~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/events/amd/core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 #include <linux/perf_event.h>
  3 #include <linux/jump_label.h>
  4 #include <linux/export.h>
  5 #include <linux/types.h>
  6 #include <linux/init.h>
  7 #include <linux/slab.h>
  8 #include <linux/delay.h>
  9 #include <linux/jiffies.h>
 10 #include <asm/apicdef.h>
 11 #include <asm/apic.h>
 12 #include <asm/nmi.h>
 13 
 14 #include "../perf_event.h"
 15 
 16 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
 17 static unsigned long perf_nmi_window;
 18 
 19 /* AMD Event 0xFFF: Merge.  Used with Large Increment per Cycle events */
 20 #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
 21 #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
 22 
 23 /* PMC Enable and Overflow bits for PerfCntrGlobal* registers */
 24 static u64 amd_pmu_global_cntr_mask __read_mostly;
 25 
 26 static __initconst const u64 amd_hw_cache_event_ids
 27                                 [PERF_COUNT_HW_CACHE_MAX]
 28                                 [PERF_COUNT_HW_CACHE_OP_MAX]
 29                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 30 {
 31  [ C(L1D) ] = {
 32         [ C(OP_READ) ] = {
 33                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
 34                 [ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
 35         },
 36         [ C(OP_WRITE) ] = {
 37                 [ C(RESULT_ACCESS) ] = 0,
 38                 [ C(RESULT_MISS)   ] = 0,
 39         },
 40         [ C(OP_PREFETCH) ] = {
 41                 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
 42                 [ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
 43         },
 44  },
 45  [ C(L1I ) ] = {
 46         [ C(OP_READ) ] = {
 47                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
 48                 [ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
 49         },
 50         [ C(OP_WRITE) ] = {
 51                 [ C(RESULT_ACCESS) ] = -1,
 52                 [ C(RESULT_MISS)   ] = -1,
 53         },
 54         [ C(OP_PREFETCH) ] = {
 55                 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
 56                 [ C(RESULT_MISS)   ] = 0,
 57         },
 58  },
 59  [ C(LL  ) ] = {
 60         [ C(OP_READ) ] = {
 61                 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
 62                 [ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
 63         },
 64         [ C(OP_WRITE) ] = {
 65                 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
 66                 [ C(RESULT_MISS)   ] = 0,
 67         },
 68         [ C(OP_PREFETCH) ] = {
 69                 [ C(RESULT_ACCESS) ] = 0,
 70                 [ C(RESULT_MISS)   ] = 0,
 71         },
 72  },
 73  [ C(DTLB) ] = {
 74         [ C(OP_READ) ] = {
 75                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
 76                 [ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
 77         },
 78         [ C(OP_WRITE) ] = {
 79                 [ C(RESULT_ACCESS) ] = 0,
 80                 [ C(RESULT_MISS)   ] = 0,
 81         },
 82         [ C(OP_PREFETCH) ] = {
 83                 [ C(RESULT_ACCESS) ] = 0,
 84                 [ C(RESULT_MISS)   ] = 0,
 85         },
 86  },
 87  [ C(ITLB) ] = {
 88         [ C(OP_READ) ] = {
 89                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
 90                 [ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
 91         },
 92         [ C(OP_WRITE) ] = {
 93                 [ C(RESULT_ACCESS) ] = -1,
 94                 [ C(RESULT_MISS)   ] = -1,
 95         },
 96         [ C(OP_PREFETCH) ] = {
 97                 [ C(RESULT_ACCESS) ] = -1,
 98                 [ C(RESULT_MISS)   ] = -1,
 99         },
100  },
101  [ C(BPU ) ] = {
102         [ C(OP_READ) ] = {
103                 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
104                 [ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
105         },
106         [ C(OP_WRITE) ] = {
107                 [ C(RESULT_ACCESS) ] = -1,
108                 [ C(RESULT_MISS)   ] = -1,
109         },
110         [ C(OP_PREFETCH) ] = {
111                 [ C(RESULT_ACCESS) ] = -1,
112                 [ C(RESULT_MISS)   ] = -1,
113         },
114  },
115  [ C(NODE) ] = {
116         [ C(OP_READ) ] = {
117                 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
118                 [ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
119         },
120         [ C(OP_WRITE) ] = {
121                 [ C(RESULT_ACCESS) ] = -1,
122                 [ C(RESULT_MISS)   ] = -1,
123         },
124         [ C(OP_PREFETCH) ] = {
125                 [ C(RESULT_ACCESS) ] = -1,
126                 [ C(RESULT_MISS)   ] = -1,
127         },
128  },
129 };
130 
131 static __initconst const u64 amd_hw_cache_event_ids_f17h
132                                 [PERF_COUNT_HW_CACHE_MAX]
133                                 [PERF_COUNT_HW_CACHE_OP_MAX]
134                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
135 [C(L1D)] = {
136         [C(OP_READ)] = {
137                 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
138                 [C(RESULT_MISS)]   = 0xc860, /* L2$ access from DC Miss */
139         },
140         [C(OP_WRITE)] = {
141                 [C(RESULT_ACCESS)] = 0,
142                 [C(RESULT_MISS)]   = 0,
143         },
144         [C(OP_PREFETCH)] = {
145                 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
146                 [C(RESULT_MISS)]   = 0,
147         },
148 },
149 [C(L1I)] = {
150         [C(OP_READ)] = {
151                 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches  */
152                 [C(RESULT_MISS)]   = 0x0081, /* Instruction cache misses   */
153         },
154         [C(OP_WRITE)] = {
155                 [C(RESULT_ACCESS)] = -1,
156                 [C(RESULT_MISS)]   = -1,
157         },
158         [C(OP_PREFETCH)] = {
159                 [C(RESULT_ACCESS)] = 0,
160                 [C(RESULT_MISS)]   = 0,
161         },
162 },
163 [C(LL)] = {
164         [C(OP_READ)] = {
165                 [C(RESULT_ACCESS)] = 0,
166                 [C(RESULT_MISS)]   = 0,
167         },
168         [C(OP_WRITE)] = {
169                 [C(RESULT_ACCESS)] = 0,
170                 [C(RESULT_MISS)]   = 0,
171         },
172         [C(OP_PREFETCH)] = {
173                 [C(RESULT_ACCESS)] = 0,
174                 [C(RESULT_MISS)]   = 0,
175         },
176 },
177 [C(DTLB)] = {
178         [C(OP_READ)] = {
179                 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
180                 [C(RESULT_MISS)]   = 0xf045, /* L2 DTLB misses (PT walks) */
181         },
182         [C(OP_WRITE)] = {
183                 [C(RESULT_ACCESS)] = 0,
184                 [C(RESULT_MISS)]   = 0,
185         },
186         [C(OP_PREFETCH)] = {
187                 [C(RESULT_ACCESS)] = 0,
188                 [C(RESULT_MISS)]   = 0,
189         },
190 },
191 [C(ITLB)] = {
192         [C(OP_READ)] = {
193                 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
194                 [C(RESULT_MISS)]   = 0xff85, /* L1 ITLB misses, L2 misses */
195         },
196         [C(OP_WRITE)] = {
197                 [C(RESULT_ACCESS)] = -1,
198                 [C(RESULT_MISS)]   = -1,
199         },
200         [C(OP_PREFETCH)] = {
201                 [C(RESULT_ACCESS)] = -1,
202                 [C(RESULT_MISS)]   = -1,
203         },
204 },
205 [C(BPU)] = {
206         [C(OP_READ)] = {
207                 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr.      */
208                 [C(RESULT_MISS)]   = 0x00c3, /* Retired Mispredicted BI    */
209         },
210         [C(OP_WRITE)] = {
211                 [C(RESULT_ACCESS)] = -1,
212                 [C(RESULT_MISS)]   = -1,
213         },
214         [C(OP_PREFETCH)] = {
215                 [C(RESULT_ACCESS)] = -1,
216                 [C(RESULT_MISS)]   = -1,
217         },
218 },
219 [C(NODE)] = {
220         [C(OP_READ)] = {
221                 [C(RESULT_ACCESS)] = 0,
222                 [C(RESULT_MISS)]   = 0,
223         },
224         [C(OP_WRITE)] = {
225                 [C(RESULT_ACCESS)] = -1,
226                 [C(RESULT_MISS)]   = -1,
227         },
228         [C(OP_PREFETCH)] = {
229                 [C(RESULT_ACCESS)] = -1,
230                 [C(RESULT_MISS)]   = -1,
231         },
232 },
233 };
234 
235 /*
236  * AMD Performance Monitor K7 and later, up to and including Family 16h:
237  */
238 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
239 {
240         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
241         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
242         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x077d,
243         [PERF_COUNT_HW_CACHE_MISSES]            = 0x077e,
244         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
245         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
246         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
247         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x00d1, /* "Dispatch stalls" event */
248 };
249 
250 /*
251  * AMD Performance Monitor Family 17h and later:
252  */
253 static const u64 amd_zen1_perfmon_event_map[PERF_COUNT_HW_MAX] =
254 {
255         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
256         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
257         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0xff60,
258         [PERF_COUNT_HW_CACHE_MISSES]            = 0x0964,
259         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
260         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
261         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
262         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x0187,
263 };
264 
265 static const u64 amd_zen2_perfmon_event_map[PERF_COUNT_HW_MAX] =
266 {
267         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
268         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
269         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0xff60,
270         [PERF_COUNT_HW_CACHE_MISSES]            = 0x0964,
271         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
272         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
273         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00a9,
274 };
275 
276 static const u64 amd_zen4_perfmon_event_map[PERF_COUNT_HW_MAX] =
277 {
278         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
279         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
280         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0xff60,
281         [PERF_COUNT_HW_CACHE_MISSES]            = 0x0964,
282         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
283         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
284         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00a9,
285         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x100000120,
286 };
287 
288 static u64 amd_pmu_event_map(int hw_event)
289 {
290         if (cpu_feature_enabled(X86_FEATURE_ZEN4) || boot_cpu_data.x86 >= 0x1a)
291                 return amd_zen4_perfmon_event_map[hw_event];
292 
293         if (cpu_feature_enabled(X86_FEATURE_ZEN2) || boot_cpu_data.x86 >= 0x19)
294                 return amd_zen2_perfmon_event_map[hw_event];
295 
296         if (cpu_feature_enabled(X86_FEATURE_ZEN1))
297                 return amd_zen1_perfmon_event_map[hw_event];
298 
299         return amd_perfmon_event_map[hw_event];
300 }
301 
302 /*
303  * Previously calculated offsets
304  */
305 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
306 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
307 
308 /*
309  * Legacy CPUs:
310  *   4 counters starting at 0xc0010000 each offset by 1
311  *
312  * CPUs with core performance counter extensions:
313  *   6 counters starting at 0xc0010200 each offset by 2
314  */
315 static inline int amd_pmu_addr_offset(int index, bool eventsel)
316 {
317         int offset;
318 
319         if (!index)
320                 return index;
321 
322         if (eventsel)
323                 offset = event_offsets[index];
324         else
325                 offset = count_offsets[index];
326 
327         if (offset)
328                 return offset;
329 
330         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
331                 offset = index;
332         else
333                 offset = index << 1;
334 
335         if (eventsel)
336                 event_offsets[index] = offset;
337         else
338                 count_offsets[index] = offset;
339 
340         return offset;
341 }
342 
343 /*
344  * AMD64 events are detected based on their event codes.
345  */
346 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
347 {
348         return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
349 }
350 
351 static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
352 {
353         if (!(x86_pmu.flags & PMU_FL_PAIR))
354                 return false;
355 
356         switch (amd_get_event_code(hwc)) {
357         case 0x003:     return true;    /* Retired SSE/AVX FLOPs */
358         default:        return false;
359         }
360 }
361 
362 DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config);
363 
364 static int amd_core_hw_config(struct perf_event *event)
365 {
366         if (event->attr.exclude_host && event->attr.exclude_guest)
367                 /*
368                  * When HO == GO == 1 the hardware treats that as GO == HO == 0
369                  * and will count in both modes. We don't want to count in that
370                  * case so we emulate no-counting by setting US = OS = 0.
371                  */
372                 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
373                                       ARCH_PERFMON_EVENTSEL_OS);
374         else if (event->attr.exclude_host)
375                 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
376         else if (event->attr.exclude_guest)
377                 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
378 
379         if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
380                 event->hw.flags |= PERF_X86_EVENT_PAIR;
381 
382         if (has_branch_stack(event))
383                 return static_call(amd_pmu_branch_hw_config)(event);
384 
385         return 0;
386 }
387 
388 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
389 {
390         return (hwc->config & 0xe0) == 0xe0;
391 }
392 
393 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
394 {
395         struct amd_nb *nb = cpuc->amd_nb;
396 
397         return nb && nb->nb_id != -1;
398 }
399 
400 static int amd_pmu_hw_config(struct perf_event *event)
401 {
402         int ret;
403 
404         /* pass precise event sampling to ibs: */
405         if (event->attr.precise_ip && get_ibs_caps())
406                 return forward_event_to_ibs(event);
407 
408         if (has_branch_stack(event) && !x86_pmu.lbr_nr)
409                 return -EOPNOTSUPP;
410 
411         ret = x86_pmu_hw_config(event);
412         if (ret)
413                 return ret;
414 
415         if (event->attr.type == PERF_TYPE_RAW)
416                 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
417 
418         return amd_core_hw_config(event);
419 }
420 
421 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
422                                            struct perf_event *event)
423 {
424         struct amd_nb *nb = cpuc->amd_nb;
425         int i;
426 
427         /*
428          * need to scan whole list because event may not have
429          * been assigned during scheduling
430          *
431          * no race condition possible because event can only
432          * be removed on one CPU at a time AND PMU is disabled
433          * when we come here
434          */
435         for_each_set_bit(i, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
436                 struct perf_event *tmp = event;
437 
438                 if (try_cmpxchg(nb->owners + i, &tmp, NULL))
439                         break;
440         }
441 }
442 
443  /*
444   * AMD64 NorthBridge events need special treatment because
445   * counter access needs to be synchronized across all cores
446   * of a package. Refer to BKDG section 3.12
447   *
448   * NB events are events measuring L3 cache, Hypertransport
449   * traffic. They are identified by an event code >= 0xe00.
450   * They measure events on the NorthBride which is shared
451   * by all cores on a package. NB events are counted on a
452   * shared set of counters. When a NB event is programmed
453   * in a counter, the data actually comes from a shared
454   * counter. Thus, access to those counters needs to be
455   * synchronized.
456   *
457   * We implement the synchronization such that no two cores
458   * can be measuring NB events using the same counters. Thus,
459   * we maintain a per-NB allocation table. The available slot
460   * is propagated using the event_constraint structure.
461   *
462   * We provide only one choice for each NB event based on
463   * the fact that only NB events have restrictions. Consequently,
464   * if a counter is available, there is a guarantee the NB event
465   * will be assigned to it. If no slot is available, an empty
466   * constraint is returned and scheduling will eventually fail
467   * for this event.
468   *
469   * Note that all cores attached the same NB compete for the same
470   * counters to host NB events, this is why we use atomic ops. Some
471   * multi-chip CPUs may have more than one NB.
472   *
473   * Given that resources are allocated (cmpxchg), they must be
474   * eventually freed for others to use. This is accomplished by
475   * calling __amd_put_nb_event_constraints()
476   *
477   * Non NB events are not impacted by this restriction.
478   */
479 static struct event_constraint *
480 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
481                                struct event_constraint *c)
482 {
483         struct hw_perf_event *hwc = &event->hw;
484         struct amd_nb *nb = cpuc->amd_nb;
485         struct perf_event *old;
486         int idx, new = -1;
487 
488         if (!c)
489                 c = &unconstrained;
490 
491         if (cpuc->is_fake)
492                 return c;
493 
494         /*
495          * detect if already present, if so reuse
496          *
497          * cannot merge with actual allocation
498          * because of possible holes
499          *
500          * event can already be present yet not assigned (in hwc->idx)
501          * because of successive calls to x86_schedule_events() from
502          * hw_perf_group_sched_in() without hw_perf_enable()
503          */
504         for_each_set_bit(idx, c->idxmsk, x86_pmu_max_num_counters(NULL)) {
505                 if (new == -1 || hwc->idx == idx)
506                         /* assign free slot, prefer hwc->idx */
507                         old = cmpxchg(nb->owners + idx, NULL, event);
508                 else if (nb->owners[idx] == event)
509                         /* event already present */
510                         old = event;
511                 else
512                         continue;
513 
514                 if (old && old != event)
515                         continue;
516 
517                 /* reassign to this slot */
518                 if (new != -1)
519                         cmpxchg(nb->owners + new, event, NULL);
520                 new = idx;
521 
522                 /* already present, reuse */
523                 if (old == event)
524                         break;
525         }
526 
527         if (new == -1)
528                 return &emptyconstraint;
529 
530         return &nb->event_constraints[new];
531 }
532 
533 static struct amd_nb *amd_alloc_nb(int cpu)
534 {
535         struct amd_nb *nb;
536         int i;
537 
538         nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
539         if (!nb)
540                 return NULL;
541 
542         nb->nb_id = -1;
543 
544         /*
545          * initialize all possible NB constraints
546          */
547         for_each_set_bit(i, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
548                 __set_bit(i, nb->event_constraints[i].idxmsk);
549                 nb->event_constraints[i].weight = 1;
550         }
551         return nb;
552 }
553 
554 typedef void (amd_pmu_branch_reset_t)(void);
555 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t);
556 
557 static void amd_pmu_cpu_reset(int cpu)
558 {
559         if (x86_pmu.lbr_nr)
560                 static_call(amd_pmu_branch_reset)();
561 
562         if (x86_pmu.version < 2)
563                 return;
564 
565         /* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */
566         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0);
567 
568         /*
569          * Clear freeze and overflow bits i.e. PerfCntrGLobalStatus.LbrFreeze
570          * and PerfCntrGLobalStatus.PerfCntrOvfl
571          */
572         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
573                GLOBAL_STATUS_LBRS_FROZEN | amd_pmu_global_cntr_mask);
574 }
575 
576 static int amd_pmu_cpu_prepare(int cpu)
577 {
578         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
579 
580         cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL,
581                                      cpu_to_node(cpu));
582         if (!cpuc->lbr_sel)
583                 return -ENOMEM;
584 
585         WARN_ON_ONCE(cpuc->amd_nb);
586 
587         if (!x86_pmu.amd_nb_constraints)
588                 return 0;
589 
590         cpuc->amd_nb = amd_alloc_nb(cpu);
591         if (cpuc->amd_nb)
592                 return 0;
593 
594         kfree(cpuc->lbr_sel);
595         cpuc->lbr_sel = NULL;
596 
597         return -ENOMEM;
598 }
599 
600 static void amd_pmu_cpu_starting(int cpu)
601 {
602         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
603         void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
604         struct amd_nb *nb;
605         int i, nb_id;
606 
607         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
608         amd_pmu_cpu_reset(cpu);
609 
610         if (!x86_pmu.amd_nb_constraints)
611                 return;
612 
613         nb_id = topology_amd_node_id(cpu);
614         WARN_ON_ONCE(nb_id == BAD_APICID);
615 
616         for_each_online_cpu(i) {
617                 nb = per_cpu(cpu_hw_events, i).amd_nb;
618                 if (WARN_ON_ONCE(!nb))
619                         continue;
620 
621                 if (nb->nb_id == nb_id) {
622                         *onln = cpuc->amd_nb;
623                         cpuc->amd_nb = nb;
624                         break;
625                 }
626         }
627 
628         cpuc->amd_nb->nb_id = nb_id;
629         cpuc->amd_nb->refcnt++;
630 }
631 
632 static void amd_pmu_cpu_dead(int cpu)
633 {
634         struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
635 
636         kfree(cpuhw->lbr_sel);
637         cpuhw->lbr_sel = NULL;
638 
639         if (!x86_pmu.amd_nb_constraints)
640                 return;
641 
642         if (cpuhw->amd_nb) {
643                 struct amd_nb *nb = cpuhw->amd_nb;
644 
645                 if (nb->nb_id == -1 || --nb->refcnt == 0)
646                         kfree(nb);
647 
648                 cpuhw->amd_nb = NULL;
649         }
650 }
651 
652 static __always_inline void amd_pmu_set_global_ctl(u64 ctl)
653 {
654         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl);
655 }
656 
657 static inline u64 amd_pmu_get_global_status(void)
658 {
659         u64 status;
660 
661         /* PerfCntrGlobalStatus is read-only */
662         rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status);
663 
664         return status;
665 }
666 
667 static inline void amd_pmu_ack_global_status(u64 status)
668 {
669         /*
670          * PerfCntrGlobalStatus is read-only but an overflow acknowledgment
671          * mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr
672          * clears the same bit in PerfCntrGlobalStatus
673          */
674 
675         wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status);
676 }
677 
678 static bool amd_pmu_test_overflow_topbit(int idx)
679 {
680         u64 counter;
681 
682         rdmsrl(x86_pmu_event_addr(idx), counter);
683 
684         return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1));
685 }
686 
687 static bool amd_pmu_test_overflow_status(int idx)
688 {
689         return amd_pmu_get_global_status() & BIT_ULL(idx);
690 }
691 
692 DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit);
693 
694 /*
695  * When a PMC counter overflows, an NMI is used to process the event and
696  * reset the counter. NMI latency can result in the counter being updated
697  * before the NMI can run, which can result in what appear to be spurious
698  * NMIs. This function is intended to wait for the NMI to run and reset
699  * the counter to avoid possible unhandled NMI messages.
700  */
701 #define OVERFLOW_WAIT_COUNT     50
702 
703 static void amd_pmu_wait_on_overflow(int idx)
704 {
705         unsigned int i;
706 
707         /*
708          * Wait for the counter to be reset if it has overflowed. This loop
709          * should exit very, very quickly, but just in case, don't wait
710          * forever...
711          */
712         for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
713                 if (!static_call(amd_pmu_test_overflow)(idx))
714                         break;
715 
716                 /* Might be in IRQ context, so can't sleep */
717                 udelay(1);
718         }
719 }
720 
721 static void amd_pmu_check_overflow(void)
722 {
723         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
724         int idx;
725 
726         /*
727          * This shouldn't be called from NMI context, but add a safeguard here
728          * to return, since if we're in NMI context we can't wait for an NMI
729          * to reset an overflowed counter value.
730          */
731         if (in_nmi())
732                 return;
733 
734         /*
735          * Check each counter for overflow and wait for it to be reset by the
736          * NMI if it has overflowed. This relies on the fact that all active
737          * counters are always enabled when this function is called and
738          * ARCH_PERFMON_EVENTSEL_INT is always set.
739          */
740         for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
741                 if (!test_bit(idx, cpuc->active_mask))
742                         continue;
743 
744                 amd_pmu_wait_on_overflow(idx);
745         }
746 }
747 
748 static void amd_pmu_enable_event(struct perf_event *event)
749 {
750         x86_pmu_enable_event(event);
751 }
752 
753 static void amd_pmu_enable_all(int added)
754 {
755         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
756         int idx;
757 
758         amd_brs_enable_all();
759 
760         for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
761                 /* only activate events which are marked as active */
762                 if (!test_bit(idx, cpuc->active_mask))
763                         continue;
764 
765                 amd_pmu_enable_event(cpuc->events[idx]);
766         }
767 }
768 
769 static void amd_pmu_v2_enable_event(struct perf_event *event)
770 {
771         struct hw_perf_event *hwc = &event->hw;
772 
773         /*
774          * Testing cpu_hw_events.enabled should be skipped in this case unlike
775          * in x86_pmu_enable_event().
776          *
777          * Since cpu_hw_events.enabled is set only after returning from
778          * x86_pmu_start(), the PMCs must be programmed and kept ready.
779          * Counting starts only after x86_pmu_enable_all() is called.
780          */
781         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
782 }
783 
784 static __always_inline void amd_pmu_core_enable_all(void)
785 {
786         amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask);
787 }
788 
789 static void amd_pmu_v2_enable_all(int added)
790 {
791         amd_pmu_lbr_enable_all();
792         amd_pmu_core_enable_all();
793 }
794 
795 static void amd_pmu_disable_event(struct perf_event *event)
796 {
797         x86_pmu_disable_event(event);
798 
799         /*
800          * This can be called from NMI context (via x86_pmu_stop). The counter
801          * may have overflowed, but either way, we'll never see it get reset
802          * by the NMI if we're already in the NMI. And the NMI latency support
803          * below will take care of any pending NMI that might have been
804          * generated by the overflow.
805          */
806         if (in_nmi())
807                 return;
808 
809         amd_pmu_wait_on_overflow(event->hw.idx);
810 }
811 
812 static void amd_pmu_disable_all(void)
813 {
814         amd_brs_disable_all();
815         x86_pmu_disable_all();
816         amd_pmu_check_overflow();
817 }
818 
819 static __always_inline void amd_pmu_core_disable_all(void)
820 {
821         amd_pmu_set_global_ctl(0);
822 }
823 
824 static void amd_pmu_v2_disable_all(void)
825 {
826         amd_pmu_core_disable_all();
827         amd_pmu_lbr_disable_all();
828         amd_pmu_check_overflow();
829 }
830 
831 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add);
832 
833 static void amd_pmu_add_event(struct perf_event *event)
834 {
835         if (needs_branch_stack(event))
836                 static_call(amd_pmu_branch_add)(event);
837 }
838 
839 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del);
840 
841 static void amd_pmu_del_event(struct perf_event *event)
842 {
843         if (needs_branch_stack(event))
844                 static_call(amd_pmu_branch_del)(event);
845 }
846 
847 /*
848  * Because of NMI latency, if multiple PMC counters are active or other sources
849  * of NMIs are received, the perf NMI handler can handle one or more overflowed
850  * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
851  * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
852  * back-to-back NMI support won't be active. This PMC handler needs to take into
853  * account that this can occur, otherwise this could result in unknown NMI
854  * messages being issued. Examples of this is PMC overflow while in the NMI
855  * handler when multiple PMCs are active or PMC overflow while handling some
856  * other source of an NMI.
857  *
858  * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
859  * received during this window will be claimed. This prevents extending the
860  * window past when it is possible that latent NMIs should be received. The
861  * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
862  * handled a counter. When an un-handled NMI is received, it will be claimed
863  * only if arriving within that window.
864  */
865 static inline int amd_pmu_adjust_nmi_window(int handled)
866 {
867         /*
868          * If a counter was handled, record a timestamp such that un-handled
869          * NMIs will be claimed if arriving within that window.
870          */
871         if (handled) {
872                 this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
873 
874                 return handled;
875         }
876 
877         if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
878                 return NMI_DONE;
879 
880         return NMI_HANDLED;
881 }
882 
883 static int amd_pmu_handle_irq(struct pt_regs *regs)
884 {
885         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
886         int handled;
887         int pmu_enabled;
888 
889         /*
890          * Save the PMU state.
891          * It needs to be restored when leaving the handler.
892          */
893         pmu_enabled = cpuc->enabled;
894         cpuc->enabled = 0;
895 
896         amd_brs_disable_all();
897 
898         /* Drain BRS is in use (could be inactive) */
899         if (cpuc->lbr_users)
900                 amd_brs_drain();
901 
902         /* Process any counter overflows */
903         handled = x86_pmu_handle_irq(regs);
904 
905         cpuc->enabled = pmu_enabled;
906         if (pmu_enabled)
907                 amd_brs_enable_all();
908 
909         return amd_pmu_adjust_nmi_window(handled);
910 }
911 
912 /*
913  * AMD-specific callback invoked through perf_snapshot_branch_stack static
914  * call, defined in include/linux/perf_event.h. See its definition for API
915  * details. It's up to caller to provide enough space in *entries* to fit all
916  * LBR records, otherwise returned result will be truncated to *cnt* entries.
917  */
918 static int amd_pmu_v2_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
919 {
920         struct cpu_hw_events *cpuc;
921         unsigned long flags;
922 
923         /*
924          * The sequence of steps to freeze LBR should be completely inlined
925          * and contain no branches to minimize contamination of LBR snapshot
926          */
927         local_irq_save(flags);
928         amd_pmu_core_disable_all();
929         __amd_pmu_lbr_disable();
930 
931         cpuc = this_cpu_ptr(&cpu_hw_events);
932 
933         amd_pmu_lbr_read();
934         cnt = min(cnt, x86_pmu.lbr_nr);
935         memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
936 
937         amd_pmu_v2_enable_all(0);
938         local_irq_restore(flags);
939 
940         return cnt;
941 }
942 
943 static int amd_pmu_v2_handle_irq(struct pt_regs *regs)
944 {
945         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
946         struct perf_sample_data data;
947         struct hw_perf_event *hwc;
948         struct perf_event *event;
949         int handled = 0, idx;
950         u64 reserved, status, mask;
951         bool pmu_enabled;
952 
953         /*
954          * Save the PMU state as it needs to be restored when leaving the
955          * handler
956          */
957         pmu_enabled = cpuc->enabled;
958         cpuc->enabled = 0;
959 
960         /* Stop counting but do not disable LBR */
961         amd_pmu_core_disable_all();
962 
963         status = amd_pmu_get_global_status();
964 
965         /* Check if any overflows are pending */
966         if (!status)
967                 goto done;
968 
969         /* Read branch records */
970         if (x86_pmu.lbr_nr) {
971                 amd_pmu_lbr_read();
972                 status &= ~GLOBAL_STATUS_LBRS_FROZEN;
973         }
974 
975         reserved = status & ~amd_pmu_global_cntr_mask;
976         if (reserved)
977                 pr_warn_once("Reserved PerfCntrGlobalStatus bits are set (0x%llx), please consider updating microcode\n",
978                              reserved);
979 
980         /* Clear any reserved bits set by buggy microcode */
981         status &= amd_pmu_global_cntr_mask;
982 
983         for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
984                 if (!test_bit(idx, cpuc->active_mask))
985                         continue;
986 
987                 event = cpuc->events[idx];
988                 hwc = &event->hw;
989                 x86_perf_event_update(event);
990                 mask = BIT_ULL(idx);
991 
992                 if (!(status & mask))
993                         continue;
994 
995                 /* Event overflow */
996                 handled++;
997                 status &= ~mask;
998                 perf_sample_data_init(&data, 0, hwc->last_period);
999 
1000                 if (!x86_perf_event_set_period(event))
1001                         continue;
1002 
1003                 if (has_branch_stack(event))
1004                         perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1005 
1006                 if (perf_event_overflow(event, &data, regs))
1007                         x86_pmu_stop(event, 0);
1008         }
1009 
1010         /*
1011          * It should never be the case that some overflows are not handled as
1012          * the corresponding PMCs are expected to be inactive according to the
1013          * active_mask
1014          */
1015         WARN_ON(status > 0);
1016 
1017         /* Clear overflow and freeze bits */
1018         amd_pmu_ack_global_status(~status);
1019 
1020         /*
1021          * Unmasking the LVTPC is not required as the Mask (M) bit of the LVT
1022          * PMI entry is not set by the local APIC when a PMC overflow occurs
1023          */
1024         inc_irq_stat(apic_perf_irqs);
1025 
1026 done:
1027         cpuc->enabled = pmu_enabled;
1028 
1029         /* Resume counting only if PMU is active */
1030         if (pmu_enabled)
1031                 amd_pmu_core_enable_all();
1032 
1033         return amd_pmu_adjust_nmi_window(handled);
1034 }
1035 
1036 static struct event_constraint *
1037 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1038                           struct perf_event *event)
1039 {
1040         /*
1041          * if not NB event or no NB, then no constraints
1042          */
1043         if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
1044                 return &unconstrained;
1045 
1046         return __amd_get_nb_event_constraints(cpuc, event, NULL);
1047 }
1048 
1049 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
1050                                       struct perf_event *event)
1051 {
1052         if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
1053                 __amd_put_nb_event_constraints(cpuc, event);
1054 }
1055 
1056 PMU_FORMAT_ATTR(event,  "config:0-7,32-35");
1057 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
1058 PMU_FORMAT_ATTR(edge,   "config:18"     );
1059 PMU_FORMAT_ATTR(inv,    "config:23"     );
1060 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
1061 
1062 static struct attribute *amd_format_attr[] = {
1063         &format_attr_event.attr,
1064         &format_attr_umask.attr,
1065         &format_attr_edge.attr,
1066         &format_attr_inv.attr,
1067         &format_attr_cmask.attr,
1068         NULL,
1069 };
1070 
1071 /* AMD Family 15h */
1072 
1073 #define AMD_EVENT_TYPE_MASK     0x000000F0ULL
1074 
1075 #define AMD_EVENT_FP            0x00000000ULL ... 0x00000010ULL
1076 #define AMD_EVENT_LS            0x00000020ULL ... 0x00000030ULL
1077 #define AMD_EVENT_DC            0x00000040ULL ... 0x00000050ULL
1078 #define AMD_EVENT_CU            0x00000060ULL ... 0x00000070ULL
1079 #define AMD_EVENT_IC_DE         0x00000080ULL ... 0x00000090ULL
1080 #define AMD_EVENT_EX_LS         0x000000C0ULL
1081 #define AMD_EVENT_DE            0x000000D0ULL
1082 #define AMD_EVENT_NB            0x000000E0ULL ... 0x000000F0ULL
1083 
1084 /*
1085  * AMD family 15h event code/PMC mappings:
1086  *
1087  * type = event_code & 0x0F0:
1088  *
1089  * 0x000        FP      PERF_CTL[5:3]
1090  * 0x010        FP      PERF_CTL[5:3]
1091  * 0x020        LS      PERF_CTL[5:0]
1092  * 0x030        LS      PERF_CTL[5:0]
1093  * 0x040        DC      PERF_CTL[5:0]
1094  * 0x050        DC      PERF_CTL[5:0]
1095  * 0x060        CU      PERF_CTL[2:0]
1096  * 0x070        CU      PERF_CTL[2:0]
1097  * 0x080        IC/DE   PERF_CTL[2:0]
1098  * 0x090        IC/DE   PERF_CTL[2:0]
1099  * 0x0A0        ---
1100  * 0x0B0        ---
1101  * 0x0C0        EX/LS   PERF_CTL[5:0]
1102  * 0x0D0        DE      PERF_CTL[2:0]
1103  * 0x0E0        NB      NB_PERF_CTL[3:0]
1104  * 0x0F0        NB      NB_PERF_CTL[3:0]
1105  *
1106  * Exceptions:
1107  *
1108  * 0x000        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
1109  * 0x003        FP      PERF_CTL[3]
1110  * 0x004        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
1111  * 0x00B        FP      PERF_CTL[3]
1112  * 0x00D        FP      PERF_CTL[3]
1113  * 0x023        DE      PERF_CTL[2:0]
1114  * 0x02D        LS      PERF_CTL[3]
1115  * 0x02E        LS      PERF_CTL[3,0]
1116  * 0x031        LS      PERF_CTL[2:0] (**)
1117  * 0x043        CU      PERF_CTL[2:0]
1118  * 0x045        CU      PERF_CTL[2:0]
1119  * 0x046        CU      PERF_CTL[2:0]
1120  * 0x054        CU      PERF_CTL[2:0]
1121  * 0x055        CU      PERF_CTL[2:0]
1122  * 0x08F        IC      PERF_CTL[0]
1123  * 0x187        DE      PERF_CTL[0]
1124  * 0x188        DE      PERF_CTL[0]
1125  * 0x0DB        EX      PERF_CTL[5:0]
1126  * 0x0DC        LS      PERF_CTL[5:0]
1127  * 0x0DD        LS      PERF_CTL[5:0]
1128  * 0x0DE        LS      PERF_CTL[5:0]
1129  * 0x0DF        LS      PERF_CTL[5:0]
1130  * 0x1C0        EX      PERF_CTL[5:3]
1131  * 0x1D6        EX      PERF_CTL[5:0]
1132  * 0x1D8        EX      PERF_CTL[5:0]
1133  *
1134  * (*)  depending on the umask all FPU counters may be used
1135  * (**) only one unitmask enabled at a time
1136  */
1137 
1138 static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
1139 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
1140 static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
1141 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
1142 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
1143 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
1144 
1145 static struct event_constraint *
1146 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
1147                                struct perf_event *event)
1148 {
1149         struct hw_perf_event *hwc = &event->hw;
1150         unsigned int event_code = amd_get_event_code(hwc);
1151 
1152         switch (event_code & AMD_EVENT_TYPE_MASK) {
1153         case AMD_EVENT_FP:
1154                 switch (event_code) {
1155                 case 0x000:
1156                         if (!(hwc->config & 0x0000F000ULL))
1157                                 break;
1158                         if (!(hwc->config & 0x00000F00ULL))
1159                                 break;
1160                         return &amd_f15_PMC3;
1161                 case 0x004:
1162                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1163                                 break;
1164                         return &amd_f15_PMC3;
1165                 case 0x003:
1166                 case 0x00B:
1167                 case 0x00D:
1168                         return &amd_f15_PMC3;
1169                 }
1170                 return &amd_f15_PMC53;
1171         case AMD_EVENT_LS:
1172         case AMD_EVENT_DC:
1173         case AMD_EVENT_EX_LS:
1174                 switch (event_code) {
1175                 case 0x023:
1176                 case 0x043:
1177                 case 0x045:
1178                 case 0x046:
1179                 case 0x054:
1180                 case 0x055:
1181                         return &amd_f15_PMC20;
1182                 case 0x02D:
1183                         return &amd_f15_PMC3;
1184                 case 0x02E:
1185                         return &amd_f15_PMC30;
1186                 case 0x031:
1187                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1188                                 return &amd_f15_PMC20;
1189                         return &emptyconstraint;
1190                 case 0x1C0:
1191                         return &amd_f15_PMC53;
1192                 default:
1193                         return &amd_f15_PMC50;
1194                 }
1195         case AMD_EVENT_CU:
1196         case AMD_EVENT_IC_DE:
1197         case AMD_EVENT_DE:
1198                 switch (event_code) {
1199                 case 0x08F:
1200                 case 0x187:
1201                 case 0x188:
1202                         return &amd_f15_PMC0;
1203                 case 0x0DB ... 0x0DF:
1204                 case 0x1D6:
1205                 case 0x1D8:
1206                         return &amd_f15_PMC50;
1207                 default:
1208                         return &amd_f15_PMC20;
1209                 }
1210         case AMD_EVENT_NB:
1211                 /* moved to uncore.c */
1212                 return &emptyconstraint;
1213         default:
1214                 return &emptyconstraint;
1215         }
1216 }
1217 
1218 static struct event_constraint pair_constraint;
1219 
1220 static struct event_constraint *
1221 amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
1222                                struct perf_event *event)
1223 {
1224         struct hw_perf_event *hwc = &event->hw;
1225 
1226         if (amd_is_pair_event_code(hwc))
1227                 return &pair_constraint;
1228 
1229         return &unconstrained;
1230 }
1231 
1232 static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
1233                                            struct perf_event *event)
1234 {
1235         struct hw_perf_event *hwc = &event->hw;
1236 
1237         if (is_counter_pair(hwc))
1238                 --cpuc->n_pair;
1239 }
1240 
1241 /*
1242  * Because of the way BRS operates with an inactive and active phases, and
1243  * the link to one counter, it is not possible to have two events using BRS
1244  * scheduled at the same time. There would be an issue with enforcing the
1245  * period of each one and given that the BRS saturates, it would not be possible
1246  * to guarantee correlated content for all events. Therefore, in situations
1247  * where multiple events want to use BRS, the kernel enforces mutual exclusion.
1248  * Exclusion is enforced by choosing only one counter for events using BRS.
1249  * The event scheduling logic will then automatically multiplex the
1250  * events and ensure that at most one event is actively using BRS.
1251  *
1252  * The BRS counter could be any counter, but there is no constraint on Fam19h,
1253  * therefore all counters are equal and thus we pick the first one: PMC0
1254  */
1255 static struct event_constraint amd_fam19h_brs_cntr0_constraint =
1256         EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK);
1257 
1258 static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint =
1259         __EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR);
1260 
1261 static struct event_constraint *
1262 amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx,
1263                           struct perf_event *event)
1264 {
1265         struct hw_perf_event *hwc = &event->hw;
1266         bool has_brs = has_amd_brs(hwc);
1267 
1268         /*
1269          * In case BRS is used with an event requiring a counter pair,
1270          * the kernel allows it but only on counter 0 & 1 to enforce
1271          * multiplexing requiring to protect BRS in case of multiple
1272          * BRS users
1273          */
1274         if (amd_is_pair_event_code(hwc)) {
1275                 return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint
1276                                : &pair_constraint;
1277         }
1278 
1279         if (has_brs)
1280                 return &amd_fam19h_brs_cntr0_constraint;
1281 
1282         return &unconstrained;
1283 }
1284 
1285 
1286 static ssize_t amd_event_sysfs_show(char *page, u64 config)
1287 {
1288         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
1289                     (config & AMD64_EVENTSEL_EVENT) >> 24;
1290 
1291         return x86_event_sysfs_show(page, config, event);
1292 }
1293 
1294 static void amd_pmu_limit_period(struct perf_event *event, s64 *left)
1295 {
1296         /*
1297          * Decrease period by the depth of the BRS feature to get the last N
1298          * taken branches and approximate the desired period
1299          */
1300         if (has_branch_stack(event) && *left > x86_pmu.lbr_nr)
1301                 *left -= x86_pmu.lbr_nr;
1302 }
1303 
1304 static __initconst const struct x86_pmu amd_pmu = {
1305         .name                   = "AMD",
1306         .handle_irq             = amd_pmu_handle_irq,
1307         .disable_all            = amd_pmu_disable_all,
1308         .enable_all             = amd_pmu_enable_all,
1309         .enable                 = amd_pmu_enable_event,
1310         .disable                = amd_pmu_disable_event,
1311         .hw_config              = amd_pmu_hw_config,
1312         .schedule_events        = x86_schedule_events,
1313         .eventsel               = MSR_K7_EVNTSEL0,
1314         .perfctr                = MSR_K7_PERFCTR0,
1315         .addr_offset            = amd_pmu_addr_offset,
1316         .event_map              = amd_pmu_event_map,
1317         .max_events             = ARRAY_SIZE(amd_perfmon_event_map),
1318         .cntr_mask64            = GENMASK_ULL(AMD64_NUM_COUNTERS - 1, 0),
1319         .add                    = amd_pmu_add_event,
1320         .del                    = amd_pmu_del_event,
1321         .cntval_bits            = 48,
1322         .cntval_mask            = (1ULL << 48) - 1,
1323         .apic                   = 1,
1324         /* use highest bit to detect overflow */
1325         .max_period             = (1ULL << 47) - 1,
1326         .get_event_constraints  = amd_get_event_constraints,
1327         .put_event_constraints  = amd_put_event_constraints,
1328 
1329         .format_attrs           = amd_format_attr,
1330         .events_sysfs_show      = amd_event_sysfs_show,
1331 
1332         .cpu_prepare            = amd_pmu_cpu_prepare,
1333         .cpu_starting           = amd_pmu_cpu_starting,
1334         .cpu_dead               = amd_pmu_cpu_dead,
1335 
1336         .amd_nb_constraints     = 1,
1337 };
1338 
1339 static ssize_t branches_show(struct device *cdev,
1340                               struct device_attribute *attr,
1341                               char *buf)
1342 {
1343         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
1344 }
1345 
1346 static DEVICE_ATTR_RO(branches);
1347 
1348 static struct attribute *amd_pmu_branches_attrs[] = {
1349         &dev_attr_branches.attr,
1350         NULL,
1351 };
1352 
1353 static umode_t
1354 amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1355 {
1356         return x86_pmu.lbr_nr ? attr->mode : 0;
1357 }
1358 
1359 static struct attribute_group group_caps_amd_branches = {
1360         .name  = "caps",
1361         .attrs = amd_pmu_branches_attrs,
1362         .is_visible = amd_branches_is_visible,
1363 };
1364 
1365 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1366 
1367 EVENT_ATTR_STR(branch-brs, amd_branch_brs,
1368                "event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n");
1369 
1370 static struct attribute *amd_brs_events_attrs[] = {
1371         EVENT_PTR(amd_branch_brs),
1372         NULL,
1373 };
1374 
1375 static umode_t
1376 amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1377 {
1378         return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ?
1379                attr->mode : 0;
1380 }
1381 
1382 static struct attribute_group group_events_amd_brs = {
1383         .name       = "events",
1384         .attrs      = amd_brs_events_attrs,
1385         .is_visible = amd_brs_is_visible,
1386 };
1387 
1388 #endif  /* CONFIG_PERF_EVENTS_AMD_BRS */
1389 
1390 static const struct attribute_group *amd_attr_update[] = {
1391         &group_caps_amd_branches,
1392 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1393         &group_events_amd_brs,
1394 #endif
1395         NULL,
1396 };
1397 
1398 static int __init amd_core_pmu_init(void)
1399 {
1400         union cpuid_0x80000022_ebx ebx;
1401         u64 even_ctr_mask = 0ULL;
1402         int i;
1403 
1404         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
1405                 return 0;
1406 
1407         /* Avoid calculating the value each time in the NMI handler */
1408         perf_nmi_window = msecs_to_jiffies(100);
1409 
1410         /*
1411          * If core performance counter extensions exists, we must use
1412          * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
1413          * amd_pmu_addr_offset().
1414          */
1415         x86_pmu.eventsel        = MSR_F15H_PERF_CTL;
1416         x86_pmu.perfctr         = MSR_F15H_PERF_CTR;
1417         x86_pmu.cntr_mask64     = GENMASK_ULL(AMD64_NUM_COUNTERS_CORE - 1, 0);
1418 
1419         /* Check for Performance Monitoring v2 support */
1420         if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) {
1421                 ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
1422 
1423                 /* Update PMU version for later usage */
1424                 x86_pmu.version = 2;
1425 
1426                 /* Find the number of available Core PMCs */
1427                 x86_pmu.cntr_mask64 = GENMASK_ULL(ebx.split.num_core_pmc - 1, 0);
1428 
1429                 amd_pmu_global_cntr_mask = x86_pmu.cntr_mask64;
1430 
1431                 /* Update PMC handling functions */
1432                 x86_pmu.enable_all = amd_pmu_v2_enable_all;
1433                 x86_pmu.disable_all = amd_pmu_v2_disable_all;
1434                 x86_pmu.enable = amd_pmu_v2_enable_event;
1435                 x86_pmu.handle_irq = amd_pmu_v2_handle_irq;
1436                 static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status);
1437         }
1438 
1439         /*
1440          * AMD Core perfctr has separate MSRs for the NB events, see
1441          * the amd/uncore.c driver.
1442          */
1443         x86_pmu.amd_nb_constraints = 0;
1444 
1445         if (boot_cpu_data.x86 == 0x15) {
1446                 pr_cont("Fam15h ");
1447                 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
1448         }
1449         if (boot_cpu_data.x86 >= 0x17) {
1450                 pr_cont("Fam17h+ ");
1451                 /*
1452                  * Family 17h and compatibles have constraints for Large
1453                  * Increment per Cycle events: they may only be assigned an
1454                  * even numbered counter that has a consecutive adjacent odd
1455                  * numbered counter following it.
1456                  */
1457                 for (i = 0; i < x86_pmu_max_num_counters(NULL) - 1; i += 2)
1458                         even_ctr_mask |= BIT_ULL(i);
1459 
1460                 pair_constraint = (struct event_constraint)
1461                                     __EVENT_CONSTRAINT(0, even_ctr_mask, 0,
1462                                     x86_pmu_max_num_counters(NULL) / 2, 0,
1463                                     PERF_X86_EVENT_PAIR);
1464 
1465                 x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
1466                 x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
1467                 x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
1468                 x86_pmu.flags |= PMU_FL_PAIR;
1469         }
1470 
1471         /* LBR and BRS are mutually exclusive features */
1472         if (!amd_pmu_lbr_init()) {
1473                 /* LBR requires flushing on context switch */
1474                 x86_pmu.sched_task = amd_pmu_lbr_sched_task;
1475                 static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config);
1476                 static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset);
1477                 static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add);
1478                 static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del);
1479 
1480                 /* Only support branch_stack snapshot on perfmon v2 */
1481                 if (x86_pmu.handle_irq == amd_pmu_v2_handle_irq)
1482                         static_call_update(perf_snapshot_branch_stack, amd_pmu_v2_snapshot_branch_stack);
1483         } else if (!amd_brs_init()) {
1484                 /*
1485                  * BRS requires special event constraints and flushing on ctxsw.
1486                  */
1487                 x86_pmu.get_event_constraints = amd_get_event_constraints_f19h;
1488                 x86_pmu.sched_task = amd_pmu_brs_sched_task;
1489                 x86_pmu.limit_period = amd_pmu_limit_period;
1490 
1491                 static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config);
1492                 static_call_update(amd_pmu_branch_reset, amd_brs_reset);
1493                 static_call_update(amd_pmu_branch_add, amd_pmu_brs_add);
1494                 static_call_update(amd_pmu_branch_del, amd_pmu_brs_del);
1495 
1496                 /*
1497                  * put_event_constraints callback same as Fam17h, set above
1498                  */
1499 
1500                 /* branch sampling must be stopped when entering low power */
1501                 amd_brs_lopwr_init();
1502         }
1503 
1504         x86_pmu.attr_update = amd_attr_update;
1505 
1506         pr_cont("core perfctr, ");
1507         return 0;
1508 }
1509 
1510 __init int amd_pmu_init(void)
1511 {
1512         int ret;
1513 
1514         /* Performance-monitoring supported from K7 and later: */
1515         if (boot_cpu_data.x86 < 6)
1516                 return -ENODEV;
1517 
1518         x86_pmu = amd_pmu;
1519 
1520         ret = amd_core_pmu_init();
1521         if (ret)
1522                 return ret;
1523 
1524         if (num_possible_cpus() == 1) {
1525                 /*
1526                  * No point in allocating data structures to serialize
1527                  * against other CPUs, when there is only the one CPU.
1528                  */
1529                 x86_pmu.amd_nb_constraints = 0;
1530         }
1531 
1532         if (boot_cpu_data.x86 >= 0x17)
1533                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
1534         else
1535                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
1536 
1537         return 0;
1538 }
1539 
1540 static inline void amd_pmu_reload_virt(void)
1541 {
1542         if (x86_pmu.version >= 2) {
1543                 /*
1544                  * Clear global enable bits, reprogram the PERF_CTL
1545                  * registers with updated perf_ctr_virt_mask and then
1546                  * set global enable bits once again
1547                  */
1548                 amd_pmu_v2_disable_all();
1549                 amd_pmu_enable_all(0);
1550                 amd_pmu_v2_enable_all(0);
1551                 return;
1552         }
1553 
1554         amd_pmu_disable_all();
1555         amd_pmu_enable_all(0);
1556 }
1557 
1558 void amd_pmu_enable_virt(void)
1559 {
1560         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1561 
1562         cpuc->perf_ctr_virt_mask = 0;
1563 
1564         /* Reload all events */
1565         amd_pmu_reload_virt();
1566 }
1567 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
1568 
1569 void amd_pmu_disable_virt(void)
1570 {
1571         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1572 
1573         /*
1574          * We only mask out the Host-only bit so that host-only counting works
1575          * when SVM is disabled. If someone sets up a guest-only counter when
1576          * SVM is disabled the Guest-only bits still gets set and the counter
1577          * will not count anything.
1578          */
1579         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1580 
1581         /* Reload all events */
1582         amd_pmu_reload_virt();
1583 }
1584 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
1585 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php