~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/events/core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Performance events x86 architecture code
  3  *
  4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6  *  Copyright (C) 2009 Jaswinder Singh Rajput
  7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
  9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
 10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
 11  *
 12  *  For licencing details see kernel-base/COPYING
 13  */
 14 
 15 #include <linux/perf_event.h>
 16 #include <linux/capability.h>
 17 #include <linux/notifier.h>
 18 #include <linux/hardirq.h>
 19 #include <linux/kprobes.h>
 20 #include <linux/export.h>
 21 #include <linux/init.h>
 22 #include <linux/kdebug.h>
 23 #include <linux/sched/mm.h>
 24 #include <linux/sched/clock.h>
 25 #include <linux/uaccess.h>
 26 #include <linux/slab.h>
 27 #include <linux/cpu.h>
 28 #include <linux/bitops.h>
 29 #include <linux/device.h>
 30 #include <linux/nospec.h>
 31 #include <linux/static_call.h>
 32 
 33 #include <asm/apic.h>
 34 #include <asm/stacktrace.h>
 35 #include <asm/nmi.h>
 36 #include <asm/smp.h>
 37 #include <asm/alternative.h>
 38 #include <asm/mmu_context.h>
 39 #include <asm/tlbflush.h>
 40 #include <asm/timer.h>
 41 #include <asm/desc.h>
 42 #include <asm/ldt.h>
 43 #include <asm/unwind.h>
 44 #include <asm/uprobes.h>
 45 #include <asm/ibt.h>
 46 
 47 #include "perf_event.h"
 48 
 49 struct x86_pmu x86_pmu __read_mostly;
 50 static struct pmu pmu;
 51 
 52 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
 53         .enabled = 1,
 54         .pmu = &pmu,
 55 };
 56 
 57 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
 58 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
 59 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
 60 
 61 /*
 62  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
 63  * from just a typename, as opposed to an actual function.
 64  */
 65 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
 66 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
 67 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
 68 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
 69 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
 70 
 71 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
 72 
 73 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
 74 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
 75 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
 76 
 77 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period,   *x86_pmu.set_period);
 78 DEFINE_STATIC_CALL_NULL(x86_pmu_update,       *x86_pmu.update);
 79 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
 80 
 81 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
 82 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
 83 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
 84 
 85 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
 86 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
 87 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
 88 
 89 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
 90 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
 91 
 92 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
 93 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
 94 
 95 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
 96 
 97 /*
 98  * This one is magic, it will get called even when PMU init fails (because
 99  * there is no PMU), in which case it should simply return NULL.
100  */
101 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
102 
103 u64 __read_mostly hw_cache_event_ids
104                                 [PERF_COUNT_HW_CACHE_MAX]
105                                 [PERF_COUNT_HW_CACHE_OP_MAX]
106                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
107 u64 __read_mostly hw_cache_extra_regs
108                                 [PERF_COUNT_HW_CACHE_MAX]
109                                 [PERF_COUNT_HW_CACHE_OP_MAX]
110                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
111 
112 /*
113  * Propagate event elapsed time into the generic event.
114  * Can only be executed on the CPU where the event is active.
115  * Returns the delta events processed.
116  */
117 u64 x86_perf_event_update(struct perf_event *event)
118 {
119         struct hw_perf_event *hwc = &event->hw;
120         int shift = 64 - x86_pmu.cntval_bits;
121         u64 prev_raw_count, new_raw_count;
122         u64 delta;
123 
124         if (unlikely(!hwc->event_base))
125                 return 0;
126 
127         /*
128          * Careful: an NMI might modify the previous event value.
129          *
130          * Our tactic to handle this is to first atomically read and
131          * exchange a new raw count - then add that new-prev delta
132          * count to the generic event atomically:
133          */
134         prev_raw_count = local64_read(&hwc->prev_count);
135         do {
136                 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
137         } while (!local64_try_cmpxchg(&hwc->prev_count,
138                                       &prev_raw_count, new_raw_count));
139 
140         /*
141          * Now we have the new raw value and have updated the prev
142          * timestamp already. We can now calculate the elapsed delta
143          * (event-)time and add that to the generic event.
144          *
145          * Careful, not all hw sign-extends above the physical width
146          * of the count.
147          */
148         delta = (new_raw_count << shift) - (prev_raw_count << shift);
149         delta >>= shift;
150 
151         local64_add(delta, &event->count);
152         local64_sub(delta, &hwc->period_left);
153 
154         return new_raw_count;
155 }
156 
157 /*
158  * Find and validate any extra registers to set up.
159  */
160 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
161 {
162         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
163         struct hw_perf_event_extra *reg;
164         struct extra_reg *er;
165 
166         reg = &event->hw.extra_reg;
167 
168         if (!extra_regs)
169                 return 0;
170 
171         for (er = extra_regs; er->msr; er++) {
172                 if (er->event != (config & er->config_mask))
173                         continue;
174                 if (event->attr.config1 & ~er->valid_mask)
175                         return -EINVAL;
176                 /* Check if the extra msrs can be safely accessed*/
177                 if (!er->extra_msr_access)
178                         return -ENXIO;
179 
180                 reg->idx = er->idx;
181                 reg->config = event->attr.config1;
182                 reg->reg = er->msr;
183                 break;
184         }
185         return 0;
186 }
187 
188 static atomic_t active_events;
189 static atomic_t pmc_refcount;
190 static DEFINE_MUTEX(pmc_reserve_mutex);
191 
192 #ifdef CONFIG_X86_LOCAL_APIC
193 
194 static inline u64 get_possible_counter_mask(void)
195 {
196         u64 cntr_mask = x86_pmu.cntr_mask64;
197         int i;
198 
199         if (!is_hybrid())
200                 return cntr_mask;
201 
202         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
203                 cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64;
204 
205         return cntr_mask;
206 }
207 
208 static bool reserve_pmc_hardware(void)
209 {
210         u64 cntr_mask = get_possible_counter_mask();
211         int i, end;
212 
213         for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
214                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
215                         goto perfctr_fail;
216         }
217 
218         for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
219                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
220                         goto eventsel_fail;
221         }
222 
223         return true;
224 
225 eventsel_fail:
226         end = i;
227         for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
228                 release_evntsel_nmi(x86_pmu_config_addr(i));
229         i = X86_PMC_IDX_MAX;
230 
231 perfctr_fail:
232         end = i;
233         for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
234                 release_perfctr_nmi(x86_pmu_event_addr(i));
235 
236         return false;
237 }
238 
239 static void release_pmc_hardware(void)
240 {
241         u64 cntr_mask = get_possible_counter_mask();
242         int i;
243 
244         for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
245                 release_perfctr_nmi(x86_pmu_event_addr(i));
246                 release_evntsel_nmi(x86_pmu_config_addr(i));
247         }
248 }
249 
250 #else
251 
252 static bool reserve_pmc_hardware(void) { return true; }
253 static void release_pmc_hardware(void) {}
254 
255 #endif
256 
257 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
258                      unsigned long *fixed_cntr_mask)
259 {
260         u64 val, val_fail = -1, val_new= ~0;
261         int i, reg, reg_fail = -1, ret = 0;
262         int bios_fail = 0;
263         int reg_safe = -1;
264 
265         /*
266          * Check to see if the BIOS enabled any of the counters, if so
267          * complain and bail.
268          */
269         for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) {
270                 reg = x86_pmu_config_addr(i);
271                 ret = rdmsrl_safe(reg, &val);
272                 if (ret)
273                         goto msr_fail;
274                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
275                         bios_fail = 1;
276                         val_fail = val;
277                         reg_fail = reg;
278                 } else {
279                         reg_safe = i;
280                 }
281         }
282 
283         if (*(u64 *)fixed_cntr_mask) {
284                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
285                 ret = rdmsrl_safe(reg, &val);
286                 if (ret)
287                         goto msr_fail;
288                 for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) {
289                         if (fixed_counter_disabled(i, pmu))
290                                 continue;
291                         if (val & (0x03ULL << i*4)) {
292                                 bios_fail = 1;
293                                 val_fail = val;
294                                 reg_fail = reg;
295                         }
296                 }
297         }
298 
299         /*
300          * If all the counters are enabled, the below test will always
301          * fail.  The tools will also become useless in this scenario.
302          * Just fail and disable the hardware counters.
303          */
304 
305         if (reg_safe == -1) {
306                 reg = reg_safe;
307                 goto msr_fail;
308         }
309 
310         /*
311          * Read the current value, change it and read it back to see if it
312          * matches, this is needed to detect certain hardware emulators
313          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
314          */
315         reg = x86_pmu_event_addr(reg_safe);
316         if (rdmsrl_safe(reg, &val))
317                 goto msr_fail;
318         val ^= 0xffffUL;
319         ret = wrmsrl_safe(reg, val);
320         ret |= rdmsrl_safe(reg, &val_new);
321         if (ret || val != val_new)
322                 goto msr_fail;
323 
324         /*
325          * We still allow the PMU driver to operate:
326          */
327         if (bios_fail) {
328                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
329                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
330                               reg_fail, val_fail);
331         }
332 
333         return true;
334 
335 msr_fail:
336         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
337                 pr_cont("PMU not available due to virtualization, using software events only.\n");
338         } else {
339                 pr_cont("Broken PMU hardware detected, using software events only.\n");
340                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
341                        reg, val_new);
342         }
343 
344         return false;
345 }
346 
347 static void hw_perf_event_destroy(struct perf_event *event)
348 {
349         x86_release_hardware();
350         atomic_dec(&active_events);
351 }
352 
353 void hw_perf_lbr_event_destroy(struct perf_event *event)
354 {
355         hw_perf_event_destroy(event);
356 
357         /* undo the lbr/bts event accounting */
358         x86_del_exclusive(x86_lbr_exclusive_lbr);
359 }
360 
361 static inline int x86_pmu_initialized(void)
362 {
363         return x86_pmu.handle_irq != NULL;
364 }
365 
366 static inline int
367 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
368 {
369         struct perf_event_attr *attr = &event->attr;
370         unsigned int cache_type, cache_op, cache_result;
371         u64 config, val;
372 
373         config = attr->config;
374 
375         cache_type = (config >> 0) & 0xff;
376         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
377                 return -EINVAL;
378         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
379 
380         cache_op = (config >>  8) & 0xff;
381         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
382                 return -EINVAL;
383         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
384 
385         cache_result = (config >> 16) & 0xff;
386         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
387                 return -EINVAL;
388         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
389 
390         val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
391         if (val == 0)
392                 return -ENOENT;
393 
394         if (val == -1)
395                 return -EINVAL;
396 
397         hwc->config |= val;
398         attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
399         return x86_pmu_extra_regs(val, event);
400 }
401 
402 int x86_reserve_hardware(void)
403 {
404         int err = 0;
405 
406         if (!atomic_inc_not_zero(&pmc_refcount)) {
407                 mutex_lock(&pmc_reserve_mutex);
408                 if (atomic_read(&pmc_refcount) == 0) {
409                         if (!reserve_pmc_hardware()) {
410                                 err = -EBUSY;
411                         } else {
412                                 reserve_ds_buffers();
413                                 reserve_lbr_buffers();
414                         }
415                 }
416                 if (!err)
417                         atomic_inc(&pmc_refcount);
418                 mutex_unlock(&pmc_reserve_mutex);
419         }
420 
421         return err;
422 }
423 
424 void x86_release_hardware(void)
425 {
426         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
427                 release_pmc_hardware();
428                 release_ds_buffers();
429                 release_lbr_buffers();
430                 mutex_unlock(&pmc_reserve_mutex);
431         }
432 }
433 
434 /*
435  * Check if we can create event of a certain type (that no conflicting events
436  * are present).
437  */
438 int x86_add_exclusive(unsigned int what)
439 {
440         int i;
441 
442         /*
443          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
444          * LBR and BTS are still mutually exclusive.
445          */
446         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
447                 goto out;
448 
449         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
450                 mutex_lock(&pmc_reserve_mutex);
451                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
452                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
453                                 goto fail_unlock;
454                 }
455                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
456                 mutex_unlock(&pmc_reserve_mutex);
457         }
458 
459 out:
460         atomic_inc(&active_events);
461         return 0;
462 
463 fail_unlock:
464         mutex_unlock(&pmc_reserve_mutex);
465         return -EBUSY;
466 }
467 
468 void x86_del_exclusive(unsigned int what)
469 {
470         atomic_dec(&active_events);
471 
472         /*
473          * See the comment in x86_add_exclusive().
474          */
475         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
476                 return;
477 
478         atomic_dec(&x86_pmu.lbr_exclusive[what]);
479 }
480 
481 int x86_setup_perfctr(struct perf_event *event)
482 {
483         struct perf_event_attr *attr = &event->attr;
484         struct hw_perf_event *hwc = &event->hw;
485         u64 config;
486 
487         if (!is_sampling_event(event)) {
488                 hwc->sample_period = x86_pmu.max_period;
489                 hwc->last_period = hwc->sample_period;
490                 local64_set(&hwc->period_left, hwc->sample_period);
491         }
492 
493         if (attr->type == event->pmu->type)
494                 return x86_pmu_extra_regs(event->attr.config, event);
495 
496         if (attr->type == PERF_TYPE_HW_CACHE)
497                 return set_ext_hw_attr(hwc, event);
498 
499         if (attr->config >= x86_pmu.max_events)
500                 return -EINVAL;
501 
502         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
503 
504         /*
505          * The generic map:
506          */
507         config = x86_pmu.event_map(attr->config);
508 
509         if (config == 0)
510                 return -ENOENT;
511 
512         if (config == -1LL)
513                 return -EINVAL;
514 
515         hwc->config |= config;
516 
517         return 0;
518 }
519 
520 /*
521  * check that branch_sample_type is compatible with
522  * settings needed for precise_ip > 1 which implies
523  * using the LBR to capture ALL taken branches at the
524  * priv levels of the measurement
525  */
526 static inline int precise_br_compat(struct perf_event *event)
527 {
528         u64 m = event->attr.branch_sample_type;
529         u64 b = 0;
530 
531         /* must capture all branches */
532         if (!(m & PERF_SAMPLE_BRANCH_ANY))
533                 return 0;
534 
535         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
536 
537         if (!event->attr.exclude_user)
538                 b |= PERF_SAMPLE_BRANCH_USER;
539 
540         if (!event->attr.exclude_kernel)
541                 b |= PERF_SAMPLE_BRANCH_KERNEL;
542 
543         /*
544          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
545          */
546 
547         return m == b;
548 }
549 
550 int x86_pmu_max_precise(void)
551 {
552         int precise = 0;
553 
554         /* Support for constant skid */
555         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
556                 precise++;
557 
558                 /* Support for IP fixup */
559                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
560                         precise++;
561 
562                 if (x86_pmu.pebs_prec_dist)
563                         precise++;
564         }
565         return precise;
566 }
567 
568 int x86_pmu_hw_config(struct perf_event *event)
569 {
570         if (event->attr.precise_ip) {
571                 int precise = x86_pmu_max_precise();
572 
573                 if (event->attr.precise_ip > precise)
574                         return -EOPNOTSUPP;
575 
576                 /* There's no sense in having PEBS for non sampling events: */
577                 if (!is_sampling_event(event))
578                         return -EINVAL;
579         }
580         /*
581          * check that PEBS LBR correction does not conflict with
582          * whatever the user is asking with attr->branch_sample_type
583          */
584         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
585                 u64 *br_type = &event->attr.branch_sample_type;
586 
587                 if (has_branch_stack(event)) {
588                         if (!precise_br_compat(event))
589                                 return -EOPNOTSUPP;
590 
591                         /* branch_sample_type is compatible */
592 
593                 } else {
594                         /*
595                          * user did not specify  branch_sample_type
596                          *
597                          * For PEBS fixups, we capture all
598                          * the branches at the priv level of the
599                          * event.
600                          */
601                         *br_type = PERF_SAMPLE_BRANCH_ANY;
602 
603                         if (!event->attr.exclude_user)
604                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
605 
606                         if (!event->attr.exclude_kernel)
607                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
608                 }
609         }
610 
611         if (branch_sample_call_stack(event))
612                 event->attach_state |= PERF_ATTACH_TASK_DATA;
613 
614         /*
615          * Generate PMC IRQs:
616          * (keep 'enabled' bit clear for now)
617          */
618         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
619 
620         /*
621          * Count user and OS events unless requested not to
622          */
623         if (!event->attr.exclude_user)
624                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
625         if (!event->attr.exclude_kernel)
626                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
627 
628         if (event->attr.type == event->pmu->type)
629                 event->hw.config |= x86_pmu_get_event_config(event);
630 
631         if (event->attr.sample_period && x86_pmu.limit_period) {
632                 s64 left = event->attr.sample_period;
633                 x86_pmu.limit_period(event, &left);
634                 if (left > event->attr.sample_period)
635                         return -EINVAL;
636         }
637 
638         /* sample_regs_user never support XMM registers */
639         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
640                 return -EINVAL;
641         /*
642          * Besides the general purpose registers, XMM registers may
643          * be collected in PEBS on some platforms, e.g. Icelake
644          */
645         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
646                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
647                         return -EINVAL;
648 
649                 if (!event->attr.precise_ip)
650                         return -EINVAL;
651         }
652 
653         return x86_setup_perfctr(event);
654 }
655 
656 /*
657  * Setup the hardware configuration for a given attr_type
658  */
659 static int __x86_pmu_event_init(struct perf_event *event)
660 {
661         int err;
662 
663         if (!x86_pmu_initialized())
664                 return -ENODEV;
665 
666         err = x86_reserve_hardware();
667         if (err)
668                 return err;
669 
670         atomic_inc(&active_events);
671         event->destroy = hw_perf_event_destroy;
672 
673         event->hw.idx = -1;
674         event->hw.last_cpu = -1;
675         event->hw.last_tag = ~0ULL;
676 
677         /* mark unused */
678         event->hw.extra_reg.idx = EXTRA_REG_NONE;
679         event->hw.branch_reg.idx = EXTRA_REG_NONE;
680 
681         return x86_pmu.hw_config(event);
682 }
683 
684 void x86_pmu_disable_all(void)
685 {
686         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
687         int idx;
688 
689         for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
690                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
691                 u64 val;
692 
693                 if (!test_bit(idx, cpuc->active_mask))
694                         continue;
695                 rdmsrl(x86_pmu_config_addr(idx), val);
696                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
697                         continue;
698                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
699                 wrmsrl(x86_pmu_config_addr(idx), val);
700                 if (is_counter_pair(hwc))
701                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
702         }
703 }
704 
705 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
706 {
707         return static_call(x86_pmu_guest_get_msrs)(nr, data);
708 }
709 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
710 
711 /*
712  * There may be PMI landing after enabled=0. The PMI hitting could be before or
713  * after disable_all.
714  *
715  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
716  * It will not be re-enabled in the NMI handler again, because enabled=0. After
717  * handling the NMI, disable_all will be called, which will not change the
718  * state either. If PMI hits after disable_all, the PMU is already disabled
719  * before entering NMI handler. The NMI handler will not change the state
720  * either.
721  *
722  * So either situation is harmless.
723  */
724 static void x86_pmu_disable(struct pmu *pmu)
725 {
726         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
727 
728         if (!x86_pmu_initialized())
729                 return;
730 
731         if (!cpuc->enabled)
732                 return;
733 
734         cpuc->n_added = 0;
735         cpuc->enabled = 0;
736         barrier();
737 
738         static_call(x86_pmu_disable_all)();
739 }
740 
741 void x86_pmu_enable_all(int added)
742 {
743         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
744         int idx;
745 
746         for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
747                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
748 
749                 if (!test_bit(idx, cpuc->active_mask))
750                         continue;
751 
752                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
753         }
754 }
755 
756 static inline int is_x86_event(struct perf_event *event)
757 {
758         int i;
759 
760         if (!is_hybrid())
761                 return event->pmu == &pmu;
762 
763         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
764                 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
765                         return true;
766         }
767 
768         return false;
769 }
770 
771 struct pmu *x86_get_pmu(unsigned int cpu)
772 {
773         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
774 
775         /*
776          * All CPUs of the hybrid type have been offline.
777          * The x86_get_pmu() should not be invoked.
778          */
779         if (WARN_ON_ONCE(!cpuc->pmu))
780                 return &pmu;
781 
782         return cpuc->pmu;
783 }
784 /*
785  * Event scheduler state:
786  *
787  * Assign events iterating over all events and counters, beginning
788  * with events with least weights first. Keep the current iterator
789  * state in struct sched_state.
790  */
791 struct sched_state {
792         int     weight;
793         int     event;          /* event index */
794         int     counter;        /* counter index */
795         int     unassigned;     /* number of events to be assigned left */
796         int     nr_gp;          /* number of GP counters used */
797         u64     used;
798 };
799 
800 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
801 #define SCHED_STATES_MAX        2
802 
803 struct perf_sched {
804         int                     max_weight;
805         int                     max_events;
806         int                     max_gp;
807         int                     saved_states;
808         struct event_constraint **constraints;
809         struct sched_state      state;
810         struct sched_state      saved[SCHED_STATES_MAX];
811 };
812 
813 /*
814  * Initialize iterator that runs through all events and counters.
815  */
816 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
817                             int num, int wmin, int wmax, int gpmax)
818 {
819         int idx;
820 
821         memset(sched, 0, sizeof(*sched));
822         sched->max_events       = num;
823         sched->max_weight       = wmax;
824         sched->max_gp           = gpmax;
825         sched->constraints      = constraints;
826 
827         for (idx = 0; idx < num; idx++) {
828                 if (constraints[idx]->weight == wmin)
829                         break;
830         }
831 
832         sched->state.event      = idx;          /* start with min weight */
833         sched->state.weight     = wmin;
834         sched->state.unassigned = num;
835 }
836 
837 static void perf_sched_save_state(struct perf_sched *sched)
838 {
839         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
840                 return;
841 
842         sched->saved[sched->saved_states] = sched->state;
843         sched->saved_states++;
844 }
845 
846 static bool perf_sched_restore_state(struct perf_sched *sched)
847 {
848         if (!sched->saved_states)
849                 return false;
850 
851         sched->saved_states--;
852         sched->state = sched->saved[sched->saved_states];
853 
854         /* this assignment didn't work out */
855         /* XXX broken vs EVENT_PAIR */
856         sched->state.used &= ~BIT_ULL(sched->state.counter);
857 
858         /* try the next one */
859         sched->state.counter++;
860 
861         return true;
862 }
863 
864 /*
865  * Select a counter for the current event to schedule. Return true on
866  * success.
867  */
868 static bool __perf_sched_find_counter(struct perf_sched *sched)
869 {
870         struct event_constraint *c;
871         int idx;
872 
873         if (!sched->state.unassigned)
874                 return false;
875 
876         if (sched->state.event >= sched->max_events)
877                 return false;
878 
879         c = sched->constraints[sched->state.event];
880         /* Prefer fixed purpose counters */
881         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
882                 idx = INTEL_PMC_IDX_FIXED;
883                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
884                         u64 mask = BIT_ULL(idx);
885 
886                         if (sched->state.used & mask)
887                                 continue;
888 
889                         sched->state.used |= mask;
890                         goto done;
891                 }
892         }
893 
894         /* Grab the first unused counter starting with idx */
895         idx = sched->state.counter;
896         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
897                 u64 mask = BIT_ULL(idx);
898 
899                 if (c->flags & PERF_X86_EVENT_PAIR)
900                         mask |= mask << 1;
901 
902                 if (sched->state.used & mask)
903                         continue;
904 
905                 if (sched->state.nr_gp++ >= sched->max_gp)
906                         return false;
907 
908                 sched->state.used |= mask;
909                 goto done;
910         }
911 
912         return false;
913 
914 done:
915         sched->state.counter = idx;
916 
917         if (c->overlap)
918                 perf_sched_save_state(sched);
919 
920         return true;
921 }
922 
923 static bool perf_sched_find_counter(struct perf_sched *sched)
924 {
925         while (!__perf_sched_find_counter(sched)) {
926                 if (!perf_sched_restore_state(sched))
927                         return false;
928         }
929 
930         return true;
931 }
932 
933 /*
934  * Go through all unassigned events and find the next one to schedule.
935  * Take events with the least weight first. Return true on success.
936  */
937 static bool perf_sched_next_event(struct perf_sched *sched)
938 {
939         struct event_constraint *c;
940 
941         if (!sched->state.unassigned || !--sched->state.unassigned)
942                 return false;
943 
944         do {
945                 /* next event */
946                 sched->state.event++;
947                 if (sched->state.event >= sched->max_events) {
948                         /* next weight */
949                         sched->state.event = 0;
950                         sched->state.weight++;
951                         if (sched->state.weight > sched->max_weight)
952                                 return false;
953                 }
954                 c = sched->constraints[sched->state.event];
955         } while (c->weight != sched->state.weight);
956 
957         sched->state.counter = 0;       /* start with first counter */
958 
959         return true;
960 }
961 
962 /*
963  * Assign a counter for each event.
964  */
965 int perf_assign_events(struct event_constraint **constraints, int n,
966                         int wmin, int wmax, int gpmax, int *assign)
967 {
968         struct perf_sched sched;
969 
970         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
971 
972         do {
973                 if (!perf_sched_find_counter(&sched))
974                         break;  /* failed */
975                 if (assign)
976                         assign[sched.state.event] = sched.state.counter;
977         } while (perf_sched_next_event(&sched));
978 
979         return sched.state.unassigned;
980 }
981 EXPORT_SYMBOL_GPL(perf_assign_events);
982 
983 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
984 {
985         struct event_constraint *c;
986         struct perf_event *e;
987         int n0, i, wmin, wmax, unsched = 0;
988         struct hw_perf_event *hwc;
989         u64 used_mask = 0;
990 
991         /*
992          * Compute the number of events already present; see x86_pmu_add(),
993          * validate_group() and x86_pmu_commit_txn(). For the former two
994          * cpuc->n_events hasn't been updated yet, while for the latter
995          * cpuc->n_txn contains the number of events added in the current
996          * transaction.
997          */
998         n0 = cpuc->n_events;
999         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1000                 n0 -= cpuc->n_txn;
1001 
1002         static_call_cond(x86_pmu_start_scheduling)(cpuc);
1003 
1004         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1005                 c = cpuc->event_constraint[i];
1006 
1007                 /*
1008                  * Previously scheduled events should have a cached constraint,
1009                  * while new events should not have one.
1010                  */
1011                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1012 
1013                 /*
1014                  * Request constraints for new events; or for those events that
1015                  * have a dynamic constraint -- for those the constraint can
1016                  * change due to external factors (sibling state, allow_tfa).
1017                  */
1018                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1019                         c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1020                         cpuc->event_constraint[i] = c;
1021                 }
1022 
1023                 wmin = min(wmin, c->weight);
1024                 wmax = max(wmax, c->weight);
1025         }
1026 
1027         /*
1028          * fastpath, try to reuse previous register
1029          */
1030         for (i = 0; i < n; i++) {
1031                 u64 mask;
1032 
1033                 hwc = &cpuc->event_list[i]->hw;
1034                 c = cpuc->event_constraint[i];
1035 
1036                 /* never assigned */
1037                 if (hwc->idx == -1)
1038                         break;
1039 
1040                 /* constraint still honored */
1041                 if (!test_bit(hwc->idx, c->idxmsk))
1042                         break;
1043 
1044                 mask = BIT_ULL(hwc->idx);
1045                 if (is_counter_pair(hwc))
1046                         mask |= mask << 1;
1047 
1048                 /* not already used */
1049                 if (used_mask & mask)
1050                         break;
1051 
1052                 used_mask |= mask;
1053 
1054                 if (assign)
1055                         assign[i] = hwc->idx;
1056         }
1057 
1058         /* slow path */
1059         if (i != n) {
1060                 int gpmax = x86_pmu_max_num_counters(cpuc->pmu);
1061 
1062                 /*
1063                  * Do not allow scheduling of more than half the available
1064                  * generic counters.
1065                  *
1066                  * This helps avoid counter starvation of sibling thread by
1067                  * ensuring at most half the counters cannot be in exclusive
1068                  * mode. There is no designated counters for the limits. Any
1069                  * N/2 counters can be used. This helps with events with
1070                  * specific counter constraints.
1071                  */
1072                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1073                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1074                         gpmax /= 2;
1075 
1076                 /*
1077                  * Reduce the amount of available counters to allow fitting
1078                  * the extra Merge events needed by large increment events.
1079                  */
1080                 if (x86_pmu.flags & PMU_FL_PAIR) {
1081                         gpmax -= cpuc->n_pair;
1082                         WARN_ON(gpmax <= 0);
1083                 }
1084 
1085                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1086                                              wmax, gpmax, assign);
1087         }
1088 
1089         /*
1090          * In case of success (unsched = 0), mark events as committed,
1091          * so we do not put_constraint() in case new events are added
1092          * and fail to be scheduled
1093          *
1094          * We invoke the lower level commit callback to lock the resource
1095          *
1096          * We do not need to do all of this in case we are called to
1097          * validate an event group (assign == NULL)
1098          */
1099         if (!unsched && assign) {
1100                 for (i = 0; i < n; i++)
1101                         static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1102         } else {
1103                 for (i = n0; i < n; i++) {
1104                         e = cpuc->event_list[i];
1105 
1106                         /*
1107                          * release events that failed scheduling
1108                          */
1109                         static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1110 
1111                         cpuc->event_constraint[i] = NULL;
1112                 }
1113         }
1114 
1115         static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1116 
1117         return unsched ? -EINVAL : 0;
1118 }
1119 
1120 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1121                                struct perf_event *event)
1122 {
1123         if (is_metric_event(event)) {
1124                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1125                         return -EINVAL;
1126                 cpuc->n_metric++;
1127                 cpuc->n_txn_metric++;
1128         }
1129 
1130         return 0;
1131 }
1132 
1133 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1134                                 struct perf_event *event)
1135 {
1136         if (is_metric_event(event))
1137                 cpuc->n_metric--;
1138 }
1139 
1140 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1141                          int max_count, int n)
1142 {
1143         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1144 
1145         if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1146                 return -EINVAL;
1147 
1148         if (n >= max_count + cpuc->n_metric)
1149                 return -EINVAL;
1150 
1151         cpuc->event_list[n] = event;
1152         if (is_counter_pair(&event->hw)) {
1153                 cpuc->n_pair++;
1154                 cpuc->n_txn_pair++;
1155         }
1156 
1157         return 0;
1158 }
1159 
1160 /*
1161  * dogrp: true if must collect siblings events (group)
1162  * returns total number of events and error code
1163  */
1164 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1165 {
1166         struct perf_event *event;
1167         int n, max_count;
1168 
1169         max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu);
1170 
1171         /* current number of events already accepted */
1172         n = cpuc->n_events;
1173         if (!cpuc->n_events)
1174                 cpuc->pebs_output = 0;
1175 
1176         if (!cpuc->is_fake && leader->attr.precise_ip) {
1177                 /*
1178                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1179                  * away, the group was broken down and this singleton event
1180                  * can't schedule any more.
1181                  */
1182                 if (is_pebs_pt(leader) && !leader->aux_event)
1183                         return -EINVAL;
1184 
1185                 /*
1186                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1187                  */
1188                 if (cpuc->pebs_output &&
1189                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1190                         return -EINVAL;
1191 
1192                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1193         }
1194 
1195         if (is_x86_event(leader)) {
1196                 if (collect_event(cpuc, leader, max_count, n))
1197                         return -EINVAL;
1198                 n++;
1199         }
1200 
1201         if (!dogrp)
1202                 return n;
1203 
1204         for_each_sibling_event(event, leader) {
1205                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1206                         continue;
1207 
1208                 if (collect_event(cpuc, event, max_count, n))
1209                         return -EINVAL;
1210 
1211                 n++;
1212         }
1213         return n;
1214 }
1215 
1216 static inline void x86_assign_hw_event(struct perf_event *event,
1217                                 struct cpu_hw_events *cpuc, int i)
1218 {
1219         struct hw_perf_event *hwc = &event->hw;
1220         int idx;
1221 
1222         idx = hwc->idx = cpuc->assign[i];
1223         hwc->last_cpu = smp_processor_id();
1224         hwc->last_tag = ++cpuc->tags[i];
1225 
1226         static_call_cond(x86_pmu_assign)(event, idx);
1227 
1228         switch (hwc->idx) {
1229         case INTEL_PMC_IDX_FIXED_BTS:
1230         case INTEL_PMC_IDX_FIXED_VLBR:
1231                 hwc->config_base = 0;
1232                 hwc->event_base = 0;
1233                 break;
1234 
1235         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1236                 /* All the metric events are mapped onto the fixed counter 3. */
1237                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1238                 fallthrough;
1239         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1240                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1241                 hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED);
1242                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1243                                         INTEL_PMC_FIXED_RDPMC_BASE;
1244                 break;
1245 
1246         default:
1247                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1248                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1249                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1250                 break;
1251         }
1252 }
1253 
1254 /**
1255  * x86_perf_rdpmc_index - Return PMC counter used for event
1256  * @event: the perf_event to which the PMC counter was assigned
1257  *
1258  * The counter assigned to this performance event may change if interrupts
1259  * are enabled. This counter should thus never be used while interrupts are
1260  * enabled. Before this function is used to obtain the assigned counter the
1261  * event should be checked for validity using, for example,
1262  * perf_event_read_local(), within the same interrupt disabled section in
1263  * which this counter is planned to be used.
1264  *
1265  * Return: The index of the performance monitoring counter assigned to
1266  * @perf_event.
1267  */
1268 int x86_perf_rdpmc_index(struct perf_event *event)
1269 {
1270         lockdep_assert_irqs_disabled();
1271 
1272         return event->hw.event_base_rdpmc;
1273 }
1274 
1275 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1276                                         struct cpu_hw_events *cpuc,
1277                                         int i)
1278 {
1279         return hwc->idx == cpuc->assign[i] &&
1280                 hwc->last_cpu == smp_processor_id() &&
1281                 hwc->last_tag == cpuc->tags[i];
1282 }
1283 
1284 static void x86_pmu_start(struct perf_event *event, int flags);
1285 
1286 static void x86_pmu_enable(struct pmu *pmu)
1287 {
1288         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1289         struct perf_event *event;
1290         struct hw_perf_event *hwc;
1291         int i, added = cpuc->n_added;
1292 
1293         if (!x86_pmu_initialized())
1294                 return;
1295 
1296         if (cpuc->enabled)
1297                 return;
1298 
1299         if (cpuc->n_added) {
1300                 int n_running = cpuc->n_events - cpuc->n_added;
1301                 /*
1302                  * apply assignment obtained either from
1303                  * hw_perf_group_sched_in() or x86_pmu_enable()
1304                  *
1305                  * step1: save events moving to new counters
1306                  */
1307                 for (i = 0; i < n_running; i++) {
1308                         event = cpuc->event_list[i];
1309                         hwc = &event->hw;
1310 
1311                         /*
1312                          * we can avoid reprogramming counter if:
1313                          * - assigned same counter as last time
1314                          * - running on same CPU as last time
1315                          * - no other event has used the counter since
1316                          */
1317                         if (hwc->idx == -1 ||
1318                             match_prev_assignment(hwc, cpuc, i))
1319                                 continue;
1320 
1321                         /*
1322                          * Ensure we don't accidentally enable a stopped
1323                          * counter simply because we rescheduled.
1324                          */
1325                         if (hwc->state & PERF_HES_STOPPED)
1326                                 hwc->state |= PERF_HES_ARCH;
1327 
1328                         x86_pmu_stop(event, PERF_EF_UPDATE);
1329                 }
1330 
1331                 /*
1332                  * step2: reprogram moved events into new counters
1333                  */
1334                 for (i = 0; i < cpuc->n_events; i++) {
1335                         event = cpuc->event_list[i];
1336                         hwc = &event->hw;
1337 
1338                         if (!match_prev_assignment(hwc, cpuc, i))
1339                                 x86_assign_hw_event(event, cpuc, i);
1340                         else if (i < n_running)
1341                                 continue;
1342 
1343                         if (hwc->state & PERF_HES_ARCH)
1344                                 continue;
1345 
1346                         /*
1347                          * if cpuc->enabled = 0, then no wrmsr as
1348                          * per x86_pmu_enable_event()
1349                          */
1350                         x86_pmu_start(event, PERF_EF_RELOAD);
1351                 }
1352                 cpuc->n_added = 0;
1353                 perf_events_lapic_init();
1354         }
1355 
1356         cpuc->enabled = 1;
1357         barrier();
1358 
1359         static_call(x86_pmu_enable_all)(added);
1360 }
1361 
1362 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1363 
1364 /*
1365  * Set the next IRQ period, based on the hwc->period_left value.
1366  * To be called with the event disabled in hw:
1367  */
1368 int x86_perf_event_set_period(struct perf_event *event)
1369 {
1370         struct hw_perf_event *hwc = &event->hw;
1371         s64 left = local64_read(&hwc->period_left);
1372         s64 period = hwc->sample_period;
1373         int ret = 0, idx = hwc->idx;
1374 
1375         if (unlikely(!hwc->event_base))
1376                 return 0;
1377 
1378         /*
1379          * If we are way outside a reasonable range then just skip forward:
1380          */
1381         if (unlikely(left <= -period)) {
1382                 left = period;
1383                 local64_set(&hwc->period_left, left);
1384                 hwc->last_period = period;
1385                 ret = 1;
1386         }
1387 
1388         if (unlikely(left <= 0)) {
1389                 left += period;
1390                 local64_set(&hwc->period_left, left);
1391                 hwc->last_period = period;
1392                 ret = 1;
1393         }
1394         /*
1395          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1396          */
1397         if (unlikely(left < 2))
1398                 left = 2;
1399 
1400         if (left > x86_pmu.max_period)
1401                 left = x86_pmu.max_period;
1402 
1403         static_call_cond(x86_pmu_limit_period)(event, &left);
1404 
1405         this_cpu_write(pmc_prev_left[idx], left);
1406 
1407         /*
1408          * The hw event starts counting from this event offset,
1409          * mark it to be able to extra future deltas:
1410          */
1411         local64_set(&hwc->prev_count, (u64)-left);
1412 
1413         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1414 
1415         /*
1416          * Sign extend the Merge event counter's upper 16 bits since
1417          * we currently declare a 48-bit counter width
1418          */
1419         if (is_counter_pair(hwc))
1420                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1421 
1422         perf_event_update_userpage(event);
1423 
1424         return ret;
1425 }
1426 
1427 void x86_pmu_enable_event(struct perf_event *event)
1428 {
1429         if (__this_cpu_read(cpu_hw_events.enabled))
1430                 __x86_pmu_enable_event(&event->hw,
1431                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1432 }
1433 
1434 /*
1435  * Add a single event to the PMU.
1436  *
1437  * The event is added to the group of enabled events
1438  * but only if it can be scheduled with existing events.
1439  */
1440 static int x86_pmu_add(struct perf_event *event, int flags)
1441 {
1442         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1443         struct hw_perf_event *hwc;
1444         int assign[X86_PMC_IDX_MAX];
1445         int n, n0, ret;
1446 
1447         hwc = &event->hw;
1448 
1449         n0 = cpuc->n_events;
1450         ret = n = collect_events(cpuc, event, false);
1451         if (ret < 0)
1452                 goto out;
1453 
1454         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1455         if (!(flags & PERF_EF_START))
1456                 hwc->state |= PERF_HES_ARCH;
1457 
1458         /*
1459          * If group events scheduling transaction was started,
1460          * skip the schedulability test here, it will be performed
1461          * at commit time (->commit_txn) as a whole.
1462          *
1463          * If commit fails, we'll call ->del() on all events
1464          * for which ->add() was called.
1465          */
1466         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1467                 goto done_collect;
1468 
1469         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1470         if (ret)
1471                 goto out;
1472         /*
1473          * copy new assignment, now we know it is possible
1474          * will be used by hw_perf_enable()
1475          */
1476         memcpy(cpuc->assign, assign, n*sizeof(int));
1477 
1478 done_collect:
1479         /*
1480          * Commit the collect_events() state. See x86_pmu_del() and
1481          * x86_pmu_*_txn().
1482          */
1483         cpuc->n_events = n;
1484         cpuc->n_added += n - n0;
1485         cpuc->n_txn += n - n0;
1486 
1487         /*
1488          * This is before x86_pmu_enable() will call x86_pmu_start(),
1489          * so we enable LBRs before an event needs them etc..
1490          */
1491         static_call_cond(x86_pmu_add)(event);
1492 
1493         ret = 0;
1494 out:
1495         return ret;
1496 }
1497 
1498 static void x86_pmu_start(struct perf_event *event, int flags)
1499 {
1500         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1501         int idx = event->hw.idx;
1502 
1503         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1504                 return;
1505 
1506         if (WARN_ON_ONCE(idx == -1))
1507                 return;
1508 
1509         if (flags & PERF_EF_RELOAD) {
1510                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1511                 static_call(x86_pmu_set_period)(event);
1512         }
1513 
1514         event->hw.state = 0;
1515 
1516         cpuc->events[idx] = event;
1517         __set_bit(idx, cpuc->active_mask);
1518         static_call(x86_pmu_enable)(event);
1519         perf_event_update_userpage(event);
1520 }
1521 
1522 void perf_event_print_debug(void)
1523 {
1524         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1525         unsigned long *cntr_mask, *fixed_cntr_mask;
1526         struct event_constraint *pebs_constraints;
1527         struct cpu_hw_events *cpuc;
1528         u64 pebs, debugctl;
1529         int cpu, idx;
1530 
1531         guard(irqsave)();
1532 
1533         cpu = smp_processor_id();
1534         cpuc = &per_cpu(cpu_hw_events, cpu);
1535         cntr_mask = hybrid(cpuc->pmu, cntr_mask);
1536         fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
1537         pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1538 
1539         if (!*(u64 *)cntr_mask)
1540                 return;
1541 
1542         if (x86_pmu.version >= 2) {
1543                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1544                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1545                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1546                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1547 
1548                 pr_info("\n");
1549                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1550                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1551                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1552                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1553                 if (pebs_constraints) {
1554                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1555                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1556                 }
1557                 if (x86_pmu.lbr_nr) {
1558                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1559                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1560                 }
1561         }
1562         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1563 
1564         for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) {
1565                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1566                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1567 
1568                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1569 
1570                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1571                         cpu, idx, pmc_ctrl);
1572                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1573                         cpu, idx, pmc_count);
1574                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1575                         cpu, idx, prev_left);
1576         }
1577         for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) {
1578                 if (fixed_counter_disabled(idx, cpuc->pmu))
1579                         continue;
1580                 rdmsrl(x86_pmu_fixed_ctr_addr(idx), pmc_count);
1581 
1582                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1583                         cpu, idx, pmc_count);
1584         }
1585 }
1586 
1587 void x86_pmu_stop(struct perf_event *event, int flags)
1588 {
1589         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1590         struct hw_perf_event *hwc = &event->hw;
1591 
1592         if (test_bit(hwc->idx, cpuc->active_mask)) {
1593                 static_call(x86_pmu_disable)(event);
1594                 __clear_bit(hwc->idx, cpuc->active_mask);
1595                 cpuc->events[hwc->idx] = NULL;
1596                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1597                 hwc->state |= PERF_HES_STOPPED;
1598         }
1599 
1600         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1601                 /*
1602                  * Drain the remaining delta count out of a event
1603                  * that we are disabling:
1604                  */
1605                 static_call(x86_pmu_update)(event);
1606                 hwc->state |= PERF_HES_UPTODATE;
1607         }
1608 }
1609 
1610 static void x86_pmu_del(struct perf_event *event, int flags)
1611 {
1612         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1613         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1614         int i;
1615 
1616         /*
1617          * If we're called during a txn, we only need to undo x86_pmu.add.
1618          * The events never got scheduled and ->cancel_txn will truncate
1619          * the event_list.
1620          *
1621          * XXX assumes any ->del() called during a TXN will only be on
1622          * an event added during that same TXN.
1623          */
1624         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1625                 goto do_del;
1626 
1627         __set_bit(event->hw.idx, cpuc->dirty);
1628 
1629         /*
1630          * Not a TXN, therefore cleanup properly.
1631          */
1632         x86_pmu_stop(event, PERF_EF_UPDATE);
1633 
1634         for (i = 0; i < cpuc->n_events; i++) {
1635                 if (event == cpuc->event_list[i])
1636                         break;
1637         }
1638 
1639         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1640                 return;
1641 
1642         /* If we have a newly added event; make sure to decrease n_added. */
1643         if (i >= cpuc->n_events - cpuc->n_added)
1644                 --cpuc->n_added;
1645 
1646         static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1647 
1648         /* Delete the array entry. */
1649         while (++i < cpuc->n_events) {
1650                 cpuc->event_list[i-1] = cpuc->event_list[i];
1651                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1652                 cpuc->assign[i-1] = cpuc->assign[i];
1653         }
1654         cpuc->event_constraint[i-1] = NULL;
1655         --cpuc->n_events;
1656         if (intel_cap.perf_metrics)
1657                 del_nr_metric_event(cpuc, event);
1658 
1659         perf_event_update_userpage(event);
1660 
1661 do_del:
1662 
1663         /*
1664          * This is after x86_pmu_stop(); so we disable LBRs after any
1665          * event can need them etc..
1666          */
1667         static_call_cond(x86_pmu_del)(event);
1668 }
1669 
1670 int x86_pmu_handle_irq(struct pt_regs *regs)
1671 {
1672         struct perf_sample_data data;
1673         struct cpu_hw_events *cpuc;
1674         struct perf_event *event;
1675         int idx, handled = 0;
1676         u64 val;
1677 
1678         cpuc = this_cpu_ptr(&cpu_hw_events);
1679 
1680         /*
1681          * Some chipsets need to unmask the LVTPC in a particular spot
1682          * inside the nmi handler.  As a result, the unmasking was pushed
1683          * into all the nmi handlers.
1684          *
1685          * This generic handler doesn't seem to have any issues where the
1686          * unmasking occurs so it was left at the top.
1687          */
1688         apic_write(APIC_LVTPC, APIC_DM_NMI);
1689 
1690         for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1691                 if (!test_bit(idx, cpuc->active_mask))
1692                         continue;
1693 
1694                 event = cpuc->events[idx];
1695 
1696                 val = static_call(x86_pmu_update)(event);
1697                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1698                         continue;
1699 
1700                 /*
1701                  * event overflow
1702                  */
1703                 handled++;
1704 
1705                 if (!static_call(x86_pmu_set_period)(event))
1706                         continue;
1707 
1708                 perf_sample_data_init(&data, 0, event->hw.last_period);
1709 
1710                 if (has_branch_stack(event))
1711                         perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1712 
1713                 if (perf_event_overflow(event, &data, regs))
1714                         x86_pmu_stop(event, 0);
1715         }
1716 
1717         if (handled)
1718                 inc_irq_stat(apic_perf_irqs);
1719 
1720         return handled;
1721 }
1722 
1723 void perf_events_lapic_init(void)
1724 {
1725         if (!x86_pmu.apic || !x86_pmu_initialized())
1726                 return;
1727 
1728         /*
1729          * Always use NMI for PMU
1730          */
1731         apic_write(APIC_LVTPC, APIC_DM_NMI);
1732 }
1733 
1734 static int
1735 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1736 {
1737         u64 start_clock;
1738         u64 finish_clock;
1739         int ret;
1740 
1741         /*
1742          * All PMUs/events that share this PMI handler should make sure to
1743          * increment active_events for their events.
1744          */
1745         if (!atomic_read(&active_events))
1746                 return NMI_DONE;
1747 
1748         start_clock = sched_clock();
1749         ret = static_call(x86_pmu_handle_irq)(regs);
1750         finish_clock = sched_clock();
1751 
1752         perf_sample_event_took(finish_clock - start_clock);
1753 
1754         return ret;
1755 }
1756 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1757 
1758 struct event_constraint emptyconstraint;
1759 struct event_constraint unconstrained;
1760 
1761 static int x86_pmu_prepare_cpu(unsigned int cpu)
1762 {
1763         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1764         int i;
1765 
1766         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1767                 cpuc->kfree_on_online[i] = NULL;
1768         if (x86_pmu.cpu_prepare)
1769                 return x86_pmu.cpu_prepare(cpu);
1770         return 0;
1771 }
1772 
1773 static int x86_pmu_dead_cpu(unsigned int cpu)
1774 {
1775         if (x86_pmu.cpu_dead)
1776                 x86_pmu.cpu_dead(cpu);
1777         return 0;
1778 }
1779 
1780 static int x86_pmu_online_cpu(unsigned int cpu)
1781 {
1782         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1783         int i;
1784 
1785         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1786                 kfree(cpuc->kfree_on_online[i]);
1787                 cpuc->kfree_on_online[i] = NULL;
1788         }
1789         return 0;
1790 }
1791 
1792 static int x86_pmu_starting_cpu(unsigned int cpu)
1793 {
1794         if (x86_pmu.cpu_starting)
1795                 x86_pmu.cpu_starting(cpu);
1796         return 0;
1797 }
1798 
1799 static int x86_pmu_dying_cpu(unsigned int cpu)
1800 {
1801         if (x86_pmu.cpu_dying)
1802                 x86_pmu.cpu_dying(cpu);
1803         return 0;
1804 }
1805 
1806 static void __init pmu_check_apic(void)
1807 {
1808         if (boot_cpu_has(X86_FEATURE_APIC))
1809                 return;
1810 
1811         x86_pmu.apic = 0;
1812         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1813         pr_info("no hardware sampling interrupt available.\n");
1814 
1815         /*
1816          * If we have a PMU initialized but no APIC
1817          * interrupts, we cannot sample hardware
1818          * events (user-space has to fall back and
1819          * sample via a hrtimer based software event):
1820          */
1821         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1822 
1823 }
1824 
1825 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1826         .name = "format",
1827         .attrs = NULL,
1828 };
1829 
1830 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1831 {
1832         struct perf_pmu_events_attr *pmu_attr =
1833                 container_of(attr, struct perf_pmu_events_attr, attr);
1834         u64 config = 0;
1835 
1836         if (pmu_attr->id < x86_pmu.max_events)
1837                 config = x86_pmu.event_map(pmu_attr->id);
1838 
1839         /* string trumps id */
1840         if (pmu_attr->event_str)
1841                 return sprintf(page, "%s\n", pmu_attr->event_str);
1842 
1843         return x86_pmu.events_sysfs_show(page, config);
1844 }
1845 EXPORT_SYMBOL_GPL(events_sysfs_show);
1846 
1847 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1848                           char *page)
1849 {
1850         struct perf_pmu_events_ht_attr *pmu_attr =
1851                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1852 
1853         /*
1854          * Report conditional events depending on Hyper-Threading.
1855          *
1856          * This is overly conservative as usually the HT special
1857          * handling is not needed if the other CPU thread is idle.
1858          *
1859          * Note this does not (and cannot) handle the case when thread
1860          * siblings are invisible, for example with virtualization
1861          * if they are owned by some other guest.  The user tool
1862          * has to re-read when a thread sibling gets onlined later.
1863          */
1864         return sprintf(page, "%s",
1865                         topology_max_smt_threads() > 1 ?
1866                         pmu_attr->event_str_ht :
1867                         pmu_attr->event_str_noht);
1868 }
1869 
1870 ssize_t events_hybrid_sysfs_show(struct device *dev,
1871                                  struct device_attribute *attr,
1872                                  char *page)
1873 {
1874         struct perf_pmu_events_hybrid_attr *pmu_attr =
1875                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1876         struct x86_hybrid_pmu *pmu;
1877         const char *str, *next_str;
1878         int i;
1879 
1880         if (hweight64(pmu_attr->pmu_type) == 1)
1881                 return sprintf(page, "%s", pmu_attr->event_str);
1882 
1883         /*
1884          * Hybrid PMUs may support the same event name, but with different
1885          * event encoding, e.g., the mem-loads event on an Atom PMU has
1886          * different event encoding from a Core PMU.
1887          *
1888          * The event_str includes all event encodings. Each event encoding
1889          * is divided by ";". The order of the event encodings must follow
1890          * the order of the hybrid PMU index.
1891          */
1892         pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1893 
1894         str = pmu_attr->event_str;
1895         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1896                 if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1897                         continue;
1898                 if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1899                         next_str = strchr(str, ';');
1900                         if (next_str)
1901                                 return snprintf(page, next_str - str + 1, "%s", str);
1902                         else
1903                                 return sprintf(page, "%s", str);
1904                 }
1905                 str = strchr(str, ';');
1906                 str++;
1907         }
1908 
1909         return 0;
1910 }
1911 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1912 
1913 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1914 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1915 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1916 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1917 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1918 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1919 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1920 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1921 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1922 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1923 
1924 static struct attribute *empty_attrs;
1925 
1926 static struct attribute *events_attr[] = {
1927         EVENT_PTR(CPU_CYCLES),
1928         EVENT_PTR(INSTRUCTIONS),
1929         EVENT_PTR(CACHE_REFERENCES),
1930         EVENT_PTR(CACHE_MISSES),
1931         EVENT_PTR(BRANCH_INSTRUCTIONS),
1932         EVENT_PTR(BRANCH_MISSES),
1933         EVENT_PTR(BUS_CYCLES),
1934         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1935         EVENT_PTR(STALLED_CYCLES_BACKEND),
1936         EVENT_PTR(REF_CPU_CYCLES),
1937         NULL,
1938 };
1939 
1940 /*
1941  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1942  * out of events_attr attributes.
1943  */
1944 static umode_t
1945 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1946 {
1947         struct perf_pmu_events_attr *pmu_attr;
1948 
1949         if (idx >= x86_pmu.max_events)
1950                 return 0;
1951 
1952         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1953         /* str trumps id */
1954         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1955 }
1956 
1957 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1958         .name = "events",
1959         .attrs = events_attr,
1960         .is_visible = is_visible,
1961 };
1962 
1963 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1964 {
1965         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1966         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1967         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1968         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1969         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1970         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1971         ssize_t ret;
1972 
1973         /*
1974         * We have whole page size to spend and just little data
1975         * to write, so we can safely use sprintf.
1976         */
1977         ret = sprintf(page, "event=0x%02llx", event);
1978 
1979         if (umask)
1980                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1981 
1982         if (edge)
1983                 ret += sprintf(page + ret, ",edge");
1984 
1985         if (pc)
1986                 ret += sprintf(page + ret, ",pc");
1987 
1988         if (any)
1989                 ret += sprintf(page + ret, ",any");
1990 
1991         if (inv)
1992                 ret += sprintf(page + ret, ",inv");
1993 
1994         if (cmask)
1995                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1996 
1997         ret += sprintf(page + ret, "\n");
1998 
1999         return ret;
2000 }
2001 
2002 static struct attribute_group x86_pmu_attr_group;
2003 static struct attribute_group x86_pmu_caps_group;
2004 
2005 static void x86_pmu_static_call_update(void)
2006 {
2007         static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2008         static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2009         static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2010         static_call_update(x86_pmu_enable, x86_pmu.enable);
2011         static_call_update(x86_pmu_disable, x86_pmu.disable);
2012 
2013         static_call_update(x86_pmu_assign, x86_pmu.assign);
2014 
2015         static_call_update(x86_pmu_add, x86_pmu.add);
2016         static_call_update(x86_pmu_del, x86_pmu.del);
2017         static_call_update(x86_pmu_read, x86_pmu.read);
2018 
2019         static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2020         static_call_update(x86_pmu_update, x86_pmu.update);
2021         static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2022 
2023         static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2024         static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2025         static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2026 
2027         static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2028         static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2029         static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2030 
2031         static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2032         static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2033 
2034         static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2035         static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2036 
2037         static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2038         static_call_update(x86_pmu_filter, x86_pmu.filter);
2039 }
2040 
2041 static void _x86_pmu_read(struct perf_event *event)
2042 {
2043         static_call(x86_pmu_update)(event);
2044 }
2045 
2046 void x86_pmu_show_pmu_cap(struct pmu *pmu)
2047 {
2048         pr_info("... version:                %d\n",     x86_pmu.version);
2049         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2050         pr_info("... generic registers:      %d\n",     x86_pmu_num_counters(pmu));
2051         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2052         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2053         pr_info("... fixed-purpose events:   %d\n",     x86_pmu_num_counters_fixed(pmu));
2054         pr_info("... event mask:             %016Lx\n", hybrid(pmu, intel_ctrl));
2055 }
2056 
2057 static int __init init_hw_perf_events(void)
2058 {
2059         struct x86_pmu_quirk *quirk;
2060         int err;
2061 
2062         pr_info("Performance Events: ");
2063 
2064         switch (boot_cpu_data.x86_vendor) {
2065         case X86_VENDOR_INTEL:
2066                 err = intel_pmu_init();
2067                 break;
2068         case X86_VENDOR_AMD:
2069                 err = amd_pmu_init();
2070                 break;
2071         case X86_VENDOR_HYGON:
2072                 err = amd_pmu_init();
2073                 x86_pmu.name = "HYGON";
2074                 break;
2075         case X86_VENDOR_ZHAOXIN:
2076         case X86_VENDOR_CENTAUR:
2077                 err = zhaoxin_pmu_init();
2078                 break;
2079         default:
2080                 err = -ENOTSUPP;
2081         }
2082         if (err != 0) {
2083                 pr_cont("no PMU driver, software events only.\n");
2084                 err = 0;
2085                 goto out_bad_pmu;
2086         }
2087 
2088         pmu_check_apic();
2089 
2090         /* sanity check that the hardware exists or is emulated */
2091         if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask))
2092                 goto out_bad_pmu;
2093 
2094         pr_cont("%s PMU driver.\n", x86_pmu.name);
2095 
2096         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2097 
2098         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2099                 quirk->func();
2100 
2101         if (!x86_pmu.intel_ctrl)
2102                 x86_pmu.intel_ctrl = x86_pmu.cntr_mask64;
2103 
2104         if (!x86_pmu.config_mask)
2105                 x86_pmu.config_mask = X86_RAW_EVENT_MASK;
2106 
2107         perf_events_lapic_init();
2108         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2109 
2110         unconstrained = (struct event_constraint)
2111                 __EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64,
2112                                    0, x86_pmu_num_counters(NULL), 0, 0);
2113 
2114         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2115 
2116         if (!x86_pmu.events_sysfs_show)
2117                 x86_pmu_events_group.attrs = &empty_attrs;
2118 
2119         pmu.attr_update = x86_pmu.attr_update;
2120 
2121         if (!is_hybrid())
2122                 x86_pmu_show_pmu_cap(NULL);
2123 
2124         if (!x86_pmu.read)
2125                 x86_pmu.read = _x86_pmu_read;
2126 
2127         if (!x86_pmu.guest_get_msrs)
2128                 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2129 
2130         if (!x86_pmu.set_period)
2131                 x86_pmu.set_period = x86_perf_event_set_period;
2132 
2133         if (!x86_pmu.update)
2134                 x86_pmu.update = x86_perf_event_update;
2135 
2136         x86_pmu_static_call_update();
2137 
2138         /*
2139          * Install callbacks. Core will call them for each online
2140          * cpu.
2141          */
2142         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2143                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2144         if (err)
2145                 return err;
2146 
2147         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2148                                 "perf/x86:starting", x86_pmu_starting_cpu,
2149                                 x86_pmu_dying_cpu);
2150         if (err)
2151                 goto out;
2152 
2153         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2154                                 x86_pmu_online_cpu, NULL);
2155         if (err)
2156                 goto out1;
2157 
2158         if (!is_hybrid()) {
2159                 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2160                 if (err)
2161                         goto out2;
2162         } else {
2163                 struct x86_hybrid_pmu *hybrid_pmu;
2164                 int i, j;
2165 
2166                 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2167                         hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2168 
2169                         hybrid_pmu->pmu = pmu;
2170                         hybrid_pmu->pmu.type = -1;
2171                         hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2172                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2173 
2174                         err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2175                                                 (hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2176                         if (err)
2177                                 break;
2178                 }
2179 
2180                 if (i < x86_pmu.num_hybrid_pmus) {
2181                         for (j = 0; j < i; j++)
2182                                 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2183                         pr_warn("Failed to register hybrid PMUs\n");
2184                         kfree(x86_pmu.hybrid_pmu);
2185                         x86_pmu.hybrid_pmu = NULL;
2186                         x86_pmu.num_hybrid_pmus = 0;
2187                         goto out2;
2188                 }
2189         }
2190 
2191         return 0;
2192 
2193 out2:
2194         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2195 out1:
2196         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2197 out:
2198         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2199 out_bad_pmu:
2200         memset(&x86_pmu, 0, sizeof(x86_pmu));
2201         return err;
2202 }
2203 early_initcall(init_hw_perf_events);
2204 
2205 static void x86_pmu_read(struct perf_event *event)
2206 {
2207         static_call(x86_pmu_read)(event);
2208 }
2209 
2210 /*
2211  * Start group events scheduling transaction
2212  * Set the flag to make pmu::enable() not perform the
2213  * schedulability test, it will be performed at commit time
2214  *
2215  * We only support PERF_PMU_TXN_ADD transactions. Save the
2216  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2217  * transactions.
2218  */
2219 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2220 {
2221         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2222 
2223         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2224 
2225         cpuc->txn_flags = txn_flags;
2226         if (txn_flags & ~PERF_PMU_TXN_ADD)
2227                 return;
2228 
2229         perf_pmu_disable(pmu);
2230         __this_cpu_write(cpu_hw_events.n_txn, 0);
2231         __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2232         __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2233 }
2234 
2235 /*
2236  * Stop group events scheduling transaction
2237  * Clear the flag and pmu::enable() will perform the
2238  * schedulability test.
2239  */
2240 static void x86_pmu_cancel_txn(struct pmu *pmu)
2241 {
2242         unsigned int txn_flags;
2243         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2244 
2245         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2246 
2247         txn_flags = cpuc->txn_flags;
2248         cpuc->txn_flags = 0;
2249         if (txn_flags & ~PERF_PMU_TXN_ADD)
2250                 return;
2251 
2252         /*
2253          * Truncate collected array by the number of events added in this
2254          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2255          */
2256         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2257         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2258         __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2259         __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2260         perf_pmu_enable(pmu);
2261 }
2262 
2263 /*
2264  * Commit group events scheduling transaction
2265  * Perform the group schedulability test as a whole
2266  * Return 0 if success
2267  *
2268  * Does not cancel the transaction on failure; expects the caller to do this.
2269  */
2270 static int x86_pmu_commit_txn(struct pmu *pmu)
2271 {
2272         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2273         int assign[X86_PMC_IDX_MAX];
2274         int n, ret;
2275 
2276         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2277 
2278         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2279                 cpuc->txn_flags = 0;
2280                 return 0;
2281         }
2282 
2283         n = cpuc->n_events;
2284 
2285         if (!x86_pmu_initialized())
2286                 return -EAGAIN;
2287 
2288         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2289         if (ret)
2290                 return ret;
2291 
2292         /*
2293          * copy new assignment, now we know it is possible
2294          * will be used by hw_perf_enable()
2295          */
2296         memcpy(cpuc->assign, assign, n*sizeof(int));
2297 
2298         cpuc->txn_flags = 0;
2299         perf_pmu_enable(pmu);
2300         return 0;
2301 }
2302 /*
2303  * a fake_cpuc is used to validate event groups. Due to
2304  * the extra reg logic, we need to also allocate a fake
2305  * per_core and per_cpu structure. Otherwise, group events
2306  * using extra reg may conflict without the kernel being
2307  * able to catch this when the last event gets added to
2308  * the group.
2309  */
2310 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2311 {
2312         intel_cpuc_finish(cpuc);
2313         kfree(cpuc);
2314 }
2315 
2316 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2317 {
2318         struct cpu_hw_events *cpuc;
2319         int cpu;
2320 
2321         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2322         if (!cpuc)
2323                 return ERR_PTR(-ENOMEM);
2324         cpuc->is_fake = 1;
2325 
2326         if (is_hybrid()) {
2327                 struct x86_hybrid_pmu *h_pmu;
2328 
2329                 h_pmu = hybrid_pmu(event_pmu);
2330                 if (cpumask_empty(&h_pmu->supported_cpus))
2331                         goto error;
2332                 cpu = cpumask_first(&h_pmu->supported_cpus);
2333         } else
2334                 cpu = raw_smp_processor_id();
2335         cpuc->pmu = event_pmu;
2336 
2337         if (intel_cpuc_prepare(cpuc, cpu))
2338                 goto error;
2339 
2340         return cpuc;
2341 error:
2342         free_fake_cpuc(cpuc);
2343         return ERR_PTR(-ENOMEM);
2344 }
2345 
2346 /*
2347  * validate that we can schedule this event
2348  */
2349 static int validate_event(struct perf_event *event)
2350 {
2351         struct cpu_hw_events *fake_cpuc;
2352         struct event_constraint *c;
2353         int ret = 0;
2354 
2355         fake_cpuc = allocate_fake_cpuc(event->pmu);
2356         if (IS_ERR(fake_cpuc))
2357                 return PTR_ERR(fake_cpuc);
2358 
2359         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2360 
2361         if (!c || !c->weight)
2362                 ret = -EINVAL;
2363 
2364         if (x86_pmu.put_event_constraints)
2365                 x86_pmu.put_event_constraints(fake_cpuc, event);
2366 
2367         free_fake_cpuc(fake_cpuc);
2368 
2369         return ret;
2370 }
2371 
2372 /*
2373  * validate a single event group
2374  *
2375  * validation include:
2376  *      - check events are compatible which each other
2377  *      - events do not compete for the same counter
2378  *      - number of events <= number of counters
2379  *
2380  * validation ensures the group can be loaded onto the
2381  * PMU if it was the only group available.
2382  */
2383 static int validate_group(struct perf_event *event)
2384 {
2385         struct perf_event *leader = event->group_leader;
2386         struct cpu_hw_events *fake_cpuc;
2387         int ret = -EINVAL, n;
2388 
2389         /*
2390          * Reject events from different hybrid PMUs.
2391          */
2392         if (is_hybrid()) {
2393                 struct perf_event *sibling;
2394                 struct pmu *pmu = NULL;
2395 
2396                 if (is_x86_event(leader))
2397                         pmu = leader->pmu;
2398 
2399                 for_each_sibling_event(sibling, leader) {
2400                         if (!is_x86_event(sibling))
2401                                 continue;
2402                         if (!pmu)
2403                                 pmu = sibling->pmu;
2404                         else if (pmu != sibling->pmu)
2405                                 return ret;
2406                 }
2407         }
2408 
2409         fake_cpuc = allocate_fake_cpuc(event->pmu);
2410         if (IS_ERR(fake_cpuc))
2411                 return PTR_ERR(fake_cpuc);
2412         /*
2413          * the event is not yet connected with its
2414          * siblings therefore we must first collect
2415          * existing siblings, then add the new event
2416          * before we can simulate the scheduling
2417          */
2418         n = collect_events(fake_cpuc, leader, true);
2419         if (n < 0)
2420                 goto out;
2421 
2422         fake_cpuc->n_events = n;
2423         n = collect_events(fake_cpuc, event, false);
2424         if (n < 0)
2425                 goto out;
2426 
2427         fake_cpuc->n_events = 0;
2428         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2429 
2430 out:
2431         free_fake_cpuc(fake_cpuc);
2432         return ret;
2433 }
2434 
2435 static int x86_pmu_event_init(struct perf_event *event)
2436 {
2437         struct x86_hybrid_pmu *pmu = NULL;
2438         int err;
2439 
2440         if ((event->attr.type != event->pmu->type) &&
2441             (event->attr.type != PERF_TYPE_HARDWARE) &&
2442             (event->attr.type != PERF_TYPE_HW_CACHE))
2443                 return -ENOENT;
2444 
2445         if (is_hybrid() && (event->cpu != -1)) {
2446                 pmu = hybrid_pmu(event->pmu);
2447                 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2448                         return -ENOENT;
2449         }
2450 
2451         err = __x86_pmu_event_init(event);
2452         if (!err) {
2453                 if (event->group_leader != event)
2454                         err = validate_group(event);
2455                 else
2456                         err = validate_event(event);
2457         }
2458         if (err) {
2459                 if (event->destroy)
2460                         event->destroy(event);
2461                 event->destroy = NULL;
2462         }
2463 
2464         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2465             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2466                 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2467 
2468         return err;
2469 }
2470 
2471 void perf_clear_dirty_counters(void)
2472 {
2473         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2474         int i;
2475 
2476          /* Don't need to clear the assigned counter. */
2477         for (i = 0; i < cpuc->n_events; i++)
2478                 __clear_bit(cpuc->assign[i], cpuc->dirty);
2479 
2480         if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2481                 return;
2482 
2483         for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2484                 if (i >= INTEL_PMC_IDX_FIXED) {
2485                         /* Metrics and fake events don't have corresponding HW counters. */
2486                         if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask)))
2487                                 continue;
2488 
2489                         wrmsrl(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0);
2490                 } else {
2491                         wrmsrl(x86_pmu_event_addr(i), 0);
2492                 }
2493         }
2494 
2495         bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2496 }
2497 
2498 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2499 {
2500         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2501                 return;
2502 
2503         /*
2504          * This function relies on not being called concurrently in two
2505          * tasks in the same mm.  Otherwise one task could observe
2506          * perf_rdpmc_allowed > 1 and return all the way back to
2507          * userspace with CR4.PCE clear while another task is still
2508          * doing on_each_cpu_mask() to propagate CR4.PCE.
2509          *
2510          * For now, this can't happen because all callers hold mmap_lock
2511          * for write.  If this changes, we'll need a different solution.
2512          */
2513         mmap_assert_write_locked(mm);
2514 
2515         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2516                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2517 }
2518 
2519 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2520 {
2521         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2522                 return;
2523 
2524         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2525                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2526 }
2527 
2528 static int x86_pmu_event_idx(struct perf_event *event)
2529 {
2530         struct hw_perf_event *hwc = &event->hw;
2531 
2532         if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2533                 return 0;
2534 
2535         if (is_metric_idx(hwc->idx))
2536                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2537         else
2538                 return hwc->event_base_rdpmc + 1;
2539 }
2540 
2541 static ssize_t get_attr_rdpmc(struct device *cdev,
2542                               struct device_attribute *attr,
2543                               char *buf)
2544 {
2545         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2546 }
2547 
2548 static ssize_t set_attr_rdpmc(struct device *cdev,
2549                               struct device_attribute *attr,
2550                               const char *buf, size_t count)
2551 {
2552         static DEFINE_MUTEX(rdpmc_mutex);
2553         unsigned long val;
2554         ssize_t ret;
2555 
2556         ret = kstrtoul(buf, 0, &val);
2557         if (ret)
2558                 return ret;
2559 
2560         if (val > 2)
2561                 return -EINVAL;
2562 
2563         if (x86_pmu.attr_rdpmc_broken)
2564                 return -ENOTSUPP;
2565 
2566         guard(mutex)(&rdpmc_mutex);
2567 
2568         if (val != x86_pmu.attr_rdpmc) {
2569                 /*
2570                  * Changing into or out of never available or always available,
2571                  * aka perf-event-bypassing mode. This path is extremely slow,
2572                  * but only root can trigger it, so it's okay.
2573                  */
2574                 if (val == 0)
2575                         static_branch_inc(&rdpmc_never_available_key);
2576                 else if (x86_pmu.attr_rdpmc == 0)
2577                         static_branch_dec(&rdpmc_never_available_key);
2578 
2579                 if (val == 2)
2580                         static_branch_inc(&rdpmc_always_available_key);
2581                 else if (x86_pmu.attr_rdpmc == 2)
2582                         static_branch_dec(&rdpmc_always_available_key);
2583 
2584                 on_each_cpu(cr4_update_pce, NULL, 1);
2585                 x86_pmu.attr_rdpmc = val;
2586         }
2587 
2588         return count;
2589 }
2590 
2591 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2592 
2593 static struct attribute *x86_pmu_attrs[] = {
2594         &dev_attr_rdpmc.attr,
2595         NULL,
2596 };
2597 
2598 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2599         .attrs = x86_pmu_attrs,
2600 };
2601 
2602 static ssize_t max_precise_show(struct device *cdev,
2603                                   struct device_attribute *attr,
2604                                   char *buf)
2605 {
2606         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2607 }
2608 
2609 static DEVICE_ATTR_RO(max_precise);
2610 
2611 static struct attribute *x86_pmu_caps_attrs[] = {
2612         &dev_attr_max_precise.attr,
2613         NULL
2614 };
2615 
2616 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2617         .name = "caps",
2618         .attrs = x86_pmu_caps_attrs,
2619 };
2620 
2621 static const struct attribute_group *x86_pmu_attr_groups[] = {
2622         &x86_pmu_attr_group,
2623         &x86_pmu_format_group,
2624         &x86_pmu_events_group,
2625         &x86_pmu_caps_group,
2626         NULL,
2627 };
2628 
2629 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2630 {
2631         static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2632 }
2633 
2634 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2635                                   struct perf_event_pmu_context *next_epc)
2636 {
2637         static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2638 }
2639 
2640 void perf_check_microcode(void)
2641 {
2642         if (x86_pmu.check_microcode)
2643                 x86_pmu.check_microcode();
2644 }
2645 
2646 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2647 {
2648         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2649                 return -EINVAL;
2650 
2651         if (value && x86_pmu.limit_period) {
2652                 s64 left = value;
2653                 x86_pmu.limit_period(event, &left);
2654                 if (left > value)
2655                         return -EINVAL;
2656         }
2657 
2658         return 0;
2659 }
2660 
2661 static int x86_pmu_aux_output_match(struct perf_event *event)
2662 {
2663         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2664                 return 0;
2665 
2666         if (x86_pmu.aux_output_match)
2667                 return x86_pmu.aux_output_match(event);
2668 
2669         return 0;
2670 }
2671 
2672 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2673 {
2674         bool ret = false;
2675 
2676         static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2677 
2678         return ret;
2679 }
2680 
2681 static struct pmu pmu = {
2682         .pmu_enable             = x86_pmu_enable,
2683         .pmu_disable            = x86_pmu_disable,
2684 
2685         .attr_groups            = x86_pmu_attr_groups,
2686 
2687         .event_init             = x86_pmu_event_init,
2688 
2689         .event_mapped           = x86_pmu_event_mapped,
2690         .event_unmapped         = x86_pmu_event_unmapped,
2691 
2692         .add                    = x86_pmu_add,
2693         .del                    = x86_pmu_del,
2694         .start                  = x86_pmu_start,
2695         .stop                   = x86_pmu_stop,
2696         .read                   = x86_pmu_read,
2697 
2698         .start_txn              = x86_pmu_start_txn,
2699         .cancel_txn             = x86_pmu_cancel_txn,
2700         .commit_txn             = x86_pmu_commit_txn,
2701 
2702         .event_idx              = x86_pmu_event_idx,
2703         .sched_task             = x86_pmu_sched_task,
2704         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2705         .check_period           = x86_pmu_check_period,
2706 
2707         .aux_output_match       = x86_pmu_aux_output_match,
2708 
2709         .filter                 = x86_pmu_filter,
2710 };
2711 
2712 void arch_perf_update_userpage(struct perf_event *event,
2713                                struct perf_event_mmap_page *userpg, u64 now)
2714 {
2715         struct cyc2ns_data data;
2716         u64 offset;
2717 
2718         userpg->cap_user_time = 0;
2719         userpg->cap_user_time_zero = 0;
2720         userpg->cap_user_rdpmc =
2721                 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2722         userpg->pmc_width = x86_pmu.cntval_bits;
2723 
2724         if (!using_native_sched_clock() || !sched_clock_stable())
2725                 return;
2726 
2727         cyc2ns_read_begin(&data);
2728 
2729         offset = data.cyc2ns_offset + __sched_clock_offset;
2730 
2731         /*
2732          * Internal timekeeping for enabled/running/stopped times
2733          * is always in the local_clock domain.
2734          */
2735         userpg->cap_user_time = 1;
2736         userpg->time_mult = data.cyc2ns_mul;
2737         userpg->time_shift = data.cyc2ns_shift;
2738         userpg->time_offset = offset - now;
2739 
2740         /*
2741          * cap_user_time_zero doesn't make sense when we're using a different
2742          * time base for the records.
2743          */
2744         if (!event->attr.use_clockid) {
2745                 userpg->cap_user_time_zero = 1;
2746                 userpg->time_zero = offset;
2747         }
2748 
2749         cyc2ns_read_end();
2750 }
2751 
2752 /*
2753  * Determine whether the regs were taken from an irq/exception handler rather
2754  * than from perf_arch_fetch_caller_regs().
2755  */
2756 static bool perf_hw_regs(struct pt_regs *regs)
2757 {
2758         return regs->flags & X86_EFLAGS_FIXED;
2759 }
2760 
2761 void
2762 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2763 {
2764         struct unwind_state state;
2765         unsigned long addr;
2766 
2767         if (perf_guest_state()) {
2768                 /* TODO: We don't support guest os callchain now */
2769                 return;
2770         }
2771 
2772         if (perf_callchain_store(entry, regs->ip))
2773                 return;
2774 
2775         if (perf_hw_regs(regs))
2776                 unwind_start(&state, current, regs, NULL);
2777         else
2778                 unwind_start(&state, current, NULL, (void *)regs->sp);
2779 
2780         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2781                 addr = unwind_get_return_address(&state);
2782                 if (!addr || perf_callchain_store(entry, addr))
2783                         return;
2784         }
2785 }
2786 
2787 static inline int
2788 valid_user_frame(const void __user *fp, unsigned long size)
2789 {
2790         return __access_ok(fp, size);
2791 }
2792 
2793 static unsigned long get_segment_base(unsigned int segment)
2794 {
2795         struct desc_struct *desc;
2796         unsigned int idx = segment >> 3;
2797 
2798         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2799 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2800                 struct ldt_struct *ldt;
2801 
2802                 /* IRQs are off, so this synchronizes with smp_store_release */
2803                 ldt = READ_ONCE(current->active_mm->context.ldt);
2804                 if (!ldt || idx >= ldt->nr_entries)
2805                         return 0;
2806 
2807                 desc = &ldt->entries[idx];
2808 #else
2809                 return 0;
2810 #endif
2811         } else {
2812                 if (idx >= GDT_ENTRIES)
2813                         return 0;
2814 
2815                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2816         }
2817 
2818         return get_desc_base(desc);
2819 }
2820 
2821 #ifdef CONFIG_UPROBES
2822 /*
2823  * Heuristic-based check if uprobe is installed at the function entry.
2824  *
2825  * Under assumption of user code being compiled with frame pointers,
2826  * `push %rbp/%ebp` is a good indicator that we indeed are.
2827  *
2828  * Similarly, `endbr64` (assuming 64-bit mode) is also a common pattern.
2829  * If we get this wrong, captured stack trace might have one extra bogus
2830  * entry, but the rest of stack trace will still be meaningful.
2831  */
2832 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2833 {
2834         struct arch_uprobe *auprobe;
2835 
2836         if (!current->utask)
2837                 return false;
2838 
2839         auprobe = current->utask->auprobe;
2840         if (!auprobe)
2841                 return false;
2842 
2843         /* push %rbp/%ebp */
2844         if (auprobe->insn[0] == 0x55)
2845                 return true;
2846 
2847         /* endbr64 (64-bit only) */
2848         if (user_64bit_mode(regs) && is_endbr(*(u32 *)auprobe->insn))
2849                 return true;
2850 
2851         return false;
2852 }
2853 
2854 #else
2855 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2856 {
2857         return false;
2858 }
2859 #endif /* CONFIG_UPROBES */
2860 
2861 #ifdef CONFIG_IA32_EMULATION
2862 
2863 #include <linux/compat.h>
2864 
2865 static inline int
2866 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2867 {
2868         /* 32-bit process in 64-bit kernel. */
2869         unsigned long ss_base, cs_base;
2870         struct stack_frame_ia32 frame;
2871         const struct stack_frame_ia32 __user *fp;
2872         u32 ret_addr;
2873 
2874         if (user_64bit_mode(regs))
2875                 return 0;
2876 
2877         cs_base = get_segment_base(regs->cs);
2878         ss_base = get_segment_base(regs->ss);
2879 
2880         fp = compat_ptr(ss_base + regs->bp);
2881         pagefault_disable();
2882 
2883         /* see perf_callchain_user() below for why we do this */
2884         if (is_uprobe_at_func_entry(regs) &&
2885             !get_user(ret_addr, (const u32 __user *)regs->sp))
2886                 perf_callchain_store(entry, ret_addr);
2887 
2888         while (entry->nr < entry->max_stack) {
2889                 if (!valid_user_frame(fp, sizeof(frame)))
2890                         break;
2891 
2892                 if (__get_user(frame.next_frame, &fp->next_frame))
2893                         break;
2894                 if (__get_user(frame.return_address, &fp->return_address))
2895                         break;
2896 
2897                 perf_callchain_store(entry, cs_base + frame.return_address);
2898                 fp = compat_ptr(ss_base + frame.next_frame);
2899         }
2900         pagefault_enable();
2901         return 1;
2902 }
2903 #else
2904 static inline int
2905 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2906 {
2907     return 0;
2908 }
2909 #endif
2910 
2911 void
2912 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2913 {
2914         struct stack_frame frame;
2915         const struct stack_frame __user *fp;
2916         unsigned long ret_addr;
2917 
2918         if (perf_guest_state()) {
2919                 /* TODO: We don't support guest os callchain now */
2920                 return;
2921         }
2922 
2923         /*
2924          * We don't know what to do with VM86 stacks.. ignore them for now.
2925          */
2926         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2927                 return;
2928 
2929         fp = (void __user *)regs->bp;
2930 
2931         perf_callchain_store(entry, regs->ip);
2932 
2933         if (!nmi_uaccess_okay())
2934                 return;
2935 
2936         if (perf_callchain_user32(regs, entry))
2937                 return;
2938 
2939         pagefault_disable();
2940 
2941         /*
2942          * If we are called from uprobe handler, and we are indeed at the very
2943          * entry to user function (which is normally a `push %rbp` instruction,
2944          * under assumption of application being compiled with frame pointers),
2945          * we should read return address from *regs->sp before proceeding
2946          * to follow frame pointers, otherwise we'll skip immediate caller
2947          * as %rbp is not yet setup.
2948          */
2949         if (is_uprobe_at_func_entry(regs) &&
2950             !get_user(ret_addr, (const unsigned long __user *)regs->sp))
2951                 perf_callchain_store(entry, ret_addr);
2952 
2953         while (entry->nr < entry->max_stack) {
2954                 if (!valid_user_frame(fp, sizeof(frame)))
2955                         break;
2956 
2957                 if (__get_user(frame.next_frame, &fp->next_frame))
2958                         break;
2959                 if (__get_user(frame.return_address, &fp->return_address))
2960                         break;
2961 
2962                 perf_callchain_store(entry, frame.return_address);
2963                 fp = (void __user *)frame.next_frame;
2964         }
2965         pagefault_enable();
2966 }
2967 
2968 /*
2969  * Deal with code segment offsets for the various execution modes:
2970  *
2971  *   VM86 - the good olde 16 bit days, where the linear address is
2972  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2973  *
2974  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2975  *          to figure out what the 32bit base address is.
2976  *
2977  *    X32 - has TIF_X32 set, but is running in x86_64
2978  *
2979  * X86_64 - CS,DS,SS,ES are all zero based.
2980  */
2981 static unsigned long code_segment_base(struct pt_regs *regs)
2982 {
2983         /*
2984          * For IA32 we look at the GDT/LDT segment base to convert the
2985          * effective IP to a linear address.
2986          */
2987 
2988 #ifdef CONFIG_X86_32
2989         /*
2990          * If we are in VM86 mode, add the segment offset to convert to a
2991          * linear address.
2992          */
2993         if (regs->flags & X86_VM_MASK)
2994                 return 0x10 * regs->cs;
2995 
2996         if (user_mode(regs) && regs->cs != __USER_CS)
2997                 return get_segment_base(regs->cs);
2998 #else
2999         if (user_mode(regs) && !user_64bit_mode(regs) &&
3000             regs->cs != __USER32_CS)
3001                 return get_segment_base(regs->cs);
3002 #endif
3003         return 0;
3004 }
3005 
3006 unsigned long perf_instruction_pointer(struct pt_regs *regs)
3007 {
3008         if (perf_guest_state())
3009                 return perf_guest_get_ip();
3010 
3011         return regs->ip + code_segment_base(regs);
3012 }
3013 
3014 unsigned long perf_misc_flags(struct pt_regs *regs)
3015 {
3016         unsigned int guest_state = perf_guest_state();
3017         int misc = 0;
3018 
3019         if (guest_state) {
3020                 if (guest_state & PERF_GUEST_USER)
3021                         misc |= PERF_RECORD_MISC_GUEST_USER;
3022                 else
3023                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
3024         } else {
3025                 if (user_mode(regs))
3026                         misc |= PERF_RECORD_MISC_USER;
3027                 else
3028                         misc |= PERF_RECORD_MISC_KERNEL;
3029         }
3030 
3031         if (regs->flags & PERF_EFLAGS_EXACT)
3032                 misc |= PERF_RECORD_MISC_EXACT_IP;
3033 
3034         return misc;
3035 }
3036 
3037 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
3038 {
3039         /* This API doesn't currently support enumerating hybrid PMUs. */
3040         if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
3041             !x86_pmu_initialized()) {
3042                 memset(cap, 0, sizeof(*cap));
3043                 return;
3044         }
3045 
3046         /*
3047          * Note, hybrid CPU models get tracked as having hybrid PMUs even when
3048          * all E-cores are disabled via BIOS.  When E-cores are disabled, the
3049          * base PMU holds the correct number of counters for P-cores.
3050          */
3051         cap->version            = x86_pmu.version;
3052         cap->num_counters_gp    = x86_pmu_num_counters(NULL);
3053         cap->num_counters_fixed = x86_pmu_num_counters_fixed(NULL);
3054         cap->bit_width_gp       = x86_pmu.cntval_bits;
3055         cap->bit_width_fixed    = x86_pmu.cntval_bits;
3056         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
3057         cap->events_mask_len    = x86_pmu.events_mask_len;
3058         cap->pebs_ept           = x86_pmu.pebs_ept;
3059 }
3060 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3061 
3062 u64 perf_get_hw_event_config(int hw_event)
3063 {
3064         int max = x86_pmu.max_events;
3065 
3066         if (hw_event < max)
3067                 return x86_pmu.event_map(array_index_nospec(hw_event, max));
3068 
3069         return 0;
3070 }
3071 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3072 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php