1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BTS PMU driver for perf 4 * Copyright (c) 2013-2014, Intel Corporation. 5 */ 6 7 #undef DEBUG 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/bitops.h> 12 #include <linux/types.h> 13 #include <linux/slab.h> 14 #include <linux/debugfs.h> 15 #include <linux/device.h> 16 #include <linux/coredump.h> 17 18 #include <linux/sizes.h> 19 #include <asm/perf_event.h> 20 21 #include "../perf_event.h" 22 23 struct bts_ctx { 24 struct perf_output_handle handle; 25 struct debug_store ds_back; 26 int state; 27 }; 28 29 /* BTS context states: */ 30 enum { 31 /* no ongoing AUX transactions */ 32 BTS_STATE_STOPPED = 0, 33 /* AUX transaction is on, BTS tracing is disabled */ 34 BTS_STATE_INACTIVE, 35 /* AUX transaction is on, BTS tracing is running */ 36 BTS_STATE_ACTIVE, 37 }; 38 39 static DEFINE_PER_CPU(struct bts_ctx, bts_ctx); 40 41 #define BTS_RECORD_SIZE 24 42 #define BTS_SAFETY_MARGIN 4080 43 44 struct bts_phys { 45 struct page *page; 46 unsigned long size; 47 unsigned long offset; 48 unsigned long displacement; 49 }; 50 51 struct bts_buffer { 52 size_t real_size; /* multiple of BTS_RECORD_SIZE */ 53 unsigned int nr_pages; 54 unsigned int nr_bufs; 55 unsigned int cur_buf; 56 bool snapshot; 57 local_t data_size; 58 local_t head; 59 unsigned long end; 60 void **data_pages; 61 struct bts_phys buf[]; 62 }; 63 64 static struct pmu bts_pmu; 65 66 static int buf_nr_pages(struct page *page) 67 { 68 if (!PagePrivate(page)) 69 return 1; 70 71 return 1 << page_private(page); 72 } 73 74 static size_t buf_size(struct page *page) 75 { 76 return buf_nr_pages(page) * PAGE_SIZE; 77 } 78 79 static void * 80 bts_buffer_setup_aux(struct perf_event *event, void **pages, 81 int nr_pages, bool overwrite) 82 { 83 struct bts_buffer *buf; 84 struct page *page; 85 int cpu = event->cpu; 86 int node = (cpu == -1) ? cpu : cpu_to_node(cpu); 87 unsigned long offset; 88 size_t size = nr_pages << PAGE_SHIFT; 89 int pg, nbuf, pad; 90 91 /* count all the high order buffers */ 92 for (pg = 0, nbuf = 0; pg < nr_pages;) { 93 page = virt_to_page(pages[pg]); 94 pg += buf_nr_pages(page); 95 nbuf++; 96 } 97 98 /* 99 * to avoid interrupts in overwrite mode, only allow one physical 100 */ 101 if (overwrite && nbuf > 1) 102 return NULL; 103 104 buf = kzalloc_node(offsetof(struct bts_buffer, buf[nbuf]), GFP_KERNEL, node); 105 if (!buf) 106 return NULL; 107 108 buf->nr_pages = nr_pages; 109 buf->nr_bufs = nbuf; 110 buf->snapshot = overwrite; 111 buf->data_pages = pages; 112 buf->real_size = size - size % BTS_RECORD_SIZE; 113 114 for (pg = 0, nbuf = 0, offset = 0, pad = 0; nbuf < buf->nr_bufs; nbuf++) { 115 unsigned int __nr_pages; 116 117 page = virt_to_page(pages[pg]); 118 __nr_pages = buf_nr_pages(page); 119 buf->buf[nbuf].page = page; 120 buf->buf[nbuf].offset = offset; 121 buf->buf[nbuf].displacement = (pad ? BTS_RECORD_SIZE - pad : 0); 122 buf->buf[nbuf].size = buf_size(page) - buf->buf[nbuf].displacement; 123 pad = buf->buf[nbuf].size % BTS_RECORD_SIZE; 124 buf->buf[nbuf].size -= pad; 125 126 pg += __nr_pages; 127 offset += __nr_pages << PAGE_SHIFT; 128 } 129 130 return buf; 131 } 132 133 static void bts_buffer_free_aux(void *data) 134 { 135 kfree(data); 136 } 137 138 static unsigned long bts_buffer_offset(struct bts_buffer *buf, unsigned int idx) 139 { 140 return buf->buf[idx].offset + buf->buf[idx].displacement; 141 } 142 143 static void 144 bts_config_buffer(struct bts_buffer *buf) 145 { 146 int cpu = raw_smp_processor_id(); 147 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; 148 struct bts_phys *phys = &buf->buf[buf->cur_buf]; 149 unsigned long index, thresh = 0, end = phys->size; 150 struct page *page = phys->page; 151 152 index = local_read(&buf->head); 153 154 if (!buf->snapshot) { 155 if (buf->end < phys->offset + buf_size(page)) 156 end = buf->end - phys->offset - phys->displacement; 157 158 index -= phys->offset + phys->displacement; 159 160 if (end - index > BTS_SAFETY_MARGIN) 161 thresh = end - BTS_SAFETY_MARGIN; 162 else if (end - index > BTS_RECORD_SIZE) 163 thresh = end - BTS_RECORD_SIZE; 164 else 165 thresh = end; 166 } 167 168 ds->bts_buffer_base = (u64)(long)page_address(page) + phys->displacement; 169 ds->bts_index = ds->bts_buffer_base + index; 170 ds->bts_absolute_maximum = ds->bts_buffer_base + end; 171 ds->bts_interrupt_threshold = !buf->snapshot 172 ? ds->bts_buffer_base + thresh 173 : ds->bts_absolute_maximum + BTS_RECORD_SIZE; 174 } 175 176 static void bts_buffer_pad_out(struct bts_phys *phys, unsigned long head) 177 { 178 unsigned long index = head - phys->offset; 179 180 memset(page_address(phys->page) + index, 0, phys->size - index); 181 } 182 183 static void bts_update(struct bts_ctx *bts) 184 { 185 int cpu = raw_smp_processor_id(); 186 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; 187 struct bts_buffer *buf = perf_get_aux(&bts->handle); 188 unsigned long index = ds->bts_index - ds->bts_buffer_base, old, head; 189 190 if (!buf) 191 return; 192 193 head = index + bts_buffer_offset(buf, buf->cur_buf); 194 old = local_xchg(&buf->head, head); 195 196 if (!buf->snapshot) { 197 if (old == head) 198 return; 199 200 if (ds->bts_index >= ds->bts_absolute_maximum) 201 perf_aux_output_flag(&bts->handle, 202 PERF_AUX_FLAG_TRUNCATED); 203 204 /* 205 * old and head are always in the same physical buffer, so we 206 * can subtract them to get the data size. 207 */ 208 local_add(head - old, &buf->data_size); 209 } else { 210 local_set(&buf->data_size, head); 211 } 212 213 /* 214 * Since BTS is coherent, just add compiler barrier to ensure 215 * BTS updating is ordered against bts::handle::event. 216 */ 217 barrier(); 218 } 219 220 static int 221 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle); 222 223 /* 224 * Ordering PMU callbacks wrt themselves and the PMI is done by means 225 * of bts::state, which: 226 * - is set when bts::handle::event is valid, that is, between 227 * perf_aux_output_begin() and perf_aux_output_end(); 228 * - is zero otherwise; 229 * - is ordered against bts::handle::event with a compiler barrier. 230 */ 231 232 static void __bts_event_start(struct perf_event *event) 233 { 234 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx); 235 struct bts_buffer *buf = perf_get_aux(&bts->handle); 236 u64 config = 0; 237 238 if (!buf->snapshot) 239 config |= ARCH_PERFMON_EVENTSEL_INT; 240 if (!event->attr.exclude_kernel) 241 config |= ARCH_PERFMON_EVENTSEL_OS; 242 if (!event->attr.exclude_user) 243 config |= ARCH_PERFMON_EVENTSEL_USR; 244 245 bts_config_buffer(buf); 246 247 /* 248 * local barrier to make sure that ds configuration made it 249 * before we enable BTS and bts::state goes ACTIVE 250 */ 251 wmb(); 252 253 /* INACTIVE/STOPPED -> ACTIVE */ 254 WRITE_ONCE(bts->state, BTS_STATE_ACTIVE); 255 256 intel_pmu_enable_bts(config); 257 258 } 259 260 static void bts_event_start(struct perf_event *event, int flags) 261 { 262 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 263 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx); 264 struct bts_buffer *buf; 265 266 buf = perf_aux_output_begin(&bts->handle, event); 267 if (!buf) 268 goto fail_stop; 269 270 if (bts_buffer_reset(buf, &bts->handle)) 271 goto fail_end_stop; 272 273 bts->ds_back.bts_buffer_base = cpuc->ds->bts_buffer_base; 274 bts->ds_back.bts_absolute_maximum = cpuc->ds->bts_absolute_maximum; 275 bts->ds_back.bts_interrupt_threshold = cpuc->ds->bts_interrupt_threshold; 276 277 perf_event_itrace_started(event); 278 event->hw.state = 0; 279 280 __bts_event_start(event); 281 282 return; 283 284 fail_end_stop: 285 perf_aux_output_end(&bts->handle, 0); 286 287 fail_stop: 288 event->hw.state = PERF_HES_STOPPED; 289 } 290 291 static void __bts_event_stop(struct perf_event *event, int state) 292 { 293 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx); 294 295 /* ACTIVE -> INACTIVE(PMI)/STOPPED(->stop()) */ 296 WRITE_ONCE(bts->state, state); 297 298 /* 299 * No extra synchronization is mandated by the documentation to have 300 * BTS data stores globally visible. 301 */ 302 intel_pmu_disable_bts(); 303 } 304 305 static void bts_event_stop(struct perf_event *event, int flags) 306 { 307 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 308 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx); 309 struct bts_buffer *buf = NULL; 310 int state = READ_ONCE(bts->state); 311 312 if (state == BTS_STATE_ACTIVE) 313 __bts_event_stop(event, BTS_STATE_STOPPED); 314 315 if (state != BTS_STATE_STOPPED) 316 buf = perf_get_aux(&bts->handle); 317 318 event->hw.state |= PERF_HES_STOPPED; 319 320 if (flags & PERF_EF_UPDATE) { 321 bts_update(bts); 322 323 if (buf) { 324 if (buf->snapshot) 325 bts->handle.head = 326 local_xchg(&buf->data_size, 327 buf->nr_pages << PAGE_SHIFT); 328 perf_aux_output_end(&bts->handle, 329 local_xchg(&buf->data_size, 0)); 330 } 331 332 cpuc->ds->bts_index = bts->ds_back.bts_buffer_base; 333 cpuc->ds->bts_buffer_base = bts->ds_back.bts_buffer_base; 334 cpuc->ds->bts_absolute_maximum = bts->ds_back.bts_absolute_maximum; 335 cpuc->ds->bts_interrupt_threshold = bts->ds_back.bts_interrupt_threshold; 336 } 337 } 338 339 void intel_bts_enable_local(void) 340 { 341 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx); 342 int state = READ_ONCE(bts->state); 343 344 /* 345 * Here we transition from INACTIVE to ACTIVE; 346 * if we instead are STOPPED from the interrupt handler, 347 * stay that way. Can't be ACTIVE here though. 348 */ 349 if (WARN_ON_ONCE(state == BTS_STATE_ACTIVE)) 350 return; 351 352 if (state == BTS_STATE_STOPPED) 353 return; 354 355 if (bts->handle.event) 356 __bts_event_start(bts->handle.event); 357 } 358 359 void intel_bts_disable_local(void) 360 { 361 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx); 362 363 /* 364 * Here we transition from ACTIVE to INACTIVE; 365 * do nothing for STOPPED or INACTIVE. 366 */ 367 if (READ_ONCE(bts->state) != BTS_STATE_ACTIVE) 368 return; 369 370 if (bts->handle.event) 371 __bts_event_stop(bts->handle.event, BTS_STATE_INACTIVE); 372 } 373 374 static int 375 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle) 376 { 377 unsigned long head, space, next_space, pad, gap, skip, wakeup; 378 unsigned int next_buf; 379 struct bts_phys *phys, *next_phys; 380 int ret; 381 382 if (buf->snapshot) 383 return 0; 384 385 head = handle->head & ((buf->nr_pages << PAGE_SHIFT) - 1); 386 387 phys = &buf->buf[buf->cur_buf]; 388 space = phys->offset + phys->displacement + phys->size - head; 389 pad = space; 390 if (space > handle->size) { 391 space = handle->size; 392 space -= space % BTS_RECORD_SIZE; 393 } 394 if (space <= BTS_SAFETY_MARGIN) { 395 /* See if next phys buffer has more space */ 396 next_buf = buf->cur_buf + 1; 397 if (next_buf >= buf->nr_bufs) 398 next_buf = 0; 399 next_phys = &buf->buf[next_buf]; 400 gap = buf_size(phys->page) - phys->displacement - phys->size + 401 next_phys->displacement; 402 skip = pad + gap; 403 if (handle->size >= skip) { 404 next_space = next_phys->size; 405 if (next_space + skip > handle->size) { 406 next_space = handle->size - skip; 407 next_space -= next_space % BTS_RECORD_SIZE; 408 } 409 if (next_space > space || !space) { 410 if (pad) 411 bts_buffer_pad_out(phys, head); 412 ret = perf_aux_output_skip(handle, skip); 413 if (ret) 414 return ret; 415 /* Advance to next phys buffer */ 416 phys = next_phys; 417 space = next_space; 418 head = phys->offset + phys->displacement; 419 /* 420 * After this, cur_buf and head won't match ds 421 * anymore, so we must not be racing with 422 * bts_update(). 423 */ 424 buf->cur_buf = next_buf; 425 local_set(&buf->head, head); 426 } 427 } 428 } 429 430 /* Don't go far beyond wakeup watermark */ 431 wakeup = BTS_SAFETY_MARGIN + BTS_RECORD_SIZE + handle->wakeup - 432 handle->head; 433 if (space > wakeup) { 434 space = wakeup; 435 space -= space % BTS_RECORD_SIZE; 436 } 437 438 buf->end = head + space; 439 440 /* 441 * If we have no space, the lost notification would have been sent when 442 * we hit absolute_maximum - see bts_update() 443 */ 444 if (!space) 445 return -ENOSPC; 446 447 return 0; 448 } 449 450 int intel_bts_interrupt(void) 451 { 452 struct debug_store *ds = this_cpu_ptr(&cpu_hw_events)->ds; 453 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx); 454 struct perf_event *event = bts->handle.event; 455 struct bts_buffer *buf; 456 s64 old_head; 457 int err = -ENOSPC, handled = 0; 458 459 /* 460 * The only surefire way of knowing if this NMI is ours is by checking 461 * the write ptr against the PMI threshold. 462 */ 463 if (ds && (ds->bts_index >= ds->bts_interrupt_threshold)) 464 handled = 1; 465 466 /* 467 * this is wrapped in intel_bts_enable_local/intel_bts_disable_local, 468 * so we can only be INACTIVE or STOPPED 469 */ 470 if (READ_ONCE(bts->state) == BTS_STATE_STOPPED) 471 return handled; 472 473 buf = perf_get_aux(&bts->handle); 474 if (!buf) 475 return handled; 476 477 /* 478 * Skip snapshot counters: they don't use the interrupt, but 479 * there's no other way of telling, because the pointer will 480 * keep moving 481 */ 482 if (buf->snapshot) 483 return 0; 484 485 old_head = local_read(&buf->head); 486 bts_update(bts); 487 488 /* no new data */ 489 if (old_head == local_read(&buf->head)) 490 return handled; 491 492 perf_aux_output_end(&bts->handle, local_xchg(&buf->data_size, 0)); 493 494 buf = perf_aux_output_begin(&bts->handle, event); 495 if (buf) 496 err = bts_buffer_reset(buf, &bts->handle); 497 498 if (err) { 499 WRITE_ONCE(bts->state, BTS_STATE_STOPPED); 500 501 if (buf) { 502 /* 503 * BTS_STATE_STOPPED should be visible before 504 * cleared handle::event 505 */ 506 barrier(); 507 perf_aux_output_end(&bts->handle, 0); 508 } 509 } 510 511 return 1; 512 } 513 514 static void bts_event_del(struct perf_event *event, int mode) 515 { 516 bts_event_stop(event, PERF_EF_UPDATE); 517 } 518 519 static int bts_event_add(struct perf_event *event, int mode) 520 { 521 struct bts_ctx *bts = this_cpu_ptr(&bts_ctx); 522 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 523 struct hw_perf_event *hwc = &event->hw; 524 525 event->hw.state = PERF_HES_STOPPED; 526 527 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) 528 return -EBUSY; 529 530 if (bts->handle.event) 531 return -EBUSY; 532 533 if (mode & PERF_EF_START) { 534 bts_event_start(event, 0); 535 if (hwc->state & PERF_HES_STOPPED) 536 return -EINVAL; 537 } 538 539 return 0; 540 } 541 542 static void bts_event_destroy(struct perf_event *event) 543 { 544 x86_release_hardware(); 545 x86_del_exclusive(x86_lbr_exclusive_bts); 546 } 547 548 static int bts_event_init(struct perf_event *event) 549 { 550 int ret; 551 552 if (event->attr.type != bts_pmu.type) 553 return -ENOENT; 554 555 /* 556 * BTS leaks kernel addresses even when CPL0 tracing is 557 * disabled, so disallow intel_bts driver for unprivileged 558 * users on paranoid systems since it provides trace data 559 * to the user in a zero-copy fashion. 560 * 561 * Note that the default paranoia setting permits unprivileged 562 * users to profile the kernel. 563 */ 564 if (event->attr.exclude_kernel) { 565 ret = perf_allow_kernel(&event->attr); 566 if (ret) 567 return ret; 568 } 569 570 if (x86_add_exclusive(x86_lbr_exclusive_bts)) 571 return -EBUSY; 572 573 ret = x86_reserve_hardware(); 574 if (ret) { 575 x86_del_exclusive(x86_lbr_exclusive_bts); 576 return ret; 577 } 578 579 event->destroy = bts_event_destroy; 580 581 return 0; 582 } 583 584 static void bts_event_read(struct perf_event *event) 585 { 586 } 587 588 static __init int bts_init(void) 589 { 590 if (!boot_cpu_has(X86_FEATURE_DTES64) || !x86_pmu.bts) 591 return -ENODEV; 592 593 if (boot_cpu_has(X86_FEATURE_PTI)) { 594 /* 595 * BTS hardware writes through a virtual memory map we must 596 * either use the kernel physical map, or the user mapping of 597 * the AUX buffer. 598 * 599 * However, since this driver supports per-CPU and per-task inherit 600 * we cannot use the user mapping since it will not be available 601 * if we're not running the owning process. 602 * 603 * With PTI we can't use the kernel map either, because its not 604 * there when we run userspace. 605 * 606 * For now, disable this driver when using PTI. 607 */ 608 return -ENODEV; 609 } 610 611 bts_pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_ITRACE | 612 PERF_PMU_CAP_EXCLUSIVE; 613 bts_pmu.task_ctx_nr = perf_sw_context; 614 bts_pmu.event_init = bts_event_init; 615 bts_pmu.add = bts_event_add; 616 bts_pmu.del = bts_event_del; 617 bts_pmu.start = bts_event_start; 618 bts_pmu.stop = bts_event_stop; 619 bts_pmu.read = bts_event_read; 620 bts_pmu.setup_aux = bts_buffer_setup_aux; 621 bts_pmu.free_aux = bts_buffer_free_aux; 622 623 return perf_pmu_register(&bts_pmu, "intel_bts", -1); 624 } 625 arch_initcall(bts_init); 626
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.