /* tss.sp2 is scratch space. */ 93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 95 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 96 97 SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 98 ANNOTATE_NOENDBR 99 100 /* Construct struct pt_regs on stack */ 101 pushq $__USER_DS /* pt_regs->ss */ 102 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 103 pushq %r11 /* pt_regs->flags */ 104 pushq $__USER_CS /* pt_regs->cs */ 105 pushq %rcx /* pt_regs->ip */ 106 SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 107 pushq %rax /* pt_regs->orig_ax */ 108 109 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 110 111 /* IRQs are off. */ 112 movq %rsp, %rdi 113 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 114 movslq %eax, %rsi 115 116 /* clobbers %rax, make sure it is after saving the syscall nr */ 117 IBRS_ENTER 118 UNTRAIN_RET 119 CLEAR_BRANCH_HISTORY 120 121 call do_syscall_64 /* returns with IRQs disabled */ 122 123 /* 124 * Try to use SYSRET instead of IRET if we're returning to 125 * a completely clean 64-bit userspace context. If we're not, 126 * go to the slow exit path. 127 * In the Xen PV case we must use iret anyway. 128 */ 129 130 ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \ 131 "jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 132 133 /* 134 * We win! This label is here just for ease of understanding 135 * perf profiles. Nothing jumps here. 136 */ 137 syscall_return_via_sysret: 138 IBRS_EXIT 139 POP_REGS pop_rdi=0 140 141 /* 142 * Now all regs are restored except RSP and RDI. 143 * Save old stack pointer and switch to trampoline stack. 144 */ 145 movq %rsp, %rdi 146 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 147 UNWIND_HINT_END_OF_STACK 148 149 pushq RSP-RDI(%rdi) /* RSP */ 150 pushq (%rdi) /* RDI */ 151 152 /* 153 * We are on the trampoline stack. All regs except RDI are live. 154 * We can do future final exit work right here. 155 */ 156 STACKLEAK_ERASE_NOCLOBBER 157 158 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 159 160 popq %rdi 161 popq %rsp 162 SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL) 163 ANNOTATE_NOENDBR 164 swapgs 165 CLEAR_CPU_BUFFERS 166 sysretq 167 SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL) 168 ANNOTATE_NOENDBR 169 int3 170 SYM_CODE_END(entry_SYSCALL_64) 171 172 /* 173 * %rdi: prev task 174 * %rsi: next task 175 */ 176 .pushsection .text, "ax" 177 SYM_FUNC_START(__switch_to_asm) 178 /* 179 * Save callee-saved registers 180 * This must match the order in inactive_task_frame 181 */ 182 pushq %rbp 183 pushq %rbx 184 pushq %r12 185 pushq %r13 186 pushq %r14 187 pushq %r15 188 189 /* switch stack */ 190 movq %rsp, TASK_threadsp(%rdi) 191 movq TASK_threadsp(%rsi), %rsp 192 193 #ifdef CONFIG_STACKPROTECTOR 194 movq TASK_stack_canary(%rsi), %rbx 195 movq %rbx, PER_CPU_VAR(fixed_percpu_data + FIXED_stack_canary) 196 #endif 197 198 /* 199 * When switching from a shallower to a deeper call stack 200 * the RSB may either underflow or use entries populated 201 * with userspace addresses. On CPUs where those concerns 202 * exist, overwrite the RSB with entries which capture 203 * speculative execution to prevent attack. 204 */ 205 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 206 207 /* restore callee-saved registers */ 208 popq %r15 209 popq %r14 210 popq %r13 211 popq %r12 212 popq %rbx 213 popq %rbp 214 215 jmp __switch_to 216 SYM_FUNC_END(__switch_to_asm) 217 .popsection 218 219 /* 220 * A newly forked process directly context switches into this address. 221 * 222 * rax: prev task we switched from 223 * rbx: kernel thread func (NULL for user thread) 224 * r12: kernel thread arg 225 */ 226 .pushsection .text, "ax" 227 SYM_CODE_START(ret_from_fork_asm) 228 /* 229 * This is the start of the kernel stack; even through there's a 230 * register set at the top, the regset isn't necessarily coherent 231 * (consider kthreads) and one cannot unwind further. 232 * 233 * This ensures stack unwinds of kernel threads terminate in a known 234 * good state. 235 */ 236 UNWIND_HINT_END_OF_STACK 237 ANNOTATE_NOENDBR // copy_thread 238 CALL_DEPTH_ACCOUNT 239 240 movq %rax, %rdi /* prev */ 241 movq %rsp, %rsi /* regs */ 242 movq %rbx, %rdx /* fn */ 243 movq %r12, %rcx /* fn_arg */ 244 call ret_from_fork 245 246 /* 247 * Set the stack state to what is expected for the target function 248 * -- at this point the register set should be a valid user set 249 * and unwind should work normally. 250 */ 251 UNWIND_HINT_REGS 252 253 #ifdef CONFIG_X86_FRED 254 ALTERNATIVE "jmp swapgs_restore_regs_and_return_to_usermode", \ 255 "jmp asm_fred_exit_user", X86_FEATURE_FRED 256 #else 257 jmp swapgs_restore_regs_and_return_to_usermode 258 #endif 259 SYM_CODE_END(ret_from_fork_asm) 260 .popsection 261 262 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF 263 #ifdef CONFIG_DEBUG_ENTRY 264 pushq %rax 265 SAVE_FLAGS 266 testl $X86_EFLAGS_IF, %eax 267 jz .Lokay_\@ 268 ud2 269 .Lokay_\@: 270 popq %rax 271 #endif 272 .endm 273 274 SYM_CODE_START(xen_error_entry) 275 ANNOTATE_NOENDBR 276 UNWIND_HINT_FUNC 277 PUSH_AND_CLEAR_REGS save_ret=1 278 ENCODE_FRAME_POINTER 8 279 UNTRAIN_RET_FROM_CALL 280 RET 281 SYM_CODE_END(xen_error_entry) 282 283 /** 284 * idtentry_body - Macro to emit code calling the C function 285 * @cfunc: C function to be called 286 * @has_error_code: Hardware pushed error code on stack 287 */ 288 .macro idtentry_body cfunc has_error_code:req 289 290 /* 291 * Call error_entry() and switch to the task stack if from userspace. 292 * 293 * When in XENPV, it is already in the task stack, and it can't fault 294 * for native_iret() nor native_load_gs_index() since XENPV uses its 295 * own pvops for IRET and load_gs_index(). And it doesn't need to 296 * switch the CR3. So it can skip invoking error_entry(). 297 */ 298 ALTERNATIVE "call error_entry; movq %rax, %rsp", \ 299 "call xen_error_entry", X86_FEATURE_XENPV 300 301 ENCODE_FRAME_POINTER 302 UNWIND_HINT_REGS 303 304 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 305 306 .if \has_error_code == 1 307 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 308 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 309 .endif 310 311 call \cfunc 312 313 /* For some configurations \cfunc ends up being a noreturn. */ 314 REACHABLE 315 316 jmp error_return 317 .endm 318 319 /** 320 * idtentry - Macro to generate entry stubs for simple IDT entries 321 * @vector: Vector number 322 * @asmsym: ASM symbol for the entry point 323 * @cfunc: C function to be called 324 * @has_error_code: Hardware pushed error code on stack 325 * 326 * The macro emits code to set up the kernel context for straight forward 327 * and simple IDT entries. No IST stack, no paranoid entry checks. 328 */ 329 .macro idtentry vector asmsym cfunc has_error_code:req 330 SYM_CODE_START(\asmsym) 331 332 .if \vector == X86_TRAP_BP 333 /* #BP advances %rip to the next instruction */ 334 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0 335 .else 336 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 337 .endif 338 339 ENDBR 340 ASM_CLAC 341 cld 342 343 .if \has_error_code == 0 344 pushq $-1 /* ORIG_RAX: no syscall to restart */ 345 .endif 346 347 .if \vector == X86_TRAP_BP 348 /* 349 * If coming from kernel space, create a 6-word gap to allow the 350 * int3 handler to emulate a call instruction. 351 */ 352 testb $3, CS-ORIG_RAX(%rsp) 353 jnz .Lfrom_usermode_no_gap_\@ 354 .rept 6 355 pushq 5*8(%rsp) 356 .endr 357 UNWIND_HINT_IRET_REGS offset=8 358 .Lfrom_usermode_no_gap_\@: 359 .endif 360 361 idtentry_body \cfunc \has_error_code 362 363 _ASM_NOKPROBE(\asmsym) 364 SYM_CODE_END(\asmsym) 365 .endm 366 367 /* 368 * Interrupt entry/exit. 369 * 370 + The interrupt stubs push (vector) onto the stack, which is the error_code 371 * position of idtentry exceptions, and jump to one of the two idtentry points 372 * (common/spurious). 373 * 374 * common_interrupt is a hotpath, align it to a cache line 375 */ 376 .macro idtentry_irq vector cfunc 377 .p2align CONFIG_X86_L1_CACHE_SHIFT 378 idtentry \vector asm_\cfunc \cfunc has_error_code=1 379 .endm 380 381 /** 382 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 383 * @vector: Vector number 384 * @asmsym: ASM symbol for the entry point 385 * @cfunc: C function to be called 386 * 387 * The macro emits code to set up the kernel context for #MC and #DB 388 * 389 * If the entry comes from user space it uses the normal entry path 390 * including the return to user space work and preemption checks on 391 * exit. 392 * 393 * If hits in kernel mode then it needs to go through the paranoid 394 * entry as the exception can hit any random state. No preemption 395 * check on exit to keep the paranoid path simple. 396 */ 397 .macro idtentry_mce_db vector asmsym cfunc 398 SYM_CODE_START(\asmsym) 399 UNWIND_HINT_IRET_ENTRY 400 ENDBR 401 ASM_CLAC 402 cld 403 404 pushq $-1 /* ORIG_RAX: no syscall to restart */ 405 406 /* 407 * If the entry is from userspace, switch stacks and treat it as 408 * a normal entry. 409 */ 410 testb $3, CS-ORIG_RAX(%rsp) 411 jnz .Lfrom_usermode_switch_stack_\@ 412 413 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 414 call paranoid_entry 415 416 UNWIND_HINT_REGS 417 418 movq %rsp, %rdi /* pt_regs pointer */ 419 420 call \cfunc 421 422 jmp paranoid_exit 423 424 /* Switch to the regular task stack and use the noist entry point */ 425 .Lfrom_usermode_switch_stack_\@: 426 idtentry_body noist_\cfunc, has_error_code=0 427 428 _ASM_NOKPROBE(\asmsym) 429 SYM_CODE_END(\asmsym) 430 .endm 431 432 #ifdef CONFIG_AMD_MEM_ENCRYPT 433 /** 434 * idtentry_vc - Macro to generate entry stub for #VC 435 * @vector: Vector number 436 * @asmsym: ASM symbol for the entry point 437 * @cfunc: C function to be called 438 * 439 * The macro emits code to set up the kernel context for #VC. The #VC handler 440 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 441 * 442 * To make this work the #VC entry code tries its best to pretend it doesn't use 443 * an IST stack by switching to the task stack if coming from user-space (which 444 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 445 * entered from kernel-mode. 446 * 447 * If entered from kernel-mode the return stack is validated first, and if it is 448 * not safe to use (e.g. because it points to the entry stack) the #VC handler 449 * will switch to a fall-back stack (VC2) and call a special handler function. 450 * 451 * The macro is only used for one vector, but it is planned to be extended in 452 * the future for the #HV exception. 453 */ 454 .macro idtentry_vc vector asmsym cfunc 455 SYM_CODE_START(\asmsym) 456 UNWIND_HINT_IRET_ENTRY 457 ENDBR 458 ASM_CLAC 459 cld 460 461 /* 462 * If the entry is from userspace, switch stacks and treat it as 463 * a normal entry. 464 */ 465 testb $3, CS-ORIG_RAX(%rsp) 466 jnz .Lfrom_usermode_switch_stack_\@ 467 468 /* 469 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 470 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 471 */ 472 call paranoid_entry 473 474 UNWIND_HINT_REGS 475 476 /* 477 * Switch off the IST stack to make it free for nested exceptions. The 478 * vc_switch_off_ist() function will switch back to the interrupted 479 * stack if it is safe to do so. If not it switches to the VC fall-back 480 * stack. 481 */ 482 movq %rsp, %rdi /* pt_regs pointer */ 483 call vc_switch_off_ist 484 movq %rax, %rsp /* Switch to new stack */ 485 486 ENCODE_FRAME_POINTER 487 UNWIND_HINT_REGS 488 489 /* Update pt_regs */ 490 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 491 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 492 493 movq %rsp, %rdi /* pt_regs pointer */ 494 495 call kernel_\cfunc 496 497 /* 498 * No need to switch back to the IST stack. The current stack is either 499 * identical to the stack in the IRET frame or the VC fall-back stack, 500 * so it is definitely mapped even with PTI enabled. 501 */ 502 jmp paranoid_exit 503 504 /* Switch to the regular task stack */ 505 .Lfrom_usermode_switch_stack_\@: 506 idtentry_body user_\cfunc, has_error_code=1 507 508 _ASM_NOKPROBE(\asmsym) 509 SYM_CODE_END(\asmsym) 510 .endm 511 #endif 512 513 /* 514 * Double fault entry. Straight paranoid. No checks from which context 515 * this comes because for the espfix induced #DF this would do the wrong 516 * thing. 517 */ 518 .macro idtentry_df vector asmsym cfunc 519 SYM_CODE_START(\asmsym) 520 UNWIND_HINT_IRET_ENTRY offset=8 521 ENDBR 522 ASM_CLAC 523 cld 524 525 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 526 call paranoid_entry 527 UNWIND_HINT_REGS 528 529 movq %rsp, %rdi /* pt_regs pointer into first argument */ 530 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 531 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 532 call \cfunc 533 534 /* For some configurations \cfunc ends up being a noreturn. */ 535 REACHABLE 536 537 jmp paranoid_exit 538 539 _ASM_NOKPROBE(\asmsym) 540 SYM_CODE_END(\asmsym) 541 .endm 542 543 /* 544 * Include the defines which emit the idt entries which are shared 545 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 546 * so the stacktrace boundary checks work. 547 */ 548 __ALIGN 549 .globl __irqentry_text_start 550 __irqentry_text_start: 551 552 #include <asm/idtentry.h> 553 554 __ALIGN 555 .globl __irqentry_text_end 556 __irqentry_text_end: 557 ANNOTATE_NOENDBR 558 559 SYM_CODE_START_LOCAL(common_interrupt_return) 560 SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 561 IBRS_EXIT 562 #ifdef CONFIG_XEN_PV 563 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 564 #endif 565 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 566 ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI 567 #endif 568 569 STACKLEAK_ERASE 570 POP_REGS 571 add $8, %rsp /* orig_ax */ 572 UNWIND_HINT_IRET_REGS 573 574 .Lswapgs_and_iret: 575 swapgs 576 CLEAR_CPU_BUFFERS 577 /* Assert that the IRET frame indicates user mode. */ 578 testb $3, 8(%rsp) 579 jnz .Lnative_iret 580 ud2 581 582 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 583 .Lpti_restore_regs_and_return_to_usermode: 584 POP_REGS pop_rdi=0 585 586 /* 587 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 588 * Save old stack pointer and switch to trampoline stack. 589 */ 590 movq %rsp, %rdi 591 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 592 UNWIND_HINT_END_OF_STACK 593 594 /* Copy the IRET frame to the trampoline stack. */ 595 pushq 6*8(%rdi) /* SS */ 596 pushq 5*8(%rdi) /* RSP */ 597 pushq 4*8(%rdi) /* EFLAGS */ 598 pushq 3*8(%rdi) /* CS */ 599 pushq 2*8(%rdi) /* RIP */ 600 601 /* Push user RDI on the trampoline stack. */ 602 pushq (%rdi) 603 604 /* 605 * We are on the trampoline stack. All regs except RDI are live. 606 * We can do future final exit work right here. 607 */ 608 STACKLEAK_ERASE_NOCLOBBER 609 610 push %rax 611 SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax 612 pop %rax 613 614 /* Restore RDI. */ 615 popq %rdi 616 jmp .Lswapgs_and_iret 617 #endif 618 619 SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 620 #ifdef CONFIG_DEBUG_ENTRY 621 /* Assert that pt_regs indicates kernel mode. */ 622 testb $3, CS(%rsp) 623 jz 1f 624 ud2 625 1: 626 #endif 627 POP_REGS 628 addq $8, %rsp /* skip regs->orig_ax */ 629 /* 630 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 631 * when returning from IPI handler. 632 */ 633 #ifdef CONFIG_XEN_PV 634 SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 635 ANNOTATE_NOENDBR 636 .byte 0xe9 637 .long .Lnative_iret - (. + 4) 638 #endif 639 640 .Lnative_iret: 641 UNWIND_HINT_IRET_REGS 642 /* 643 * Are we returning to a stack segment from the LDT? Note: in 644 * 64-bit mode SS:RSP on the exception stack is always valid. 645 */ 646 #ifdef CONFIG_X86_ESPFIX64 647 testb $4, (SS-RIP)(%rsp) 648 jnz native_irq_return_ldt 649 #endif 650 651 SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 652 ANNOTATE_NOENDBR // exc_double_fault 653 /* 654 * This may fault. Non-paranoid faults on return to userspace are 655 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 656 * Double-faults due to espfix64 are handled in exc_double_fault. 657 * Other faults here are fatal. 658 */ 659 iretq 660 661 #ifdef CONFIG_X86_ESPFIX64 662 native_irq_return_ldt: 663 /* 664 * We are running with user GSBASE. All GPRs contain their user 665 * values. We have a percpu ESPFIX stack that is eight slots 666 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 667 * of the ESPFIX stack. 668 * 669 * We clobber RAX and RDI in this code. We stash RDI on the 670 * normal stack and RAX on the ESPFIX stack. 671 * 672 * The ESPFIX stack layout we set up looks like this: 673 * 674 * --- top of ESPFIX stack --- 675 * SS 676 * RSP 677 * RFLAGS 678 * CS 679 * RIP <-- RSP points here when we're done 680 * RAX <-- espfix_waddr points here 681 * --- bottom of ESPFIX stack --- 682 */ 683 684 pushq %rdi /* Stash user RDI */ 685 swapgs /* to kernel GS */ 686 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 687 688 movq PER_CPU_VAR(espfix_waddr), %rdi 689 movq %rax, (0*8)(%rdi) /* user RAX */ 690 movq (1*8)(%rsp), %rax /* user RIP */ 691 movq %rax, (1*8)(%rdi) 692 movq (2*8)(%rsp), %rax /* user CS */ 693 movq %rax, (2*8)(%rdi) 694 movq (3*8)(%rsp), %rax /* user RFLAGS */ 695 movq %rax, (3*8)(%rdi) 696 movq (5*8)(%rsp), %rax /* user SS */ 697 movq %rax, (5*8)(%rdi) 698 movq (4*8)(%rsp), %rax /* user RSP */ 699 movq %rax, (4*8)(%rdi) 700 /* Now RAX == RSP. */ 701 702 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 703 704 /* 705 * espfix_stack[31:16] == 0. The page tables are set up such that 706 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 707 * espfix_waddr for any X. That is, there are 65536 RO aliases of 708 * the same page. Set up RSP so that RSP[31:16] contains the 709 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 710 * still points to an RO alias of the ESPFIX stack. 711 */ 712 orq PER_CPU_VAR(espfix_stack), %rax 713 714 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 715 swapgs /* to user GS */ 716 popq %rdi /* Restore user RDI */ 717 718 movq %rax, %rsp 719 UNWIND_HINT_IRET_REGS offset=8 720 721 /* 722 * At this point, we cannot write to the stack any more, but we can 723 * still read. 724 */ 725 popq %rax /* Restore user RAX */ 726 727 CLEAR_CPU_BUFFERS 728 729 /* 730 * RSP now points to an ordinary IRET frame, except that the page 731 * is read-only and RSP[31:16] are preloaded with the userspace 732 * values. We can now IRET back to userspace. 733 */ 734 jmp native_irq_return_iret 735 #endif 736 SYM_CODE_END(common_interrupt_return) 737 _ASM_NOKPROBE(common_interrupt_return) 738 739 /* 740 * Reload gs selector with exception handling 741 * di: new selector 742 * 743 * Is in entry.text as it shouldn't be instrumented. 744 */ 745 SYM_FUNC_START(asm_load_gs_index) 746 FRAME_BEGIN 747 swapgs 748 .Lgs_change: 749 ANNOTATE_NOENDBR // error_entry 750 movl %edi, %gs 751 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 752 swapgs 753 FRAME_END 754 RET 755 756 /* running with kernelgs */ 757 .Lbad_gs: 758 swapgs /* switch back to user gs */ 759 .macro ZAP_GS 760 /* This can't be a string because the preprocessor needs to see it. */ 761 movl $__USER_DS, %eax 762 movl %eax, %gs 763 .endm 764 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 765 xorl %eax, %eax 766 movl %eax, %gs 767 jmp 2b 768 769 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 770 771 SYM_FUNC_END(asm_load_gs_index) 772 EXPORT_SYMBOL(asm_load_gs_index) 773 774 #ifdef CONFIG_XEN_PV 775 /* 776 * A note on the "critical region" in our callback handler. 777 * We want to avoid stacking callback handlers due to events occurring 778 * during handling of the last event. To do this, we keep events disabled 779 * until we've done all processing. HOWEVER, we must enable events before 780 * popping the stack frame (can't be done atomically) and so it would still 781 * be possible to get enough handler activations to overflow the stack. 782 * Although unlikely, bugs of that kind are hard to track down, so we'd 783 * like to avoid the possibility. 784 * So, on entry to the handler we detect whether we interrupted an 785 * existing activation in its critical region -- if so, we pop the current 786 * activation and restart the handler using the previous one. 787 * 788 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 789 */ 790 __FUNC_ALIGN 791 SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback) 792 793 /* 794 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 795 * see the correct pointer to the pt_regs 796 */ 797 UNWIND_HINT_FUNC 798 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 799 UNWIND_HINT_REGS 800 801 call xen_pv_evtchn_do_upcall 802 803 jmp error_return 804 SYM_CODE_END(exc_xen_hypervisor_callback) 805 806 /* 807 * Hypervisor uses this for application faults while it executes. 808 * We get here for two reasons: 809 * 1. Fault while reloading DS, ES, FS or GS 810 * 2. Fault while executing IRET 811 * Category 1 we do not need to fix up as Xen has already reloaded all segment 812 * registers that could be reloaded and zeroed the others. 813 * Category 2 we fix up by killing the current process. We cannot use the 814 * normal Linux return path in this case because if we use the IRET hypercall 815 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 816 * We distinguish between categories by comparing each saved segment register 817 * with its current contents: any discrepancy means we in category 1. 818 */ 819 __FUNC_ALIGN 820 SYM_CODE_START_NOALIGN(xen_failsafe_callback) 821 UNWIND_HINT_UNDEFINED 822 ENDBR 823 movl %ds, %ecx 824 cmpw %cx, 0x10(%rsp) 825 jne 1f 826 movl %es, %ecx 827 cmpw %cx, 0x18(%rsp) 828 jne 1f 829 movl %fs, %ecx 830 cmpw %cx, 0x20(%rsp) 831 jne 1f 832 movl %gs, %ecx 833 cmpw %cx, 0x28(%rsp) 834 jne 1f 835 /* All segments match their saved values => Category 2 (Bad IRET). */ 836 movq (%rsp), %rcx 837 movq 8(%rsp), %r11 838 addq $0x30, %rsp 839 pushq $0 /* RIP */ 840 UNWIND_HINT_IRET_REGS offset=8 841 jmp asm_exc_general_protection 842 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 843 movq (%rsp), %rcx 844 movq 8(%rsp), %r11 845 addq $0x30, %rsp 846 UNWIND_HINT_IRET_REGS 847 pushq $-1 /* orig_ax = -1 => not a system call */ 848 PUSH_AND_CLEAR_REGS 849 ENCODE_FRAME_POINTER 850 jmp error_return 851 SYM_CODE_END(xen_failsafe_callback) 852 #endif /* CONFIG_XEN_PV */ 853 854 /* 855 * Save all registers in pt_regs. Return GSBASE related information 856 * in EBX depending on the availability of the FSGSBASE instructions: 857 * 858 * FSGSBASE R/EBX 859 * N 0 -> SWAPGS on exit 860 * 1 -> no SWAPGS on exit 861 * 862 * Y GSBASE value at entry, must be restored in paranoid_exit 863 * 864 * R14 - old CR3 865 * R15 - old SPEC_CTRL 866 */ 867 SYM_CODE_START(paranoid_entry) 868 ANNOTATE_NOENDBR 869 UNWIND_HINT_FUNC 870 PUSH_AND_CLEAR_REGS save_ret=1 871 ENCODE_FRAME_POINTER 8 872 873 /* 874 * Always stash CR3 in %r14. This value will be restored, 875 * verbatim, at exit. Needed if paranoid_entry interrupted 876 * another entry that already switched to the user CR3 value 877 * but has not yet returned to userspace. 878 * 879 * This is also why CS (stashed in the "iret frame" by the 880 * hardware at entry) can not be used: this may be a return 881 * to kernel code, but with a user CR3 value. 882 * 883 * Switching CR3 does not depend on kernel GSBASE so it can 884 * be done before switching to the kernel GSBASE. This is 885 * required for FSGSBASE because the kernel GSBASE has to 886 * be retrieved from a kernel internal table. 887 */ 888 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 889 890 /* 891 * Handling GSBASE depends on the availability of FSGSBASE. 892 * 893 * Without FSGSBASE the kernel enforces that negative GSBASE 894 * values indicate kernel GSBASE. With FSGSBASE no assumptions 895 * can be made about the GSBASE value when entering from user 896 * space. 897 */ 898 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 899 900 /* 901 * Read the current GSBASE and store it in %rbx unconditionally, 902 * retrieve and set the current CPUs kernel GSBASE. The stored value 903 * has to be restored in paranoid_exit unconditionally. 904 * 905 * The unconditional write to GS base below ensures that no subsequent 906 * loads based on a mispredicted GS base can happen, therefore no LFENCE 907 * is needed here. 908 */ 909 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 910 jmp .Lparanoid_gsbase_done 911 912 .Lparanoid_entry_checkgs: 913 /* EBX = 1 -> kernel GSBASE active, no restore required */ 914 movl $1, %ebx 915 916 /* 917 * The kernel-enforced convention is a negative GSBASE indicates 918 * a kernel value. No SWAPGS needed on entry and exit. 919 */ 920 movl $MSR_GS_BASE, %ecx 921 rdmsr 922 testl %edx, %edx 923 js .Lparanoid_kernel_gsbase 924 925 /* EBX = 0 -> SWAPGS required on exit */ 926 xorl %ebx, %ebx 927 swapgs 928 .Lparanoid_kernel_gsbase: 929 FENCE_SWAPGS_KERNEL_ENTRY 930 .Lparanoid_gsbase_done: 931 932 /* 933 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like 934 * CR3 above, keep the old value in a callee saved register. 935 */ 936 IBRS_ENTER save_reg=%r15 937 UNTRAIN_RET_FROM_CALL 938 939 RET 940 SYM_CODE_END(paranoid_entry) 941 942 /* 943 * "Paranoid" exit path from exception stack. This is invoked 944 * only on return from non-NMI IST interrupts that came 945 * from kernel space. 946 * 947 * We may be returning to very strange contexts (e.g. very early 948 * in syscall entry), so checking for preemption here would 949 * be complicated. Fortunately, there's no good reason to try 950 * to handle preemption here. 951 * 952 * R/EBX contains the GSBASE related information depending on the 953 * availability of the FSGSBASE instructions: 954 * 955 * FSGSBASE R/EBX 956 * N 0 -> SWAPGS on exit 957 * 1 -> no SWAPGS on exit 958 * 959 * Y User space GSBASE, must be restored unconditionally 960 * 961 * R14 - old CR3 962 * R15 - old SPEC_CTRL 963 */ 964 SYM_CODE_START_LOCAL(paranoid_exit) 965 UNWIND_HINT_REGS 966 967 /* 968 * Must restore IBRS state before both CR3 and %GS since we need access 969 * to the per-CPU x86_spec_ctrl_shadow variable. 970 */ 971 IBRS_EXIT save_reg=%r15 972 973 /* 974 * The order of operations is important. PARANOID_RESTORE_CR3 requires 975 * kernel GSBASE. 976 * 977 * NB to anyone to try to optimize this code: this code does 978 * not execute at all for exceptions from user mode. Those 979 * exceptions go through error_return instead. 980 */ 981 PARANOID_RESTORE_CR3 scratch_reg=%rax save_reg=%r14 982 983 /* Handle the three GSBASE cases */ 984 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 985 986 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 987 wrgsbase %rbx 988 jmp restore_regs_and_return_to_kernel 989 990 .Lparanoid_exit_checkgs: 991 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 992 testl %ebx, %ebx 993 jnz restore_regs_and_return_to_kernel 994 995 /* We are returning to a context with user GSBASE */ 996 swapgs 997 jmp restore_regs_and_return_to_kernel 998 SYM_CODE_END(paranoid_exit) 999 1000 /* 1001 * Switch GS and CR3 if needed. 1002 */ 1003 SYM_CODE_START(error_entry) 1004 ANNOTATE_NOENDBR 1005 UNWIND_HINT_FUNC 1006 1007 PUSH_AND_CLEAR_REGS save_ret=1 1008 ENCODE_FRAME_POINTER 8 1009 1010 testb $3, CS+8(%rsp) 1011 jz .Lerror_kernelspace 1012 1013 /* 1014 * We entered from user mode or we're pretending to have entered 1015 * from user mode due to an IRET fault. 1016 */ 1017 swapgs 1018 FENCE_SWAPGS_USER_ENTRY 1019 /* We have user CR3. Change to kernel CR3. */ 1020 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1021 IBRS_ENTER 1022 UNTRAIN_RET_FROM_CALL 1023 1024 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1025 /* Put us onto the real thread stack. */ 1026 jmp sync_regs 1027 1028 /* 1029 * There are two places in the kernel that can potentially fault with 1030 * usergs. Handle them here. B stepping K8s sometimes report a 1031 * truncated RIP for IRET exceptions returning to compat mode. Check 1032 * for these here too. 1033 */ 1034 .Lerror_kernelspace: 1035 leaq native_irq_return_iret(%rip), %rcx 1036 cmpq %rcx, RIP+8(%rsp) 1037 je .Lerror_bad_iret 1038 movl %ecx, %eax /* zero extend */ 1039 cmpq %rax, RIP+8(%rsp) 1040 je .Lbstep_iret 1041 cmpq $.Lgs_change, RIP+8(%rsp) 1042 jne .Lerror_entry_done_lfence 1043 1044 /* 1045 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1046 * gsbase and proceed. We'll fix up the exception and land in 1047 * .Lgs_change's error handler with kernel gsbase. 1048 */ 1049 swapgs 1050 1051 /* 1052 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1053 * kernel or user gsbase. 1054 */ 1055 .Lerror_entry_done_lfence: 1056 FENCE_SWAPGS_KERNEL_ENTRY 1057 CALL_DEPTH_ACCOUNT 1058 leaq 8(%rsp), %rax /* return pt_regs pointer */ 1059 VALIDATE_UNRET_END 1060 RET 1061 1062 .Lbstep_iret: 1063 /* Fix truncated RIP */ 1064 movq %rcx, RIP+8(%rsp) 1065 /* fall through */ 1066 1067 .Lerror_bad_iret: 1068 /* 1069 * We came from an IRET to user mode, so we have user 1070 * gsbase and CR3. Switch to kernel gsbase and CR3: 1071 */ 1072 swapgs 1073 FENCE_SWAPGS_USER_ENTRY 1074 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1075 IBRS_ENTER 1076 UNTRAIN_RET_FROM_CALL 1077 1078 /* 1079 * Pretend that the exception came from user mode: set up pt_regs 1080 * as if we faulted immediately after IRET. 1081 */ 1082 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1083 call fixup_bad_iret 1084 mov %rax, %rdi 1085 jmp sync_regs 1086 SYM_CODE_END(error_entry) 1087 1088 SYM_CODE_START_LOCAL(error_return) 1089 UNWIND_HINT_REGS 1090 DEBUG_ENTRY_ASSERT_IRQS_OFF 1091 testb $3, CS(%rsp) 1092 jz restore_regs_and_return_to_kernel 1093 jmp swapgs_restore_regs_and_return_to_usermode 1094 SYM_CODE_END(error_return) 1095 1096 /* 1097 * Runs on exception stack. Xen PV does not go through this path at all, 1098 * so we can use real assembly here. 1099 * 1100 * Registers: 1101 * %r14: Used to save/restore the CR3 of the interrupted context 1102 * when MITIGATION_PAGE_TABLE_ISOLATION is in use. Do not clobber. 1103 */ 1104 SYM_CODE_START(asm_exc_nmi) 1105 UNWIND_HINT_IRET_ENTRY 1106 ENDBR 1107 1108 /* 1109 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1110 * the iretq it performs will take us out of NMI context. 1111 * This means that we can have nested NMIs where the next 1112 * NMI is using the top of the stack of the previous NMI. We 1113 * can't let it execute because the nested NMI will corrupt the 1114 * stack of the previous NMI. NMI handlers are not re-entrant 1115 * anyway. 1116 * 1117 * To handle this case we do the following: 1118 * Check a special location on the stack that contains a 1119 * variable that is set when NMIs are executing. 1120 * The interrupted task's stack is also checked to see if it 1121 * is an NMI stack. 1122 * If the variable is not set and the stack is not the NMI 1123 * stack then: 1124 * o Set the special variable on the stack 1125 * o Copy the interrupt frame into an "outermost" location on the 1126 * stack 1127 * o Copy the interrupt frame into an "iret" location on the stack 1128 * o Continue processing the NMI 1129 * If the variable is set or the previous stack is the NMI stack: 1130 * o Modify the "iret" location to jump to the repeat_nmi 1131 * o return back to the first NMI 1132 * 1133 * Now on exit of the first NMI, we first clear the stack variable 1134 * The NMI stack will tell any nested NMIs at that point that it is 1135 * nested. Then we pop the stack normally with iret, and if there was 1136 * a nested NMI that updated the copy interrupt stack frame, a 1137 * jump will be made to the repeat_nmi code that will handle the second 1138 * NMI. 1139 * 1140 * However, espfix prevents us from directly returning to userspace 1141 * with a single IRET instruction. Similarly, IRET to user mode 1142 * can fault. We therefore handle NMIs from user space like 1143 * other IST entries. 1144 */ 1145 1146 ASM_CLAC 1147 cld 1148 1149 /* Use %rdx as our temp variable throughout */ 1150 pushq %rdx 1151 1152 testb $3, CS-RIP+8(%rsp) 1153 jz .Lnmi_from_kernel 1154 1155 /* 1156 * NMI from user mode. We need to run on the thread stack, but we 1157 * can't go through the normal entry paths: NMIs are masked, and 1158 * we don't want to enable interrupts, because then we'll end 1159 * up in an awkward situation in which IRQs are on but NMIs 1160 * are off. 1161 * 1162 * We also must not push anything to the stack before switching 1163 * stacks lest we corrupt the "NMI executing" variable. 1164 */ 1165 1166 swapgs 1167 FENCE_SWAPGS_USER_ENTRY 1168 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1169 movq %rsp, %rdx 1170 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 1171 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1172 pushq 5*8(%rdx) /* pt_regs->ss */ 1173 pushq 4*8(%rdx) /* pt_regs->rsp */ 1174 pushq 3*8(%rdx) /* pt_regs->flags */ 1175 pushq 2*8(%rdx) /* pt_regs->cs */ 1176 pushq 1*8(%rdx) /* pt_regs->rip */ 1177 UNWIND_HINT_IRET_REGS 1178 pushq $-1 /* pt_regs->orig_ax */ 1179 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1180 ENCODE_FRAME_POINTER 1181 1182 IBRS_ENTER 1183 UNTRAIN_RET 1184 1185 /* 1186 * At this point we no longer need to worry about stack damage 1187 * due to nesting -- we're on the normal thread stack and we're 1188 * done with the NMI stack. 1189 */ 1190 1191 movq %rsp, %rdi 1192 call exc_nmi 1193 1194 /* 1195 * Return back to user mode. We must *not* do the normal exit 1196 * work, because we don't want to enable interrupts. 1197 */ 1198 jmp swapgs_restore_regs_and_return_to_usermode 1199 1200 .Lnmi_from_kernel: 1201 /* 1202 * Here's what our stack frame will look like: 1203 * +---------------------------------------------------------+ 1204 * | original SS | 1205 * | original Return RSP | 1206 * | original RFLAGS | 1207 * | original CS | 1208 * | original RIP | 1209 * +---------------------------------------------------------+ 1210 * | temp storage for rdx | 1211 * +---------------------------------------------------------+ 1212 * | "NMI executing" variable | 1213 * +---------------------------------------------------------+ 1214 * | iret SS } Copied from "outermost" frame | 1215 * | iret Return RSP } on each loop iteration; overwritten | 1216 * | iret RFLAGS } by a nested NMI to force another | 1217 * | iret CS } iteration if needed. | 1218 * | iret RIP } | 1219 * +---------------------------------------------------------+ 1220 * | outermost SS } initialized in first_nmi; | 1221 * | outermost Return RSP } will not be changed before | 1222 * | outermost RFLAGS } NMI processing is done. | 1223 * | outermost CS } Copied to "iret" frame on each | 1224 * | outermost RIP } iteration. | 1225 * +---------------------------------------------------------+ 1226 * | pt_regs | 1227 * +---------------------------------------------------------+ 1228 * 1229 * The "original" frame is used by hardware. Before re-enabling 1230 * NMIs, we need to be done with it, and we need to leave enough 1231 * space for the asm code here. 1232 * 1233 * We return by executing IRET while RSP points to the "iret" frame. 1234 * That will either return for real or it will loop back into NMI 1235 * processing. 1236 * 1237 * The "outermost" frame is copied to the "iret" frame on each 1238 * iteration of the loop, so each iteration starts with the "iret" 1239 * frame pointing to the final return target. 1240 */ 1241 1242 /* 1243 * Determine whether we're a nested NMI. 1244 * 1245 * If we interrupted kernel code between repeat_nmi and 1246 * end_repeat_nmi, then we are a nested NMI. We must not 1247 * modify the "iret" frame because it's being written by 1248 * the outer NMI. That's okay; the outer NMI handler is 1249 * about to call exc_nmi() anyway, so we can just resume 1250 * the outer NMI. 1251 */ 1252 1253 movq $repeat_nmi, %rdx 1254 cmpq 8(%rsp), %rdx 1255 ja 1f 1256 movq $end_repeat_nmi, %rdx 1257 cmpq 8(%rsp), %rdx 1258 ja nested_nmi_out 1259 1: 1260 1261 /* 1262 * Now check "NMI executing". If it's set, then we're nested. 1263 * This will not detect if we interrupted an outer NMI just 1264 * before IRET. 1265 */ 1266 cmpl $1, -8(%rsp) 1267 je nested_nmi 1268 1269 /* 1270 * Now test if the previous stack was an NMI stack. This covers 1271 * the case where we interrupt an outer NMI after it clears 1272 * "NMI executing" but before IRET. We need to be careful, though: 1273 * there is one case in which RSP could point to the NMI stack 1274 * despite there being no NMI active: naughty userspace controls 1275 * RSP at the very beginning of the SYSCALL targets. We can 1276 * pull a fast one on naughty userspace, though: we program 1277 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1278 * if it controls the kernel's RSP. We set DF before we clear 1279 * "NMI executing". 1280 */ 1281 lea 6*8(%rsp), %rdx 1282 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1283 cmpq %rdx, 4*8(%rsp) 1284 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1285 ja first_nmi 1286 1287 subq $EXCEPTION_STKSZ, %rdx 1288 cmpq %rdx, 4*8(%rsp) 1289 /* If it is below the NMI stack, it is a normal NMI */ 1290 jb first_nmi 1291 1292 /* Ah, it is within the NMI stack. */ 1293 1294 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1295 jz first_nmi /* RSP was user controlled. */ 1296 1297 /* This is a nested NMI. */ 1298 1299 nested_nmi: 1300 /* 1301 * Modify the "iret" frame to point to repeat_nmi, forcing another 1302 * iteration of NMI handling. 1303 */ 1304 subq $8, %rsp 1305 leaq -10*8(%rsp), %rdx 1306 pushq $__KERNEL_DS 1307 pushq %rdx 1308 pushfq 1309 pushq $__KERNEL_CS 1310 pushq $repeat_nmi 1311 1312 /* Put stack back */ 1313 addq $(6*8), %rsp 1314 1315 nested_nmi_out: 1316 popq %rdx 1317 1318 /* We are returning to kernel mode, so this cannot result in a fault. */ 1319 iretq 1320 1321 first_nmi: 1322 /* Restore rdx. */ 1323 movq (%rsp), %rdx 1324 1325 /* Make room for "NMI executing". */ 1326 pushq $0 1327 1328 /* Leave room for the "iret" frame */ 1329 subq $(5*8), %rsp 1330 1331 /* Copy the "original" frame to the "outermost" frame */ 1332 .rept 5 1333 pushq 11*8(%rsp) 1334 .endr 1335 UNWIND_HINT_IRET_REGS 1336 1337 /* Everything up to here is safe from nested NMIs */ 1338 1339 #ifdef CONFIG_DEBUG_ENTRY 1340 /* 1341 * For ease of testing, unmask NMIs right away. Disabled by 1342 * default because IRET is very expensive. 1343 */ 1344 pushq $0 /* SS */ 1345 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1346 addq $8, (%rsp) /* Fix up RSP */ 1347 pushfq /* RFLAGS */ 1348 pushq $__KERNEL_CS /* CS */ 1349 pushq $1f /* RIP */ 1350 iretq /* continues at repeat_nmi below */ 1351 UNWIND_HINT_IRET_REGS 1352 1: 1353 #endif 1354 1355 repeat_nmi: 1356 ANNOTATE_NOENDBR // this code 1357 /* 1358 * If there was a nested NMI, the first NMI's iret will return 1359 * here. But NMIs are still enabled and we can take another 1360 * nested NMI. The nested NMI checks the interrupted RIP to see 1361 * if it is between repeat_nmi and end_repeat_nmi, and if so 1362 * it will just return, as we are about to repeat an NMI anyway. 1363 * This makes it safe to copy to the stack frame that a nested 1364 * NMI will update. 1365 * 1366 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1367 * we're repeating an NMI, gsbase has the same value that it had on 1368 * the first iteration. paranoid_entry will load the kernel 1369 * gsbase if needed before we call exc_nmi(). "NMI executing" 1370 * is zero. 1371 */ 1372 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1373 1374 /* 1375 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1376 * here must not modify the "iret" frame while we're writing to 1377 * it or it will end up containing garbage. 1378 */ 1379 addq $(10*8), %rsp 1380 .rept 5 1381 pushq -6*8(%rsp) 1382 .endr 1383 subq $(5*8), %rsp 1384 end_repeat_nmi: 1385 ANNOTATE_NOENDBR // this code 1386 1387 /* 1388 * Everything below this point can be preempted by a nested NMI. 1389 * If this happens, then the inner NMI will change the "iret" 1390 * frame to point back to repeat_nmi. 1391 */ 1392 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1393 1394 /* 1395 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1396 * as we should not be calling schedule in NMI context. 1397 * Even with normal interrupts enabled. An NMI should not be 1398 * setting NEED_RESCHED or anything that normal interrupts and 1399 * exceptions might do. 1400 */ 1401 call paranoid_entry 1402 UNWIND_HINT_REGS 1403 1404 movq %rsp, %rdi 1405 call exc_nmi 1406 1407 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ 1408 IBRS_EXIT save_reg=%r15 1409 1410 PARANOID_RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1411 1412 /* 1413 * The above invocation of paranoid_entry stored the GSBASE 1414 * related information in R/EBX depending on the availability 1415 * of FSGSBASE. 1416 * 1417 * If FSGSBASE is enabled, restore the saved GSBASE value 1418 * unconditionally, otherwise take the conditional SWAPGS path. 1419 */ 1420 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1421 1422 wrgsbase %rbx 1423 jmp nmi_restore 1424 1425 nmi_no_fsgsbase: 1426 /* EBX == 0 -> invoke SWAPGS */ 1427 testl %ebx, %ebx 1428 jnz nmi_restore 1429 1430 nmi_swapgs: 1431 swapgs 1432 1433 nmi_restore: 1434 POP_REGS 1435 1436 /* 1437 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1438 * at the "iret" frame. 1439 */ 1440 addq $6*8, %rsp 1441 1442 /* 1443 * Clear "NMI executing". Set DF first so that we can easily 1444 * distinguish the remaining code between here and IRET from 1445 * the SYSCALL entry and exit paths. 1446 * 1447 * We arguably should just inspect RIP instead, but I (Andy) wrote 1448 * this code when I had the misapprehension that Xen PV supported 1449 * NMIs, and Xen PV would break that approach. 1450 */ 1451 std 1452 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1453 1454 /* 1455 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like 1456 * NMI in kernel after user state is restored. For an unprivileged user 1457 * these conditions are hard to meet. 1458 */ 1459 1460 /* 1461 * iretq reads the "iret" frame and exits the NMI stack in a 1462 * single instruction. We are returning to kernel mode, so this 1463 * cannot result in a fault. Similarly, we don't need to worry 1464 * about espfix64 on the way back to kernel mode. 1465 */ 1466 iretq 1467 SYM_CODE_END(asm_exc_nmi) 1468 1469 /* 1470 * This handles SYSCALL from 32-bit code. There is no way to program 1471 * MSRs to fully disable 32-bit SYSCALL. 1472 */ 1473 SYM_CODE_START(entry_SYSCALL32_ignore) 1474 UNWIND_HINT_END_OF_STACK 1475 ENDBR 1476 mov $-ENOSYS, %eax 1477 CLEAR_CPU_BUFFERS 1478 sysretl 1479 SYM_CODE_END(entry_SYSCALL32_ignore) 1480 1481 .pushsection .text, "ax" 1482 __FUNC_ALIGN 1483 SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead) 1484 UNWIND_HINT_FUNC 1485 /* Prevent any naive code from trying to unwind to our caller. */ 1486 xorl %ebp, %ebp 1487 1488 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax 1489 leaq -PTREGS_SIZE(%rax), %rsp 1490 UNWIND_HINT_REGS 1491 1492 call make_task_dead 1493 SYM_CODE_END(rewind_stack_and_make_dead) 1494 .popsection 1495 1496 /* 1497 * This sequence executes branches in order to remove user branch information 1498 * from the branch history tracker in the Branch Predictor, therefore removing 1499 * user influence on subsequent BTB lookups. 1500 * 1501 * It should be used on parts prior to Alder Lake. Newer parts should use the 1502 * BHI_DIS_S hardware control instead. If a pre-Alder Lake part is being 1503 * virtualized on newer hardware the VMM should protect against BHI attacks by 1504 * setting BHI_DIS_S for the guests. 1505 * 1506 * CALLs/RETs are necessary to prevent Loop Stream Detector(LSD) from engaging 1507 * and not clearing the branch history. The call tree looks like: 1508 * 1509 * call 1 1510 * call 2 1511 * call 2 1512 * call 2 1513 * call 2 1514 * call 2 1515 * ret 1516 * ret 1517 * ret 1518 * ret 1519 * ret 1520 * ret 1521 * 1522 * This means that the stack is non-constant and ORC can't unwind it with %rsp 1523 * alone. Therefore we unconditionally set up the frame pointer, which allows 1524 * ORC to unwind properly. 1525 * 1526 * The alignment is for performance and not for safety, and may be safely 1527 * refactored in the future if needed. 1528 */ 1529 SYM_FUNC_START(clear_bhb_loop) 1530 push %rbp 1531 mov %rsp, %rbp 1532 movl $5, %ecx 1533 ANNOTATE_INTRA_FUNCTION_CALL 1534 call 1f 1535 jmp 5f 1536 .align 64, 0xcc 1537 ANNOTATE_INTRA_FUNCTION_CALL 1538 1: call 2f 1539 RET 1540 .align 64, 0xcc 1541 2: movl $5, %eax 1542 3: jmp 4f 1543 nop 1544 4: sub $1, %eax 1545 jnz 3b 1546 sub $1, %ecx 1547 jnz 1b 1548 RET 1549 5: lfence 1550 pop %rbp 1551 RET 1552 SYM_FUNC_END(clear_bhb_loop) 1553 EXPORT_SYMBOL_GPL(clear_bhb_loop) 1554 STACK_FRAME_NON_STANDARD(clear_bhb_loop)
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.