1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/perf_event.h> 3 #include <linux/jump_label.h> 4 #include <linux/export.h> 5 #include <linux/types.h> 6 #include <linux/init.h> 7 #include <linux/slab.h> 8 #include <linux/delay.h> 9 #include <linux/jiffies.h> 10 #include <asm/apicdef.h> 11 #include <asm/apic.h> 12 #include <asm/nmi.h> 13 14 #include "../perf_event.h" 15 16 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp); 17 static unsigned long perf_nmi_window; 18 19 /* AMD Event 0xFFF: Merge. Used with Large Increment per Cycle events */ 20 #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL) 21 #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE) 22 23 /* PMC Enable and Overflow bits for PerfCntrGlobal* registers */ 24 static u64 amd_pmu_global_cntr_mask __read_mostly; 25 26 static __initconst const u64 amd_hw_cache_event_ids 27 [PERF_COUNT_HW_CACHE_MAX] 28 [PERF_COUNT_HW_CACHE_OP_MAX] 29 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 30 { 31 [ C(L1D) ] = { 32 [ C(OP_READ) ] = { 33 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ 34 [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */ 35 }, 36 [ C(OP_WRITE) ] = { 37 [ C(RESULT_ACCESS) ] = 0, 38 [ C(RESULT_MISS) ] = 0, 39 }, 40 [ C(OP_PREFETCH) ] = { 41 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */ 42 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */ 43 }, 44 }, 45 [ C(L1I ) ] = { 46 [ C(OP_READ) ] = { 47 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */ 48 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */ 49 }, 50 [ C(OP_WRITE) ] = { 51 [ C(RESULT_ACCESS) ] = -1, 52 [ C(RESULT_MISS) ] = -1, 53 }, 54 [ C(OP_PREFETCH) ] = { 55 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */ 56 [ C(RESULT_MISS) ] = 0, 57 }, 58 }, 59 [ C(LL ) ] = { 60 [ C(OP_READ) ] = { 61 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */ 62 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */ 63 }, 64 [ C(OP_WRITE) ] = { 65 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */ 66 [ C(RESULT_MISS) ] = 0, 67 }, 68 [ C(OP_PREFETCH) ] = { 69 [ C(RESULT_ACCESS) ] = 0, 70 [ C(RESULT_MISS) ] = 0, 71 }, 72 }, 73 [ C(DTLB) ] = { 74 [ C(OP_READ) ] = { 75 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ 76 [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */ 77 }, 78 [ C(OP_WRITE) ] = { 79 [ C(RESULT_ACCESS) ] = 0, 80 [ C(RESULT_MISS) ] = 0, 81 }, 82 [ C(OP_PREFETCH) ] = { 83 [ C(RESULT_ACCESS) ] = 0, 84 [ C(RESULT_MISS) ] = 0, 85 }, 86 }, 87 [ C(ITLB) ] = { 88 [ C(OP_READ) ] = { 89 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */ 90 [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */ 91 }, 92 [ C(OP_WRITE) ] = { 93 [ C(RESULT_ACCESS) ] = -1, 94 [ C(RESULT_MISS) ] = -1, 95 }, 96 [ C(OP_PREFETCH) ] = { 97 [ C(RESULT_ACCESS) ] = -1, 98 [ C(RESULT_MISS) ] = -1, 99 }, 100 }, 101 [ C(BPU ) ] = { 102 [ C(OP_READ) ] = { 103 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */ 104 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */ 105 }, 106 [ C(OP_WRITE) ] = { 107 [ C(RESULT_ACCESS) ] = -1, 108 [ C(RESULT_MISS) ] = -1, 109 }, 110 [ C(OP_PREFETCH) ] = { 111 [ C(RESULT_ACCESS) ] = -1, 112 [ C(RESULT_MISS) ] = -1, 113 }, 114 }, 115 [ C(NODE) ] = { 116 [ C(OP_READ) ] = { 117 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */ 118 [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */ 119 }, 120 [ C(OP_WRITE) ] = { 121 [ C(RESULT_ACCESS) ] = -1, 122 [ C(RESULT_MISS) ] = -1, 123 }, 124 [ C(OP_PREFETCH) ] = { 125 [ C(RESULT_ACCESS) ] = -1, 126 [ C(RESULT_MISS) ] = -1, 127 }, 128 }, 129 }; 130 131 static __initconst const u64 amd_hw_cache_event_ids_f17h 132 [PERF_COUNT_HW_CACHE_MAX] 133 [PERF_COUNT_HW_CACHE_OP_MAX] 134 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 135 [C(L1D)] = { 136 [C(OP_READ)] = { 137 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */ 138 [C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */ 139 }, 140 [C(OP_WRITE)] = { 141 [C(RESULT_ACCESS)] = 0, 142 [C(RESULT_MISS)] = 0, 143 }, 144 [C(OP_PREFETCH)] = { 145 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */ 146 [C(RESULT_MISS)] = 0, 147 }, 148 }, 149 [C(L1I)] = { 150 [C(OP_READ)] = { 151 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */ 152 [C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */ 153 }, 154 [C(OP_WRITE)] = { 155 [C(RESULT_ACCESS)] = -1, 156 [C(RESULT_MISS)] = -1, 157 }, 158 [C(OP_PREFETCH)] = { 159 [C(RESULT_ACCESS)] = 0, 160 [C(RESULT_MISS)] = 0, 161 }, 162 }, 163 [C(LL)] = { 164 [C(OP_READ)] = { 165 [C(RESULT_ACCESS)] = 0, 166 [C(RESULT_MISS)] = 0, 167 }, 168 [C(OP_WRITE)] = { 169 [C(RESULT_ACCESS)] = 0, 170 [C(RESULT_MISS)] = 0, 171 }, 172 [C(OP_PREFETCH)] = { 173 [C(RESULT_ACCESS)] = 0, 174 [C(RESULT_MISS)] = 0, 175 }, 176 }, 177 [C(DTLB)] = { 178 [C(OP_READ)] = { 179 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */ 180 [C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */ 181 }, 182 [C(OP_WRITE)] = { 183 [C(RESULT_ACCESS)] = 0, 184 [C(RESULT_MISS)] = 0, 185 }, 186 [C(OP_PREFETCH)] = { 187 [C(RESULT_ACCESS)] = 0, 188 [C(RESULT_MISS)] = 0, 189 }, 190 }, 191 [C(ITLB)] = { 192 [C(OP_READ)] = { 193 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */ 194 [C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */ 195 }, 196 [C(OP_WRITE)] = { 197 [C(RESULT_ACCESS)] = -1, 198 [C(RESULT_MISS)] = -1, 199 }, 200 [C(OP_PREFETCH)] = { 201 [C(RESULT_ACCESS)] = -1, 202 [C(RESULT_MISS)] = -1, 203 }, 204 }, 205 [C(BPU)] = { 206 [C(OP_READ)] = { 207 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */ 208 [C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */ 209 }, 210 [C(OP_WRITE)] = { 211 [C(RESULT_ACCESS)] = -1, 212 [C(RESULT_MISS)] = -1, 213 }, 214 [C(OP_PREFETCH)] = { 215 [C(RESULT_ACCESS)] = -1, 216 [C(RESULT_MISS)] = -1, 217 }, 218 }, 219 [C(NODE)] = { 220 [C(OP_READ)] = { 221 [C(RESULT_ACCESS)] = 0, 222 [C(RESULT_MISS)] = 0, 223 }, 224 [C(OP_WRITE)] = { 225 [C(RESULT_ACCESS)] = -1, 226 [C(RESULT_MISS)] = -1, 227 }, 228 [C(OP_PREFETCH)] = { 229 [C(RESULT_ACCESS)] = -1, 230 [C(RESULT_MISS)] = -1, 231 }, 232 }, 233 }; 234 235 /* 236 * AMD Performance Monitor K7 and later, up to and including Family 16h: 237 */ 238 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] = 239 { 240 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, 241 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 242 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d, 243 [PERF_COUNT_HW_CACHE_MISSES] = 0x077e, 244 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2, 245 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3, 246 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */ 247 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */ 248 }; 249 250 /* 251 * AMD Performance Monitor Family 17h and later: 252 */ 253 static const u64 amd_zen1_perfmon_event_map[PERF_COUNT_HW_MAX] = 254 { 255 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, 256 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 257 [PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60, 258 [PERF_COUNT_HW_CACHE_MISSES] = 0x0964, 259 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2, 260 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3, 261 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287, 262 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x0187, 263 }; 264 265 static const u64 amd_zen2_perfmon_event_map[PERF_COUNT_HW_MAX] = 266 { 267 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, 268 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 269 [PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60, 270 [PERF_COUNT_HW_CACHE_MISSES] = 0x0964, 271 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2, 272 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3, 273 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00a9, 274 }; 275 276 static const u64 amd_zen4_perfmon_event_map[PERF_COUNT_HW_MAX] = 277 { 278 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, 279 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 280 [PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60, 281 [PERF_COUNT_HW_CACHE_MISSES] = 0x0964, 282 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2, 283 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3, 284 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00a9, 285 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x100000120, 286 }; 287 288 static u64 amd_pmu_event_map(int hw_event) 289 { 290 if (cpu_feature_enabled(X86_FEATURE_ZEN4) || boot_cpu_data.x86 >= 0x1a) 291 return amd_zen4_perfmon_event_map[hw_event]; 292 293 if (cpu_feature_enabled(X86_FEATURE_ZEN2) || boot_cpu_data.x86 >= 0x19) 294 return amd_zen2_perfmon_event_map[hw_event]; 295 296 if (cpu_feature_enabled(X86_FEATURE_ZEN1)) 297 return amd_zen1_perfmon_event_map[hw_event]; 298 299 return amd_perfmon_event_map[hw_event]; 300 } 301 302 /* 303 * Previously calculated offsets 304 */ 305 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly; 306 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly; 307 308 /* 309 * Legacy CPUs: 310 * 4 counters starting at 0xc0010000 each offset by 1 311 * 312 * CPUs with core performance counter extensions: 313 * 6 counters starting at 0xc0010200 each offset by 2 314 */ 315 static inline int amd_pmu_addr_offset(int index, bool eventsel) 316 { 317 int offset; 318 319 if (!index) 320 return index; 321 322 if (eventsel) 323 offset = event_offsets[index]; 324 else 325 offset = count_offsets[index]; 326 327 if (offset) 328 return offset; 329 330 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) 331 offset = index; 332 else 333 offset = index << 1; 334 335 if (eventsel) 336 event_offsets[index] = offset; 337 else 338 count_offsets[index] = offset; 339 340 return offset; 341 } 342 343 /* 344 * AMD64 events are detected based on their event codes. 345 */ 346 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc) 347 { 348 return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff); 349 } 350 351 static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc) 352 { 353 if (!(x86_pmu.flags & PMU_FL_PAIR)) 354 return false; 355 356 switch (amd_get_event_code(hwc)) { 357 case 0x003: return true; /* Retired SSE/AVX FLOPs */ 358 default: return false; 359 } 360 } 361 362 DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config); 363 364 static int amd_core_hw_config(struct perf_event *event) 365 { 366 if (event->attr.exclude_host && event->attr.exclude_guest) 367 /* 368 * When HO == GO == 1 the hardware treats that as GO == HO == 0 369 * and will count in both modes. We don't want to count in that 370 * case so we emulate no-counting by setting US = OS = 0. 371 */ 372 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR | 373 ARCH_PERFMON_EVENTSEL_OS); 374 else if (event->attr.exclude_host) 375 event->hw.config |= AMD64_EVENTSEL_GUESTONLY; 376 else if (event->attr.exclude_guest) 377 event->hw.config |= AMD64_EVENTSEL_HOSTONLY; 378 379 if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw)) 380 event->hw.flags |= PERF_X86_EVENT_PAIR; 381 382 if (has_branch_stack(event)) 383 return static_call(amd_pmu_branch_hw_config)(event); 384 385 return 0; 386 } 387 388 static inline int amd_is_nb_event(struct hw_perf_event *hwc) 389 { 390 return (hwc->config & 0xe0) == 0xe0; 391 } 392 393 static inline int amd_has_nb(struct cpu_hw_events *cpuc) 394 { 395 struct amd_nb *nb = cpuc->amd_nb; 396 397 return nb && nb->nb_id != -1; 398 } 399 400 static int amd_pmu_hw_config(struct perf_event *event) 401 { 402 int ret; 403 404 /* pass precise event sampling to ibs: */ 405 if (event->attr.precise_ip && get_ibs_caps()) 406 return forward_event_to_ibs(event); 407 408 if (has_branch_stack(event) && !x86_pmu.lbr_nr) 409 return -EOPNOTSUPP; 410 411 ret = x86_pmu_hw_config(event); 412 if (ret) 413 return ret; 414 415 if (event->attr.type == PERF_TYPE_RAW) 416 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK; 417 418 return amd_core_hw_config(event); 419 } 420 421 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc, 422 struct perf_event *event) 423 { 424 struct amd_nb *nb = cpuc->amd_nb; 425 int i; 426 427 /* 428 * need to scan whole list because event may not have 429 * been assigned during scheduling 430 * 431 * no race condition possible because event can only 432 * be removed on one CPU at a time AND PMU is disabled 433 * when we come here 434 */ 435 for_each_set_bit(i, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 436 struct perf_event *tmp = event; 437 438 if (try_cmpxchg(nb->owners + i, &tmp, NULL)) 439 break; 440 } 441 } 442 443 /* 444 * AMD64 NorthBridge events need special treatment because 445 * counter access needs to be synchronized across all cores 446 * of a package. Refer to BKDG section 3.12 447 * 448 * NB events are events measuring L3 cache, Hypertransport 449 * traffic. They are identified by an event code >= 0xe00. 450 * They measure events on the NorthBride which is shared 451 * by all cores on a package. NB events are counted on a 452 * shared set of counters. When a NB event is programmed 453 * in a counter, the data actually comes from a shared 454 * counter. Thus, access to those counters needs to be 455 * synchronized. 456 * 457 * We implement the synchronization such that no two cores 458 * can be measuring NB events using the same counters. Thus, 459 * we maintain a per-NB allocation table. The available slot 460 * is propagated using the event_constraint structure. 461 * 462 * We provide only one choice for each NB event based on 463 * the fact that only NB events have restrictions. Consequently, 464 * if a counter is available, there is a guarantee the NB event 465 * will be assigned to it. If no slot is available, an empty 466 * constraint is returned and scheduling will eventually fail 467 * for this event. 468 * 469 * Note that all cores attached the same NB compete for the same 470 * counters to host NB events, this is why we use atomic ops. Some 471 * multi-chip CPUs may have more than one NB. 472 * 473 * Given that resources are allocated (cmpxchg), they must be 474 * eventually freed for others to use. This is accomplished by 475 * calling __amd_put_nb_event_constraints() 476 * 477 * Non NB events are not impacted by this restriction. 478 */ 479 static struct event_constraint * 480 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, 481 struct event_constraint *c) 482 { 483 struct hw_perf_event *hwc = &event->hw; 484 struct amd_nb *nb = cpuc->amd_nb; 485 struct perf_event *old; 486 int idx, new = -1; 487 488 if (!c) 489 c = &unconstrained; 490 491 if (cpuc->is_fake) 492 return c; 493 494 /* 495 * detect if already present, if so reuse 496 * 497 * cannot merge with actual allocation 498 * because of possible holes 499 * 500 * event can already be present yet not assigned (in hwc->idx) 501 * because of successive calls to x86_schedule_events() from 502 * hw_perf_group_sched_in() without hw_perf_enable() 503 */ 504 for_each_set_bit(idx, c->idxmsk, x86_pmu_max_num_counters(NULL)) { 505 if (new == -1 || hwc->idx == idx) 506 /* assign free slot, prefer hwc->idx */ 507 old = cmpxchg(nb->owners + idx, NULL, event); 508 else if (nb->owners[idx] == event) 509 /* event already present */ 510 old = event; 511 else 512 continue; 513 514 if (old && old != event) 515 continue; 516 517 /* reassign to this slot */ 518 if (new != -1) 519 cmpxchg(nb->owners + new, event, NULL); 520 new = idx; 521 522 /* already present, reuse */ 523 if (old == event) 524 break; 525 } 526 527 if (new == -1) 528 return &emptyconstraint; 529 530 return &nb->event_constraints[new]; 531 } 532 533 static struct amd_nb *amd_alloc_nb(int cpu) 534 { 535 struct amd_nb *nb; 536 int i; 537 538 nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu)); 539 if (!nb) 540 return NULL; 541 542 nb->nb_id = -1; 543 544 /* 545 * initialize all possible NB constraints 546 */ 547 for_each_set_bit(i, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 548 __set_bit(i, nb->event_constraints[i].idxmsk); 549 nb->event_constraints[i].weight = 1; 550 } 551 return nb; 552 } 553 554 typedef void (amd_pmu_branch_reset_t)(void); 555 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t); 556 557 static void amd_pmu_cpu_reset(int cpu) 558 { 559 if (x86_pmu.lbr_nr) 560 static_call(amd_pmu_branch_reset)(); 561 562 if (x86_pmu.version < 2) 563 return; 564 565 /* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */ 566 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0); 567 568 /* 569 * Clear freeze and overflow bits i.e. PerfCntrGLobalStatus.LbrFreeze 570 * and PerfCntrGLobalStatus.PerfCntrOvfl 571 */ 572 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 573 GLOBAL_STATUS_LBRS_FROZEN | amd_pmu_global_cntr_mask); 574 } 575 576 static int amd_pmu_cpu_prepare(int cpu) 577 { 578 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 579 580 cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL, 581 cpu_to_node(cpu)); 582 if (!cpuc->lbr_sel) 583 return -ENOMEM; 584 585 WARN_ON_ONCE(cpuc->amd_nb); 586 587 if (!x86_pmu.amd_nb_constraints) 588 return 0; 589 590 cpuc->amd_nb = amd_alloc_nb(cpu); 591 if (cpuc->amd_nb) 592 return 0; 593 594 kfree(cpuc->lbr_sel); 595 cpuc->lbr_sel = NULL; 596 597 return -ENOMEM; 598 } 599 600 static void amd_pmu_cpu_starting(int cpu) 601 { 602 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 603 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED]; 604 struct amd_nb *nb; 605 int i, nb_id; 606 607 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY; 608 amd_pmu_cpu_reset(cpu); 609 610 if (!x86_pmu.amd_nb_constraints) 611 return; 612 613 nb_id = topology_amd_node_id(cpu); 614 WARN_ON_ONCE(nb_id == BAD_APICID); 615 616 for_each_online_cpu(i) { 617 nb = per_cpu(cpu_hw_events, i).amd_nb; 618 if (WARN_ON_ONCE(!nb)) 619 continue; 620 621 if (nb->nb_id == nb_id) { 622 *onln = cpuc->amd_nb; 623 cpuc->amd_nb = nb; 624 break; 625 } 626 } 627 628 cpuc->amd_nb->nb_id = nb_id; 629 cpuc->amd_nb->refcnt++; 630 } 631 632 static void amd_pmu_cpu_dead(int cpu) 633 { 634 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 635 636 kfree(cpuhw->lbr_sel); 637 cpuhw->lbr_sel = NULL; 638 639 if (!x86_pmu.amd_nb_constraints) 640 return; 641 642 if (cpuhw->amd_nb) { 643 struct amd_nb *nb = cpuhw->amd_nb; 644 645 if (nb->nb_id == -1 || --nb->refcnt == 0) 646 kfree(nb); 647 648 cpuhw->amd_nb = NULL; 649 } 650 } 651 652 static __always_inline void amd_pmu_set_global_ctl(u64 ctl) 653 { 654 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl); 655 } 656 657 static inline u64 amd_pmu_get_global_status(void) 658 { 659 u64 status; 660 661 /* PerfCntrGlobalStatus is read-only */ 662 rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status); 663 664 return status; 665 } 666 667 static inline void amd_pmu_ack_global_status(u64 status) 668 { 669 /* 670 * PerfCntrGlobalStatus is read-only but an overflow acknowledgment 671 * mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr 672 * clears the same bit in PerfCntrGlobalStatus 673 */ 674 675 wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status); 676 } 677 678 static bool amd_pmu_test_overflow_topbit(int idx) 679 { 680 u64 counter; 681 682 rdmsrl(x86_pmu_event_addr(idx), counter); 683 684 return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1)); 685 } 686 687 static bool amd_pmu_test_overflow_status(int idx) 688 { 689 return amd_pmu_get_global_status() & BIT_ULL(idx); 690 } 691 692 DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit); 693 694 /* 695 * When a PMC counter overflows, an NMI is used to process the event and 696 * reset the counter. NMI latency can result in the counter being updated 697 * before the NMI can run, which can result in what appear to be spurious 698 * NMIs. This function is intended to wait for the NMI to run and reset 699 * the counter to avoid possible unhandled NMI messages. 700 */ 701 #define OVERFLOW_WAIT_COUNT 50 702 703 static void amd_pmu_wait_on_overflow(int idx) 704 { 705 unsigned int i; 706 707 /* 708 * Wait for the counter to be reset if it has overflowed. This loop 709 * should exit very, very quickly, but just in case, don't wait 710 * forever... 711 */ 712 for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) { 713 if (!static_call(amd_pmu_test_overflow)(idx)) 714 break; 715 716 /* Might be in IRQ context, so can't sleep */ 717 udelay(1); 718 } 719 } 720 721 static void amd_pmu_check_overflow(void) 722 { 723 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 724 int idx; 725 726 /* 727 * This shouldn't be called from NMI context, but add a safeguard here 728 * to return, since if we're in NMI context we can't wait for an NMI 729 * to reset an overflowed counter value. 730 */ 731 if (in_nmi()) 732 return; 733 734 /* 735 * Check each counter for overflow and wait for it to be reset by the 736 * NMI if it has overflowed. This relies on the fact that all active 737 * counters are always enabled when this function is called and 738 * ARCH_PERFMON_EVENTSEL_INT is always set. 739 */ 740 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 741 if (!test_bit(idx, cpuc->active_mask)) 742 continue; 743 744 amd_pmu_wait_on_overflow(idx); 745 } 746 } 747 748 static void amd_pmu_enable_event(struct perf_event *event) 749 { 750 x86_pmu_enable_event(event); 751 } 752 753 static void amd_pmu_enable_all(int added) 754 { 755 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 756 int idx; 757 758 amd_brs_enable_all(); 759 760 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 761 /* only activate events which are marked as active */ 762 if (!test_bit(idx, cpuc->active_mask)) 763 continue; 764 765 amd_pmu_enable_event(cpuc->events[idx]); 766 } 767 } 768 769 static void amd_pmu_v2_enable_event(struct perf_event *event) 770 { 771 struct hw_perf_event *hwc = &event->hw; 772 773 /* 774 * Testing cpu_hw_events.enabled should be skipped in this case unlike 775 * in x86_pmu_enable_event(). 776 * 777 * Since cpu_hw_events.enabled is set only after returning from 778 * x86_pmu_start(), the PMCs must be programmed and kept ready. 779 * Counting starts only after x86_pmu_enable_all() is called. 780 */ 781 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 782 } 783 784 static __always_inline void amd_pmu_core_enable_all(void) 785 { 786 amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask); 787 } 788 789 static void amd_pmu_v2_enable_all(int added) 790 { 791 amd_pmu_lbr_enable_all(); 792 amd_pmu_core_enable_all(); 793 } 794 795 static void amd_pmu_disable_event(struct perf_event *event) 796 { 797 x86_pmu_disable_event(event); 798 799 /* 800 * This can be called from NMI context (via x86_pmu_stop). The counter 801 * may have overflowed, but either way, we'll never see it get reset 802 * by the NMI if we're already in the NMI. And the NMI latency support 803 * below will take care of any pending NMI that might have been 804 * generated by the overflow. 805 */ 806 if (in_nmi()) 807 return; 808 809 amd_pmu_wait_on_overflow(event->hw.idx); 810 } 811 812 static void amd_pmu_disable_all(void) 813 { 814 amd_brs_disable_all(); 815 x86_pmu_disable_all(); 816 amd_pmu_check_overflow(); 817 } 818 819 static __always_inline void amd_pmu_core_disable_all(void) 820 { 821 amd_pmu_set_global_ctl(0); 822 } 823 824 static void amd_pmu_v2_disable_all(void) 825 { 826 amd_pmu_core_disable_all(); 827 amd_pmu_lbr_disable_all(); 828 amd_pmu_check_overflow(); 829 } 830 831 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add); 832 833 static void amd_pmu_add_event(struct perf_event *event) 834 { 835 if (needs_branch_stack(event)) 836 static_call(amd_pmu_branch_add)(event); 837 } 838 839 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del); 840 841 static void amd_pmu_del_event(struct perf_event *event) 842 { 843 if (needs_branch_stack(event)) 844 static_call(amd_pmu_branch_del)(event); 845 } 846 847 /* 848 * Because of NMI latency, if multiple PMC counters are active or other sources 849 * of NMIs are received, the perf NMI handler can handle one or more overflowed 850 * PMC counters outside of the NMI associated with the PMC overflow. If the NMI 851 * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel 852 * back-to-back NMI support won't be active. This PMC handler needs to take into 853 * account that this can occur, otherwise this could result in unknown NMI 854 * messages being issued. Examples of this is PMC overflow while in the NMI 855 * handler when multiple PMCs are active or PMC overflow while handling some 856 * other source of an NMI. 857 * 858 * Attempt to mitigate this by creating an NMI window in which un-handled NMIs 859 * received during this window will be claimed. This prevents extending the 860 * window past when it is possible that latent NMIs should be received. The 861 * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has 862 * handled a counter. When an un-handled NMI is received, it will be claimed 863 * only if arriving within that window. 864 */ 865 static inline int amd_pmu_adjust_nmi_window(int handled) 866 { 867 /* 868 * If a counter was handled, record a timestamp such that un-handled 869 * NMIs will be claimed if arriving within that window. 870 */ 871 if (handled) { 872 this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window); 873 874 return handled; 875 } 876 877 if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp))) 878 return NMI_DONE; 879 880 return NMI_HANDLED; 881 } 882 883 static int amd_pmu_handle_irq(struct pt_regs *regs) 884 { 885 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 886 int handled; 887 int pmu_enabled; 888 889 /* 890 * Save the PMU state. 891 * It needs to be restored when leaving the handler. 892 */ 893 pmu_enabled = cpuc->enabled; 894 cpuc->enabled = 0; 895 896 amd_brs_disable_all(); 897 898 /* Drain BRS is in use (could be inactive) */ 899 if (cpuc->lbr_users) 900 amd_brs_drain(); 901 902 /* Process any counter overflows */ 903 handled = x86_pmu_handle_irq(regs); 904 905 cpuc->enabled = pmu_enabled; 906 if (pmu_enabled) 907 amd_brs_enable_all(); 908 909 return amd_pmu_adjust_nmi_window(handled); 910 } 911 912 /* 913 * AMD-specific callback invoked through perf_snapshot_branch_stack static 914 * call, defined in include/linux/perf_event.h. See its definition for API 915 * details. It's up to caller to provide enough space in *entries* to fit all 916 * LBR records, otherwise returned result will be truncated to *cnt* entries. 917 */ 918 static int amd_pmu_v2_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt) 919 { 920 struct cpu_hw_events *cpuc; 921 unsigned long flags; 922 923 /* 924 * The sequence of steps to freeze LBR should be completely inlined 925 * and contain no branches to minimize contamination of LBR snapshot 926 */ 927 local_irq_save(flags); 928 amd_pmu_core_disable_all(); 929 __amd_pmu_lbr_disable(); 930 931 cpuc = this_cpu_ptr(&cpu_hw_events); 932 933 amd_pmu_lbr_read(); 934 cnt = min(cnt, x86_pmu.lbr_nr); 935 memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt); 936 937 amd_pmu_v2_enable_all(0); 938 local_irq_restore(flags); 939 940 return cnt; 941 } 942 943 static int amd_pmu_v2_handle_irq(struct pt_regs *regs) 944 { 945 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 946 struct perf_sample_data data; 947 struct hw_perf_event *hwc; 948 struct perf_event *event; 949 int handled = 0, idx; 950 u64 reserved, status, mask; 951 bool pmu_enabled; 952 953 /* 954 * Save the PMU state as it needs to be restored when leaving the 955 * handler 956 */ 957 pmu_enabled = cpuc->enabled; 958 cpuc->enabled = 0; 959 960 /* Stop counting but do not disable LBR */ 961 amd_pmu_core_disable_all(); 962 963 status = amd_pmu_get_global_status(); 964 965 /* Check if any overflows are pending */ 966 if (!status) 967 goto done; 968 969 /* Read branch records */ 970 if (x86_pmu.lbr_nr) { 971 amd_pmu_lbr_read(); 972 status &= ~GLOBAL_STATUS_LBRS_FROZEN; 973 } 974 975 reserved = status & ~amd_pmu_global_cntr_mask; 976 if (reserved) 977 pr_warn_once("Reserved PerfCntrGlobalStatus bits are set (0x%llx), please consider updating microcode\n", 978 reserved); 979 980 /* Clear any reserved bits set by buggy microcode */ 981 status &= amd_pmu_global_cntr_mask; 982 983 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 984 if (!test_bit(idx, cpuc->active_mask)) 985 continue; 986 987 event = cpuc->events[idx]; 988 hwc = &event->hw; 989 x86_perf_event_update(event); 990 mask = BIT_ULL(idx); 991 992 if (!(status & mask)) 993 continue; 994 995 /* Event overflow */ 996 handled++; 997 status &= ~mask; 998 perf_sample_data_init(&data, 0, hwc->last_period); 999 1000 if (!x86_perf_event_set_period(event)) 1001 continue; 1002 1003 if (has_branch_stack(event)) 1004 perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL); 1005 1006 if (perf_event_overflow(event, &data, regs)) 1007 x86_pmu_stop(event, 0); 1008 } 1009 1010 /* 1011 * It should never be the case that some overflows are not handled as 1012 * the corresponding PMCs are expected to be inactive according to the 1013 * active_mask 1014 */ 1015 WARN_ON(status > 0); 1016 1017 /* Clear overflow and freeze bits */ 1018 amd_pmu_ack_global_status(~status); 1019 1020 /* 1021 * Unmasking the LVTPC is not required as the Mask (M) bit of the LVT 1022 * PMI entry is not set by the local APIC when a PMC overflow occurs 1023 */ 1024 inc_irq_stat(apic_perf_irqs); 1025 1026 done: 1027 cpuc->enabled = pmu_enabled; 1028 1029 /* Resume counting only if PMU is active */ 1030 if (pmu_enabled) 1031 amd_pmu_core_enable_all(); 1032 1033 return amd_pmu_adjust_nmi_window(handled); 1034 } 1035 1036 static struct event_constraint * 1037 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 1038 struct perf_event *event) 1039 { 1040 /* 1041 * if not NB event or no NB, then no constraints 1042 */ 1043 if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))) 1044 return &unconstrained; 1045 1046 return __amd_get_nb_event_constraints(cpuc, event, NULL); 1047 } 1048 1049 static void amd_put_event_constraints(struct cpu_hw_events *cpuc, 1050 struct perf_event *event) 1051 { 1052 if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)) 1053 __amd_put_nb_event_constraints(cpuc, event); 1054 } 1055 1056 PMU_FORMAT_ATTR(event, "config:0-7,32-35"); 1057 PMU_FORMAT_ATTR(umask, "config:8-15" ); 1058 PMU_FORMAT_ATTR(edge, "config:18" ); 1059 PMU_FORMAT_ATTR(inv, "config:23" ); 1060 PMU_FORMAT_ATTR(cmask, "config:24-31" ); 1061 1062 static struct attribute *amd_format_attr[] = { 1063 &format_attr_event.attr, 1064 &format_attr_umask.attr, 1065 &format_attr_edge.attr, 1066 &format_attr_inv.attr, 1067 &format_attr_cmask.attr, 1068 NULL, 1069 }; 1070 1071 /* AMD Family 15h */ 1072 1073 #define AMD_EVENT_TYPE_MASK 0x000000F0ULL 1074 1075 #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL 1076 #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL 1077 #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL 1078 #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL 1079 #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL 1080 #define AMD_EVENT_EX_LS 0x000000C0ULL 1081 #define AMD_EVENT_DE 0x000000D0ULL 1082 #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL 1083 1084 /* 1085 * AMD family 15h event code/PMC mappings: 1086 * 1087 * type = event_code & 0x0F0: 1088 * 1089 * 0x000 FP PERF_CTL[5:3] 1090 * 0x010 FP PERF_CTL[5:3] 1091 * 0x020 LS PERF_CTL[5:0] 1092 * 0x030 LS PERF_CTL[5:0] 1093 * 0x040 DC PERF_CTL[5:0] 1094 * 0x050 DC PERF_CTL[5:0] 1095 * 0x060 CU PERF_CTL[2:0] 1096 * 0x070 CU PERF_CTL[2:0] 1097 * 0x080 IC/DE PERF_CTL[2:0] 1098 * 0x090 IC/DE PERF_CTL[2:0] 1099 * 0x0A0 --- 1100 * 0x0B0 --- 1101 * 0x0C0 EX/LS PERF_CTL[5:0] 1102 * 0x0D0 DE PERF_CTL[2:0] 1103 * 0x0E0 NB NB_PERF_CTL[3:0] 1104 * 0x0F0 NB NB_PERF_CTL[3:0] 1105 * 1106 * Exceptions: 1107 * 1108 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*) 1109 * 0x003 FP PERF_CTL[3] 1110 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*) 1111 * 0x00B FP PERF_CTL[3] 1112 * 0x00D FP PERF_CTL[3] 1113 * 0x023 DE PERF_CTL[2:0] 1114 * 0x02D LS PERF_CTL[3] 1115 * 0x02E LS PERF_CTL[3,0] 1116 * 0x031 LS PERF_CTL[2:0] (**) 1117 * 0x043 CU PERF_CTL[2:0] 1118 * 0x045 CU PERF_CTL[2:0] 1119 * 0x046 CU PERF_CTL[2:0] 1120 * 0x054 CU PERF_CTL[2:0] 1121 * 0x055 CU PERF_CTL[2:0] 1122 * 0x08F IC PERF_CTL[0] 1123 * 0x187 DE PERF_CTL[0] 1124 * 0x188 DE PERF_CTL[0] 1125 * 0x0DB EX PERF_CTL[5:0] 1126 * 0x0DC LS PERF_CTL[5:0] 1127 * 0x0DD LS PERF_CTL[5:0] 1128 * 0x0DE LS PERF_CTL[5:0] 1129 * 0x0DF LS PERF_CTL[5:0] 1130 * 0x1C0 EX PERF_CTL[5:3] 1131 * 0x1D6 EX PERF_CTL[5:0] 1132 * 0x1D8 EX PERF_CTL[5:0] 1133 * 1134 * (*) depending on the umask all FPU counters may be used 1135 * (**) only one unitmask enabled at a time 1136 */ 1137 1138 static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0); 1139 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0); 1140 static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0); 1141 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0); 1142 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0); 1143 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0); 1144 1145 static struct event_constraint * 1146 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx, 1147 struct perf_event *event) 1148 { 1149 struct hw_perf_event *hwc = &event->hw; 1150 unsigned int event_code = amd_get_event_code(hwc); 1151 1152 switch (event_code & AMD_EVENT_TYPE_MASK) { 1153 case AMD_EVENT_FP: 1154 switch (event_code) { 1155 case 0x000: 1156 if (!(hwc->config & 0x0000F000ULL)) 1157 break; 1158 if (!(hwc->config & 0x00000F00ULL)) 1159 break; 1160 return &amd_f15_PMC3; 1161 case 0x004: 1162 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1) 1163 break; 1164 return &amd_f15_PMC3; 1165 case 0x003: 1166 case 0x00B: 1167 case 0x00D: 1168 return &amd_f15_PMC3; 1169 } 1170 return &amd_f15_PMC53; 1171 case AMD_EVENT_LS: 1172 case AMD_EVENT_DC: 1173 case AMD_EVENT_EX_LS: 1174 switch (event_code) { 1175 case 0x023: 1176 case 0x043: 1177 case 0x045: 1178 case 0x046: 1179 case 0x054: 1180 case 0x055: 1181 return &amd_f15_PMC20; 1182 case 0x02D: 1183 return &amd_f15_PMC3; 1184 case 0x02E: 1185 return &amd_f15_PMC30; 1186 case 0x031: 1187 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1) 1188 return &amd_f15_PMC20; 1189 return &emptyconstraint; 1190 case 0x1C0: 1191 return &amd_f15_PMC53; 1192 default: 1193 return &amd_f15_PMC50; 1194 } 1195 case AMD_EVENT_CU: 1196 case AMD_EVENT_IC_DE: 1197 case AMD_EVENT_DE: 1198 switch (event_code) { 1199 case 0x08F: 1200 case 0x187: 1201 case 0x188: 1202 return &amd_f15_PMC0; 1203 case 0x0DB ... 0x0DF: 1204 case 0x1D6: 1205 case 0x1D8: 1206 return &amd_f15_PMC50; 1207 default: 1208 return &amd_f15_PMC20; 1209 } 1210 case AMD_EVENT_NB: 1211 /* moved to uncore.c */ 1212 return &emptyconstraint; 1213 default: 1214 return &emptyconstraint; 1215 } 1216 } 1217 1218 static struct event_constraint pair_constraint; 1219 1220 static struct event_constraint * 1221 amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx, 1222 struct perf_event *event) 1223 { 1224 struct hw_perf_event *hwc = &event->hw; 1225 1226 if (amd_is_pair_event_code(hwc)) 1227 return &pair_constraint; 1228 1229 return &unconstrained; 1230 } 1231 1232 static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc, 1233 struct perf_event *event) 1234 { 1235 struct hw_perf_event *hwc = &event->hw; 1236 1237 if (is_counter_pair(hwc)) 1238 --cpuc->n_pair; 1239 } 1240 1241 /* 1242 * Because of the way BRS operates with an inactive and active phases, and 1243 * the link to one counter, it is not possible to have two events using BRS 1244 * scheduled at the same time. There would be an issue with enforcing the 1245 * period of each one and given that the BRS saturates, it would not be possible 1246 * to guarantee correlated content for all events. Therefore, in situations 1247 * where multiple events want to use BRS, the kernel enforces mutual exclusion. 1248 * Exclusion is enforced by choosing only one counter for events using BRS. 1249 * The event scheduling logic will then automatically multiplex the 1250 * events and ensure that at most one event is actively using BRS. 1251 * 1252 * The BRS counter could be any counter, but there is no constraint on Fam19h, 1253 * therefore all counters are equal and thus we pick the first one: PMC0 1254 */ 1255 static struct event_constraint amd_fam19h_brs_cntr0_constraint = 1256 EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK); 1257 1258 static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint = 1259 __EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR); 1260 1261 static struct event_constraint * 1262 amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx, 1263 struct perf_event *event) 1264 { 1265 struct hw_perf_event *hwc = &event->hw; 1266 bool has_brs = has_amd_brs(hwc); 1267 1268 /* 1269 * In case BRS is used with an event requiring a counter pair, 1270 * the kernel allows it but only on counter 0 & 1 to enforce 1271 * multiplexing requiring to protect BRS in case of multiple 1272 * BRS users 1273 */ 1274 if (amd_is_pair_event_code(hwc)) { 1275 return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint 1276 : &pair_constraint; 1277 } 1278 1279 if (has_brs) 1280 return &amd_fam19h_brs_cntr0_constraint; 1281 1282 return &unconstrained; 1283 } 1284 1285 1286 static ssize_t amd_event_sysfs_show(char *page, u64 config) 1287 { 1288 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) | 1289 (config & AMD64_EVENTSEL_EVENT) >> 24; 1290 1291 return x86_event_sysfs_show(page, config, event); 1292 } 1293 1294 static void amd_pmu_limit_period(struct perf_event *event, s64 *left) 1295 { 1296 /* 1297 * Decrease period by the depth of the BRS feature to get the last N 1298 * taken branches and approximate the desired period 1299 */ 1300 if (has_branch_stack(event) && *left > x86_pmu.lbr_nr) 1301 *left -= x86_pmu.lbr_nr; 1302 } 1303 1304 static __initconst const struct x86_pmu amd_pmu = { 1305 .name = "AMD", 1306 .handle_irq = amd_pmu_handle_irq, 1307 .disable_all = amd_pmu_disable_all, 1308 .enable_all = amd_pmu_enable_all, 1309 .enable = amd_pmu_enable_event, 1310 .disable = amd_pmu_disable_event, 1311 .hw_config = amd_pmu_hw_config, 1312 .schedule_events = x86_schedule_events, 1313 .eventsel = MSR_K7_EVNTSEL0, 1314 .perfctr = MSR_K7_PERFCTR0, 1315 .addr_offset = amd_pmu_addr_offset, 1316 .event_map = amd_pmu_event_map, 1317 .max_events = ARRAY_SIZE(amd_perfmon_event_map), 1318 .cntr_mask64 = GENMASK_ULL(AMD64_NUM_COUNTERS - 1, 0), 1319 .add = amd_pmu_add_event, 1320 .del = amd_pmu_del_event, 1321 .cntval_bits = 48, 1322 .cntval_mask = (1ULL << 48) - 1, 1323 .apic = 1, 1324 /* use highest bit to detect overflow */ 1325 .max_period = (1ULL << 47) - 1, 1326 .get_event_constraints = amd_get_event_constraints, 1327 .put_event_constraints = amd_put_event_constraints, 1328 1329 .format_attrs = amd_format_attr, 1330 .events_sysfs_show = amd_event_sysfs_show, 1331 1332 .cpu_prepare = amd_pmu_cpu_prepare, 1333 .cpu_starting = amd_pmu_cpu_starting, 1334 .cpu_dead = amd_pmu_cpu_dead, 1335 1336 .amd_nb_constraints = 1, 1337 }; 1338 1339 static ssize_t branches_show(struct device *cdev, 1340 struct device_attribute *attr, 1341 char *buf) 1342 { 1343 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); 1344 } 1345 1346 static DEVICE_ATTR_RO(branches); 1347 1348 static struct attribute *amd_pmu_branches_attrs[] = { 1349 &dev_attr_branches.attr, 1350 NULL, 1351 }; 1352 1353 static umode_t 1354 amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i) 1355 { 1356 return x86_pmu.lbr_nr ? attr->mode : 0; 1357 } 1358 1359 static struct attribute_group group_caps_amd_branches = { 1360 .name = "caps", 1361 .attrs = amd_pmu_branches_attrs, 1362 .is_visible = amd_branches_is_visible, 1363 }; 1364 1365 #ifdef CONFIG_PERF_EVENTS_AMD_BRS 1366 1367 EVENT_ATTR_STR(branch-brs, amd_branch_brs, 1368 "event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n"); 1369 1370 static struct attribute *amd_brs_events_attrs[] = { 1371 EVENT_PTR(amd_branch_brs), 1372 NULL, 1373 }; 1374 1375 static umode_t 1376 amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i) 1377 { 1378 return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ? 1379 attr->mode : 0; 1380 } 1381 1382 static struct attribute_group group_events_amd_brs = { 1383 .name = "events", 1384 .attrs = amd_brs_events_attrs, 1385 .is_visible = amd_brs_is_visible, 1386 }; 1387 1388 #endif /* CONFIG_PERF_EVENTS_AMD_BRS */ 1389 1390 static const struct attribute_group *amd_attr_update[] = { 1391 &group_caps_amd_branches, 1392 #ifdef CONFIG_PERF_EVENTS_AMD_BRS 1393 &group_events_amd_brs, 1394 #endif 1395 NULL, 1396 }; 1397 1398 static int __init amd_core_pmu_init(void) 1399 { 1400 union cpuid_0x80000022_ebx ebx; 1401 u64 even_ctr_mask = 0ULL; 1402 int i; 1403 1404 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) 1405 return 0; 1406 1407 /* Avoid calculating the value each time in the NMI handler */ 1408 perf_nmi_window = msecs_to_jiffies(100); 1409 1410 /* 1411 * If core performance counter extensions exists, we must use 1412 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also 1413 * amd_pmu_addr_offset(). 1414 */ 1415 x86_pmu.eventsel = MSR_F15H_PERF_CTL; 1416 x86_pmu.perfctr = MSR_F15H_PERF_CTR; 1417 x86_pmu.cntr_mask64 = GENMASK_ULL(AMD64_NUM_COUNTERS_CORE - 1, 0); 1418 1419 /* Check for Performance Monitoring v2 support */ 1420 if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) { 1421 ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES); 1422 1423 /* Update PMU version for later usage */ 1424 x86_pmu.version = 2; 1425 1426 /* Find the number of available Core PMCs */ 1427 x86_pmu.cntr_mask64 = GENMASK_ULL(ebx.split.num_core_pmc - 1, 0); 1428 1429 amd_pmu_global_cntr_mask = x86_pmu.cntr_mask64; 1430 1431 /* Update PMC handling functions */ 1432 x86_pmu.enable_all = amd_pmu_v2_enable_all; 1433 x86_pmu.disable_all = amd_pmu_v2_disable_all; 1434 x86_pmu.enable = amd_pmu_v2_enable_event; 1435 x86_pmu.handle_irq = amd_pmu_v2_handle_irq; 1436 static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status); 1437 } 1438 1439 /* 1440 * AMD Core perfctr has separate MSRs for the NB events, see 1441 * the amd/uncore.c driver. 1442 */ 1443 x86_pmu.amd_nb_constraints = 0; 1444 1445 if (boot_cpu_data.x86 == 0x15) { 1446 pr_cont("Fam15h "); 1447 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h; 1448 } 1449 if (boot_cpu_data.x86 >= 0x17) { 1450 pr_cont("Fam17h+ "); 1451 /* 1452 * Family 17h and compatibles have constraints for Large 1453 * Increment per Cycle events: they may only be assigned an 1454 * even numbered counter that has a consecutive adjacent odd 1455 * numbered counter following it. 1456 */ 1457 for (i = 0; i < x86_pmu_max_num_counters(NULL) - 1; i += 2) 1458 even_ctr_mask |= BIT_ULL(i); 1459 1460 pair_constraint = (struct event_constraint) 1461 __EVENT_CONSTRAINT(0, even_ctr_mask, 0, 1462 x86_pmu_max_num_counters(NULL) / 2, 0, 1463 PERF_X86_EVENT_PAIR); 1464 1465 x86_pmu.get_event_constraints = amd_get_event_constraints_f17h; 1466 x86_pmu.put_event_constraints = amd_put_event_constraints_f17h; 1467 x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE; 1468 x86_pmu.flags |= PMU_FL_PAIR; 1469 } 1470 1471 /* LBR and BRS are mutually exclusive features */ 1472 if (!amd_pmu_lbr_init()) { 1473 /* LBR requires flushing on context switch */ 1474 x86_pmu.sched_task = amd_pmu_lbr_sched_task; 1475 static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config); 1476 static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset); 1477 static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add); 1478 static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del); 1479 1480 /* Only support branch_stack snapshot on perfmon v2 */ 1481 if (x86_pmu.handle_irq == amd_pmu_v2_handle_irq) 1482 static_call_update(perf_snapshot_branch_stack, amd_pmu_v2_snapshot_branch_stack); 1483 } else if (!amd_brs_init()) { 1484 /* 1485 * BRS requires special event constraints and flushing on ctxsw. 1486 */ 1487 x86_pmu.get_event_constraints = amd_get_event_constraints_f19h; 1488 x86_pmu.sched_task = amd_pmu_brs_sched_task; 1489 x86_pmu.limit_period = amd_pmu_limit_period; 1490 1491 static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config); 1492 static_call_update(amd_pmu_branch_reset, amd_brs_reset); 1493 static_call_update(amd_pmu_branch_add, amd_pmu_brs_add); 1494 static_call_update(amd_pmu_branch_del, amd_pmu_brs_del); 1495 1496 /* 1497 * put_event_constraints callback same as Fam17h, set above 1498 */ 1499 1500 /* branch sampling must be stopped when entering low power */ 1501 amd_brs_lopwr_init(); 1502 } 1503 1504 x86_pmu.attr_update = amd_attr_update; 1505 1506 pr_cont("core perfctr, "); 1507 return 0; 1508 } 1509 1510 __init int amd_pmu_init(void) 1511 { 1512 int ret; 1513 1514 /* Performance-monitoring supported from K7 and later: */ 1515 if (boot_cpu_data.x86 < 6) 1516 return -ENODEV; 1517 1518 x86_pmu = amd_pmu; 1519 1520 ret = amd_core_pmu_init(); 1521 if (ret) 1522 return ret; 1523 1524 if (num_possible_cpus() == 1) { 1525 /* 1526 * No point in allocating data structures to serialize 1527 * against other CPUs, when there is only the one CPU. 1528 */ 1529 x86_pmu.amd_nb_constraints = 0; 1530 } 1531 1532 if (boot_cpu_data.x86 >= 0x17) 1533 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids)); 1534 else 1535 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 1536 1537 return 0; 1538 } 1539 1540 static inline void amd_pmu_reload_virt(void) 1541 { 1542 if (x86_pmu.version >= 2) { 1543 /* 1544 * Clear global enable bits, reprogram the PERF_CTL 1545 * registers with updated perf_ctr_virt_mask and then 1546 * set global enable bits once again 1547 */ 1548 amd_pmu_v2_disable_all(); 1549 amd_pmu_enable_all(0); 1550 amd_pmu_v2_enable_all(0); 1551 return; 1552 } 1553 1554 amd_pmu_disable_all(); 1555 amd_pmu_enable_all(0); 1556 } 1557 1558 void amd_pmu_enable_virt(void) 1559 { 1560 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1561 1562 cpuc->perf_ctr_virt_mask = 0; 1563 1564 /* Reload all events */ 1565 amd_pmu_reload_virt(); 1566 } 1567 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt); 1568 1569 void amd_pmu_disable_virt(void) 1570 { 1571 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1572 1573 /* 1574 * We only mask out the Host-only bit so that host-only counting works 1575 * when SVM is disabled. If someone sets up a guest-only counter when 1576 * SVM is disabled the Guest-only bits still gets set and the counter 1577 * will not count anything. 1578 */ 1579 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY; 1580 1581 /* Reload all events */ 1582 amd_pmu_reload_virt(); 1583 } 1584 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt); 1585
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.