~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/events/intel/core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Per core/cpu state
  4  *
  5  * Used to coordinate shared registers between HT threads or
  6  * among events on a single PMU.
  7  */
  8 
  9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10 
 11 #include <linux/stddef.h>
 12 #include <linux/types.h>
 13 #include <linux/init.h>
 14 #include <linux/slab.h>
 15 #include <linux/export.h>
 16 #include <linux/nmi.h>
 17 #include <linux/kvm_host.h>
 18 
 19 #include <asm/cpufeature.h>
 20 #include <asm/debugreg.h>
 21 #include <asm/hardirq.h>
 22 #include <asm/intel-family.h>
 23 #include <asm/intel_pt.h>
 24 #include <asm/apic.h>
 25 #include <asm/cpu_device_id.h>
 26 
 27 #include "../perf_event.h"
 28 
 29 /*
 30  * Intel PerfMon, used on Core and later.
 31  */
 32 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
 33 {
 34         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
 35         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
 36         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
 37         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
 38         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
 39         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
 40         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
 41         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
 42 };
 43 
 44 static struct event_constraint intel_core_event_constraints[] __read_mostly =
 45 {
 46         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
 47         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
 48         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
 49         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
 50         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
 51         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
 52         EVENT_CONSTRAINT_END
 53 };
 54 
 55 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
 56 {
 57         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 58         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 59         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 60         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
 61         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
 62         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
 63         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
 64         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
 65         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
 66         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
 67         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
 68         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
 69         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
 70         EVENT_CONSTRAINT_END
 71 };
 72 
 73 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
 74 {
 75         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 76         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 77         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 78         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
 79         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
 80         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
 81         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
 82         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
 83         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
 84         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
 85         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
 86         EVENT_CONSTRAINT_END
 87 };
 88 
 89 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
 90 {
 91         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 92         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
 93         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
 94         EVENT_EXTRA_END
 95 };
 96 
 97 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
 98 {
 99         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
100         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
101         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
102         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
103         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
104         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
105         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
106         EVENT_CONSTRAINT_END
107 };
108 
109 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
110 {
111         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
112         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
113         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
114         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
116         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
118         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
119         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
120         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
121         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
122         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
123 
124         /*
125          * When HT is off these events can only run on the bottom 4 counters
126          * When HT is on, they are impacted by the HT bug and require EXCL access
127          */
128         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
130         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
131         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
132 
133         EVENT_CONSTRAINT_END
134 };
135 
136 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
137 {
138         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
139         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
140         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
141         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
142         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
143         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
144         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
146         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
149         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
150         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
151 
152         /*
153          * When HT is off these events can only run on the bottom 4 counters
154          * When HT is on, they are impacted by the HT bug and require EXCL access
155          */
156         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
158         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
159         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
160 
161         EVENT_CONSTRAINT_END
162 };
163 
164 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
165 {
166         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
167         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
168         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
169         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
170         EVENT_EXTRA_END
171 };
172 
173 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
174 {
175         EVENT_CONSTRAINT_END
176 };
177 
178 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
179 {
180         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
181         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
182         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
183         EVENT_CONSTRAINT_END
184 };
185 
186 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
187 {
188         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
189         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
190         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
191         FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
192         FIXED_EVENT_CONSTRAINT(0x0500, 4),
193         FIXED_EVENT_CONSTRAINT(0x0600, 5),
194         FIXED_EVENT_CONSTRAINT(0x0700, 6),
195         FIXED_EVENT_CONSTRAINT(0x0800, 7),
196         FIXED_EVENT_CONSTRAINT(0x0900, 8),
197         FIXED_EVENT_CONSTRAINT(0x0a00, 9),
198         FIXED_EVENT_CONSTRAINT(0x0b00, 10),
199         FIXED_EVENT_CONSTRAINT(0x0c00, 11),
200         FIXED_EVENT_CONSTRAINT(0x0d00, 12),
201         FIXED_EVENT_CONSTRAINT(0x0e00, 13),
202         FIXED_EVENT_CONSTRAINT(0x0f00, 14),
203         FIXED_EVENT_CONSTRAINT(0x1000, 15),
204         EVENT_CONSTRAINT_END
205 };
206 
207 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
208 {
209         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
210         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
211         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
212         EVENT_CONSTRAINT_END
213 };
214 
215 static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
216         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
217         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
218         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
219         FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
220         EVENT_CONSTRAINT_END
221 };
222 
223 static struct event_constraint intel_skt_event_constraints[] __read_mostly = {
224         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
225         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
226         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
227         FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
228         FIXED_EVENT_CONSTRAINT(0x0073, 4), /* TOPDOWN_BAD_SPECULATION.ALL */
229         FIXED_EVENT_CONSTRAINT(0x019c, 5), /* TOPDOWN_FE_BOUND.ALL */
230         FIXED_EVENT_CONSTRAINT(0x02c2, 6), /* TOPDOWN_RETIRING.ALL */
231         EVENT_CONSTRAINT_END
232 };
233 
234 static struct event_constraint intel_skl_event_constraints[] = {
235         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
236         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
237         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
238         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
239 
240         /*
241          * when HT is off, these can only run on the bottom 4 counters
242          */
243         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
244         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
245         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
246         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
247         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
248 
249         EVENT_CONSTRAINT_END
250 };
251 
252 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
253         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
254         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
255         EVENT_EXTRA_END
256 };
257 
258 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
259         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
260         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
261         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
262         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
263         EVENT_EXTRA_END
264 };
265 
266 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
267         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
268         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
269         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
270         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
271         EVENT_EXTRA_END
272 };
273 
274 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
275         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
276         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
277         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
278         /*
279          * Note the low 8 bits eventsel code is not a continuous field, containing
280          * some #GPing bits. These are masked out.
281          */
282         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
283         EVENT_EXTRA_END
284 };
285 
286 static struct event_constraint intel_icl_event_constraints[] = {
287         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
288         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* old INST_RETIRED.PREC_DIST */
289         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
290         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
291         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
292         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
293         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
294         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
295         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
296         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
297         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
298         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
299         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
300         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
301         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
302         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
303         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
304         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
305         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
306         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
307         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
308         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
309         INTEL_EVENT_CONSTRAINT(0xef, 0xf),
310         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
311         EVENT_CONSTRAINT_END
312 };
313 
314 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
315         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
316         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
317         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
318         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
319         EVENT_EXTRA_END
320 };
321 
322 static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
323         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
324         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
325         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
326         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
327         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
328         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
329         EVENT_EXTRA_END
330 };
331 
332 static struct event_constraint intel_glc_event_constraints[] = {
333         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
334         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
335         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
336         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
337         FIXED_EVENT_CONSTRAINT(0x013c, 2),      /* CPU_CLK_UNHALTED.REF_TSC_P */
338         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
339         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
340         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
341         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
342         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
343         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
344         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
345         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
346         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
347 
348         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
349         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
350         /*
351          * Generally event codes < 0x90 are restricted to counters 0-3.
352          * The 0x2E and 0x3C are exception, which has no restriction.
353          */
354         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
355 
356         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
357         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
358         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
359         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
360         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
361         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
362         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
363         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
364         /*
365          * Generally event codes >= 0x90 are likely to have no restrictions.
366          * The exception are defined as above.
367          */
368         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
369 
370         EVENT_CONSTRAINT_END
371 };
372 
373 static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
374         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
375         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
376         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
377         INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
378         INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
379         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
380         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
381         EVENT_EXTRA_END
382 };
383 
384 static struct event_constraint intel_lnc_event_constraints[] = {
385         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
386         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
387         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
388         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
389         FIXED_EVENT_CONSTRAINT(0x013c, 2),      /* CPU_CLK_UNHALTED.REF_TSC_P */
390         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
391         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
392         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
393         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
394         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
395         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
396         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
397         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
398         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
399 
400         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4),
401         INTEL_UEVENT_CONSTRAINT(0x0175, 0x4),
402 
403         INTEL_EVENT_CONSTRAINT(0x2e, 0x3ff),
404         INTEL_EVENT_CONSTRAINT(0x3c, 0x3ff),
405         /*
406          * Generally event codes < 0x90 are restricted to counters 0-3.
407          * The 0x2E and 0x3C are exception, which has no restriction.
408          */
409         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
410 
411         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
412         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
413         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
414         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
415         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
416         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
417         INTEL_UEVENT_CONSTRAINT(0x10a4, 0x1),
418         INTEL_UEVENT_CONSTRAINT(0x01b1, 0x8),
419         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x3),
420         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
421 
422         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
423         /*
424          * Generally event codes >= 0x90 are likely to have no restrictions.
425          * The exception are defined as above.
426          */
427         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0x3ff),
428 
429         EVENT_CONSTRAINT_END
430 };
431 
432 
433 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
434 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
435 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
436 
437 static struct attribute *nhm_mem_events_attrs[] = {
438         EVENT_PTR(mem_ld_nhm),
439         NULL,
440 };
441 
442 /*
443  * topdown events for Intel Core CPUs.
444  *
445  * The events are all in slots, which is a free slot in a 4 wide
446  * pipeline. Some events are already reported in slots, for cycle
447  * events we multiply by the pipeline width (4).
448  *
449  * With Hyper Threading on, topdown metrics are either summed or averaged
450  * between the threads of a core: (count_t0 + count_t1).
451  *
452  * For the average case the metric is always scaled to pipeline width,
453  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
454  */
455 
456 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
457         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
458         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
459 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
460 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
461         "event=0xe,umask=0x1");                 /* uops_issued.any */
462 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
463         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
464 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
465         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
466 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
467         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
468         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
469 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
470         "4", "2");
471 
472 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
473 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
474 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
475 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
476 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
477 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
478 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
479 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
480 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
481 
482 static struct attribute *snb_events_attrs[] = {
483         EVENT_PTR(td_slots_issued),
484         EVENT_PTR(td_slots_retired),
485         EVENT_PTR(td_fetch_bubbles),
486         EVENT_PTR(td_total_slots),
487         EVENT_PTR(td_total_slots_scale),
488         EVENT_PTR(td_recovery_bubbles),
489         EVENT_PTR(td_recovery_bubbles_scale),
490         NULL,
491 };
492 
493 static struct attribute *snb_mem_events_attrs[] = {
494         EVENT_PTR(mem_ld_snb),
495         EVENT_PTR(mem_st_snb),
496         NULL,
497 };
498 
499 static struct event_constraint intel_hsw_event_constraints[] = {
500         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
501         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
502         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
503         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
504         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
505         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
506         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
507         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
508         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
509         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
510         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
511         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
512 
513         /*
514          * When HT is off these events can only run on the bottom 4 counters
515          * When HT is on, they are impacted by the HT bug and require EXCL access
516          */
517         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
518         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
519         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
520         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
521 
522         EVENT_CONSTRAINT_END
523 };
524 
525 static struct event_constraint intel_bdw_event_constraints[] = {
526         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
527         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
528         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
529         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
530         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
531         /*
532          * when HT is off, these can only run on the bottom 4 counters
533          */
534         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
535         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
536         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
537         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
538         EVENT_CONSTRAINT_END
539 };
540 
541 static u64 intel_pmu_event_map(int hw_event)
542 {
543         return intel_perfmon_event_map[hw_event];
544 }
545 
546 static __initconst const u64 glc_hw_cache_event_ids
547                                 [PERF_COUNT_HW_CACHE_MAX]
548                                 [PERF_COUNT_HW_CACHE_OP_MAX]
549                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
550 {
551  [ C(L1D ) ] = {
552         [ C(OP_READ) ] = {
553                 [ C(RESULT_ACCESS) ] = 0x81d0,
554                 [ C(RESULT_MISS)   ] = 0xe124,
555         },
556         [ C(OP_WRITE) ] = {
557                 [ C(RESULT_ACCESS) ] = 0x82d0,
558         },
559  },
560  [ C(L1I ) ] = {
561         [ C(OP_READ) ] = {
562                 [ C(RESULT_MISS)   ] = 0xe424,
563         },
564         [ C(OP_WRITE) ] = {
565                 [ C(RESULT_ACCESS) ] = -1,
566                 [ C(RESULT_MISS)   ] = -1,
567         },
568  },
569  [ C(LL  ) ] = {
570         [ C(OP_READ) ] = {
571                 [ C(RESULT_ACCESS) ] = 0x12a,
572                 [ C(RESULT_MISS)   ] = 0x12a,
573         },
574         [ C(OP_WRITE) ] = {
575                 [ C(RESULT_ACCESS) ] = 0x12a,
576                 [ C(RESULT_MISS)   ] = 0x12a,
577         },
578  },
579  [ C(DTLB) ] = {
580         [ C(OP_READ) ] = {
581                 [ C(RESULT_ACCESS) ] = 0x81d0,
582                 [ C(RESULT_MISS)   ] = 0xe12,
583         },
584         [ C(OP_WRITE) ] = {
585                 [ C(RESULT_ACCESS) ] = 0x82d0,
586                 [ C(RESULT_MISS)   ] = 0xe13,
587         },
588  },
589  [ C(ITLB) ] = {
590         [ C(OP_READ) ] = {
591                 [ C(RESULT_ACCESS) ] = -1,
592                 [ C(RESULT_MISS)   ] = 0xe11,
593         },
594         [ C(OP_WRITE) ] = {
595                 [ C(RESULT_ACCESS) ] = -1,
596                 [ C(RESULT_MISS)   ] = -1,
597         },
598         [ C(OP_PREFETCH) ] = {
599                 [ C(RESULT_ACCESS) ] = -1,
600                 [ C(RESULT_MISS)   ] = -1,
601         },
602  },
603  [ C(BPU ) ] = {
604         [ C(OP_READ) ] = {
605                 [ C(RESULT_ACCESS) ] = 0x4c4,
606                 [ C(RESULT_MISS)   ] = 0x4c5,
607         },
608         [ C(OP_WRITE) ] = {
609                 [ C(RESULT_ACCESS) ] = -1,
610                 [ C(RESULT_MISS)   ] = -1,
611         },
612         [ C(OP_PREFETCH) ] = {
613                 [ C(RESULT_ACCESS) ] = -1,
614                 [ C(RESULT_MISS)   ] = -1,
615         },
616  },
617  [ C(NODE) ] = {
618         [ C(OP_READ) ] = {
619                 [ C(RESULT_ACCESS) ] = 0x12a,
620                 [ C(RESULT_MISS)   ] = 0x12a,
621         },
622  },
623 };
624 
625 static __initconst const u64 glc_hw_cache_extra_regs
626                                 [PERF_COUNT_HW_CACHE_MAX]
627                                 [PERF_COUNT_HW_CACHE_OP_MAX]
628                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
629 {
630  [ C(LL  ) ] = {
631         [ C(OP_READ) ] = {
632                 [ C(RESULT_ACCESS) ] = 0x10001,
633                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
634         },
635         [ C(OP_WRITE) ] = {
636                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
637                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
638         },
639  },
640  [ C(NODE) ] = {
641         [ C(OP_READ) ] = {
642                 [ C(RESULT_ACCESS) ] = 0x10c000001,
643                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
644         },
645  },
646 };
647 
648 /*
649  * Notes on the events:
650  * - data reads do not include code reads (comparable to earlier tables)
651  * - data counts include speculative execution (except L1 write, dtlb, bpu)
652  * - remote node access includes remote memory, remote cache, remote mmio.
653  * - prefetches are not included in the counts.
654  * - icache miss does not include decoded icache
655  */
656 
657 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
658 #define SKL_DEMAND_RFO                  BIT_ULL(1)
659 #define SKL_ANY_RESPONSE                BIT_ULL(16)
660 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
661 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
662 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
663 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
664 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
665 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
666                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
667                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
668                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
669 #define SKL_SPL_HIT                     BIT_ULL(30)
670 #define SKL_SNOOP_NONE                  BIT_ULL(31)
671 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
672 #define SKL_SNOOP_MISS                  BIT_ULL(33)
673 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
674 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
675 #define SKL_SNOOP_HITM                  BIT_ULL(36)
676 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
677 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
678                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
679                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
680                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
681 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
682 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
683                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
684                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
685                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
686 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
687 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
688 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
689                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
690                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
691 
692 static __initconst const u64 skl_hw_cache_event_ids
693                                 [PERF_COUNT_HW_CACHE_MAX]
694                                 [PERF_COUNT_HW_CACHE_OP_MAX]
695                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
696 {
697  [ C(L1D ) ] = {
698         [ C(OP_READ) ] = {
699                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
700                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
701         },
702         [ C(OP_WRITE) ] = {
703                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
704                 [ C(RESULT_MISS)   ] = 0x0,
705         },
706         [ C(OP_PREFETCH) ] = {
707                 [ C(RESULT_ACCESS) ] = 0x0,
708                 [ C(RESULT_MISS)   ] = 0x0,
709         },
710  },
711  [ C(L1I ) ] = {
712         [ C(OP_READ) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x0,
714                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
715         },
716         [ C(OP_WRITE) ] = {
717                 [ C(RESULT_ACCESS) ] = -1,
718                 [ C(RESULT_MISS)   ] = -1,
719         },
720         [ C(OP_PREFETCH) ] = {
721                 [ C(RESULT_ACCESS) ] = 0x0,
722                 [ C(RESULT_MISS)   ] = 0x0,
723         },
724  },
725  [ C(LL  ) ] = {
726         [ C(OP_READ) ] = {
727                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
728                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
729         },
730         [ C(OP_WRITE) ] = {
731                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
732                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
733         },
734         [ C(OP_PREFETCH) ] = {
735                 [ C(RESULT_ACCESS) ] = 0x0,
736                 [ C(RESULT_MISS)   ] = 0x0,
737         },
738  },
739  [ C(DTLB) ] = {
740         [ C(OP_READ) ] = {
741                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
742                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
743         },
744         [ C(OP_WRITE) ] = {
745                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
746                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
747         },
748         [ C(OP_PREFETCH) ] = {
749                 [ C(RESULT_ACCESS) ] = 0x0,
750                 [ C(RESULT_MISS)   ] = 0x0,
751         },
752  },
753  [ C(ITLB) ] = {
754         [ C(OP_READ) ] = {
755                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
756                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
757         },
758         [ C(OP_WRITE) ] = {
759                 [ C(RESULT_ACCESS) ] = -1,
760                 [ C(RESULT_MISS)   ] = -1,
761         },
762         [ C(OP_PREFETCH) ] = {
763                 [ C(RESULT_ACCESS) ] = -1,
764                 [ C(RESULT_MISS)   ] = -1,
765         },
766  },
767  [ C(BPU ) ] = {
768         [ C(OP_READ) ] = {
769                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
770                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
771         },
772         [ C(OP_WRITE) ] = {
773                 [ C(RESULT_ACCESS) ] = -1,
774                 [ C(RESULT_MISS)   ] = -1,
775         },
776         [ C(OP_PREFETCH) ] = {
777                 [ C(RESULT_ACCESS) ] = -1,
778                 [ C(RESULT_MISS)   ] = -1,
779         },
780  },
781  [ C(NODE) ] = {
782         [ C(OP_READ) ] = {
783                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
784                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
785         },
786         [ C(OP_WRITE) ] = {
787                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
788                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
789         },
790         [ C(OP_PREFETCH) ] = {
791                 [ C(RESULT_ACCESS) ] = 0x0,
792                 [ C(RESULT_MISS)   ] = 0x0,
793         },
794  },
795 };
796 
797 static __initconst const u64 skl_hw_cache_extra_regs
798                                 [PERF_COUNT_HW_CACHE_MAX]
799                                 [PERF_COUNT_HW_CACHE_OP_MAX]
800                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
801 {
802  [ C(LL  ) ] = {
803         [ C(OP_READ) ] = {
804                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
805                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
806                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
807                                        SKL_L3_MISS|SKL_ANY_SNOOP|
808                                        SKL_SUPPLIER_NONE,
809         },
810         [ C(OP_WRITE) ] = {
811                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
812                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
813                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
814                                        SKL_L3_MISS|SKL_ANY_SNOOP|
815                                        SKL_SUPPLIER_NONE,
816         },
817         [ C(OP_PREFETCH) ] = {
818                 [ C(RESULT_ACCESS) ] = 0x0,
819                 [ C(RESULT_MISS)   ] = 0x0,
820         },
821  },
822  [ C(NODE) ] = {
823         [ C(OP_READ) ] = {
824                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
825                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
826                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
827                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
828         },
829         [ C(OP_WRITE) ] = {
830                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
831                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
832                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
833                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
834         },
835         [ C(OP_PREFETCH) ] = {
836                 [ C(RESULT_ACCESS) ] = 0x0,
837                 [ C(RESULT_MISS)   ] = 0x0,
838         },
839  },
840 };
841 
842 #define SNB_DMND_DATA_RD        (1ULL << 0)
843 #define SNB_DMND_RFO            (1ULL << 1)
844 #define SNB_DMND_IFETCH         (1ULL << 2)
845 #define SNB_DMND_WB             (1ULL << 3)
846 #define SNB_PF_DATA_RD          (1ULL << 4)
847 #define SNB_PF_RFO              (1ULL << 5)
848 #define SNB_PF_IFETCH           (1ULL << 6)
849 #define SNB_LLC_DATA_RD         (1ULL << 7)
850 #define SNB_LLC_RFO             (1ULL << 8)
851 #define SNB_LLC_IFETCH          (1ULL << 9)
852 #define SNB_BUS_LOCKS           (1ULL << 10)
853 #define SNB_STRM_ST             (1ULL << 11)
854 #define SNB_OTHER               (1ULL << 15)
855 #define SNB_RESP_ANY            (1ULL << 16)
856 #define SNB_NO_SUPP             (1ULL << 17)
857 #define SNB_LLC_HITM            (1ULL << 18)
858 #define SNB_LLC_HITE            (1ULL << 19)
859 #define SNB_LLC_HITS            (1ULL << 20)
860 #define SNB_LLC_HITF            (1ULL << 21)
861 #define SNB_LOCAL               (1ULL << 22)
862 #define SNB_REMOTE              (0xffULL << 23)
863 #define SNB_SNP_NONE            (1ULL << 31)
864 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
865 #define SNB_SNP_MISS            (1ULL << 33)
866 #define SNB_NO_FWD              (1ULL << 34)
867 #define SNB_SNP_FWD             (1ULL << 35)
868 #define SNB_HITM                (1ULL << 36)
869 #define SNB_NON_DRAM            (1ULL << 37)
870 
871 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
872 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
873 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
874 
875 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
876                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
877                                  SNB_HITM)
878 
879 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
880 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
881 
882 #define SNB_L3_ACCESS           SNB_RESP_ANY
883 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
884 
885 static __initconst const u64 snb_hw_cache_extra_regs
886                                 [PERF_COUNT_HW_CACHE_MAX]
887                                 [PERF_COUNT_HW_CACHE_OP_MAX]
888                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
889 {
890  [ C(LL  ) ] = {
891         [ C(OP_READ) ] = {
892                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
893                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
894         },
895         [ C(OP_WRITE) ] = {
896                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
897                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
898         },
899         [ C(OP_PREFETCH) ] = {
900                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
901                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
902         },
903  },
904  [ C(NODE) ] = {
905         [ C(OP_READ) ] = {
906                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
907                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
908         },
909         [ C(OP_WRITE) ] = {
910                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
911                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
912         },
913         [ C(OP_PREFETCH) ] = {
914                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
915                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
916         },
917  },
918 };
919 
920 static __initconst const u64 snb_hw_cache_event_ids
921                                 [PERF_COUNT_HW_CACHE_MAX]
922                                 [PERF_COUNT_HW_CACHE_OP_MAX]
923                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(L1D) ] = {
926         [ C(OP_READ) ] = {
927                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
928                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
929         },
930         [ C(OP_WRITE) ] = {
931                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
932                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
933         },
934         [ C(OP_PREFETCH) ] = {
935                 [ C(RESULT_ACCESS) ] = 0x0,
936                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
937         },
938  },
939  [ C(L1I ) ] = {
940         [ C(OP_READ) ] = {
941                 [ C(RESULT_ACCESS) ] = 0x0,
942                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
943         },
944         [ C(OP_WRITE) ] = {
945                 [ C(RESULT_ACCESS) ] = -1,
946                 [ C(RESULT_MISS)   ] = -1,
947         },
948         [ C(OP_PREFETCH) ] = {
949                 [ C(RESULT_ACCESS) ] = 0x0,
950                 [ C(RESULT_MISS)   ] = 0x0,
951         },
952  },
953  [ C(LL  ) ] = {
954         [ C(OP_READ) ] = {
955                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956                 [ C(RESULT_ACCESS) ] = 0x01b7,
957                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958                 [ C(RESULT_MISS)   ] = 0x01b7,
959         },
960         [ C(OP_WRITE) ] = {
961                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
962                 [ C(RESULT_ACCESS) ] = 0x01b7,
963                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
964                 [ C(RESULT_MISS)   ] = 0x01b7,
965         },
966         [ C(OP_PREFETCH) ] = {
967                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
968                 [ C(RESULT_ACCESS) ] = 0x01b7,
969                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
970                 [ C(RESULT_MISS)   ] = 0x01b7,
971         },
972  },
973  [ C(DTLB) ] = {
974         [ C(OP_READ) ] = {
975                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
976                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
977         },
978         [ C(OP_WRITE) ] = {
979                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
980                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
981         },
982         [ C(OP_PREFETCH) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x0,
984                 [ C(RESULT_MISS)   ] = 0x0,
985         },
986  },
987  [ C(ITLB) ] = {
988         [ C(OP_READ) ] = {
989                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
990                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
991         },
992         [ C(OP_WRITE) ] = {
993                 [ C(RESULT_ACCESS) ] = -1,
994                 [ C(RESULT_MISS)   ] = -1,
995         },
996         [ C(OP_PREFETCH) ] = {
997                 [ C(RESULT_ACCESS) ] = -1,
998                 [ C(RESULT_MISS)   ] = -1,
999         },
1000  },
1001  [ C(BPU ) ] = {
1002         [ C(OP_READ) ] = {
1003                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1004                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1005         },
1006         [ C(OP_WRITE) ] = {
1007                 [ C(RESULT_ACCESS) ] = -1,
1008                 [ C(RESULT_MISS)   ] = -1,
1009         },
1010         [ C(OP_PREFETCH) ] = {
1011                 [ C(RESULT_ACCESS) ] = -1,
1012                 [ C(RESULT_MISS)   ] = -1,
1013         },
1014  },
1015  [ C(NODE) ] = {
1016         [ C(OP_READ) ] = {
1017                 [ C(RESULT_ACCESS) ] = 0x01b7,
1018                 [ C(RESULT_MISS)   ] = 0x01b7,
1019         },
1020         [ C(OP_WRITE) ] = {
1021                 [ C(RESULT_ACCESS) ] = 0x01b7,
1022                 [ C(RESULT_MISS)   ] = 0x01b7,
1023         },
1024         [ C(OP_PREFETCH) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x01b7,
1026                 [ C(RESULT_MISS)   ] = 0x01b7,
1027         },
1028  },
1029 
1030 };
1031 
1032 /*
1033  * Notes on the events:
1034  * - data reads do not include code reads (comparable to earlier tables)
1035  * - data counts include speculative execution (except L1 write, dtlb, bpu)
1036  * - remote node access includes remote memory, remote cache, remote mmio.
1037  * - prefetches are not included in the counts because they are not
1038  *   reliably counted.
1039  */
1040 
1041 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
1042 #define HSW_DEMAND_RFO                  BIT_ULL(1)
1043 #define HSW_ANY_RESPONSE                BIT_ULL(16)
1044 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
1045 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
1046 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
1047 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
1048 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
1049 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
1050                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1051                                          HSW_L3_MISS_REMOTE_HOP2P)
1052 #define HSW_SNOOP_NONE                  BIT_ULL(31)
1053 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
1054 #define HSW_SNOOP_MISS                  BIT_ULL(33)
1055 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
1056 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
1057 #define HSW_SNOOP_HITM                  BIT_ULL(36)
1058 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
1059 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
1060                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1061                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1062                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1063 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1064 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
1065 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
1066 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
1067                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1068 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
1069 
1070 #define BDW_L3_MISS_LOCAL               BIT(26)
1071 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
1072                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1073                                          HSW_L3_MISS_REMOTE_HOP2P)
1074 
1075 
1076 static __initconst const u64 hsw_hw_cache_event_ids
1077                                 [PERF_COUNT_HW_CACHE_MAX]
1078                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1079                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1080 {
1081  [ C(L1D ) ] = {
1082         [ C(OP_READ) ] = {
1083                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1084                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
1085         },
1086         [ C(OP_WRITE) ] = {
1087                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1088                 [ C(RESULT_MISS)   ] = 0x0,
1089         },
1090         [ C(OP_PREFETCH) ] = {
1091                 [ C(RESULT_ACCESS) ] = 0x0,
1092                 [ C(RESULT_MISS)   ] = 0x0,
1093         },
1094  },
1095  [ C(L1I ) ] = {
1096         [ C(OP_READ) ] = {
1097                 [ C(RESULT_ACCESS) ] = 0x0,
1098                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
1099         },
1100         [ C(OP_WRITE) ] = {
1101                 [ C(RESULT_ACCESS) ] = -1,
1102                 [ C(RESULT_MISS)   ] = -1,
1103         },
1104         [ C(OP_PREFETCH) ] = {
1105                 [ C(RESULT_ACCESS) ] = 0x0,
1106                 [ C(RESULT_MISS)   ] = 0x0,
1107         },
1108  },
1109  [ C(LL  ) ] = {
1110         [ C(OP_READ) ] = {
1111                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1112                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1113         },
1114         [ C(OP_WRITE) ] = {
1115                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1116                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1117         },
1118         [ C(OP_PREFETCH) ] = {
1119                 [ C(RESULT_ACCESS) ] = 0x0,
1120                 [ C(RESULT_MISS)   ] = 0x0,
1121         },
1122  },
1123  [ C(DTLB) ] = {
1124         [ C(OP_READ) ] = {
1125                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1126                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1127         },
1128         [ C(OP_WRITE) ] = {
1129                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1130                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1131         },
1132         [ C(OP_PREFETCH) ] = {
1133                 [ C(RESULT_ACCESS) ] = 0x0,
1134                 [ C(RESULT_MISS)   ] = 0x0,
1135         },
1136  },
1137  [ C(ITLB) ] = {
1138         [ C(OP_READ) ] = {
1139                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1140                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1141         },
1142         [ C(OP_WRITE) ] = {
1143                 [ C(RESULT_ACCESS) ] = -1,
1144                 [ C(RESULT_MISS)   ] = -1,
1145         },
1146         [ C(OP_PREFETCH) ] = {
1147                 [ C(RESULT_ACCESS) ] = -1,
1148                 [ C(RESULT_MISS)   ] = -1,
1149         },
1150  },
1151  [ C(BPU ) ] = {
1152         [ C(OP_READ) ] = {
1153                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1154                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1155         },
1156         [ C(OP_WRITE) ] = {
1157                 [ C(RESULT_ACCESS) ] = -1,
1158                 [ C(RESULT_MISS)   ] = -1,
1159         },
1160         [ C(OP_PREFETCH) ] = {
1161                 [ C(RESULT_ACCESS) ] = -1,
1162                 [ C(RESULT_MISS)   ] = -1,
1163         },
1164  },
1165  [ C(NODE) ] = {
1166         [ C(OP_READ) ] = {
1167                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1168                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1169         },
1170         [ C(OP_WRITE) ] = {
1171                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1172                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1173         },
1174         [ C(OP_PREFETCH) ] = {
1175                 [ C(RESULT_ACCESS) ] = 0x0,
1176                 [ C(RESULT_MISS)   ] = 0x0,
1177         },
1178  },
1179 };
1180 
1181 static __initconst const u64 hsw_hw_cache_extra_regs
1182                                 [PERF_COUNT_HW_CACHE_MAX]
1183                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1184                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1185 {
1186  [ C(LL  ) ] = {
1187         [ C(OP_READ) ] = {
1188                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1189                                        HSW_LLC_ACCESS,
1190                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1191                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1192         },
1193         [ C(OP_WRITE) ] = {
1194                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1195                                        HSW_LLC_ACCESS,
1196                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1197                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1198         },
1199         [ C(OP_PREFETCH) ] = {
1200                 [ C(RESULT_ACCESS) ] = 0x0,
1201                 [ C(RESULT_MISS)   ] = 0x0,
1202         },
1203  },
1204  [ C(NODE) ] = {
1205         [ C(OP_READ) ] = {
1206                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1207                                        HSW_L3_MISS_LOCAL_DRAM|
1208                                        HSW_SNOOP_DRAM,
1209                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1210                                        HSW_L3_MISS_REMOTE|
1211                                        HSW_SNOOP_DRAM,
1212         },
1213         [ C(OP_WRITE) ] = {
1214                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1215                                        HSW_L3_MISS_LOCAL_DRAM|
1216                                        HSW_SNOOP_DRAM,
1217                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1218                                        HSW_L3_MISS_REMOTE|
1219                                        HSW_SNOOP_DRAM,
1220         },
1221         [ C(OP_PREFETCH) ] = {
1222                 [ C(RESULT_ACCESS) ] = 0x0,
1223                 [ C(RESULT_MISS)   ] = 0x0,
1224         },
1225  },
1226 };
1227 
1228 static __initconst const u64 westmere_hw_cache_event_ids
1229                                 [PERF_COUNT_HW_CACHE_MAX]
1230                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1231                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1232 {
1233  [ C(L1D) ] = {
1234         [ C(OP_READ) ] = {
1235                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1236                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1237         },
1238         [ C(OP_WRITE) ] = {
1239                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1240                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1241         },
1242         [ C(OP_PREFETCH) ] = {
1243                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1244                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1245         },
1246  },
1247  [ C(L1I ) ] = {
1248         [ C(OP_READ) ] = {
1249                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1250                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1251         },
1252         [ C(OP_WRITE) ] = {
1253                 [ C(RESULT_ACCESS) ] = -1,
1254                 [ C(RESULT_MISS)   ] = -1,
1255         },
1256         [ C(OP_PREFETCH) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x0,
1258                 [ C(RESULT_MISS)   ] = 0x0,
1259         },
1260  },
1261  [ C(LL  ) ] = {
1262         [ C(OP_READ) ] = {
1263                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1264                 [ C(RESULT_ACCESS) ] = 0x01b7,
1265                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1266                 [ C(RESULT_MISS)   ] = 0x01b7,
1267         },
1268         /*
1269          * Use RFO, not WRITEBACK, because a write miss would typically occur
1270          * on RFO.
1271          */
1272         [ C(OP_WRITE) ] = {
1273                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1274                 [ C(RESULT_ACCESS) ] = 0x01b7,
1275                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1276                 [ C(RESULT_MISS)   ] = 0x01b7,
1277         },
1278         [ C(OP_PREFETCH) ] = {
1279                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1280                 [ C(RESULT_ACCESS) ] = 0x01b7,
1281                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1282                 [ C(RESULT_MISS)   ] = 0x01b7,
1283         },
1284  },
1285  [ C(DTLB) ] = {
1286         [ C(OP_READ) ] = {
1287                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1288                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1289         },
1290         [ C(OP_WRITE) ] = {
1291                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1292                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1293         },
1294         [ C(OP_PREFETCH) ] = {
1295                 [ C(RESULT_ACCESS) ] = 0x0,
1296                 [ C(RESULT_MISS)   ] = 0x0,
1297         },
1298  },
1299  [ C(ITLB) ] = {
1300         [ C(OP_READ) ] = {
1301                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1302                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1303         },
1304         [ C(OP_WRITE) ] = {
1305                 [ C(RESULT_ACCESS) ] = -1,
1306                 [ C(RESULT_MISS)   ] = -1,
1307         },
1308         [ C(OP_PREFETCH) ] = {
1309                 [ C(RESULT_ACCESS) ] = -1,
1310                 [ C(RESULT_MISS)   ] = -1,
1311         },
1312  },
1313  [ C(BPU ) ] = {
1314         [ C(OP_READ) ] = {
1315                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1316                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1317         },
1318         [ C(OP_WRITE) ] = {
1319                 [ C(RESULT_ACCESS) ] = -1,
1320                 [ C(RESULT_MISS)   ] = -1,
1321         },
1322         [ C(OP_PREFETCH) ] = {
1323                 [ C(RESULT_ACCESS) ] = -1,
1324                 [ C(RESULT_MISS)   ] = -1,
1325         },
1326  },
1327  [ C(NODE) ] = {
1328         [ C(OP_READ) ] = {
1329                 [ C(RESULT_ACCESS) ] = 0x01b7,
1330                 [ C(RESULT_MISS)   ] = 0x01b7,
1331         },
1332         [ C(OP_WRITE) ] = {
1333                 [ C(RESULT_ACCESS) ] = 0x01b7,
1334                 [ C(RESULT_MISS)   ] = 0x01b7,
1335         },
1336         [ C(OP_PREFETCH) ] = {
1337                 [ C(RESULT_ACCESS) ] = 0x01b7,
1338                 [ C(RESULT_MISS)   ] = 0x01b7,
1339         },
1340  },
1341 };
1342 
1343 /*
1344  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1345  * See IA32 SDM Vol 3B 30.6.1.3
1346  */
1347 
1348 #define NHM_DMND_DATA_RD        (1 << 0)
1349 #define NHM_DMND_RFO            (1 << 1)
1350 #define NHM_DMND_IFETCH         (1 << 2)
1351 #define NHM_DMND_WB             (1 << 3)
1352 #define NHM_PF_DATA_RD          (1 << 4)
1353 #define NHM_PF_DATA_RFO         (1 << 5)
1354 #define NHM_PF_IFETCH           (1 << 6)
1355 #define NHM_OFFCORE_OTHER       (1 << 7)
1356 #define NHM_UNCORE_HIT          (1 << 8)
1357 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1358 #define NHM_OTHER_CORE_HITM     (1 << 10)
1359                                 /* reserved */
1360 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1361 #define NHM_REMOTE_DRAM         (1 << 13)
1362 #define NHM_LOCAL_DRAM          (1 << 14)
1363 #define NHM_NON_DRAM            (1 << 15)
1364 
1365 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1366 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1367 
1368 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1369 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1370 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1371 
1372 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1373 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1374 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1375 
1376 static __initconst const u64 nehalem_hw_cache_extra_regs
1377                                 [PERF_COUNT_HW_CACHE_MAX]
1378                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1379                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1380 {
1381  [ C(LL  ) ] = {
1382         [ C(OP_READ) ] = {
1383                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1384                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1385         },
1386         [ C(OP_WRITE) ] = {
1387                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1388                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1389         },
1390         [ C(OP_PREFETCH) ] = {
1391                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1392                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1393         },
1394  },
1395  [ C(NODE) ] = {
1396         [ C(OP_READ) ] = {
1397                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1398                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1399         },
1400         [ C(OP_WRITE) ] = {
1401                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1402                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1403         },
1404         [ C(OP_PREFETCH) ] = {
1405                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1406                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1407         },
1408  },
1409 };
1410 
1411 static __initconst const u64 nehalem_hw_cache_event_ids
1412                                 [PERF_COUNT_HW_CACHE_MAX]
1413                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1414                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1415 {
1416  [ C(L1D) ] = {
1417         [ C(OP_READ) ] = {
1418                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1419                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1420         },
1421         [ C(OP_WRITE) ] = {
1422                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1423                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1424         },
1425         [ C(OP_PREFETCH) ] = {
1426                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1427                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1428         },
1429  },
1430  [ C(L1I ) ] = {
1431         [ C(OP_READ) ] = {
1432                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1433                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1434         },
1435         [ C(OP_WRITE) ] = {
1436                 [ C(RESULT_ACCESS) ] = -1,
1437                 [ C(RESULT_MISS)   ] = -1,
1438         },
1439         [ C(OP_PREFETCH) ] = {
1440                 [ C(RESULT_ACCESS) ] = 0x0,
1441                 [ C(RESULT_MISS)   ] = 0x0,
1442         },
1443  },
1444  [ C(LL  ) ] = {
1445         [ C(OP_READ) ] = {
1446                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1447                 [ C(RESULT_ACCESS) ] = 0x01b7,
1448                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1449                 [ C(RESULT_MISS)   ] = 0x01b7,
1450         },
1451         /*
1452          * Use RFO, not WRITEBACK, because a write miss would typically occur
1453          * on RFO.
1454          */
1455         [ C(OP_WRITE) ] = {
1456                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1457                 [ C(RESULT_ACCESS) ] = 0x01b7,
1458                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1459                 [ C(RESULT_MISS)   ] = 0x01b7,
1460         },
1461         [ C(OP_PREFETCH) ] = {
1462                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1463                 [ C(RESULT_ACCESS) ] = 0x01b7,
1464                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1465                 [ C(RESULT_MISS)   ] = 0x01b7,
1466         },
1467  },
1468  [ C(DTLB) ] = {
1469         [ C(OP_READ) ] = {
1470                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1471                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1472         },
1473         [ C(OP_WRITE) ] = {
1474                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1475                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1476         },
1477         [ C(OP_PREFETCH) ] = {
1478                 [ C(RESULT_ACCESS) ] = 0x0,
1479                 [ C(RESULT_MISS)   ] = 0x0,
1480         },
1481  },
1482  [ C(ITLB) ] = {
1483         [ C(OP_READ) ] = {
1484                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1485                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1486         },
1487         [ C(OP_WRITE) ] = {
1488                 [ C(RESULT_ACCESS) ] = -1,
1489                 [ C(RESULT_MISS)   ] = -1,
1490         },
1491         [ C(OP_PREFETCH) ] = {
1492                 [ C(RESULT_ACCESS) ] = -1,
1493                 [ C(RESULT_MISS)   ] = -1,
1494         },
1495  },
1496  [ C(BPU ) ] = {
1497         [ C(OP_READ) ] = {
1498                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1499                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1500         },
1501         [ C(OP_WRITE) ] = {
1502                 [ C(RESULT_ACCESS) ] = -1,
1503                 [ C(RESULT_MISS)   ] = -1,
1504         },
1505         [ C(OP_PREFETCH) ] = {
1506                 [ C(RESULT_ACCESS) ] = -1,
1507                 [ C(RESULT_MISS)   ] = -1,
1508         },
1509  },
1510  [ C(NODE) ] = {
1511         [ C(OP_READ) ] = {
1512                 [ C(RESULT_ACCESS) ] = 0x01b7,
1513                 [ C(RESULT_MISS)   ] = 0x01b7,
1514         },
1515         [ C(OP_WRITE) ] = {
1516                 [ C(RESULT_ACCESS) ] = 0x01b7,
1517                 [ C(RESULT_MISS)   ] = 0x01b7,
1518         },
1519         [ C(OP_PREFETCH) ] = {
1520                 [ C(RESULT_ACCESS) ] = 0x01b7,
1521                 [ C(RESULT_MISS)   ] = 0x01b7,
1522         },
1523  },
1524 };
1525 
1526 static __initconst const u64 core2_hw_cache_event_ids
1527                                 [PERF_COUNT_HW_CACHE_MAX]
1528                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1529                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1530 {
1531  [ C(L1D) ] = {
1532         [ C(OP_READ) ] = {
1533                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1534                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1535         },
1536         [ C(OP_WRITE) ] = {
1537                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1538                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1539         },
1540         [ C(OP_PREFETCH) ] = {
1541                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1542                 [ C(RESULT_MISS)   ] = 0,
1543         },
1544  },
1545  [ C(L1I ) ] = {
1546         [ C(OP_READ) ] = {
1547                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1548                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1549         },
1550         [ C(OP_WRITE) ] = {
1551                 [ C(RESULT_ACCESS) ] = -1,
1552                 [ C(RESULT_MISS)   ] = -1,
1553         },
1554         [ C(OP_PREFETCH) ] = {
1555                 [ C(RESULT_ACCESS) ] = 0,
1556                 [ C(RESULT_MISS)   ] = 0,
1557         },
1558  },
1559  [ C(LL  ) ] = {
1560         [ C(OP_READ) ] = {
1561                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1562                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1563         },
1564         [ C(OP_WRITE) ] = {
1565                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1566                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1567         },
1568         [ C(OP_PREFETCH) ] = {
1569                 [ C(RESULT_ACCESS) ] = 0,
1570                 [ C(RESULT_MISS)   ] = 0,
1571         },
1572  },
1573  [ C(DTLB) ] = {
1574         [ C(OP_READ) ] = {
1575                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1576                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1577         },
1578         [ C(OP_WRITE) ] = {
1579                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1580                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1581         },
1582         [ C(OP_PREFETCH) ] = {
1583                 [ C(RESULT_ACCESS) ] = 0,
1584                 [ C(RESULT_MISS)   ] = 0,
1585         },
1586  },
1587  [ C(ITLB) ] = {
1588         [ C(OP_READ) ] = {
1589                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1590                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1591         },
1592         [ C(OP_WRITE) ] = {
1593                 [ C(RESULT_ACCESS) ] = -1,
1594                 [ C(RESULT_MISS)   ] = -1,
1595         },
1596         [ C(OP_PREFETCH) ] = {
1597                 [ C(RESULT_ACCESS) ] = -1,
1598                 [ C(RESULT_MISS)   ] = -1,
1599         },
1600  },
1601  [ C(BPU ) ] = {
1602         [ C(OP_READ) ] = {
1603                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1604                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1605         },
1606         [ C(OP_WRITE) ] = {
1607                 [ C(RESULT_ACCESS) ] = -1,
1608                 [ C(RESULT_MISS)   ] = -1,
1609         },
1610         [ C(OP_PREFETCH) ] = {
1611                 [ C(RESULT_ACCESS) ] = -1,
1612                 [ C(RESULT_MISS)   ] = -1,
1613         },
1614  },
1615 };
1616 
1617 static __initconst const u64 atom_hw_cache_event_ids
1618                                 [PERF_COUNT_HW_CACHE_MAX]
1619                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1620                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1621 {
1622  [ C(L1D) ] = {
1623         [ C(OP_READ) ] = {
1624                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1625                 [ C(RESULT_MISS)   ] = 0,
1626         },
1627         [ C(OP_WRITE) ] = {
1628                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1629                 [ C(RESULT_MISS)   ] = 0,
1630         },
1631         [ C(OP_PREFETCH) ] = {
1632                 [ C(RESULT_ACCESS) ] = 0x0,
1633                 [ C(RESULT_MISS)   ] = 0,
1634         },
1635  },
1636  [ C(L1I ) ] = {
1637         [ C(OP_READ) ] = {
1638                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1639                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1640         },
1641         [ C(OP_WRITE) ] = {
1642                 [ C(RESULT_ACCESS) ] = -1,
1643                 [ C(RESULT_MISS)   ] = -1,
1644         },
1645         [ C(OP_PREFETCH) ] = {
1646                 [ C(RESULT_ACCESS) ] = 0,
1647                 [ C(RESULT_MISS)   ] = 0,
1648         },
1649  },
1650  [ C(LL  ) ] = {
1651         [ C(OP_READ) ] = {
1652                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1653                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1654         },
1655         [ C(OP_WRITE) ] = {
1656                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1657                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1658         },
1659         [ C(OP_PREFETCH) ] = {
1660                 [ C(RESULT_ACCESS) ] = 0,
1661                 [ C(RESULT_MISS)   ] = 0,
1662         },
1663  },
1664  [ C(DTLB) ] = {
1665         [ C(OP_READ) ] = {
1666                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1667                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1668         },
1669         [ C(OP_WRITE) ] = {
1670                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1671                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1672         },
1673         [ C(OP_PREFETCH) ] = {
1674                 [ C(RESULT_ACCESS) ] = 0,
1675                 [ C(RESULT_MISS)   ] = 0,
1676         },
1677  },
1678  [ C(ITLB) ] = {
1679         [ C(OP_READ) ] = {
1680                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1681                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1682         },
1683         [ C(OP_WRITE) ] = {
1684                 [ C(RESULT_ACCESS) ] = -1,
1685                 [ C(RESULT_MISS)   ] = -1,
1686         },
1687         [ C(OP_PREFETCH) ] = {
1688                 [ C(RESULT_ACCESS) ] = -1,
1689                 [ C(RESULT_MISS)   ] = -1,
1690         },
1691  },
1692  [ C(BPU ) ] = {
1693         [ C(OP_READ) ] = {
1694                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1695                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1696         },
1697         [ C(OP_WRITE) ] = {
1698                 [ C(RESULT_ACCESS) ] = -1,
1699                 [ C(RESULT_MISS)   ] = -1,
1700         },
1701         [ C(OP_PREFETCH) ] = {
1702                 [ C(RESULT_ACCESS) ] = -1,
1703                 [ C(RESULT_MISS)   ] = -1,
1704         },
1705  },
1706 };
1707 
1708 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1709 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1710 /* no_alloc_cycles.not_delivered */
1711 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1712                "event=0xca,umask=0x50");
1713 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1714 /* uops_retired.all */
1715 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1716                "event=0xc2,umask=0x10");
1717 /* uops_retired.all */
1718 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1719                "event=0xc2,umask=0x10");
1720 
1721 static struct attribute *slm_events_attrs[] = {
1722         EVENT_PTR(td_total_slots_slm),
1723         EVENT_PTR(td_total_slots_scale_slm),
1724         EVENT_PTR(td_fetch_bubbles_slm),
1725         EVENT_PTR(td_fetch_bubbles_scale_slm),
1726         EVENT_PTR(td_slots_issued_slm),
1727         EVENT_PTR(td_slots_retired_slm),
1728         NULL
1729 };
1730 
1731 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1732 {
1733         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1734         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1735         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1736         EVENT_EXTRA_END
1737 };
1738 
1739 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1740 #define SLM_DMND_WRITE          SNB_DMND_RFO
1741 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1742 
1743 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1744 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1745 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1746 
1747 static __initconst const u64 slm_hw_cache_extra_regs
1748                                 [PERF_COUNT_HW_CACHE_MAX]
1749                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1750                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1751 {
1752  [ C(LL  ) ] = {
1753         [ C(OP_READ) ] = {
1754                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1755                 [ C(RESULT_MISS)   ] = 0,
1756         },
1757         [ C(OP_WRITE) ] = {
1758                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1759                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1760         },
1761         [ C(OP_PREFETCH) ] = {
1762                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1763                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1764         },
1765  },
1766 };
1767 
1768 static __initconst const u64 slm_hw_cache_event_ids
1769                                 [PERF_COUNT_HW_CACHE_MAX]
1770                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1771                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1772 {
1773  [ C(L1D) ] = {
1774         [ C(OP_READ) ] = {
1775                 [ C(RESULT_ACCESS) ] = 0,
1776                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1777         },
1778         [ C(OP_WRITE) ] = {
1779                 [ C(RESULT_ACCESS) ] = 0,
1780                 [ C(RESULT_MISS)   ] = 0,
1781         },
1782         [ C(OP_PREFETCH) ] = {
1783                 [ C(RESULT_ACCESS) ] = 0,
1784                 [ C(RESULT_MISS)   ] = 0,
1785         },
1786  },
1787  [ C(L1I ) ] = {
1788         [ C(OP_READ) ] = {
1789                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1790                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1791         },
1792         [ C(OP_WRITE) ] = {
1793                 [ C(RESULT_ACCESS) ] = -1,
1794                 [ C(RESULT_MISS)   ] = -1,
1795         },
1796         [ C(OP_PREFETCH) ] = {
1797                 [ C(RESULT_ACCESS) ] = 0,
1798                 [ C(RESULT_MISS)   ] = 0,
1799         },
1800  },
1801  [ C(LL  ) ] = {
1802         [ C(OP_READ) ] = {
1803                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1804                 [ C(RESULT_ACCESS) ] = 0x01b7,
1805                 [ C(RESULT_MISS)   ] = 0,
1806         },
1807         [ C(OP_WRITE) ] = {
1808                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1809                 [ C(RESULT_ACCESS) ] = 0x01b7,
1810                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1811                 [ C(RESULT_MISS)   ] = 0x01b7,
1812         },
1813         [ C(OP_PREFETCH) ] = {
1814                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1815                 [ C(RESULT_ACCESS) ] = 0x01b7,
1816                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1817                 [ C(RESULT_MISS)   ] = 0x01b7,
1818         },
1819  },
1820  [ C(DTLB) ] = {
1821         [ C(OP_READ) ] = {
1822                 [ C(RESULT_ACCESS) ] = 0,
1823                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1824         },
1825         [ C(OP_WRITE) ] = {
1826                 [ C(RESULT_ACCESS) ] = 0,
1827                 [ C(RESULT_MISS)   ] = 0,
1828         },
1829         [ C(OP_PREFETCH) ] = {
1830                 [ C(RESULT_ACCESS) ] = 0,
1831                 [ C(RESULT_MISS)   ] = 0,
1832         },
1833  },
1834  [ C(ITLB) ] = {
1835         [ C(OP_READ) ] = {
1836                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1837                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1838         },
1839         [ C(OP_WRITE) ] = {
1840                 [ C(RESULT_ACCESS) ] = -1,
1841                 [ C(RESULT_MISS)   ] = -1,
1842         },
1843         [ C(OP_PREFETCH) ] = {
1844                 [ C(RESULT_ACCESS) ] = -1,
1845                 [ C(RESULT_MISS)   ] = -1,
1846         },
1847  },
1848  [ C(BPU ) ] = {
1849         [ C(OP_READ) ] = {
1850                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1851                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1852         },
1853         [ C(OP_WRITE) ] = {
1854                 [ C(RESULT_ACCESS) ] = -1,
1855                 [ C(RESULT_MISS)   ] = -1,
1856         },
1857         [ C(OP_PREFETCH) ] = {
1858                 [ C(RESULT_ACCESS) ] = -1,
1859                 [ C(RESULT_MISS)   ] = -1,
1860         },
1861  },
1862 };
1863 
1864 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1865 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1866 /* UOPS_NOT_DELIVERED.ANY */
1867 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1868 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1869 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1870 /* UOPS_RETIRED.ANY */
1871 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1872 /* UOPS_ISSUED.ANY */
1873 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1874 
1875 static struct attribute *glm_events_attrs[] = {
1876         EVENT_PTR(td_total_slots_glm),
1877         EVENT_PTR(td_total_slots_scale_glm),
1878         EVENT_PTR(td_fetch_bubbles_glm),
1879         EVENT_PTR(td_recovery_bubbles_glm),
1880         EVENT_PTR(td_slots_issued_glm),
1881         EVENT_PTR(td_slots_retired_glm),
1882         NULL
1883 };
1884 
1885 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1886         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1887         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1888         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1889         EVENT_EXTRA_END
1890 };
1891 
1892 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1893 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1894 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1895 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1896 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1897 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1898 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1899 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1900 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1901 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1902 
1903 static __initconst const u64 glm_hw_cache_event_ids
1904                                 [PERF_COUNT_HW_CACHE_MAX]
1905                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1906                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1907         [C(L1D)] = {
1908                 [C(OP_READ)] = {
1909                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1910                         [C(RESULT_MISS)]        = 0x0,
1911                 },
1912                 [C(OP_WRITE)] = {
1913                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1914                         [C(RESULT_MISS)]        = 0x0,
1915                 },
1916                 [C(OP_PREFETCH)] = {
1917                         [C(RESULT_ACCESS)]      = 0x0,
1918                         [C(RESULT_MISS)]        = 0x0,
1919                 },
1920         },
1921         [C(L1I)] = {
1922                 [C(OP_READ)] = {
1923                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1924                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1925                 },
1926                 [C(OP_WRITE)] = {
1927                         [C(RESULT_ACCESS)]      = -1,
1928                         [C(RESULT_MISS)]        = -1,
1929                 },
1930                 [C(OP_PREFETCH)] = {
1931                         [C(RESULT_ACCESS)]      = 0x0,
1932                         [C(RESULT_MISS)]        = 0x0,
1933                 },
1934         },
1935         [C(LL)] = {
1936                 [C(OP_READ)] = {
1937                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1938                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1939                 },
1940                 [C(OP_WRITE)] = {
1941                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1942                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1943                 },
1944                 [C(OP_PREFETCH)] = {
1945                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1946                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1947                 },
1948         },
1949         [C(DTLB)] = {
1950                 [C(OP_READ)] = {
1951                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1952                         [C(RESULT_MISS)]        = 0x0,
1953                 },
1954                 [C(OP_WRITE)] = {
1955                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1956                         [C(RESULT_MISS)]        = 0x0,
1957                 },
1958                 [C(OP_PREFETCH)] = {
1959                         [C(RESULT_ACCESS)]      = 0x0,
1960                         [C(RESULT_MISS)]        = 0x0,
1961                 },
1962         },
1963         [C(ITLB)] = {
1964                 [C(OP_READ)] = {
1965                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1966                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1967                 },
1968                 [C(OP_WRITE)] = {
1969                         [C(RESULT_ACCESS)]      = -1,
1970                         [C(RESULT_MISS)]        = -1,
1971                 },
1972                 [C(OP_PREFETCH)] = {
1973                         [C(RESULT_ACCESS)]      = -1,
1974                         [C(RESULT_MISS)]        = -1,
1975                 },
1976         },
1977         [C(BPU)] = {
1978                 [C(OP_READ)] = {
1979                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1980                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1981                 },
1982                 [C(OP_WRITE)] = {
1983                         [C(RESULT_ACCESS)]      = -1,
1984                         [C(RESULT_MISS)]        = -1,
1985                 },
1986                 [C(OP_PREFETCH)] = {
1987                         [C(RESULT_ACCESS)]      = -1,
1988                         [C(RESULT_MISS)]        = -1,
1989                 },
1990         },
1991 };
1992 
1993 static __initconst const u64 glm_hw_cache_extra_regs
1994                                 [PERF_COUNT_HW_CACHE_MAX]
1995                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1996                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1997         [C(LL)] = {
1998                 [C(OP_READ)] = {
1999                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2000                                                   GLM_LLC_ACCESS,
2001                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2002                                                   GLM_LLC_MISS,
2003                 },
2004                 [C(OP_WRITE)] = {
2005                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2006                                                   GLM_LLC_ACCESS,
2007                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2008                                                   GLM_LLC_MISS,
2009                 },
2010                 [C(OP_PREFETCH)] = {
2011                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
2012                                                   GLM_LLC_ACCESS,
2013                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
2014                                                   GLM_LLC_MISS,
2015                 },
2016         },
2017 };
2018 
2019 static __initconst const u64 glp_hw_cache_event_ids
2020                                 [PERF_COUNT_HW_CACHE_MAX]
2021                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2022                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2023         [C(L1D)] = {
2024                 [C(OP_READ)] = {
2025                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
2026                         [C(RESULT_MISS)]        = 0x0,
2027                 },
2028                 [C(OP_WRITE)] = {
2029                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
2030                         [C(RESULT_MISS)]        = 0x0,
2031                 },
2032                 [C(OP_PREFETCH)] = {
2033                         [C(RESULT_ACCESS)]      = 0x0,
2034                         [C(RESULT_MISS)]        = 0x0,
2035                 },
2036         },
2037         [C(L1I)] = {
2038                 [C(OP_READ)] = {
2039                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
2040                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
2041                 },
2042                 [C(OP_WRITE)] = {
2043                         [C(RESULT_ACCESS)]      = -1,
2044                         [C(RESULT_MISS)]        = -1,
2045                 },
2046                 [C(OP_PREFETCH)] = {
2047                         [C(RESULT_ACCESS)]      = 0x0,
2048                         [C(RESULT_MISS)]        = 0x0,
2049                 },
2050         },
2051         [C(LL)] = {
2052                 [C(OP_READ)] = {
2053                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
2054                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
2055                 },
2056                 [C(OP_WRITE)] = {
2057                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
2058                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
2059                 },
2060                 [C(OP_PREFETCH)] = {
2061                         [C(RESULT_ACCESS)]      = 0x0,
2062                         [C(RESULT_MISS)]        = 0x0,
2063                 },
2064         },
2065         [C(DTLB)] = {
2066                 [C(OP_READ)] = {
2067                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
2068                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
2069                 },
2070                 [C(OP_WRITE)] = {
2071                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
2072                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
2073                 },
2074                 [C(OP_PREFETCH)] = {
2075                         [C(RESULT_ACCESS)]      = 0x0,
2076                         [C(RESULT_MISS)]        = 0x0,
2077                 },
2078         },
2079         [C(ITLB)] = {
2080                 [C(OP_READ)] = {
2081                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
2082                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
2083                 },
2084                 [C(OP_WRITE)] = {
2085                         [C(RESULT_ACCESS)]      = -1,
2086                         [C(RESULT_MISS)]        = -1,
2087                 },
2088                 [C(OP_PREFETCH)] = {
2089                         [C(RESULT_ACCESS)]      = -1,
2090                         [C(RESULT_MISS)]        = -1,
2091                 },
2092         },
2093         [C(BPU)] = {
2094                 [C(OP_READ)] = {
2095                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
2096                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
2097                 },
2098                 [C(OP_WRITE)] = {
2099                         [C(RESULT_ACCESS)]      = -1,
2100                         [C(RESULT_MISS)]        = -1,
2101                 },
2102                 [C(OP_PREFETCH)] = {
2103                         [C(RESULT_ACCESS)]      = -1,
2104                         [C(RESULT_MISS)]        = -1,
2105                 },
2106         },
2107 };
2108 
2109 static __initconst const u64 glp_hw_cache_extra_regs
2110                                 [PERF_COUNT_HW_CACHE_MAX]
2111                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2112                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2113         [C(LL)] = {
2114                 [C(OP_READ)] = {
2115                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2116                                                   GLM_LLC_ACCESS,
2117                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2118                                                   GLM_LLC_MISS,
2119                 },
2120                 [C(OP_WRITE)] = {
2121                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2122                                                   GLM_LLC_ACCESS,
2123                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2124                                                   GLM_LLC_MISS,
2125                 },
2126                 [C(OP_PREFETCH)] = {
2127                         [C(RESULT_ACCESS)]      = 0x0,
2128                         [C(RESULT_MISS)]        = 0x0,
2129                 },
2130         },
2131 };
2132 
2133 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2134 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2135 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2136 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2137 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2138                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2139 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2140 
2141 static __initconst const u64 tnt_hw_cache_extra_regs
2142                                 [PERF_COUNT_HW_CACHE_MAX]
2143                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2144                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2145         [C(LL)] = {
2146                 [C(OP_READ)] = {
2147                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2148                                                   TNT_LLC_ACCESS,
2149                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2150                                                   TNT_LLC_MISS,
2151                 },
2152                 [C(OP_WRITE)] = {
2153                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2154                                                   TNT_LLC_ACCESS,
2155                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2156                                                   TNT_LLC_MISS,
2157                 },
2158                 [C(OP_PREFETCH)] = {
2159                         [C(RESULT_ACCESS)]      = 0x0,
2160                         [C(RESULT_MISS)]        = 0x0,
2161                 },
2162         },
2163 };
2164 
2165 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2166 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2167 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2168 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2169 
2170 static struct attribute *tnt_events_attrs[] = {
2171         EVENT_PTR(td_fe_bound_tnt),
2172         EVENT_PTR(td_retiring_tnt),
2173         EVENT_PTR(td_bad_spec_tnt),
2174         EVENT_PTR(td_be_bound_tnt),
2175         NULL,
2176 };
2177 
2178 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2179         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2180         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2181         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2182         EVENT_EXTRA_END
2183 };
2184 
2185 EVENT_ATTR_STR(mem-loads,       mem_ld_grt,     "event=0xd0,umask=0x5,ldlat=3");
2186 EVENT_ATTR_STR(mem-stores,      mem_st_grt,     "event=0xd0,umask=0x6");
2187 
2188 static struct attribute *grt_mem_attrs[] = {
2189         EVENT_PTR(mem_ld_grt),
2190         EVENT_PTR(mem_st_grt),
2191         NULL
2192 };
2193 
2194 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2195         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2196         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2197         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2198         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2199         EVENT_EXTRA_END
2200 };
2201 
2202 EVENT_ATTR_STR(topdown-retiring,       td_retiring_cmt,        "event=0x72,umask=0x0");
2203 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_cmt,        "event=0x73,umask=0x0");
2204 
2205 static struct attribute *cmt_events_attrs[] = {
2206         EVENT_PTR(td_fe_bound_tnt),
2207         EVENT_PTR(td_retiring_cmt),
2208         EVENT_PTR(td_bad_spec_cmt),
2209         EVENT_PTR(td_be_bound_tnt),
2210         NULL
2211 };
2212 
2213 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2214         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2215         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2216         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2217         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2218         INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2219         INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2220         EVENT_EXTRA_END
2221 };
2222 
2223 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2224 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2225 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2226 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2227 #define KNL_DDR_LOCAL           BIT_ULL(23)
2228 #define KNL_DDR_FAR             BIT_ULL(24)
2229 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2230                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2231 #define KNL_L2_READ             SLM_DMND_READ
2232 #define KNL_L2_WRITE            SLM_DMND_WRITE
2233 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2234 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2235 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2236                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2237                                                   SNB_NON_DRAM)
2238 
2239 static __initconst const u64 knl_hw_cache_extra_regs
2240                                 [PERF_COUNT_HW_CACHE_MAX]
2241                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2242                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2243         [C(LL)] = {
2244                 [C(OP_READ)] = {
2245                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2246                         [C(RESULT_MISS)]   = 0,
2247                 },
2248                 [C(OP_WRITE)] = {
2249                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2250                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2251                 },
2252                 [C(OP_PREFETCH)] = {
2253                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2254                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2255                 },
2256         },
2257 };
2258 
2259 /*
2260  * Used from PMIs where the LBRs are already disabled.
2261  *
2262  * This function could be called consecutively. It is required to remain in
2263  * disabled state if called consecutively.
2264  *
2265  * During consecutive calls, the same disable value will be written to related
2266  * registers, so the PMU state remains unchanged.
2267  *
2268  * intel_bts events don't coexist with intel PMU's BTS events because of
2269  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2270  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2271  *
2272  * Avoid PEBS_ENABLE MSR access in PMIs.
2273  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2274  * It doesn't matter if the PEBS is enabled or not.
2275  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2276  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2277  * However, there are some cases which may change PEBS status, e.g. PMI
2278  * throttle. The PEBS_ENABLE should be updated where the status changes.
2279  */
2280 static __always_inline void __intel_pmu_disable_all(bool bts)
2281 {
2282         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2283 
2284         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2285 
2286         if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2287                 intel_pmu_disable_bts();
2288 }
2289 
2290 static __always_inline void intel_pmu_disable_all(void)
2291 {
2292         __intel_pmu_disable_all(true);
2293         intel_pmu_pebs_disable_all();
2294         intel_pmu_lbr_disable_all();
2295 }
2296 
2297 static void __intel_pmu_enable_all(int added, bool pmi)
2298 {
2299         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2300         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2301 
2302         intel_pmu_lbr_enable_all(pmi);
2303 
2304         if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2305                 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2306                 cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2307         }
2308 
2309         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2310                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2311 
2312         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2313                 struct perf_event *event =
2314                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2315 
2316                 if (WARN_ON_ONCE(!event))
2317                         return;
2318 
2319                 intel_pmu_enable_bts(event->hw.config);
2320         }
2321 }
2322 
2323 static void intel_pmu_enable_all(int added)
2324 {
2325         intel_pmu_pebs_enable_all();
2326         __intel_pmu_enable_all(added, false);
2327 }
2328 
2329 static noinline int
2330 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2331                                   unsigned int cnt, unsigned long flags)
2332 {
2333         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2334 
2335         intel_pmu_lbr_read();
2336         cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2337 
2338         memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2339         intel_pmu_enable_all(0);
2340         local_irq_restore(flags);
2341         return cnt;
2342 }
2343 
2344 static int
2345 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2346 {
2347         unsigned long flags;
2348 
2349         /* must not have branches... */
2350         local_irq_save(flags);
2351         __intel_pmu_disable_all(false); /* we don't care about BTS */
2352         __intel_pmu_lbr_disable();
2353         /*            ... until here */
2354         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2355 }
2356 
2357 static int
2358 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2359 {
2360         unsigned long flags;
2361 
2362         /* must not have branches... */
2363         local_irq_save(flags);
2364         __intel_pmu_disable_all(false); /* we don't care about BTS */
2365         __intel_pmu_arch_lbr_disable();
2366         /*            ... until here */
2367         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2368 }
2369 
2370 /*
2371  * Workaround for:
2372  *   Intel Errata AAK100 (model 26)
2373  *   Intel Errata AAP53  (model 30)
2374  *   Intel Errata BD53   (model 44)
2375  *
2376  * The official story:
2377  *   These chips need to be 'reset' when adding counters by programming the
2378  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2379  *   in sequence on the same PMC or on different PMCs.
2380  *
2381  * In practice it appears some of these events do in fact count, and
2382  * we need to program all 4 events.
2383  */
2384 static void intel_pmu_nhm_workaround(void)
2385 {
2386         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2387         static const unsigned long nhm_magic[4] = {
2388                 0x4300B5,
2389                 0x4300D2,
2390                 0x4300B1,
2391                 0x4300B1
2392         };
2393         struct perf_event *event;
2394         int i;
2395 
2396         /*
2397          * The Errata requires below steps:
2398          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2399          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2400          *    the corresponding PMCx;
2401          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2402          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2403          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2404          */
2405 
2406         /*
2407          * The real steps we choose are a little different from above.
2408          * A) To reduce MSR operations, we don't run step 1) as they
2409          *    are already cleared before this function is called;
2410          * B) Call x86_perf_event_update to save PMCx before configuring
2411          *    PERFEVTSELx with magic number;
2412          * C) With step 5), we do clear only when the PERFEVTSELx is
2413          *    not used currently.
2414          * D) Call x86_perf_event_set_period to restore PMCx;
2415          */
2416 
2417         /* We always operate 4 pairs of PERF Counters */
2418         for (i = 0; i < 4; i++) {
2419                 event = cpuc->events[i];
2420                 if (event)
2421                         static_call(x86_pmu_update)(event);
2422         }
2423 
2424         for (i = 0; i < 4; i++) {
2425                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2426                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2427         }
2428 
2429         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2430         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2431 
2432         for (i = 0; i < 4; i++) {
2433                 event = cpuc->events[i];
2434 
2435                 if (event) {
2436                         static_call(x86_pmu_set_period)(event);
2437                         __x86_pmu_enable_event(&event->hw,
2438                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2439                 } else
2440                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2441         }
2442 }
2443 
2444 static void intel_pmu_nhm_enable_all(int added)
2445 {
2446         if (added)
2447                 intel_pmu_nhm_workaround();
2448         intel_pmu_enable_all(added);
2449 }
2450 
2451 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2452 {
2453         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2454 
2455         if (cpuc->tfa_shadow != val) {
2456                 cpuc->tfa_shadow = val;
2457                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2458         }
2459 }
2460 
2461 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2462 {
2463         /*
2464          * We're going to use PMC3, make sure TFA is set before we touch it.
2465          */
2466         if (cntr == 3)
2467                 intel_set_tfa(cpuc, true);
2468 }
2469 
2470 static void intel_tfa_pmu_enable_all(int added)
2471 {
2472         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2473 
2474         /*
2475          * If we find PMC3 is no longer used when we enable the PMU, we can
2476          * clear TFA.
2477          */
2478         if (!test_bit(3, cpuc->active_mask))
2479                 intel_set_tfa(cpuc, false);
2480 
2481         intel_pmu_enable_all(added);
2482 }
2483 
2484 static inline u64 intel_pmu_get_status(void)
2485 {
2486         u64 status;
2487 
2488         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2489 
2490         return status;
2491 }
2492 
2493 static inline void intel_pmu_ack_status(u64 ack)
2494 {
2495         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2496 }
2497 
2498 static inline bool event_is_checkpointed(struct perf_event *event)
2499 {
2500         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2501 }
2502 
2503 static inline void intel_set_masks(struct perf_event *event, int idx)
2504 {
2505         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2506 
2507         if (event->attr.exclude_host)
2508                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2509         if (event->attr.exclude_guest)
2510                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2511         if (event_is_checkpointed(event))
2512                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2513 }
2514 
2515 static inline void intel_clear_masks(struct perf_event *event, int idx)
2516 {
2517         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2518 
2519         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2520         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2521         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2522 }
2523 
2524 static void intel_pmu_disable_fixed(struct perf_event *event)
2525 {
2526         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2527         struct hw_perf_event *hwc = &event->hw;
2528         int idx = hwc->idx;
2529         u64 mask;
2530 
2531         if (is_topdown_idx(idx)) {
2532                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2533 
2534                 /*
2535                  * When there are other active TopDown events,
2536                  * don't disable the fixed counter 3.
2537                  */
2538                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2539                         return;
2540                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2541         }
2542 
2543         intel_clear_masks(event, idx);
2544 
2545         mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2546         cpuc->fixed_ctrl_val &= ~mask;
2547 }
2548 
2549 static void intel_pmu_disable_event(struct perf_event *event)
2550 {
2551         struct hw_perf_event *hwc = &event->hw;
2552         int idx = hwc->idx;
2553 
2554         switch (idx) {
2555         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2556                 intel_clear_masks(event, idx);
2557                 x86_pmu_disable_event(event);
2558                 break;
2559         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2560         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2561                 intel_pmu_disable_fixed(event);
2562                 break;
2563         case INTEL_PMC_IDX_FIXED_BTS:
2564                 intel_pmu_disable_bts();
2565                 intel_pmu_drain_bts_buffer();
2566                 return;
2567         case INTEL_PMC_IDX_FIXED_VLBR:
2568                 intel_clear_masks(event, idx);
2569                 break;
2570         default:
2571                 intel_clear_masks(event, idx);
2572                 pr_warn("Failed to disable the event with invalid index %d\n",
2573                         idx);
2574                 return;
2575         }
2576 
2577         /*
2578          * Needs to be called after x86_pmu_disable_event,
2579          * so we don't trigger the event without PEBS bit set.
2580          */
2581         if (unlikely(event->attr.precise_ip))
2582                 intel_pmu_pebs_disable(event);
2583 }
2584 
2585 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2586 {
2587         if (is_pebs_pt(event))
2588                 perf_report_aux_output_id(event, idx);
2589 }
2590 
2591 static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event)
2592 {
2593         return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK;
2594 }
2595 
2596 static void intel_pmu_del_event(struct perf_event *event)
2597 {
2598         if (intel_pmu_needs_branch_stack(event))
2599                 intel_pmu_lbr_del(event);
2600         if (event->attr.precise_ip)
2601                 intel_pmu_pebs_del(event);
2602 }
2603 
2604 static int icl_set_topdown_event_period(struct perf_event *event)
2605 {
2606         struct hw_perf_event *hwc = &event->hw;
2607         s64 left = local64_read(&hwc->period_left);
2608 
2609         /*
2610          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2611          * Software should start both registers, PERF_METRICS and fixed
2612          * counter 3, from zero.
2613          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2614          * After that, both MSRs will be cleared for each read.
2615          * Don't need to clear them again.
2616          */
2617         if (left == x86_pmu.max_period) {
2618                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2619                 wrmsrl(MSR_PERF_METRICS, 0);
2620                 hwc->saved_slots = 0;
2621                 hwc->saved_metric = 0;
2622         }
2623 
2624         if ((hwc->saved_slots) && is_slots_event(event)) {
2625                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2626                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2627         }
2628 
2629         perf_event_update_userpage(event);
2630 
2631         return 0;
2632 }
2633 
2634 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2635 
2636 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2637 {
2638         u32 val;
2639 
2640         /*
2641          * The metric is reported as an 8bit integer fraction
2642          * summing up to 0xff.
2643          * slots-in-metric = (Metric / 0xff) * slots
2644          */
2645         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2646         return  mul_u64_u32_div(slots, val, 0xff);
2647 }
2648 
2649 static u64 icl_get_topdown_value(struct perf_event *event,
2650                                        u64 slots, u64 metrics)
2651 {
2652         int idx = event->hw.idx;
2653         u64 delta;
2654 
2655         if (is_metric_idx(idx))
2656                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2657         else
2658                 delta = slots;
2659 
2660         return delta;
2661 }
2662 
2663 static void __icl_update_topdown_event(struct perf_event *event,
2664                                        u64 slots, u64 metrics,
2665                                        u64 last_slots, u64 last_metrics)
2666 {
2667         u64 delta, last = 0;
2668 
2669         delta = icl_get_topdown_value(event, slots, metrics);
2670         if (last_slots)
2671                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2672 
2673         /*
2674          * The 8bit integer fraction of metric may be not accurate,
2675          * especially when the changes is very small.
2676          * For example, if only a few bad_spec happens, the fraction
2677          * may be reduced from 1 to 0. If so, the bad_spec event value
2678          * will be 0 which is definitely less than the last value.
2679          * Avoid update event->count for this case.
2680          */
2681         if (delta > last) {
2682                 delta -= last;
2683                 local64_add(delta, &event->count);
2684         }
2685 }
2686 
2687 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2688                                       u64 metrics, int metric_end)
2689 {
2690         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2691         struct perf_event *other;
2692         int idx;
2693 
2694         event->hw.saved_slots = slots;
2695         event->hw.saved_metric = metrics;
2696 
2697         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2698                 if (!is_topdown_idx(idx))
2699                         continue;
2700                 other = cpuc->events[idx];
2701                 other->hw.saved_slots = slots;
2702                 other->hw.saved_metric = metrics;
2703         }
2704 }
2705 
2706 /*
2707  * Update all active Topdown events.
2708  *
2709  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2710  * modify by a NMI. PMU has to be disabled before calling this function.
2711  */
2712 
2713 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2714 {
2715         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2716         struct perf_event *other;
2717         u64 slots, metrics;
2718         bool reset = true;
2719         int idx;
2720 
2721         /* read Fixed counter 3 */
2722         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2723         if (!slots)
2724                 return 0;
2725 
2726         /* read PERF_METRICS */
2727         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2728 
2729         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2730                 if (!is_topdown_idx(idx))
2731                         continue;
2732                 other = cpuc->events[idx];
2733                 __icl_update_topdown_event(other, slots, metrics,
2734                                            event ? event->hw.saved_slots : 0,
2735                                            event ? event->hw.saved_metric : 0);
2736         }
2737 
2738         /*
2739          * Check and update this event, which may have been cleared
2740          * in active_mask e.g. x86_pmu_stop()
2741          */
2742         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2743                 __icl_update_topdown_event(event, slots, metrics,
2744                                            event->hw.saved_slots,
2745                                            event->hw.saved_metric);
2746 
2747                 /*
2748                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2749                  * then drain the delta, which indicates context switch for
2750                  * counting.
2751                  * Save metric and slots for context switch.
2752                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2753                  * Because the values will be restored in next schedule in.
2754                  */
2755                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2756                 reset = false;
2757         }
2758 
2759         if (reset) {
2760                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2761                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2762                 wrmsrl(MSR_PERF_METRICS, 0);
2763                 if (event)
2764                         update_saved_topdown_regs(event, 0, 0, metric_end);
2765         }
2766 
2767         return slots;
2768 }
2769 
2770 static u64 icl_update_topdown_event(struct perf_event *event)
2771 {
2772         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2773                                                  x86_pmu.num_topdown_events - 1);
2774 }
2775 
2776 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);
2777 
2778 static void intel_pmu_read_topdown_event(struct perf_event *event)
2779 {
2780         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2781 
2782         /* Only need to call update_topdown_event() once for group read. */
2783         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2784             !is_slots_event(event))
2785                 return;
2786 
2787         perf_pmu_disable(event->pmu);
2788         static_call(intel_pmu_update_topdown_event)(event);
2789         perf_pmu_enable(event->pmu);
2790 }
2791 
2792 static void intel_pmu_read_event(struct perf_event *event)
2793 {
2794         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2795                 intel_pmu_auto_reload_read(event);
2796         else if (is_topdown_count(event))
2797                 intel_pmu_read_topdown_event(event);
2798         else
2799                 x86_perf_event_update(event);
2800 }
2801 
2802 static void intel_pmu_enable_fixed(struct perf_event *event)
2803 {
2804         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2805         struct hw_perf_event *hwc = &event->hw;
2806         u64 mask, bits = 0;
2807         int idx = hwc->idx;
2808 
2809         if (is_topdown_idx(idx)) {
2810                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2811                 /*
2812                  * When there are other active TopDown events,
2813                  * don't enable the fixed counter 3 again.
2814                  */
2815                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2816                         return;
2817 
2818                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2819         }
2820 
2821         intel_set_masks(event, idx);
2822 
2823         /*
2824          * Enable IRQ generation (0x8), if not PEBS,
2825          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2826          * if requested:
2827          */
2828         if (!event->attr.precise_ip)
2829                 bits |= INTEL_FIXED_0_ENABLE_PMI;
2830         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2831                 bits |= INTEL_FIXED_0_USER;
2832         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2833                 bits |= INTEL_FIXED_0_KERNEL;
2834 
2835         /*
2836          * ANY bit is supported in v3 and up
2837          */
2838         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2839                 bits |= INTEL_FIXED_0_ANYTHREAD;
2840 
2841         idx -= INTEL_PMC_IDX_FIXED;
2842         bits = intel_fixed_bits_by_idx(idx, bits);
2843         mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2844 
2845         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2846                 bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2847                 mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2848         }
2849 
2850         cpuc->fixed_ctrl_val &= ~mask;
2851         cpuc->fixed_ctrl_val |= bits;
2852 }
2853 
2854 static void intel_pmu_enable_event(struct perf_event *event)
2855 {
2856         u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE;
2857         struct hw_perf_event *hwc = &event->hw;
2858         int idx = hwc->idx;
2859 
2860         if (unlikely(event->attr.precise_ip))
2861                 intel_pmu_pebs_enable(event);
2862 
2863         switch (idx) {
2864         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2865                 if (branch_sample_counters(event))
2866                         enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR;
2867                 intel_set_masks(event, idx);
2868                 __x86_pmu_enable_event(hwc, enable_mask);
2869                 break;
2870         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2871         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2872                 intel_pmu_enable_fixed(event);
2873                 break;
2874         case INTEL_PMC_IDX_FIXED_BTS:
2875                 if (!__this_cpu_read(cpu_hw_events.enabled))
2876                         return;
2877                 intel_pmu_enable_bts(hwc->config);
2878                 break;
2879         case INTEL_PMC_IDX_FIXED_VLBR:
2880                 intel_set_masks(event, idx);
2881                 break;
2882         default:
2883                 pr_warn("Failed to enable the event with invalid index %d\n",
2884                         idx);
2885         }
2886 }
2887 
2888 static void intel_pmu_add_event(struct perf_event *event)
2889 {
2890         if (event->attr.precise_ip)
2891                 intel_pmu_pebs_add(event);
2892         if (intel_pmu_needs_branch_stack(event))
2893                 intel_pmu_lbr_add(event);
2894 }
2895 
2896 /*
2897  * Save and restart an expired event. Called by NMI contexts,
2898  * so it has to be careful about preempting normal event ops:
2899  */
2900 int intel_pmu_save_and_restart(struct perf_event *event)
2901 {
2902         static_call(x86_pmu_update)(event);
2903         /*
2904          * For a checkpointed counter always reset back to 0.  This
2905          * avoids a situation where the counter overflows, aborts the
2906          * transaction and is then set back to shortly before the
2907          * overflow, and overflows and aborts again.
2908          */
2909         if (unlikely(event_is_checkpointed(event))) {
2910                 /* No race with NMIs because the counter should not be armed */
2911                 wrmsrl(event->hw.event_base, 0);
2912                 local64_set(&event->hw.prev_count, 0);
2913         }
2914         return static_call(x86_pmu_set_period)(event);
2915 }
2916 
2917 static int intel_pmu_set_period(struct perf_event *event)
2918 {
2919         if (unlikely(is_topdown_count(event)))
2920                 return static_call(intel_pmu_set_topdown_event_period)(event);
2921 
2922         return x86_perf_event_set_period(event);
2923 }
2924 
2925 static u64 intel_pmu_update(struct perf_event *event)
2926 {
2927         if (unlikely(is_topdown_count(event)))
2928                 return static_call(intel_pmu_update_topdown_event)(event);
2929 
2930         return x86_perf_event_update(event);
2931 }
2932 
2933 static void intel_pmu_reset(void)
2934 {
2935         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2936         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2937         unsigned long *cntr_mask = hybrid(cpuc->pmu, cntr_mask);
2938         unsigned long *fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
2939         unsigned long flags;
2940         int idx;
2941 
2942         if (!*(u64 *)cntr_mask)
2943                 return;
2944 
2945         local_irq_save(flags);
2946 
2947         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2948 
2949         for_each_set_bit(idx, cntr_mask, INTEL_PMC_MAX_GENERIC) {
2950                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2951                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2952         }
2953         for_each_set_bit(idx, fixed_cntr_mask, INTEL_PMC_MAX_FIXED) {
2954                 if (fixed_counter_disabled(idx, cpuc->pmu))
2955                         continue;
2956                 wrmsrl_safe(x86_pmu_fixed_ctr_addr(idx), 0ull);
2957         }
2958 
2959         if (ds)
2960                 ds->bts_index = ds->bts_buffer_base;
2961 
2962         /* Ack all overflows and disable fixed counters */
2963         if (x86_pmu.version >= 2) {
2964                 intel_pmu_ack_status(intel_pmu_get_status());
2965                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2966         }
2967 
2968         /* Reset LBRs and LBR freezing */
2969         if (x86_pmu.lbr_nr) {
2970                 update_debugctlmsr(get_debugctlmsr() &
2971                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2972         }
2973 
2974         local_irq_restore(flags);
2975 }
2976 
2977 /*
2978  * We may be running with guest PEBS events created by KVM, and the
2979  * PEBS records are logged into the guest's DS and invisible to host.
2980  *
2981  * In the case of guest PEBS overflow, we only trigger a fake event
2982  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2983  * The guest will then vm-entry and check the guest DS area to read
2984  * the guest PEBS records.
2985  *
2986  * The contents and other behavior of the guest event do not matter.
2987  */
2988 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2989                                       struct perf_sample_data *data)
2990 {
2991         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2992         u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2993         struct perf_event *event = NULL;
2994         int bit;
2995 
2996         if (!unlikely(perf_guest_state()))
2997                 return;
2998 
2999         if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
3000             !guest_pebs_idxs)
3001                 return;
3002 
3003         for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs, X86_PMC_IDX_MAX) {
3004                 event = cpuc->events[bit];
3005                 if (!event->attr.precise_ip)
3006                         continue;
3007 
3008                 perf_sample_data_init(data, 0, event->hw.last_period);
3009                 if (perf_event_overflow(event, data, regs))
3010                         x86_pmu_stop(event, 0);
3011 
3012                 /* Inject one fake event is enough. */
3013                 break;
3014         }
3015 }
3016 
3017 static int handle_pmi_common(struct pt_regs *regs, u64 status)
3018 {
3019         struct perf_sample_data data;
3020         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3021         int bit;
3022         int handled = 0;
3023         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3024 
3025         inc_irq_stat(apic_perf_irqs);
3026 
3027         /*
3028          * Ignore a range of extra bits in status that do not indicate
3029          * overflow by themselves.
3030          */
3031         status &= ~(GLOBAL_STATUS_COND_CHG |
3032                     GLOBAL_STATUS_ASIF |
3033                     GLOBAL_STATUS_LBRS_FROZEN);
3034         if (!status)
3035                 return 0;
3036         /*
3037          * In case multiple PEBS events are sampled at the same time,
3038          * it is possible to have GLOBAL_STATUS bit 62 set indicating
3039          * PEBS buffer overflow and also seeing at most 3 PEBS counters
3040          * having their bits set in the status register. This is a sign
3041          * that there was at least one PEBS record pending at the time
3042          * of the PMU interrupt. PEBS counters must only be processed
3043          * via the drain_pebs() calls and not via the regular sample
3044          * processing loop coming after that the function, otherwise
3045          * phony regular samples may be generated in the sampling buffer
3046          * not marked with the EXACT tag. Another possibility is to have
3047          * one PEBS event and at least one non-PEBS event which overflows
3048          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
3049          * not be set, yet the overflow status bit for the PEBS counter will
3050          * be on Skylake.
3051          *
3052          * To avoid this problem, we systematically ignore the PEBS-enabled
3053          * counters from the GLOBAL_STATUS mask and we always process PEBS
3054          * events via drain_pebs().
3055          */
3056         status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
3057 
3058         /*
3059          * PEBS overflow sets bit 62 in the global status register
3060          */
3061         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3062                 u64 pebs_enabled = cpuc->pebs_enabled;
3063 
3064                 handled++;
3065                 x86_pmu_handle_guest_pebs(regs, &data);
3066                 x86_pmu.drain_pebs(regs, &data);
3067                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
3068 
3069                 /*
3070                  * PMI throttle may be triggered, which stops the PEBS event.
3071                  * Although cpuc->pebs_enabled is updated accordingly, the
3072                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
3073                  * cpuc->enabled has been forced to 0 in PMI.
3074                  * Update the MSR if pebs_enabled is changed.
3075                  */
3076                 if (pebs_enabled != cpuc->pebs_enabled)
3077                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3078         }
3079 
3080         /*
3081          * Intel PT
3082          */
3083         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3084                 handled++;
3085                 if (!perf_guest_handle_intel_pt_intr())
3086                         intel_pt_interrupt();
3087         }
3088 
3089         /*
3090          * Intel Perf metrics
3091          */
3092         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3093                 handled++;
3094                 static_call(intel_pmu_update_topdown_event)(NULL);
3095         }
3096 
3097         /*
3098          * Checkpointed counters can lead to 'spurious' PMIs because the
3099          * rollback caused by the PMI will have cleared the overflow status
3100          * bit. Therefore always force probe these counters.
3101          */
3102         status |= cpuc->intel_cp_status;
3103 
3104         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3105                 struct perf_event *event = cpuc->events[bit];
3106 
3107                 handled++;
3108 
3109                 if (!test_bit(bit, cpuc->active_mask))
3110                         continue;
3111 
3112                 if (!intel_pmu_save_and_restart(event))
3113                         continue;
3114 
3115                 perf_sample_data_init(&data, 0, event->hw.last_period);
3116 
3117                 if (has_branch_stack(event))
3118                         intel_pmu_lbr_save_brstack(&data, cpuc, event);
3119 
3120                 if (perf_event_overflow(event, &data, regs))
3121                         x86_pmu_stop(event, 0);
3122         }
3123 
3124         return handled;
3125 }
3126 
3127 /*
3128  * This handler is triggered by the local APIC, so the APIC IRQ handling
3129  * rules apply:
3130  */
3131 static int intel_pmu_handle_irq(struct pt_regs *regs)
3132 {
3133         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3134         bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3135         bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3136         int loops;
3137         u64 status;
3138         int handled;
3139         int pmu_enabled;
3140 
3141         /*
3142          * Save the PMU state.
3143          * It needs to be restored when leaving the handler.
3144          */
3145         pmu_enabled = cpuc->enabled;
3146         /*
3147          * In general, the early ACK is only applied for old platforms.
3148          * For the big core starts from Haswell, the late ACK should be
3149          * applied.
3150          * For the small core after Tremont, we have to do the ACK right
3151          * before re-enabling counters, which is in the middle of the
3152          * NMI handler.
3153          */
3154         if (!late_ack && !mid_ack)
3155                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3156         intel_bts_disable_local();
3157         cpuc->enabled = 0;
3158         __intel_pmu_disable_all(true);
3159         handled = intel_pmu_drain_bts_buffer();
3160         handled += intel_bts_interrupt();
3161         status = intel_pmu_get_status();
3162         if (!status)
3163                 goto done;
3164 
3165         loops = 0;
3166 again:
3167         intel_pmu_lbr_read();
3168         intel_pmu_ack_status(status);
3169         if (++loops > 100) {
3170                 static bool warned;
3171 
3172                 if (!warned) {
3173                         WARN(1, "perfevents: irq loop stuck!\n");
3174                         perf_event_print_debug();
3175                         warned = true;
3176                 }
3177                 intel_pmu_reset();
3178                 goto done;
3179         }
3180 
3181         handled += handle_pmi_common(regs, status);
3182 
3183         /*
3184          * Repeat if there is more work to be done:
3185          */
3186         status = intel_pmu_get_status();
3187         if (status)
3188                 goto again;
3189 
3190 done:
3191         if (mid_ack)
3192                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3193         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3194         cpuc->enabled = pmu_enabled;
3195         if (pmu_enabled)
3196                 __intel_pmu_enable_all(0, true);
3197         intel_bts_enable_local();
3198 
3199         /*
3200          * Only unmask the NMI after the overflow counters
3201          * have been reset. This avoids spurious NMIs on
3202          * Haswell CPUs.
3203          */
3204         if (late_ack)
3205                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3206         return handled;
3207 }
3208 
3209 static struct event_constraint *
3210 intel_bts_constraints(struct perf_event *event)
3211 {
3212         if (unlikely(intel_pmu_has_bts(event)))
3213                 return &bts_constraint;
3214 
3215         return NULL;
3216 }
3217 
3218 /*
3219  * Note: matches a fake event, like Fixed2.
3220  */
3221 static struct event_constraint *
3222 intel_vlbr_constraints(struct perf_event *event)
3223 {
3224         struct event_constraint *c = &vlbr_constraint;
3225 
3226         if (unlikely(constraint_match(c, event->hw.config))) {
3227                 event->hw.flags |= c->flags;
3228                 return c;
3229         }
3230 
3231         return NULL;
3232 }
3233 
3234 static int intel_alt_er(struct cpu_hw_events *cpuc,
3235                         int idx, u64 config)
3236 {
3237         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3238         int alt_idx = idx;
3239 
3240         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3241                 return idx;
3242 
3243         if (idx == EXTRA_REG_RSP_0)
3244                 alt_idx = EXTRA_REG_RSP_1;
3245 
3246         if (idx == EXTRA_REG_RSP_1)
3247                 alt_idx = EXTRA_REG_RSP_0;
3248 
3249         if (config & ~extra_regs[alt_idx].valid_mask)
3250                 return idx;
3251 
3252         return alt_idx;
3253 }
3254 
3255 static void intel_fixup_er(struct perf_event *event, int idx)
3256 {
3257         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3258         event->hw.extra_reg.idx = idx;
3259 
3260         if (idx == EXTRA_REG_RSP_0) {
3261                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3262                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3263                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3264         } else if (idx == EXTRA_REG_RSP_1) {
3265                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3266                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3267                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3268         }
3269 }
3270 
3271 /*
3272  * manage allocation of shared extra msr for certain events
3273  *
3274  * sharing can be:
3275  * per-cpu: to be shared between the various events on a single PMU
3276  * per-core: per-cpu + shared by HT threads
3277  */
3278 static struct event_constraint *
3279 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3280                                    struct perf_event *event,
3281                                    struct hw_perf_event_extra *reg)
3282 {
3283         struct event_constraint *c = &emptyconstraint;
3284         struct er_account *era;
3285         unsigned long flags;
3286         int idx = reg->idx;
3287 
3288         /*
3289          * reg->alloc can be set due to existing state, so for fake cpuc we
3290          * need to ignore this, otherwise we might fail to allocate proper fake
3291          * state for this extra reg constraint. Also see the comment below.
3292          */
3293         if (reg->alloc && !cpuc->is_fake)
3294                 return NULL; /* call x86_get_event_constraint() */
3295 
3296 again:
3297         era = &cpuc->shared_regs->regs[idx];
3298         /*
3299          * we use spin_lock_irqsave() to avoid lockdep issues when
3300          * passing a fake cpuc
3301          */
3302         raw_spin_lock_irqsave(&era->lock, flags);
3303 
3304         if (!atomic_read(&era->ref) || era->config == reg->config) {
3305 
3306                 /*
3307                  * If its a fake cpuc -- as per validate_{group,event}() we
3308                  * shouldn't touch event state and we can avoid doing so
3309                  * since both will only call get_event_constraints() once
3310                  * on each event, this avoids the need for reg->alloc.
3311                  *
3312                  * Not doing the ER fixup will only result in era->reg being
3313                  * wrong, but since we won't actually try and program hardware
3314                  * this isn't a problem either.
3315                  */
3316                 if (!cpuc->is_fake) {
3317                         if (idx != reg->idx)
3318                                 intel_fixup_er(event, idx);
3319 
3320                         /*
3321                          * x86_schedule_events() can call get_event_constraints()
3322                          * multiple times on events in the case of incremental
3323                          * scheduling(). reg->alloc ensures we only do the ER
3324                          * allocation once.
3325                          */
3326                         reg->alloc = 1;
3327                 }
3328 
3329                 /* lock in msr value */
3330                 era->config = reg->config;
3331                 era->reg = reg->reg;
3332 
3333                 /* one more user */
3334                 atomic_inc(&era->ref);
3335 
3336                 /*
3337                  * need to call x86_get_event_constraint()
3338                  * to check if associated event has constraints
3339                  */
3340                 c = NULL;
3341         } else {
3342                 idx = intel_alt_er(cpuc, idx, reg->config);
3343                 if (idx != reg->idx) {
3344                         raw_spin_unlock_irqrestore(&era->lock, flags);
3345                         goto again;
3346                 }
3347         }
3348         raw_spin_unlock_irqrestore(&era->lock, flags);
3349 
3350         return c;
3351 }
3352 
3353 static void
3354 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3355                                    struct hw_perf_event_extra *reg)
3356 {
3357         struct er_account *era;
3358 
3359         /*
3360          * Only put constraint if extra reg was actually allocated. Also takes
3361          * care of event which do not use an extra shared reg.
3362          *
3363          * Also, if this is a fake cpuc we shouldn't touch any event state
3364          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3365          * either since it'll be thrown out.
3366          */
3367         if (!reg->alloc || cpuc->is_fake)
3368                 return;
3369 
3370         era = &cpuc->shared_regs->regs[reg->idx];
3371 
3372         /* one fewer user */
3373         atomic_dec(&era->ref);
3374 
3375         /* allocate again next time */
3376         reg->alloc = 0;
3377 }
3378 
3379 static struct event_constraint *
3380 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3381                               struct perf_event *event)
3382 {
3383         struct event_constraint *c = NULL, *d;
3384         struct hw_perf_event_extra *xreg, *breg;
3385 
3386         xreg = &event->hw.extra_reg;
3387         if (xreg->idx != EXTRA_REG_NONE) {
3388                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3389                 if (c == &emptyconstraint)
3390                         return c;
3391         }
3392         breg = &event->hw.branch_reg;
3393         if (breg->idx != EXTRA_REG_NONE) {
3394                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3395                 if (d == &emptyconstraint) {
3396                         __intel_shared_reg_put_constraints(cpuc, xreg);
3397                         c = d;
3398                 }
3399         }
3400         return c;
3401 }
3402 
3403 struct event_constraint *
3404 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3405                           struct perf_event *event)
3406 {
3407         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3408         struct event_constraint *c;
3409 
3410         if (event_constraints) {
3411                 for_each_event_constraint(c, event_constraints) {
3412                         if (constraint_match(c, event->hw.config)) {
3413                                 event->hw.flags |= c->flags;
3414                                 return c;
3415                         }
3416                 }
3417         }
3418 
3419         return &hybrid_var(cpuc->pmu, unconstrained);
3420 }
3421 
3422 static struct event_constraint *
3423 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3424                             struct perf_event *event)
3425 {
3426         struct event_constraint *c;
3427 
3428         c = intel_vlbr_constraints(event);
3429         if (c)
3430                 return c;
3431 
3432         c = intel_bts_constraints(event);
3433         if (c)
3434                 return c;
3435 
3436         c = intel_shared_regs_constraints(cpuc, event);
3437         if (c)
3438                 return c;
3439 
3440         c = intel_pebs_constraints(event);
3441         if (c)
3442                 return c;
3443 
3444         return x86_get_event_constraints(cpuc, idx, event);
3445 }
3446 
3447 static void
3448 intel_start_scheduling(struct cpu_hw_events *cpuc)
3449 {
3450         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3451         struct intel_excl_states *xl;
3452         int tid = cpuc->excl_thread_id;
3453 
3454         /*
3455          * nothing needed if in group validation mode
3456          */
3457         if (cpuc->is_fake || !is_ht_workaround_enabled())
3458                 return;
3459 
3460         /*
3461          * no exclusion needed
3462          */
3463         if (WARN_ON_ONCE(!excl_cntrs))
3464                 return;
3465 
3466         xl = &excl_cntrs->states[tid];
3467 
3468         xl->sched_started = true;
3469         /*
3470          * lock shared state until we are done scheduling
3471          * in stop_event_scheduling()
3472          * makes scheduling appear as a transaction
3473          */
3474         raw_spin_lock(&excl_cntrs->lock);
3475 }
3476 
3477 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3478 {
3479         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3480         struct event_constraint *c = cpuc->event_constraint[idx];
3481         struct intel_excl_states *xl;
3482         int tid = cpuc->excl_thread_id;
3483 
3484         if (cpuc->is_fake || !is_ht_workaround_enabled())
3485                 return;
3486 
3487         if (WARN_ON_ONCE(!excl_cntrs))
3488                 return;
3489 
3490         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3491                 return;
3492 
3493         xl = &excl_cntrs->states[tid];
3494 
3495         lockdep_assert_held(&excl_cntrs->lock);
3496 
3497         if (c->flags & PERF_X86_EVENT_EXCL)
3498                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3499         else
3500                 xl->state[cntr] = INTEL_EXCL_SHARED;
3501 }
3502 
3503 static void
3504 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3505 {
3506         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3507         struct intel_excl_states *xl;
3508         int tid = cpuc->excl_thread_id;
3509 
3510         /*
3511          * nothing needed if in group validation mode
3512          */
3513         if (cpuc->is_fake || !is_ht_workaround_enabled())
3514                 return;
3515         /*
3516          * no exclusion needed
3517          */
3518         if (WARN_ON_ONCE(!excl_cntrs))
3519                 return;
3520 
3521         xl = &excl_cntrs->states[tid];
3522 
3523         xl->sched_started = false;
3524         /*
3525          * release shared state lock (acquired in intel_start_scheduling())
3526          */
3527         raw_spin_unlock(&excl_cntrs->lock);
3528 }
3529 
3530 static struct event_constraint *
3531 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3532 {
3533         WARN_ON_ONCE(!cpuc->constraint_list);
3534 
3535         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3536                 struct event_constraint *cx;
3537 
3538                 /*
3539                  * grab pre-allocated constraint entry
3540                  */
3541                 cx = &cpuc->constraint_list[idx];
3542 
3543                 /*
3544                  * initialize dynamic constraint
3545                  * with static constraint
3546                  */
3547                 *cx = *c;
3548 
3549                 /*
3550                  * mark constraint as dynamic
3551                  */
3552                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3553                 c = cx;
3554         }
3555 
3556         return c;
3557 }
3558 
3559 static struct event_constraint *
3560 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3561                            int idx, struct event_constraint *c)
3562 {
3563         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3564         struct intel_excl_states *xlo;
3565         int tid = cpuc->excl_thread_id;
3566         int is_excl, i, w;
3567 
3568         /*
3569          * validating a group does not require
3570          * enforcing cross-thread  exclusion
3571          */
3572         if (cpuc->is_fake || !is_ht_workaround_enabled())
3573                 return c;
3574 
3575         /*
3576          * no exclusion needed
3577          */
3578         if (WARN_ON_ONCE(!excl_cntrs))
3579                 return c;
3580 
3581         /*
3582          * because we modify the constraint, we need
3583          * to make a copy. Static constraints come
3584          * from static const tables.
3585          *
3586          * only needed when constraint has not yet
3587          * been cloned (marked dynamic)
3588          */
3589         c = dyn_constraint(cpuc, c, idx);
3590 
3591         /*
3592          * From here on, the constraint is dynamic.
3593          * Either it was just allocated above, or it
3594          * was allocated during a earlier invocation
3595          * of this function
3596          */
3597 
3598         /*
3599          * state of sibling HT
3600          */
3601         xlo = &excl_cntrs->states[tid ^ 1];
3602 
3603         /*
3604          * event requires exclusive counter access
3605          * across HT threads
3606          */
3607         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3608         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3609                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3610                 if (!cpuc->n_excl++)
3611                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3612         }
3613 
3614         /*
3615          * Modify static constraint with current dynamic
3616          * state of thread
3617          *
3618          * EXCLUSIVE: sibling counter measuring exclusive event
3619          * SHARED   : sibling counter measuring non-exclusive event
3620          * UNUSED   : sibling counter unused
3621          */
3622         w = c->weight;
3623         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3624                 /*
3625                  * exclusive event in sibling counter
3626                  * our corresponding counter cannot be used
3627                  * regardless of our event
3628                  */
3629                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3630                         __clear_bit(i, c->idxmsk);
3631                         w--;
3632                         continue;
3633                 }
3634                 /*
3635                  * if measuring an exclusive event, sibling
3636                  * measuring non-exclusive, then counter cannot
3637                  * be used
3638                  */
3639                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3640                         __clear_bit(i, c->idxmsk);
3641                         w--;
3642                         continue;
3643                 }
3644         }
3645 
3646         /*
3647          * if we return an empty mask, then switch
3648          * back to static empty constraint to avoid
3649          * the cost of freeing later on
3650          */
3651         if (!w)
3652                 c = &emptyconstraint;
3653 
3654         c->weight = w;
3655 
3656         return c;
3657 }
3658 
3659 static struct event_constraint *
3660 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3661                             struct perf_event *event)
3662 {
3663         struct event_constraint *c1, *c2;
3664 
3665         c1 = cpuc->event_constraint[idx];
3666 
3667         /*
3668          * first time only
3669          * - static constraint: no change across incremental scheduling calls
3670          * - dynamic constraint: handled by intel_get_excl_constraints()
3671          */
3672         c2 = __intel_get_event_constraints(cpuc, idx, event);
3673         if (c1) {
3674                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3675                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3676                 c1->weight = c2->weight;
3677                 c2 = c1;
3678         }
3679 
3680         if (cpuc->excl_cntrs)
3681                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3682 
3683         /* Not all counters support the branch counter feature. */
3684         if (branch_sample_counters(event)) {
3685                 c2 = dyn_constraint(cpuc, c2, idx);
3686                 c2->idxmsk64 &= x86_pmu.lbr_counters;
3687                 c2->weight = hweight64(c2->idxmsk64);
3688         }
3689 
3690         return c2;
3691 }
3692 
3693 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3694                 struct perf_event *event)
3695 {
3696         struct hw_perf_event *hwc = &event->hw;
3697         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3698         int tid = cpuc->excl_thread_id;
3699         struct intel_excl_states *xl;
3700 
3701         /*
3702          * nothing needed if in group validation mode
3703          */
3704         if (cpuc->is_fake)
3705                 return;
3706 
3707         if (WARN_ON_ONCE(!excl_cntrs))
3708                 return;
3709 
3710         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3711                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3712                 if (!--cpuc->n_excl)
3713                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3714         }
3715 
3716         /*
3717          * If event was actually assigned, then mark the counter state as
3718          * unused now.
3719          */
3720         if (hwc->idx >= 0) {
3721                 xl = &excl_cntrs->states[tid];
3722 
3723                 /*
3724                  * put_constraint may be called from x86_schedule_events()
3725                  * which already has the lock held so here make locking
3726                  * conditional.
3727                  */
3728                 if (!xl->sched_started)
3729                         raw_spin_lock(&excl_cntrs->lock);
3730 
3731                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3732 
3733                 if (!xl->sched_started)
3734                         raw_spin_unlock(&excl_cntrs->lock);
3735         }
3736 }
3737 
3738 static void
3739 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3740                                         struct perf_event *event)
3741 {
3742         struct hw_perf_event_extra *reg;
3743 
3744         reg = &event->hw.extra_reg;
3745         if (reg->idx != EXTRA_REG_NONE)
3746                 __intel_shared_reg_put_constraints(cpuc, reg);
3747 
3748         reg = &event->hw.branch_reg;
3749         if (reg->idx != EXTRA_REG_NONE)
3750                 __intel_shared_reg_put_constraints(cpuc, reg);
3751 }
3752 
3753 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3754                                         struct perf_event *event)
3755 {
3756         intel_put_shared_regs_event_constraints(cpuc, event);
3757 
3758         /*
3759          * is PMU has exclusive counter restrictions, then
3760          * all events are subject to and must call the
3761          * put_excl_constraints() routine
3762          */
3763         if (cpuc->excl_cntrs)
3764                 intel_put_excl_constraints(cpuc, event);
3765 }
3766 
3767 static void intel_pebs_aliases_core2(struct perf_event *event)
3768 {
3769         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3770                 /*
3771                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3772                  * (0x003c) so that we can use it with PEBS.
3773                  *
3774                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3775                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3776                  * (0x00c0), which is a PEBS capable event, to get the same
3777                  * count.
3778                  *
3779                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3780                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3781                  * larger than the maximum number of instructions that can be
3782                  * retired per cycle (4) and then inverting the condition, we
3783                  * count all cycles that retire 16 or less instructions, which
3784                  * is every cycle.
3785                  *
3786                  * Thereby we gain a PEBS capable cycle counter.
3787                  */
3788                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3789 
3790                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3791                 event->hw.config = alt_config;
3792         }
3793 }
3794 
3795 static void intel_pebs_aliases_snb(struct perf_event *event)
3796 {
3797         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3798                 /*
3799                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3800                  * (0x003c) so that we can use it with PEBS.
3801                  *
3802                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3803                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3804                  * (0x01c2), which is a PEBS capable event, to get the same
3805                  * count.
3806                  *
3807                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3808                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3809                  * larger than the maximum number of micro-ops that can be
3810                  * retired per cycle (4) and then inverting the condition, we
3811                  * count all cycles that retire 16 or less micro-ops, which
3812                  * is every cycle.
3813                  *
3814                  * Thereby we gain a PEBS capable cycle counter.
3815                  */
3816                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3817 
3818                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3819                 event->hw.config = alt_config;
3820         }
3821 }
3822 
3823 static void intel_pebs_aliases_precdist(struct perf_event *event)
3824 {
3825         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3826                 /*
3827                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3828                  * (0x003c) so that we can use it with PEBS.
3829                  *
3830                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3831                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3832                  * (0x01c0), which is a PEBS capable event, to get the same
3833                  * count.
3834                  *
3835                  * The PREC_DIST event has special support to minimize sample
3836                  * shadowing effects. One drawback is that it can be
3837                  * only programmed on counter 1, but that seems like an
3838                  * acceptable trade off.
3839                  */
3840                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3841 
3842                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3843                 event->hw.config = alt_config;
3844         }
3845 }
3846 
3847 static void intel_pebs_aliases_ivb(struct perf_event *event)
3848 {
3849         if (event->attr.precise_ip < 3)
3850                 return intel_pebs_aliases_snb(event);
3851         return intel_pebs_aliases_precdist(event);
3852 }
3853 
3854 static void intel_pebs_aliases_skl(struct perf_event *event)
3855 {
3856         if (event->attr.precise_ip < 3)
3857                 return intel_pebs_aliases_core2(event);
3858         return intel_pebs_aliases_precdist(event);
3859 }
3860 
3861 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3862 {
3863         unsigned long flags = x86_pmu.large_pebs_flags;
3864 
3865         if (event->attr.use_clockid)
3866                 flags &= ~PERF_SAMPLE_TIME;
3867         if (!event->attr.exclude_kernel)
3868                 flags &= ~PERF_SAMPLE_REGS_USER;
3869         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3870                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3871         return flags;
3872 }
3873 
3874 static int intel_pmu_bts_config(struct perf_event *event)
3875 {
3876         struct perf_event_attr *attr = &event->attr;
3877 
3878         if (unlikely(intel_pmu_has_bts(event))) {
3879                 /* BTS is not supported by this architecture. */
3880                 if (!x86_pmu.bts_active)
3881                         return -EOPNOTSUPP;
3882 
3883                 /* BTS is currently only allowed for user-mode. */
3884                 if (!attr->exclude_kernel)
3885                         return -EOPNOTSUPP;
3886 
3887                 /* BTS is not allowed for precise events. */
3888                 if (attr->precise_ip)
3889                         return -EOPNOTSUPP;
3890 
3891                 /* disallow bts if conflicting events are present */
3892                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3893                         return -EBUSY;
3894 
3895                 event->destroy = hw_perf_lbr_event_destroy;
3896         }
3897 
3898         return 0;
3899 }
3900 
3901 static int core_pmu_hw_config(struct perf_event *event)
3902 {
3903         int ret = x86_pmu_hw_config(event);
3904 
3905         if (ret)
3906                 return ret;
3907 
3908         return intel_pmu_bts_config(event);
3909 }
3910 
3911 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3912                                          ((x86_pmu.num_topdown_events - 1) << 8))
3913 
3914 static bool is_available_metric_event(struct perf_event *event)
3915 {
3916         return is_metric_event(event) &&
3917                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3918 }
3919 
3920 static inline bool is_mem_loads_event(struct perf_event *event)
3921 {
3922         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3923 }
3924 
3925 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3926 {
3927         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3928 }
3929 
3930 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3931 {
3932         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3933                 return false;
3934 
3935         if (is_hybrid())
3936                 return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
3937 
3938         return true;
3939 }
3940 
3941 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3942 {
3943         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3944 
3945         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3946 }
3947 
3948 static int intel_pmu_hw_config(struct perf_event *event)
3949 {
3950         int ret = x86_pmu_hw_config(event);
3951 
3952         if (ret)
3953                 return ret;
3954 
3955         ret = intel_pmu_bts_config(event);
3956         if (ret)
3957                 return ret;
3958 
3959         if (event->attr.precise_ip) {
3960                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3961                         return -EINVAL;
3962 
3963                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3964                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3965                         if (!(event->attr.sample_type &
3966                               ~intel_pmu_large_pebs_flags(event))) {
3967                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3968                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3969                         }
3970                 }
3971                 if (x86_pmu.pebs_aliases)
3972                         x86_pmu.pebs_aliases(event);
3973         }
3974 
3975         if (needs_branch_stack(event)) {
3976                 /* Avoid branch stack setup for counting events in SAMPLE READ */
3977                 if (is_sampling_event(event) ||
3978                     !(event->attr.sample_type & PERF_SAMPLE_READ))
3979                         event->hw.flags |= PERF_X86_EVENT_NEEDS_BRANCH_STACK;
3980         }
3981 
3982         if (branch_sample_counters(event)) {
3983                 struct perf_event *leader, *sibling;
3984                 int num = 0;
3985 
3986                 if (!(x86_pmu.flags & PMU_FL_BR_CNTR) ||
3987                     (event->attr.config & ~INTEL_ARCH_EVENT_MASK))
3988                         return -EINVAL;
3989 
3990                 /*
3991                  * The branch counter logging is not supported in the call stack
3992                  * mode yet, since we cannot simply flush the LBR during e.g.,
3993                  * multiplexing. Also, there is no obvious usage with the call
3994                  * stack mode. Simply forbids it for now.
3995                  *
3996                  * If any events in the group enable the branch counter logging
3997                  * feature, the group is treated as a branch counter logging
3998                  * group, which requires the extra space to store the counters.
3999                  */
4000                 leader = event->group_leader;
4001                 if (branch_sample_call_stack(leader))
4002                         return -EINVAL;
4003                 if (branch_sample_counters(leader))
4004                         num++;
4005                 leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS;
4006 
4007                 for_each_sibling_event(sibling, leader) {
4008                         if (branch_sample_call_stack(sibling))
4009                                 return -EINVAL;
4010                         if (branch_sample_counters(sibling))
4011                                 num++;
4012                 }
4013 
4014                 if (num > fls(x86_pmu.lbr_counters))
4015                         return -EINVAL;
4016                 /*
4017                  * Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't
4018                  * require any branch stack setup.
4019                  * Clear the bit to avoid unnecessary branch stack setup.
4020                  */
4021                 if (0 == (event->attr.branch_sample_type &
4022                           ~(PERF_SAMPLE_BRANCH_PLM_ALL |
4023                             PERF_SAMPLE_BRANCH_COUNTERS)))
4024                         event->hw.flags  &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4025 
4026                 /*
4027                  * Force the leader to be a LBR event. So LBRs can be reset
4028                  * with the leader event. See intel_pmu_lbr_del() for details.
4029                  */
4030                 if (!intel_pmu_needs_branch_stack(leader))
4031                         return -EINVAL;
4032         }
4033 
4034         if (intel_pmu_needs_branch_stack(event)) {
4035                 ret = intel_pmu_setup_lbr_filter(event);
4036                 if (ret)
4037                         return ret;
4038                 event->attach_state |= PERF_ATTACH_SCHED_CB;
4039 
4040                 /*
4041                  * BTS is set up earlier in this path, so don't account twice
4042                  */
4043                 if (!unlikely(intel_pmu_has_bts(event))) {
4044                         /* disallow lbr if conflicting events are present */
4045                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4046                                 return -EBUSY;
4047 
4048                         event->destroy = hw_perf_lbr_event_destroy;
4049                 }
4050         }
4051 
4052         if (event->attr.aux_output) {
4053                 if (!event->attr.precise_ip)
4054                         return -EINVAL;
4055 
4056                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
4057         }
4058 
4059         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
4060             (event->attr.type == PERF_TYPE_HW_CACHE))
4061                 return 0;
4062 
4063         /*
4064          * Config Topdown slots and metric events
4065          *
4066          * The slots event on Fixed Counter 3 can support sampling,
4067          * which will be handled normally in x86_perf_event_update().
4068          *
4069          * Metric events don't support sampling and require being paired
4070          * with a slots event as group leader. When the slots event
4071          * is used in a metrics group, it too cannot support sampling.
4072          */
4073         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4074                 if (event->attr.config1 || event->attr.config2)
4075                         return -EINVAL;
4076 
4077                 /*
4078                  * The TopDown metrics events and slots event don't
4079                  * support any filters.
4080                  */
4081                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
4082                         return -EINVAL;
4083 
4084                 if (is_available_metric_event(event)) {
4085                         struct perf_event *leader = event->group_leader;
4086 
4087                         /* The metric events don't support sampling. */
4088                         if (is_sampling_event(event))
4089                                 return -EINVAL;
4090 
4091                         /* The metric events require a slots group leader. */
4092                         if (!is_slots_event(leader))
4093                                 return -EINVAL;
4094 
4095                         /*
4096                          * The leader/SLOTS must not be a sampling event for
4097                          * metric use; hardware requires it starts at 0 when used
4098                          * in conjunction with MSR_PERF_METRICS.
4099                          */
4100                         if (is_sampling_event(leader))
4101                                 return -EINVAL;
4102 
4103                         event->event_caps |= PERF_EV_CAP_SIBLING;
4104                         /*
4105                          * Only once we have a METRICs sibling do we
4106                          * need TopDown magic.
4107                          */
4108                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4109                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
4110                 }
4111         }
4112 
4113         /*
4114          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4115          * doesn't function quite right. As a work-around it needs to always be
4116          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4117          * The actual count of this second event is irrelevant it just needs
4118          * to be active to make the first event function correctly.
4119          *
4120          * In a group, the auxiliary event must be in front of the load latency
4121          * event. The rule is to simplify the implementation of the check.
4122          * That's because perf cannot have a complete group at the moment.
4123          */
4124         if (require_mem_loads_aux_event(event) &&
4125             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4126             is_mem_loads_event(event)) {
4127                 struct perf_event *leader = event->group_leader;
4128                 struct perf_event *sibling = NULL;
4129 
4130                 /*
4131                  * When this memload event is also the first event (no group
4132                  * exists yet), then there is no aux event before it.
4133                  */
4134                 if (leader == event)
4135                         return -ENODATA;
4136 
4137                 if (!is_mem_loads_aux_event(leader)) {
4138                         for_each_sibling_event(sibling, leader) {
4139                                 if (is_mem_loads_aux_event(sibling))
4140                                         break;
4141                         }
4142                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4143                                 return -ENODATA;
4144                 }
4145         }
4146 
4147         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4148                 return 0;
4149 
4150         if (x86_pmu.version < 3)
4151                 return -EINVAL;
4152 
4153         ret = perf_allow_cpu(&event->attr);
4154         if (ret)
4155                 return ret;
4156 
4157         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4158 
4159         return 0;
4160 }
4161 
4162 /*
4163  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4164  * The host perf context helps to prepare the values of the real hardware for
4165  * a set of msrs that need to be switched atomically in a vmx transaction.
4166  *
4167  * For example, the pseudocode needed to add a new msr should look like:
4168  *
4169  * arr[(*nr)++] = (struct perf_guest_switch_msr){
4170  *      .msr = the hardware msr address,
4171  *      .host = the value the hardware has when it doesn't run a guest,
4172  *      .guest = the value the hardware has when it runs a guest,
4173  * };
4174  *
4175  * These values have nothing to do with the emulated values the guest sees
4176  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4177  * specifically in the intel_pmu_{get,set}_msr().
4178  */
4179 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4180 {
4181         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4182         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4183         struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4184         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4185         u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4186         int global_ctrl, pebs_enable;
4187 
4188         /*
4189          * In addition to obeying exclude_guest/exclude_host, remove bits being
4190          * used for PEBS when running a guest, because PEBS writes to virtual
4191          * addresses (not physical addresses).
4192          */
4193         *nr = 0;
4194         global_ctrl = (*nr)++;
4195         arr[global_ctrl] = (struct perf_guest_switch_msr){
4196                 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4197                 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4198                 .guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4199         };
4200 
4201         if (!x86_pmu.pebs)
4202                 return arr;
4203 
4204         /*
4205          * If PMU counter has PEBS enabled it is not enough to
4206          * disable counter on a guest entry since PEBS memory
4207          * write can overshoot guest entry and corrupt guest
4208          * memory. Disabling PEBS solves the problem.
4209          *
4210          * Don't do this if the CPU already enforces it.
4211          */
4212         if (x86_pmu.pebs_no_isolation) {
4213                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4214                         .msr = MSR_IA32_PEBS_ENABLE,
4215                         .host = cpuc->pebs_enabled,
4216                         .guest = 0,
4217                 };
4218                 return arr;
4219         }
4220 
4221         if (!kvm_pmu || !x86_pmu.pebs_ept)
4222                 return arr;
4223 
4224         arr[(*nr)++] = (struct perf_guest_switch_msr){
4225                 .msr = MSR_IA32_DS_AREA,
4226                 .host = (unsigned long)cpuc->ds,
4227                 .guest = kvm_pmu->ds_area,
4228         };
4229 
4230         if (x86_pmu.intel_cap.pebs_baseline) {
4231                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4232                         .msr = MSR_PEBS_DATA_CFG,
4233                         .host = cpuc->active_pebs_data_cfg,
4234                         .guest = kvm_pmu->pebs_data_cfg,
4235                 };
4236         }
4237 
4238         pebs_enable = (*nr)++;
4239         arr[pebs_enable] = (struct perf_guest_switch_msr){
4240                 .msr = MSR_IA32_PEBS_ENABLE,
4241                 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4242                 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4243         };
4244 
4245         if (arr[pebs_enable].host) {
4246                 /* Disable guest PEBS if host PEBS is enabled. */
4247                 arr[pebs_enable].guest = 0;
4248         } else {
4249                 /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4250                 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4251                 arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4252                 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4253                 arr[global_ctrl].guest |= arr[pebs_enable].guest;
4254         }
4255 
4256         return arr;
4257 }
4258 
4259 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4260 {
4261         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4262         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4263         int idx;
4264 
4265         for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4266                 struct perf_event *event = cpuc->events[idx];
4267 
4268                 arr[idx].msr = x86_pmu_config_addr(idx);
4269                 arr[idx].host = arr[idx].guest = 0;
4270 
4271                 if (!test_bit(idx, cpuc->active_mask))
4272                         continue;
4273 
4274                 arr[idx].host = arr[idx].guest =
4275                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4276 
4277                 if (event->attr.exclude_host)
4278                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4279                 else if (event->attr.exclude_guest)
4280                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4281         }
4282 
4283         *nr = x86_pmu_max_num_counters(cpuc->pmu);
4284         return arr;
4285 }
4286 
4287 static void core_pmu_enable_event(struct perf_event *event)
4288 {
4289         if (!event->attr.exclude_host)
4290                 x86_pmu_enable_event(event);
4291 }
4292 
4293 static void core_pmu_enable_all(int added)
4294 {
4295         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4296         int idx;
4297 
4298         for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4299                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4300 
4301                 if (!test_bit(idx, cpuc->active_mask) ||
4302                                 cpuc->events[idx]->attr.exclude_host)
4303                         continue;
4304 
4305                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4306         }
4307 }
4308 
4309 static int hsw_hw_config(struct perf_event *event)
4310 {
4311         int ret = intel_pmu_hw_config(event);
4312 
4313         if (ret)
4314                 return ret;
4315         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4316                 return 0;
4317         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4318 
4319         /*
4320          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4321          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4322          * this combination.
4323          */
4324         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4325              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4326               event->attr.precise_ip > 0))
4327                 return -EOPNOTSUPP;
4328 
4329         if (event_is_checkpointed(event)) {
4330                 /*
4331                  * Sampling of checkpointed events can cause situations where
4332                  * the CPU constantly aborts because of a overflow, which is
4333                  * then checkpointed back and ignored. Forbid checkpointing
4334                  * for sampling.
4335                  *
4336                  * But still allow a long sampling period, so that perf stat
4337                  * from KVM works.
4338                  */
4339                 if (event->attr.sample_period > 0 &&
4340                     event->attr.sample_period < 0x7fffffff)
4341                         return -EOPNOTSUPP;
4342         }
4343         return 0;
4344 }
4345 
4346 static struct event_constraint counter0_constraint =
4347                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4348 
4349 static struct event_constraint counter1_constraint =
4350                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4351 
4352 static struct event_constraint counter0_1_constraint =
4353                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4354 
4355 static struct event_constraint counter2_constraint =
4356                         EVENT_CONSTRAINT(0, 0x4, 0);
4357 
4358 static struct event_constraint fixed0_constraint =
4359                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4360 
4361 static struct event_constraint fixed0_counter0_constraint =
4362                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4363 
4364 static struct event_constraint fixed0_counter0_1_constraint =
4365                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4366 
4367 static struct event_constraint counters_1_7_constraint =
4368                         INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4369 
4370 static struct event_constraint *
4371 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4372                           struct perf_event *event)
4373 {
4374         struct event_constraint *c;
4375 
4376         c = intel_get_event_constraints(cpuc, idx, event);
4377 
4378         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4379         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4380                 if (c->idxmsk64 & (1U << 2))
4381                         return &counter2_constraint;
4382                 return &emptyconstraint;
4383         }
4384 
4385         return c;
4386 }
4387 
4388 static struct event_constraint *
4389 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4390                           struct perf_event *event)
4391 {
4392         /*
4393          * Fixed counter 0 has less skid.
4394          * Force instruction:ppp in Fixed counter 0
4395          */
4396         if ((event->attr.precise_ip == 3) &&
4397             constraint_match(&fixed0_constraint, event->hw.config))
4398                 return &fixed0_constraint;
4399 
4400         return hsw_get_event_constraints(cpuc, idx, event);
4401 }
4402 
4403 static struct event_constraint *
4404 glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4405                           struct perf_event *event)
4406 {
4407         struct event_constraint *c;
4408 
4409         c = icl_get_event_constraints(cpuc, idx, event);
4410 
4411         /*
4412          * The :ppp indicates the Precise Distribution (PDist) facility, which
4413          * is only supported on the GP counter 0. If a :ppp event which is not
4414          * available on the GP counter 0, error out.
4415          * Exception: Instruction PDIR is only available on the fixed counter 0.
4416          */
4417         if ((event->attr.precise_ip == 3) &&
4418             !constraint_match(&fixed0_constraint, event->hw.config)) {
4419                 if (c->idxmsk64 & BIT_ULL(0))
4420                         return &counter0_constraint;
4421 
4422                 return &emptyconstraint;
4423         }
4424 
4425         return c;
4426 }
4427 
4428 static struct event_constraint *
4429 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4430                           struct perf_event *event)
4431 {
4432         struct event_constraint *c;
4433 
4434         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4435         if (event->attr.precise_ip == 3)
4436                 return &counter0_constraint;
4437 
4438         c = intel_get_event_constraints(cpuc, idx, event);
4439 
4440         return c;
4441 }
4442 
4443 static struct event_constraint *
4444 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4445                           struct perf_event *event)
4446 {
4447         struct event_constraint *c;
4448 
4449         c = intel_get_event_constraints(cpuc, idx, event);
4450 
4451         /*
4452          * :ppp means to do reduced skid PEBS,
4453          * which is available on PMC0 and fixed counter 0.
4454          */
4455         if (event->attr.precise_ip == 3) {
4456                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4457                 if (constraint_match(&fixed0_constraint, event->hw.config))
4458                         return &fixed0_counter0_constraint;
4459 
4460                 return &counter0_constraint;
4461         }
4462 
4463         return c;
4464 }
4465 
4466 static bool allow_tsx_force_abort = true;
4467 
4468 static struct event_constraint *
4469 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4470                           struct perf_event *event)
4471 {
4472         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4473 
4474         /*
4475          * Without TFA we must not use PMC3.
4476          */
4477         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4478                 c = dyn_constraint(cpuc, c, idx);
4479                 c->idxmsk64 &= ~(1ULL << 3);
4480                 c->weight--;
4481         }
4482 
4483         return c;
4484 }
4485 
4486 static struct event_constraint *
4487 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4488                           struct perf_event *event)
4489 {
4490         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4491 
4492         if (pmu->pmu_type == hybrid_big)
4493                 return glc_get_event_constraints(cpuc, idx, event);
4494         else if (pmu->pmu_type == hybrid_small)
4495                 return tnt_get_event_constraints(cpuc, idx, event);
4496 
4497         WARN_ON(1);
4498         return &emptyconstraint;
4499 }
4500 
4501 static struct event_constraint *
4502 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4503                           struct perf_event *event)
4504 {
4505         struct event_constraint *c;
4506 
4507         c = intel_get_event_constraints(cpuc, idx, event);
4508 
4509         /*
4510          * The :ppp indicates the Precise Distribution (PDist) facility, which
4511          * is only supported on the GP counter 0 & 1 and Fixed counter 0.
4512          * If a :ppp event which is not available on the above eligible counters,
4513          * error out.
4514          */
4515         if (event->attr.precise_ip == 3) {
4516                 /* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4517                 if (constraint_match(&fixed0_constraint, event->hw.config)) {
4518                         /* The fixed counter 0 doesn't support LBR event logging. */
4519                         if (branch_sample_counters(event))
4520                                 return &counter0_1_constraint;
4521                         else
4522                                 return &fixed0_counter0_1_constraint;
4523                 }
4524 
4525                 switch (c->idxmsk64 & 0x3ull) {
4526                 case 0x1:
4527                         return &counter0_constraint;
4528                 case 0x2:
4529                         return &counter1_constraint;
4530                 case 0x3:
4531                         return &counter0_1_constraint;
4532                 }
4533                 return &emptyconstraint;
4534         }
4535 
4536         return c;
4537 }
4538 
4539 static struct event_constraint *
4540 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4541                           struct perf_event *event)
4542 {
4543         struct event_constraint *c;
4544 
4545         c = glc_get_event_constraints(cpuc, idx, event);
4546 
4547         /* The Retire Latency is not supported by the fixed counter 0. */
4548         if (event->attr.precise_ip &&
4549             (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4550             constraint_match(&fixed0_constraint, event->hw.config)) {
4551                 /*
4552                  * The Instruction PDIR is only available
4553                  * on the fixed counter 0. Error out for this case.
4554                  */
4555                 if (event->attr.precise_ip == 3)
4556                         return &emptyconstraint;
4557                 return &counters_1_7_constraint;
4558         }
4559 
4560         return c;
4561 }
4562 
4563 static struct event_constraint *
4564 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4565                           struct perf_event *event)
4566 {
4567         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4568 
4569         if (pmu->pmu_type == hybrid_big)
4570                 return rwc_get_event_constraints(cpuc, idx, event);
4571         if (pmu->pmu_type == hybrid_small)
4572                 return cmt_get_event_constraints(cpuc, idx, event);
4573 
4574         WARN_ON(1);
4575         return &emptyconstraint;
4576 }
4577 
4578 static int adl_hw_config(struct perf_event *event)
4579 {
4580         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4581 
4582         if (pmu->pmu_type == hybrid_big)
4583                 return hsw_hw_config(event);
4584         else if (pmu->pmu_type == hybrid_small)
4585                 return intel_pmu_hw_config(event);
4586 
4587         WARN_ON(1);
4588         return -EOPNOTSUPP;
4589 }
4590 
4591 static enum hybrid_cpu_type adl_get_hybrid_cpu_type(void)
4592 {
4593         return HYBRID_INTEL_CORE;
4594 }
4595 
4596 static inline bool erratum_hsw11(struct perf_event *event)
4597 {
4598         return (event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4599                 X86_CONFIG(.event=0xc0, .umask=0x01);
4600 }
4601 
4602 /*
4603  * The HSW11 requires a period larger than 100 which is the same as the BDM11.
4604  * A minimum period of 128 is enforced as well for the INST_RETIRED.ALL.
4605  *
4606  * The message 'interrupt took too long' can be observed on any counter which
4607  * was armed with a period < 32 and two events expired in the same NMI.
4608  * A minimum period of 32 is enforced for the rest of the events.
4609  */
4610 static void hsw_limit_period(struct perf_event *event, s64 *left)
4611 {
4612         *left = max(*left, erratum_hsw11(event) ? 128 : 32);
4613 }
4614 
4615 /*
4616  * Broadwell:
4617  *
4618  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4619  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4620  * the two to enforce a minimum period of 128 (the smallest value that has bits
4621  * 0-5 cleared and >= 100).
4622  *
4623  * Because of how the code in x86_perf_event_set_period() works, the truncation
4624  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4625  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4626  *
4627  * Therefore the effective (average) period matches the requested period,
4628  * despite coarser hardware granularity.
4629  */
4630 static void bdw_limit_period(struct perf_event *event, s64 *left)
4631 {
4632         if (erratum_hsw11(event)) {
4633                 if (*left < 128)
4634                         *left = 128;
4635                 *left &= ~0x3fULL;
4636         }
4637 }
4638 
4639 static void nhm_limit_period(struct perf_event *event, s64 *left)
4640 {
4641         *left = max(*left, 32LL);
4642 }
4643 
4644 static void glc_limit_period(struct perf_event *event, s64 *left)
4645 {
4646         if (event->attr.precise_ip == 3)
4647                 *left = max(*left, 128LL);
4648 }
4649 
4650 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4651 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4652 PMU_FORMAT_ATTR(edge,   "config:18"     );
4653 PMU_FORMAT_ATTR(pc,     "config:19"     );
4654 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4655 PMU_FORMAT_ATTR(inv,    "config:23"     );
4656 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4657 PMU_FORMAT_ATTR(in_tx,  "config:32"     );
4658 PMU_FORMAT_ATTR(in_tx_cp, "config:33"   );
4659 PMU_FORMAT_ATTR(eq,     "config:36"     ); /* v6 + */
4660 
4661 static ssize_t umask2_show(struct device *dev,
4662                            struct device_attribute *attr,
4663                            char *page)
4664 {
4665         u64 mask = hybrid(dev_get_drvdata(dev), config_mask) & ARCH_PERFMON_EVENTSEL_UMASK2;
4666 
4667         if (mask == ARCH_PERFMON_EVENTSEL_UMASK2)
4668                 return sprintf(page, "config:8-15,40-47\n");
4669 
4670         /* Roll back to the old format if umask2 is not supported. */
4671         return sprintf(page, "config:8-15\n");
4672 }
4673 
4674 static struct device_attribute format_attr_umask2  =
4675                 __ATTR(umask, 0444, umask2_show, NULL);
4676 
4677 static struct attribute *format_evtsel_ext_attrs[] = {
4678         &format_attr_umask2.attr,
4679         &format_attr_eq.attr,
4680         NULL
4681 };
4682 
4683 static umode_t
4684 evtsel_ext_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4685 {
4686         struct device *dev = kobj_to_dev(kobj);
4687         u64 mask;
4688 
4689         /*
4690          * The umask and umask2 have different formats but share the
4691          * same attr name. In update mode, the previous value of the
4692          * umask is unconditionally removed before is_visible. If
4693          * umask2 format is not enumerated, it's impossible to roll
4694          * back to the old format.
4695          * Does the check in umask2_show rather than is_visible.
4696          */
4697         if (i == 0)
4698                 return attr->mode;
4699 
4700         mask = hybrid(dev_get_drvdata(dev), config_mask);
4701         if (i == 1)
4702                 return (mask & ARCH_PERFMON_EVENTSEL_EQ) ? attr->mode : 0;
4703 
4704         return 0;
4705 }
4706 
4707 static struct attribute *intel_arch_formats_attr[] = {
4708         &format_attr_event.attr,
4709         &format_attr_umask.attr,
4710         &format_attr_edge.attr,
4711         &format_attr_pc.attr,
4712         &format_attr_inv.attr,
4713         &format_attr_cmask.attr,
4714         NULL,
4715 };
4716 
4717 ssize_t intel_event_sysfs_show(char *page, u64 config)
4718 {
4719         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4720 
4721         return x86_event_sysfs_show(page, config, event);
4722 }
4723 
4724 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4725 {
4726         struct intel_shared_regs *regs;
4727         int i;
4728 
4729         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4730                             GFP_KERNEL, cpu_to_node(cpu));
4731         if (regs) {
4732                 /*
4733                  * initialize the locks to keep lockdep happy
4734                  */
4735                 for (i = 0; i < EXTRA_REG_MAX; i++)
4736                         raw_spin_lock_init(&regs->regs[i].lock);
4737 
4738                 regs->core_id = -1;
4739         }
4740         return regs;
4741 }
4742 
4743 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4744 {
4745         struct intel_excl_cntrs *c;
4746 
4747         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4748                          GFP_KERNEL, cpu_to_node(cpu));
4749         if (c) {
4750                 raw_spin_lock_init(&c->lock);
4751                 c->core_id = -1;
4752         }
4753         return c;
4754 }
4755 
4756 
4757 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4758 {
4759         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4760 
4761         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4762                 cpuc->shared_regs = allocate_shared_regs(cpu);
4763                 if (!cpuc->shared_regs)
4764                         goto err;
4765         }
4766 
4767         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_BR_CNTR)) {
4768                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4769 
4770                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4771                 if (!cpuc->constraint_list)
4772                         goto err_shared_regs;
4773         }
4774 
4775         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4776                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4777                 if (!cpuc->excl_cntrs)
4778                         goto err_constraint_list;
4779 
4780                 cpuc->excl_thread_id = 0;
4781         }
4782 
4783         return 0;
4784 
4785 err_constraint_list:
4786         kfree(cpuc->constraint_list);
4787         cpuc->constraint_list = NULL;
4788 
4789 err_shared_regs:
4790         kfree(cpuc->shared_regs);
4791         cpuc->shared_regs = NULL;
4792 
4793 err:
4794         return -ENOMEM;
4795 }
4796 
4797 static int intel_pmu_cpu_prepare(int cpu)
4798 {
4799         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4800 }
4801 
4802 static void flip_smm_bit(void *data)
4803 {
4804         unsigned long set = *(unsigned long *)data;
4805 
4806         if (set > 0) {
4807                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4808                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4809         } else {
4810                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4811                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4812         }
4813 }
4814 
4815 static void intel_pmu_check_counters_mask(u64 *cntr_mask,
4816                                           u64 *fixed_cntr_mask,
4817                                           u64 *intel_ctrl)
4818 {
4819         unsigned int bit;
4820 
4821         bit = fls64(*cntr_mask);
4822         if (bit > INTEL_PMC_MAX_GENERIC) {
4823                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4824                      bit, INTEL_PMC_MAX_GENERIC);
4825                 *cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
4826         }
4827         *intel_ctrl = *cntr_mask;
4828 
4829         bit = fls64(*fixed_cntr_mask);
4830         if (bit > INTEL_PMC_MAX_FIXED) {
4831                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4832                      bit, INTEL_PMC_MAX_FIXED);
4833                 *fixed_cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
4834         }
4835 
4836         *intel_ctrl |= *fixed_cntr_mask << INTEL_PMC_IDX_FIXED;
4837 }
4838 
4839 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
4840                                               u64 cntr_mask,
4841                                               u64 fixed_cntr_mask,
4842                                               u64 intel_ctrl);
4843 
4844 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
4845 
4846 static inline bool intel_pmu_broken_perf_cap(void)
4847 {
4848         /* The Perf Metric (Bit 15) is always cleared */
4849         if (boot_cpu_data.x86_vfm == INTEL_METEORLAKE ||
4850             boot_cpu_data.x86_vfm == INTEL_METEORLAKE_L)
4851                 return true;
4852 
4853         return false;
4854 }
4855 
4856 static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
4857 {
4858         unsigned int sub_bitmaps, eax, ebx, ecx, edx;
4859 
4860         cpuid(ARCH_PERFMON_EXT_LEAF, &sub_bitmaps, &ebx, &ecx, &edx);
4861 
4862         if (ebx & ARCH_PERFMON_EXT_UMASK2)
4863                 pmu->config_mask |= ARCH_PERFMON_EVENTSEL_UMASK2;
4864         if (ebx & ARCH_PERFMON_EXT_EQ)
4865                 pmu->config_mask |= ARCH_PERFMON_EVENTSEL_EQ;
4866 
4867         if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
4868                 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
4869                             &eax, &ebx, &ecx, &edx);
4870                 pmu->cntr_mask64 = eax;
4871                 pmu->fixed_cntr_mask64 = ebx;
4872         }
4873 
4874         if (!intel_pmu_broken_perf_cap()) {
4875                 /* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
4876                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, pmu->intel_cap.capabilities);
4877         }
4878 }
4879 
4880 static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
4881 {
4882         intel_pmu_check_counters_mask(&pmu->cntr_mask64, &pmu->fixed_cntr_mask64,
4883                                       &pmu->intel_ctrl);
4884         pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
4885         pmu->unconstrained = (struct event_constraint)
4886                              __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
4887                                                 0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
4888 
4889         if (pmu->intel_cap.perf_metrics)
4890                 pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
4891         else
4892                 pmu->intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4893 
4894         if (pmu->intel_cap.pebs_output_pt_available)
4895                 pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
4896         else
4897                 pmu->pmu.capabilities &= ~PERF_PMU_CAP_AUX_OUTPUT;
4898 
4899         intel_pmu_check_event_constraints(pmu->event_constraints,
4900                                           pmu->cntr_mask64,
4901                                           pmu->fixed_cntr_mask64,
4902                                           pmu->intel_ctrl);
4903 
4904         intel_pmu_check_extra_regs(pmu->extra_regs);
4905 }
4906 
4907 static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
4908 {
4909         u8 cpu_type = get_this_hybrid_cpu_type();
4910         int i;
4911 
4912         /*
4913          * This is running on a CPU model that is known to have hybrid
4914          * configurations. But the CPU told us it is not hybrid, shame
4915          * on it. There should be a fixup function provided for these
4916          * troublesome CPUs (->get_hybrid_cpu_type).
4917          */
4918         if (cpu_type == HYBRID_INTEL_NONE) {
4919                 if (x86_pmu.get_hybrid_cpu_type)
4920                         cpu_type = x86_pmu.get_hybrid_cpu_type();
4921                 else
4922                         return NULL;
4923         }
4924 
4925         /*
4926          * This essentially just maps between the 'hybrid_cpu_type'
4927          * and 'hybrid_pmu_type' enums:
4928          */
4929         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4930                 enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
4931 
4932                 if (cpu_type == HYBRID_INTEL_CORE &&
4933                     pmu_type == hybrid_big)
4934                         return &x86_pmu.hybrid_pmu[i];
4935                 if (cpu_type == HYBRID_INTEL_ATOM &&
4936                     pmu_type == hybrid_small)
4937                         return &x86_pmu.hybrid_pmu[i];
4938         }
4939 
4940         return NULL;
4941 }
4942 
4943 static bool init_hybrid_pmu(int cpu)
4944 {
4945         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4946         struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
4947 
4948         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4949                 cpuc->pmu = NULL;
4950                 return false;
4951         }
4952 
4953         /* Only check and dump the PMU information for the first CPU */
4954         if (!cpumask_empty(&pmu->supported_cpus))
4955                 goto end;
4956 
4957         if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
4958                 update_pmu_cap(pmu);
4959 
4960         intel_pmu_check_hybrid_pmus(pmu);
4961 
4962         if (!check_hw_exists(&pmu->pmu, pmu->cntr_mask, pmu->fixed_cntr_mask))
4963                 return false;
4964 
4965         pr_info("%s PMU driver: ", pmu->name);
4966 
4967         if (pmu->intel_cap.pebs_output_pt_available)
4968                 pr_cont("PEBS-via-PT ");
4969 
4970         pr_cont("\n");
4971 
4972         x86_pmu_show_pmu_cap(&pmu->pmu);
4973 
4974 end:
4975         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4976         cpuc->pmu = &pmu->pmu;
4977 
4978         return true;
4979 }
4980 
4981 static void intel_pmu_cpu_starting(int cpu)
4982 {
4983         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4984         int core_id = topology_core_id(cpu);
4985         int i;
4986 
4987         if (is_hybrid() && !init_hybrid_pmu(cpu))
4988                 return;
4989 
4990         init_debug_store_on_cpu(cpu);
4991         /*
4992          * Deal with CPUs that don't clear their LBRs on power-up.
4993          */
4994         intel_pmu_lbr_reset();
4995 
4996         cpuc->lbr_sel = NULL;
4997 
4998         if (x86_pmu.flags & PMU_FL_TFA) {
4999                 WARN_ON_ONCE(cpuc->tfa_shadow);
5000                 cpuc->tfa_shadow = ~0ULL;
5001                 intel_set_tfa(cpuc, false);
5002         }
5003 
5004         if (x86_pmu.version > 1)
5005                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
5006 
5007         /*
5008          * Disable perf metrics if any added CPU doesn't support it.
5009          *
5010          * Turn off the check for a hybrid architecture, because the
5011          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
5012          * the architecture features. The perf metrics is a model-specific
5013          * feature for now. The corresponding bit should always be 0 on
5014          * a hybrid platform, e.g., Alder Lake.
5015          */
5016         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
5017                 union perf_capabilities perf_cap;
5018 
5019                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
5020                 if (!perf_cap.perf_metrics) {
5021                         x86_pmu.intel_cap.perf_metrics = 0;
5022                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
5023                 }
5024         }
5025 
5026         if (!cpuc->shared_regs)
5027                 return;
5028 
5029         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
5030                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5031                         struct intel_shared_regs *pc;
5032 
5033                         pc = per_cpu(cpu_hw_events, i).shared_regs;
5034                         if (pc && pc->core_id == core_id) {
5035                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
5036                                 cpuc->shared_regs = pc;
5037                                 break;
5038                         }
5039                 }
5040                 cpuc->shared_regs->core_id = core_id;
5041                 cpuc->shared_regs->refcnt++;
5042         }
5043 
5044         if (x86_pmu.lbr_sel_map)
5045                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
5046 
5047         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5048                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5049                         struct cpu_hw_events *sibling;
5050                         struct intel_excl_cntrs *c;
5051 
5052                         sibling = &per_cpu(cpu_hw_events, i);
5053                         c = sibling->excl_cntrs;
5054                         if (c && c->core_id == core_id) {
5055                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
5056                                 cpuc->excl_cntrs = c;
5057                                 if (!sibling->excl_thread_id)
5058                                         cpuc->excl_thread_id = 1;
5059                                 break;
5060                         }
5061                 }
5062                 cpuc->excl_cntrs->core_id = core_id;
5063                 cpuc->excl_cntrs->refcnt++;
5064         }
5065 }
5066 
5067 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
5068 {
5069         struct intel_excl_cntrs *c;
5070 
5071         c = cpuc->excl_cntrs;
5072         if (c) {
5073                 if (c->core_id == -1 || --c->refcnt == 0)
5074                         kfree(c);
5075                 cpuc->excl_cntrs = NULL;
5076         }
5077 
5078         kfree(cpuc->constraint_list);
5079         cpuc->constraint_list = NULL;
5080 }
5081 
5082 static void intel_pmu_cpu_dying(int cpu)
5083 {
5084         fini_debug_store_on_cpu(cpu);
5085 }
5086 
5087 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
5088 {
5089         struct intel_shared_regs *pc;
5090 
5091         pc = cpuc->shared_regs;
5092         if (pc) {
5093                 if (pc->core_id == -1 || --pc->refcnt == 0)
5094                         kfree(pc);
5095                 cpuc->shared_regs = NULL;
5096         }
5097 
5098         free_excl_cntrs(cpuc);
5099 }
5100 
5101 static void intel_pmu_cpu_dead(int cpu)
5102 {
5103         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5104 
5105         intel_cpuc_finish(cpuc);
5106 
5107         if (is_hybrid() && cpuc->pmu)
5108                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
5109 }
5110 
5111 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
5112                                  bool sched_in)
5113 {
5114         intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
5115         intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
5116 }
5117 
5118 static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
5119                                     struct perf_event_pmu_context *next_epc)
5120 {
5121         intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
5122 }
5123 
5124 static int intel_pmu_check_period(struct perf_event *event, u64 value)
5125 {
5126         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
5127 }
5128 
5129 static void intel_aux_output_init(void)
5130 {
5131         /* Refer also intel_pmu_aux_output_match() */
5132         if (x86_pmu.intel_cap.pebs_output_pt_available)
5133                 x86_pmu.assign = intel_pmu_assign_event;
5134 }
5135 
5136 static int intel_pmu_aux_output_match(struct perf_event *event)
5137 {
5138         /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
5139         if (!x86_pmu.intel_cap.pebs_output_pt_available)
5140                 return 0;
5141 
5142         return is_intel_pt_event(event);
5143 }
5144 
5145 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
5146 {
5147         struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
5148 
5149         *ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
5150 }
5151 
5152 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
5153 
5154 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
5155 
5156 PMU_FORMAT_ATTR(frontend, "config1:0-23");
5157 
5158 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
5159 
5160 static struct attribute *intel_arch3_formats_attr[] = {
5161         &format_attr_event.attr,
5162         &format_attr_umask.attr,
5163         &format_attr_edge.attr,
5164         &format_attr_pc.attr,
5165         &format_attr_any.attr,
5166         &format_attr_inv.attr,
5167         &format_attr_cmask.attr,
5168         NULL,
5169 };
5170 
5171 static struct attribute *hsw_format_attr[] = {
5172         &format_attr_in_tx.attr,
5173         &format_attr_in_tx_cp.attr,
5174         &format_attr_offcore_rsp.attr,
5175         &format_attr_ldlat.attr,
5176         NULL
5177 };
5178 
5179 static struct attribute *nhm_format_attr[] = {
5180         &format_attr_offcore_rsp.attr,
5181         &format_attr_ldlat.attr,
5182         NULL
5183 };
5184 
5185 static struct attribute *slm_format_attr[] = {
5186         &format_attr_offcore_rsp.attr,
5187         NULL
5188 };
5189 
5190 static struct attribute *cmt_format_attr[] = {
5191         &format_attr_offcore_rsp.attr,
5192         &format_attr_ldlat.attr,
5193         &format_attr_snoop_rsp.attr,
5194         NULL
5195 };
5196 
5197 static struct attribute *skl_format_attr[] = {
5198         &format_attr_frontend.attr,
5199         NULL,
5200 };
5201 
5202 static __initconst const struct x86_pmu core_pmu = {
5203         .name                   = "core",
5204         .handle_irq             = x86_pmu_handle_irq,
5205         .disable_all            = x86_pmu_disable_all,
5206         .enable_all             = core_pmu_enable_all,
5207         .enable                 = core_pmu_enable_event,
5208         .disable                = x86_pmu_disable_event,
5209         .hw_config              = core_pmu_hw_config,
5210         .schedule_events        = x86_schedule_events,
5211         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
5212         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
5213         .fixedctr               = MSR_ARCH_PERFMON_FIXED_CTR0,
5214         .event_map              = intel_pmu_event_map,
5215         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
5216         .apic                   = 1,
5217         .large_pebs_flags       = LARGE_PEBS_FLAGS,
5218 
5219         /*
5220          * Intel PMCs cannot be accessed sanely above 32-bit width,
5221          * so we install an artificial 1<<31 period regardless of
5222          * the generic event period:
5223          */
5224         .max_period             = (1ULL<<31) - 1,
5225         .get_event_constraints  = intel_get_event_constraints,
5226         .put_event_constraints  = intel_put_event_constraints,
5227         .event_constraints      = intel_core_event_constraints,
5228         .guest_get_msrs         = core_guest_get_msrs,
5229         .format_attrs           = intel_arch_formats_attr,
5230         .events_sysfs_show      = intel_event_sysfs_show,
5231 
5232         /*
5233          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
5234          * together with PMU version 1 and thus be using core_pmu with
5235          * shared_regs. We need following callbacks here to allocate
5236          * it properly.
5237          */
5238         .cpu_prepare            = intel_pmu_cpu_prepare,
5239         .cpu_starting           = intel_pmu_cpu_starting,
5240         .cpu_dying              = intel_pmu_cpu_dying,
5241         .cpu_dead               = intel_pmu_cpu_dead,
5242 
5243         .check_period           = intel_pmu_check_period,
5244 
5245         .lbr_reset              = intel_pmu_lbr_reset_64,
5246         .lbr_read               = intel_pmu_lbr_read_64,
5247         .lbr_save               = intel_pmu_lbr_save,
5248         .lbr_restore            = intel_pmu_lbr_restore,
5249 };
5250 
5251 static __initconst const struct x86_pmu intel_pmu = {
5252         .name                   = "Intel",
5253         .handle_irq             = intel_pmu_handle_irq,
5254         .disable_all            = intel_pmu_disable_all,
5255         .enable_all             = intel_pmu_enable_all,
5256         .enable                 = intel_pmu_enable_event,
5257         .disable                = intel_pmu_disable_event,
5258         .add                    = intel_pmu_add_event,
5259         .del                    = intel_pmu_del_event,
5260         .read                   = intel_pmu_read_event,
5261         .set_period             = intel_pmu_set_period,
5262         .update                 = intel_pmu_update,
5263         .hw_config              = intel_pmu_hw_config,
5264         .schedule_events        = x86_schedule_events,
5265         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
5266         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
5267         .fixedctr               = MSR_ARCH_PERFMON_FIXED_CTR0,
5268         .event_map              = intel_pmu_event_map,
5269         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
5270         .apic                   = 1,
5271         .large_pebs_flags       = LARGE_PEBS_FLAGS,
5272         /*
5273          * Intel PMCs cannot be accessed sanely above 32 bit width,
5274          * so we install an artificial 1<<31 period regardless of
5275          * the generic event period:
5276          */
5277         .max_period             = (1ULL << 31) - 1,
5278         .get_event_constraints  = intel_get_event_constraints,
5279         .put_event_constraints  = intel_put_event_constraints,
5280         .pebs_aliases           = intel_pebs_aliases_core2,
5281 
5282         .format_attrs           = intel_arch3_formats_attr,
5283         .events_sysfs_show      = intel_event_sysfs_show,
5284 
5285         .cpu_prepare            = intel_pmu_cpu_prepare,
5286         .cpu_starting           = intel_pmu_cpu_starting,
5287         .cpu_dying              = intel_pmu_cpu_dying,
5288         .cpu_dead               = intel_pmu_cpu_dead,
5289 
5290         .guest_get_msrs         = intel_guest_get_msrs,
5291         .sched_task             = intel_pmu_sched_task,
5292         .swap_task_ctx          = intel_pmu_swap_task_ctx,
5293 
5294         .check_period           = intel_pmu_check_period,
5295 
5296         .aux_output_match       = intel_pmu_aux_output_match,
5297 
5298         .lbr_reset              = intel_pmu_lbr_reset_64,
5299         .lbr_read               = intel_pmu_lbr_read_64,
5300         .lbr_save               = intel_pmu_lbr_save,
5301         .lbr_restore            = intel_pmu_lbr_restore,
5302 
5303         /*
5304          * SMM has access to all 4 rings and while traditionally SMM code only
5305          * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5306          *
5307          * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5308          * between SMM or not, this results in what should be pure userspace
5309          * counters including SMM data.
5310          *
5311          * This is a clear privilege issue, therefore globally disable
5312          * counting SMM by default.
5313          */
5314         .attr_freeze_on_smi     = 1,
5315 };
5316 
5317 static __init void intel_clovertown_quirk(void)
5318 {
5319         /*
5320          * PEBS is unreliable due to:
5321          *
5322          *   AJ67  - PEBS may experience CPL leaks
5323          *   AJ68  - PEBS PMI may be delayed by one event
5324          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5325          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5326          *
5327          * AJ67 could be worked around by restricting the OS/USR flags.
5328          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5329          *
5330          * AJ106 could possibly be worked around by not allowing LBR
5331          *       usage from PEBS, including the fixup.
5332          * AJ68  could possibly be worked around by always programming
5333          *       a pebs_event_reset[0] value and coping with the lost events.
5334          *
5335          * But taken together it might just make sense to not enable PEBS on
5336          * these chips.
5337          */
5338         pr_warn("PEBS disabled due to CPU errata\n");
5339         x86_pmu.pebs = 0;
5340         x86_pmu.pebs_constraints = NULL;
5341 }
5342 
5343 static const struct x86_cpu_desc isolation_ucodes[] = {
5344         INTEL_CPU_DESC(INTEL_HASWELL,            3, 0x0000001f),
5345         INTEL_CPU_DESC(INTEL_HASWELL_L,          1, 0x0000001e),
5346         INTEL_CPU_DESC(INTEL_HASWELL_G,          1, 0x00000015),
5347         INTEL_CPU_DESC(INTEL_HASWELL_X,          2, 0x00000037),
5348         INTEL_CPU_DESC(INTEL_HASWELL_X,          4, 0x0000000a),
5349         INTEL_CPU_DESC(INTEL_BROADWELL,          4, 0x00000023),
5350         INTEL_CPU_DESC(INTEL_BROADWELL_G,        1, 0x00000014),
5351         INTEL_CPU_DESC(INTEL_BROADWELL_D,        2, 0x00000010),
5352         INTEL_CPU_DESC(INTEL_BROADWELL_D,        3, 0x07000009),
5353         INTEL_CPU_DESC(INTEL_BROADWELL_D,        4, 0x0f000009),
5354         INTEL_CPU_DESC(INTEL_BROADWELL_D,        5, 0x0e000002),
5355         INTEL_CPU_DESC(INTEL_BROADWELL_X,        1, 0x0b000014),
5356         INTEL_CPU_DESC(INTEL_SKYLAKE_X,          3, 0x00000021),
5357         INTEL_CPU_DESC(INTEL_SKYLAKE_X,          4, 0x00000000),
5358         INTEL_CPU_DESC(INTEL_SKYLAKE_X,          5, 0x00000000),
5359         INTEL_CPU_DESC(INTEL_SKYLAKE_X,          6, 0x00000000),
5360         INTEL_CPU_DESC(INTEL_SKYLAKE_X,          7, 0x00000000),
5361         INTEL_CPU_DESC(INTEL_SKYLAKE_X,         11, 0x00000000),
5362         INTEL_CPU_DESC(INTEL_SKYLAKE_L,          3, 0x0000007c),
5363         INTEL_CPU_DESC(INTEL_SKYLAKE,            3, 0x0000007c),
5364         INTEL_CPU_DESC(INTEL_KABYLAKE,           9, 0x0000004e),
5365         INTEL_CPU_DESC(INTEL_KABYLAKE_L,         9, 0x0000004e),
5366         INTEL_CPU_DESC(INTEL_KABYLAKE_L,        10, 0x0000004e),
5367         INTEL_CPU_DESC(INTEL_KABYLAKE_L,        11, 0x0000004e),
5368         INTEL_CPU_DESC(INTEL_KABYLAKE_L,        12, 0x0000004e),
5369         INTEL_CPU_DESC(INTEL_KABYLAKE,          10, 0x0000004e),
5370         INTEL_CPU_DESC(INTEL_KABYLAKE,          11, 0x0000004e),
5371         INTEL_CPU_DESC(INTEL_KABYLAKE,          12, 0x0000004e),
5372         INTEL_CPU_DESC(INTEL_KABYLAKE,          13, 0x0000004e),
5373         {}
5374 };
5375 
5376 static void intel_check_pebs_isolation(void)
5377 {
5378         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
5379 }
5380 
5381 static __init void intel_pebs_isolation_quirk(void)
5382 {
5383         WARN_ON_ONCE(x86_pmu.check_microcode);
5384         x86_pmu.check_microcode = intel_check_pebs_isolation;
5385         intel_check_pebs_isolation();
5386 }
5387 
5388 static const struct x86_cpu_desc pebs_ucodes[] = {
5389         INTEL_CPU_DESC(INTEL_SANDYBRIDGE,       7, 0x00000028),
5390         INTEL_CPU_DESC(INTEL_SANDYBRIDGE_X,     6, 0x00000618),
5391         INTEL_CPU_DESC(INTEL_SANDYBRIDGE_X,     7, 0x0000070c),
5392         {}
5393 };
5394 
5395 static bool intel_snb_pebs_broken(void)
5396 {
5397         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
5398 }
5399 
5400 static void intel_snb_check_microcode(void)
5401 {
5402         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5403                 return;
5404 
5405         /*
5406          * Serialized by the microcode lock..
5407          */
5408         if (x86_pmu.pebs_broken) {
5409                 pr_info("PEBS enabled due to microcode update\n");
5410                 x86_pmu.pebs_broken = 0;
5411         } else {
5412                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5413                 x86_pmu.pebs_broken = 1;
5414         }
5415 }
5416 
5417 static bool is_lbr_from(unsigned long msr)
5418 {
5419         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5420 
5421         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5422 }
5423 
5424 /*
5425  * Under certain circumstances, access certain MSR may cause #GP.
5426  * The function tests if the input MSR can be safely accessed.
5427  */
5428 static bool check_msr(unsigned long msr, u64 mask)
5429 {
5430         u64 val_old, val_new, val_tmp;
5431 
5432         /*
5433          * Disable the check for real HW, so we don't
5434          * mess with potentially enabled registers:
5435          */
5436         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5437                 return true;
5438 
5439         /*
5440          * Read the current value, change it and read it back to see if it
5441          * matches, this is needed to detect certain hardware emulators
5442          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
5443          */
5444         if (rdmsrl_safe(msr, &val_old))
5445                 return false;
5446 
5447         /*
5448          * Only change the bits which can be updated by wrmsrl.
5449          */
5450         val_tmp = val_old ^ mask;
5451 
5452         if (is_lbr_from(msr))
5453                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5454 
5455         if (wrmsrl_safe(msr, val_tmp) ||
5456             rdmsrl_safe(msr, &val_new))
5457                 return false;
5458 
5459         /*
5460          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
5461          * should equal rdmsrl()'s even with the quirk.
5462          */
5463         if (val_new != val_tmp)
5464                 return false;
5465 
5466         if (is_lbr_from(msr))
5467                 val_old = lbr_from_signext_quirk_wr(val_old);
5468 
5469         /* Here it's sure that the MSR can be safely accessed.
5470          * Restore the old value and return.
5471          */
5472         wrmsrl(msr, val_old);
5473 
5474         return true;
5475 }
5476 
5477 static __init void intel_sandybridge_quirk(void)
5478 {
5479         x86_pmu.check_microcode = intel_snb_check_microcode;
5480         cpus_read_lock();
5481         intel_snb_check_microcode();
5482         cpus_read_unlock();
5483 }
5484 
5485 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5486         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5487         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5488         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5489         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5490         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5491         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5492         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5493 };
5494 
5495 static __init void intel_arch_events_quirk(void)
5496 {
5497         int bit;
5498 
5499         /* disable event that reported as not present by cpuid */
5500         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5501                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5502                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
5503                         intel_arch_events_map[bit].name);
5504         }
5505 }
5506 
5507 static __init void intel_nehalem_quirk(void)
5508 {
5509         union cpuid10_ebx ebx;
5510 
5511         ebx.full = x86_pmu.events_maskl;
5512         if (ebx.split.no_branch_misses_retired) {
5513                 /*
5514                  * Erratum AAJ80 detected, we work it around by using
5515                  * the BR_MISP_EXEC.ANY event. This will over-count
5516                  * branch-misses, but it's still much better than the
5517                  * architectural event which is often completely bogus:
5518                  */
5519                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5520                 ebx.split.no_branch_misses_retired = 0;
5521                 x86_pmu.events_maskl = ebx.full;
5522                 pr_info("CPU erratum AAJ80 worked around\n");
5523         }
5524 }
5525 
5526 /*
5527  * enable software workaround for errata:
5528  * SNB: BJ122
5529  * IVB: BV98
5530  * HSW: HSD29
5531  *
5532  * Only needed when HT is enabled. However detecting
5533  * if HT is enabled is difficult (model specific). So instead,
5534  * we enable the workaround in the early boot, and verify if
5535  * it is needed in a later initcall phase once we have valid
5536  * topology information to check if HT is actually enabled
5537  */
5538 static __init void intel_ht_bug(void)
5539 {
5540         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5541 
5542         x86_pmu.start_scheduling = intel_start_scheduling;
5543         x86_pmu.commit_scheduling = intel_commit_scheduling;
5544         x86_pmu.stop_scheduling = intel_stop_scheduling;
5545 }
5546 
5547 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
5548 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
5549 
5550 /* Haswell special events */
5551 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
5552 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
5553 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
5554 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
5555 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
5556 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
5557 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
5558 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
5559 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
5560 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
5561 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
5562 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
5563 
5564 static struct attribute *hsw_events_attrs[] = {
5565         EVENT_PTR(td_slots_issued),
5566         EVENT_PTR(td_slots_retired),
5567         EVENT_PTR(td_fetch_bubbles),
5568         EVENT_PTR(td_total_slots),
5569         EVENT_PTR(td_total_slots_scale),
5570         EVENT_PTR(td_recovery_bubbles),
5571         EVENT_PTR(td_recovery_bubbles_scale),
5572         NULL
5573 };
5574 
5575 static struct attribute *hsw_mem_events_attrs[] = {
5576         EVENT_PTR(mem_ld_hsw),
5577         EVENT_PTR(mem_st_hsw),
5578         NULL,
5579 };
5580 
5581 static struct attribute *hsw_tsx_events_attrs[] = {
5582         EVENT_PTR(tx_start),
5583         EVENT_PTR(tx_commit),
5584         EVENT_PTR(tx_abort),
5585         EVENT_PTR(tx_capacity),
5586         EVENT_PTR(tx_conflict),
5587         EVENT_PTR(el_start),
5588         EVENT_PTR(el_commit),
5589         EVENT_PTR(el_abort),
5590         EVENT_PTR(el_capacity),
5591         EVENT_PTR(el_conflict),
5592         EVENT_PTR(cycles_t),
5593         EVENT_PTR(cycles_ct),
5594         NULL
5595 };
5596 
5597 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5598 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5599 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5600 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5601 
5602 static struct attribute *icl_events_attrs[] = {
5603         EVENT_PTR(mem_ld_hsw),
5604         EVENT_PTR(mem_st_hsw),
5605         NULL,
5606 };
5607 
5608 static struct attribute *icl_td_events_attrs[] = {
5609         EVENT_PTR(slots),
5610         EVENT_PTR(td_retiring),
5611         EVENT_PTR(td_bad_spec),
5612         EVENT_PTR(td_fe_bound),
5613         EVENT_PTR(td_be_bound),
5614         NULL,
5615 };
5616 
5617 static struct attribute *icl_tsx_events_attrs[] = {
5618         EVENT_PTR(tx_start),
5619         EVENT_PTR(tx_abort),
5620         EVENT_PTR(tx_commit),
5621         EVENT_PTR(tx_capacity_read),
5622         EVENT_PTR(tx_capacity_write),
5623         EVENT_PTR(tx_conflict),
5624         EVENT_PTR(el_start),
5625         EVENT_PTR(el_abort),
5626         EVENT_PTR(el_commit),
5627         EVENT_PTR(el_capacity_read),
5628         EVENT_PTR(el_capacity_write),
5629         EVENT_PTR(el_conflict),
5630         EVENT_PTR(cycles_t),
5631         EVENT_PTR(cycles_ct),
5632         NULL,
5633 };
5634 
5635 
5636 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
5637 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
5638 
5639 static struct attribute *glc_events_attrs[] = {
5640         EVENT_PTR(mem_ld_hsw),
5641         EVENT_PTR(mem_st_spr),
5642         EVENT_PTR(mem_ld_aux),
5643         NULL,
5644 };
5645 
5646 static struct attribute *glc_td_events_attrs[] = {
5647         EVENT_PTR(slots),
5648         EVENT_PTR(td_retiring),
5649         EVENT_PTR(td_bad_spec),
5650         EVENT_PTR(td_fe_bound),
5651         EVENT_PTR(td_be_bound),
5652         EVENT_PTR(td_heavy_ops),
5653         EVENT_PTR(td_br_mispredict),
5654         EVENT_PTR(td_fetch_lat),
5655         EVENT_PTR(td_mem_bound),
5656         NULL,
5657 };
5658 
5659 static struct attribute *glc_tsx_events_attrs[] = {
5660         EVENT_PTR(tx_start),
5661         EVENT_PTR(tx_abort),
5662         EVENT_PTR(tx_commit),
5663         EVENT_PTR(tx_capacity_read),
5664         EVENT_PTR(tx_capacity_write),
5665         EVENT_PTR(tx_conflict),
5666         EVENT_PTR(cycles_t),
5667         EVENT_PTR(cycles_ct),
5668         NULL,
5669 };
5670 
5671 static ssize_t freeze_on_smi_show(struct device *cdev,
5672                                   struct device_attribute *attr,
5673                                   char *buf)
5674 {
5675         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5676 }
5677 
5678 static DEFINE_MUTEX(freeze_on_smi_mutex);
5679 
5680 static ssize_t freeze_on_smi_store(struct device *cdev,
5681                                    struct device_attribute *attr,
5682                                    const char *buf, size_t count)
5683 {
5684         unsigned long val;
5685         ssize_t ret;
5686 
5687         ret = kstrtoul(buf, 0, &val);
5688         if (ret)
5689                 return ret;
5690 
5691         if (val > 1)
5692                 return -EINVAL;
5693 
5694         mutex_lock(&freeze_on_smi_mutex);
5695 
5696         if (x86_pmu.attr_freeze_on_smi == val)
5697                 goto done;
5698 
5699         x86_pmu.attr_freeze_on_smi = val;
5700 
5701         cpus_read_lock();
5702         on_each_cpu(flip_smm_bit, &val, 1);
5703         cpus_read_unlock();
5704 done:
5705         mutex_unlock(&freeze_on_smi_mutex);
5706 
5707         return count;
5708 }
5709 
5710 static void update_tfa_sched(void *ignored)
5711 {
5712         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5713 
5714         /*
5715          * check if PMC3 is used
5716          * and if so force schedule out for all event types all contexts
5717          */
5718         if (test_bit(3, cpuc->active_mask))
5719                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5720 }
5721 
5722 static ssize_t show_sysctl_tfa(struct device *cdev,
5723                               struct device_attribute *attr,
5724                               char *buf)
5725 {
5726         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5727 }
5728 
5729 static ssize_t set_sysctl_tfa(struct device *cdev,
5730                               struct device_attribute *attr,
5731                               const char *buf, size_t count)
5732 {
5733         bool val;
5734         ssize_t ret;
5735 
5736         ret = kstrtobool(buf, &val);
5737         if (ret)
5738                 return ret;
5739 
5740         /* no change */
5741         if (val == allow_tsx_force_abort)
5742                 return count;
5743 
5744         allow_tsx_force_abort = val;
5745 
5746         cpus_read_lock();
5747         on_each_cpu(update_tfa_sched, NULL, 1);
5748         cpus_read_unlock();
5749 
5750         return count;
5751 }
5752 
5753 
5754 static DEVICE_ATTR_RW(freeze_on_smi);
5755 
5756 static ssize_t branches_show(struct device *cdev,
5757                              struct device_attribute *attr,
5758                              char *buf)
5759 {
5760         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5761 }
5762 
5763 static DEVICE_ATTR_RO(branches);
5764 
5765 static ssize_t branch_counter_nr_show(struct device *cdev,
5766                                       struct device_attribute *attr,
5767                                       char *buf)
5768 {
5769         return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters));
5770 }
5771 
5772 static DEVICE_ATTR_RO(branch_counter_nr);
5773 
5774 static ssize_t branch_counter_width_show(struct device *cdev,
5775                                          struct device_attribute *attr,
5776                                          char *buf)
5777 {
5778         return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS);
5779 }
5780 
5781 static DEVICE_ATTR_RO(branch_counter_width);
5782 
5783 static struct attribute *lbr_attrs[] = {
5784         &dev_attr_branches.attr,
5785         &dev_attr_branch_counter_nr.attr,
5786         &dev_attr_branch_counter_width.attr,
5787         NULL
5788 };
5789 
5790 static umode_t
5791 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5792 {
5793         /* branches */
5794         if (i == 0)
5795                 return x86_pmu.lbr_nr ? attr->mode : 0;
5796 
5797         return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0;
5798 }
5799 
5800 static char pmu_name_str[30];
5801 
5802 static DEVICE_STRING_ATTR_RO(pmu_name, 0444, pmu_name_str);
5803 
5804 static struct attribute *intel_pmu_caps_attrs[] = {
5805         &dev_attr_pmu_name.attr.attr,
5806         NULL
5807 };
5808 
5809 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5810                    show_sysctl_tfa,
5811                    set_sysctl_tfa);
5812 
5813 static struct attribute *intel_pmu_attrs[] = {
5814         &dev_attr_freeze_on_smi.attr,
5815         &dev_attr_allow_tsx_force_abort.attr,
5816         NULL,
5817 };
5818 
5819 static umode_t
5820 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5821 {
5822         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5823                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5824 
5825         return attr->mode;
5826 }
5827 
5828 static umode_t
5829 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5830 {
5831         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5832 }
5833 
5834 static umode_t
5835 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5836 {
5837         return x86_pmu.pebs ? attr->mode : 0;
5838 }
5839 
5840 static umode_t
5841 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5842 {
5843         if (attr == &event_attr_mem_ld_aux.attr.attr)
5844                 return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
5845 
5846         return pebs_is_visible(kobj, attr, i);
5847 }
5848 
5849 static umode_t
5850 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5851 {
5852         return x86_pmu.version >= 2 ? attr->mode : 0;
5853 }
5854 
5855 static umode_t
5856 td_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5857 {
5858         /*
5859          * Hide the perf metrics topdown events
5860          * if the feature is not enumerated.
5861          */
5862         if (x86_pmu.num_topdown_events)
5863                 return x86_pmu.intel_cap.perf_metrics ? attr->mode : 0;
5864 
5865         return attr->mode;
5866 }
5867 
5868 static struct attribute_group group_events_td  = {
5869         .name = "events",
5870         .is_visible = td_is_visible,
5871 };
5872 
5873 static struct attribute_group group_events_mem = {
5874         .name       = "events",
5875         .is_visible = mem_is_visible,
5876 };
5877 
5878 static struct attribute_group group_events_tsx = {
5879         .name       = "events",
5880         .is_visible = tsx_is_visible,
5881 };
5882 
5883 static struct attribute_group group_caps_gen = {
5884         .name  = "caps",
5885         .attrs = intel_pmu_caps_attrs,
5886 };
5887 
5888 static struct attribute_group group_caps_lbr = {
5889         .name       = "caps",
5890         .attrs      = lbr_attrs,
5891         .is_visible = lbr_is_visible,
5892 };
5893 
5894 static struct attribute_group group_format_extra = {
5895         .name       = "format",
5896         .is_visible = exra_is_visible,
5897 };
5898 
5899 static struct attribute_group group_format_extra_skl = {
5900         .name       = "format",
5901         .is_visible = exra_is_visible,
5902 };
5903 
5904 static struct attribute_group group_format_evtsel_ext = {
5905         .name       = "format",
5906         .attrs      = format_evtsel_ext_attrs,
5907         .is_visible = evtsel_ext_is_visible,
5908 };
5909 
5910 static struct attribute_group group_default = {
5911         .attrs      = intel_pmu_attrs,
5912         .is_visible = default_is_visible,
5913 };
5914 
5915 static const struct attribute_group *attr_update[] = {
5916         &group_events_td,
5917         &group_events_mem,
5918         &group_events_tsx,
5919         &group_caps_gen,
5920         &group_caps_lbr,
5921         &group_format_extra,
5922         &group_format_extra_skl,
5923         &group_format_evtsel_ext,
5924         &group_default,
5925         NULL,
5926 };
5927 
5928 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5929 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5930 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5931 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5932 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5933 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5934 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5935 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5936 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5937 
5938 static struct attribute *adl_hybrid_events_attrs[] = {
5939         EVENT_PTR(slots_adl),
5940         EVENT_PTR(td_retiring_adl),
5941         EVENT_PTR(td_bad_spec_adl),
5942         EVENT_PTR(td_fe_bound_adl),
5943         EVENT_PTR(td_be_bound_adl),
5944         EVENT_PTR(td_heavy_ops_adl),
5945         EVENT_PTR(td_br_mis_adl),
5946         EVENT_PTR(td_fetch_lat_adl),
5947         EVENT_PTR(td_mem_bound_adl),
5948         NULL,
5949 };
5950 
5951 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_lnl,  "event=0xc2,umask=0x02;event=0x00,umask=0x80", hybrid_big_small);
5952 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_lnl,  "event=0x9c,umask=0x01;event=0x00,umask=0x82", hybrid_big_small);
5953 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_lnl,  "event=0xa4,umask=0x02;event=0x00,umask=0x83", hybrid_big_small);
5954 
5955 static struct attribute *lnl_hybrid_events_attrs[] = {
5956         EVENT_PTR(slots_adl),
5957         EVENT_PTR(td_retiring_lnl),
5958         EVENT_PTR(td_bad_spec_adl),
5959         EVENT_PTR(td_fe_bound_lnl),
5960         EVENT_PTR(td_be_bound_lnl),
5961         EVENT_PTR(td_heavy_ops_adl),
5962         EVENT_PTR(td_br_mis_adl),
5963         EVENT_PTR(td_fetch_lat_adl),
5964         EVENT_PTR(td_mem_bound_adl),
5965         NULL
5966 };
5967 
5968 /* Must be in IDX order */
5969 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5970 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5971 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5972 
5973 static struct attribute *adl_hybrid_mem_attrs[] = {
5974         EVENT_PTR(mem_ld_adl),
5975         EVENT_PTR(mem_st_adl),
5976         EVENT_PTR(mem_ld_aux_adl),
5977         NULL,
5978 };
5979 
5980 static struct attribute *mtl_hybrid_mem_attrs[] = {
5981         EVENT_PTR(mem_ld_adl),
5982         EVENT_PTR(mem_st_adl),
5983         NULL
5984 };
5985 
5986 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5987 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5988 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5989 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5990 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5991 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5992 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5993 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5994 
5995 static struct attribute *adl_hybrid_tsx_attrs[] = {
5996         EVENT_PTR(tx_start_adl),
5997         EVENT_PTR(tx_abort_adl),
5998         EVENT_PTR(tx_commit_adl),
5999         EVENT_PTR(tx_capacity_read_adl),
6000         EVENT_PTR(tx_capacity_write_adl),
6001         EVENT_PTR(tx_conflict_adl),
6002         EVENT_PTR(cycles_t_adl),
6003         EVENT_PTR(cycles_ct_adl),
6004         NULL,
6005 };
6006 
6007 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
6008 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
6009 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
6010 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
6011 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
6012 
6013 #define ADL_HYBRID_RTM_FORMAT_ATTR      \
6014         FORMAT_HYBRID_PTR(in_tx),       \
6015         FORMAT_HYBRID_PTR(in_tx_cp)
6016 
6017 #define ADL_HYBRID_FORMAT_ATTR          \
6018         FORMAT_HYBRID_PTR(offcore_rsp), \
6019         FORMAT_HYBRID_PTR(ldlat),       \
6020         FORMAT_HYBRID_PTR(frontend)
6021 
6022 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
6023         ADL_HYBRID_RTM_FORMAT_ATTR,
6024         ADL_HYBRID_FORMAT_ATTR,
6025         NULL
6026 };
6027 
6028 static struct attribute *adl_hybrid_extra_attr[] = {
6029         ADL_HYBRID_FORMAT_ATTR,
6030         NULL
6031 };
6032 
6033 FORMAT_ATTR_HYBRID(snoop_rsp,   hybrid_small);
6034 
6035 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
6036         ADL_HYBRID_RTM_FORMAT_ATTR,
6037         ADL_HYBRID_FORMAT_ATTR,
6038         FORMAT_HYBRID_PTR(snoop_rsp),
6039         NULL
6040 };
6041 
6042 static struct attribute *mtl_hybrid_extra_attr[] = {
6043         ADL_HYBRID_FORMAT_ATTR,
6044         FORMAT_HYBRID_PTR(snoop_rsp),
6045         NULL
6046 };
6047 
6048 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
6049 {
6050         struct device *dev = kobj_to_dev(kobj);
6051         struct x86_hybrid_pmu *pmu =
6052                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6053         struct perf_pmu_events_hybrid_attr *pmu_attr =
6054                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
6055 
6056         return pmu->pmu_type & pmu_attr->pmu_type;
6057 }
6058 
6059 static umode_t hybrid_events_is_visible(struct kobject *kobj,
6060                                         struct attribute *attr, int i)
6061 {
6062         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
6063 }
6064 
6065 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
6066 {
6067         int cpu = cpumask_first(&pmu->supported_cpus);
6068 
6069         return (cpu >= nr_cpu_ids) ? -1 : cpu;
6070 }
6071 
6072 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
6073                                      struct attribute *attr, int i)
6074 {
6075         struct device *dev = kobj_to_dev(kobj);
6076         struct x86_hybrid_pmu *pmu =
6077                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6078         int cpu = hybrid_find_supported_cpu(pmu);
6079 
6080         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
6081 }
6082 
6083 static umode_t hybrid_format_is_visible(struct kobject *kobj,
6084                                         struct attribute *attr, int i)
6085 {
6086         struct device *dev = kobj_to_dev(kobj);
6087         struct x86_hybrid_pmu *pmu =
6088                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6089         struct perf_pmu_format_hybrid_attr *pmu_attr =
6090                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
6091         int cpu = hybrid_find_supported_cpu(pmu);
6092 
6093         return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
6094 }
6095 
6096 static umode_t hybrid_td_is_visible(struct kobject *kobj,
6097                                     struct attribute *attr, int i)
6098 {
6099         struct device *dev = kobj_to_dev(kobj);
6100         struct x86_hybrid_pmu *pmu =
6101                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6102 
6103         if (!is_attr_for_this_pmu(kobj, attr))
6104                 return 0;
6105 
6106 
6107         /* Only the big core supports perf metrics */
6108         if (pmu->pmu_type == hybrid_big)
6109                 return pmu->intel_cap.perf_metrics ? attr->mode : 0;
6110 
6111         return attr->mode;
6112 }
6113 
6114 static struct attribute_group hybrid_group_events_td  = {
6115         .name           = "events",
6116         .is_visible     = hybrid_td_is_visible,
6117 };
6118 
6119 static struct attribute_group hybrid_group_events_mem = {
6120         .name           = "events",
6121         .is_visible     = hybrid_events_is_visible,
6122 };
6123 
6124 static struct attribute_group hybrid_group_events_tsx = {
6125         .name           = "events",
6126         .is_visible     = hybrid_tsx_is_visible,
6127 };
6128 
6129 static struct attribute_group hybrid_group_format_extra = {
6130         .name           = "format",
6131         .is_visible     = hybrid_format_is_visible,
6132 };
6133 
6134 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
6135                                           struct device_attribute *attr,
6136                                           char *buf)
6137 {
6138         struct x86_hybrid_pmu *pmu =
6139                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6140 
6141         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
6142 }
6143 
6144 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
6145 static struct attribute *intel_hybrid_cpus_attrs[] = {
6146         &dev_attr_cpus.attr,
6147         NULL,
6148 };
6149 
6150 static struct attribute_group hybrid_group_cpus = {
6151         .attrs          = intel_hybrid_cpus_attrs,
6152 };
6153 
6154 static const struct attribute_group *hybrid_attr_update[] = {
6155         &hybrid_group_events_td,
6156         &hybrid_group_events_mem,
6157         &hybrid_group_events_tsx,
6158         &group_caps_gen,
6159         &group_caps_lbr,
6160         &hybrid_group_format_extra,
6161         &group_format_evtsel_ext,
6162         &group_default,
6163         &hybrid_group_cpus,
6164         NULL,
6165 };
6166 
6167 static struct attribute *empty_attrs;
6168 
6169 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
6170                                               u64 cntr_mask,
6171                                               u64 fixed_cntr_mask,
6172                                               u64 intel_ctrl)
6173 {
6174         struct event_constraint *c;
6175 
6176         if (!event_constraints)
6177                 return;
6178 
6179         /*
6180          * event on fixed counter2 (REF_CYCLES) only works on this
6181          * counter, so do not extend mask to generic counters
6182          */
6183         for_each_event_constraint(c, event_constraints) {
6184                 /*
6185                  * Don't extend the topdown slots and metrics
6186                  * events to the generic counters.
6187                  */
6188                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
6189                         /*
6190                          * Disable topdown slots and metrics events,
6191                          * if slots event is not in CPUID.
6192                          */
6193                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
6194                                 c->idxmsk64 = 0;
6195                         c->weight = hweight64(c->idxmsk64);
6196                         continue;
6197                 }
6198 
6199                 if (c->cmask == FIXED_EVENT_FLAGS) {
6200                         /* Disabled fixed counters which are not in CPUID */
6201                         c->idxmsk64 &= intel_ctrl;
6202 
6203                         /*
6204                          * Don't extend the pseudo-encoding to the
6205                          * generic counters
6206                          */
6207                         if (!use_fixed_pseudo_encoding(c->code))
6208                                 c->idxmsk64 |= cntr_mask;
6209                 }
6210                 c->idxmsk64 &= cntr_mask | (fixed_cntr_mask << INTEL_PMC_IDX_FIXED);
6211                 c->weight = hweight64(c->idxmsk64);
6212         }
6213 }
6214 
6215 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
6216 {
6217         struct extra_reg *er;
6218 
6219         /*
6220          * Access extra MSR may cause #GP under certain circumstances.
6221          * E.g. KVM doesn't support offcore event
6222          * Check all extra_regs here.
6223          */
6224         if (!extra_regs)
6225                 return;
6226 
6227         for (er = extra_regs; er->msr; er++) {
6228                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
6229                 /* Disable LBR select mapping */
6230                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
6231                         x86_pmu.lbr_sel_map = NULL;
6232         }
6233 }
6234 
6235 static inline int intel_pmu_v6_addr_offset(int index, bool eventsel)
6236 {
6237         return MSR_IA32_PMC_V6_STEP * index;
6238 }
6239 
6240 static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
6241         { hybrid_small, "cpu_atom" },
6242         { hybrid_big, "cpu_core" },
6243 };
6244 
6245 static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
6246 {
6247         unsigned long pmus_mask = pmus;
6248         struct x86_hybrid_pmu *pmu;
6249         int idx = 0, bit;
6250 
6251         x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
6252         x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
6253                                      sizeof(struct x86_hybrid_pmu),
6254                                      GFP_KERNEL);
6255         if (!x86_pmu.hybrid_pmu)
6256                 return -ENOMEM;
6257 
6258         static_branch_enable(&perf_is_hybrid);
6259         x86_pmu.filter = intel_pmu_filter;
6260 
6261         for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
6262                 pmu = &x86_pmu.hybrid_pmu[idx++];
6263                 pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
6264                 pmu->name = intel_hybrid_pmu_type_map[bit].name;
6265 
6266                 pmu->cntr_mask64 = x86_pmu.cntr_mask64;
6267                 pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
6268                 pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
6269                 pmu->config_mask = X86_RAW_EVENT_MASK;
6270                 pmu->unconstrained = (struct event_constraint)
6271                                      __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
6272                                                         0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
6273 
6274                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6275                 if (pmu->pmu_type & hybrid_small) {
6276                         pmu->intel_cap.perf_metrics = 0;
6277                         pmu->intel_cap.pebs_output_pt_available = 1;
6278                         pmu->mid_ack = true;
6279                 } else if (pmu->pmu_type & hybrid_big) {
6280                         pmu->intel_cap.perf_metrics = 1;
6281                         pmu->intel_cap.pebs_output_pt_available = 0;
6282                         pmu->late_ack = true;
6283                 }
6284         }
6285 
6286         return 0;
6287 }
6288 
6289 static __always_inline void intel_pmu_ref_cycles_ext(void)
6290 {
6291         if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
6292                 intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
6293 }
6294 
6295 static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
6296 {
6297         x86_pmu.late_ack = true;
6298         x86_pmu.limit_period = glc_limit_period;
6299         x86_pmu.pebs_aliases = NULL;
6300         x86_pmu.pebs_prec_dist = true;
6301         x86_pmu.pebs_block = true;
6302         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6303         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6304         x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6305         x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6306         x86_pmu.lbr_pt_coexist = true;
6307         x86_pmu.num_topdown_events = 8;
6308         static_call_update(intel_pmu_update_topdown_event,
6309                            &icl_update_topdown_event);
6310         static_call_update(intel_pmu_set_topdown_event_period,
6311                            &icl_set_topdown_event_period);
6312 
6313         memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6314         memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6315         hybrid(pmu, event_constraints) = intel_glc_event_constraints;
6316         hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
6317 
6318         intel_pmu_ref_cycles_ext();
6319 }
6320 
6321 static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
6322 {
6323         x86_pmu.mid_ack = true;
6324         x86_pmu.limit_period = glc_limit_period;
6325         x86_pmu.pebs_aliases = NULL;
6326         x86_pmu.pebs_prec_dist = true;
6327         x86_pmu.pebs_block = true;
6328         x86_pmu.lbr_pt_coexist = true;
6329         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6330         x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6331 
6332         memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6333         memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6334         hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6335         hybrid(pmu, event_constraints) = intel_grt_event_constraints;
6336         hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
6337         hybrid(pmu, extra_regs) = intel_grt_extra_regs;
6338 
6339         intel_pmu_ref_cycles_ext();
6340 }
6341 
6342 static __always_inline void intel_pmu_init_lnc(struct pmu *pmu)
6343 {
6344         intel_pmu_init_glc(pmu);
6345         hybrid(pmu, event_constraints) = intel_lnc_event_constraints;
6346         hybrid(pmu, pebs_constraints) = intel_lnc_pebs_event_constraints;
6347         hybrid(pmu, extra_regs) = intel_rwc_extra_regs;
6348 }
6349 
6350 static __always_inline void intel_pmu_init_skt(struct pmu *pmu)
6351 {
6352         intel_pmu_init_grt(pmu);
6353         hybrid(pmu, event_constraints) = intel_skt_event_constraints;
6354         hybrid(pmu, extra_regs) = intel_cmt_extra_regs;
6355 }
6356 
6357 __init int intel_pmu_init(void)
6358 {
6359         struct attribute **extra_skl_attr = &empty_attrs;
6360         struct attribute **extra_attr = &empty_attrs;
6361         struct attribute **td_attr    = &empty_attrs;
6362         struct attribute **mem_attr   = &empty_attrs;
6363         struct attribute **tsx_attr   = &empty_attrs;
6364         union cpuid10_edx edx;
6365         union cpuid10_eax eax;
6366         union cpuid10_ebx ebx;
6367         unsigned int fixed_mask;
6368         bool pmem = false;
6369         int version, i;
6370         char *name;
6371         struct x86_hybrid_pmu *pmu;
6372 
6373         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
6374                 switch (boot_cpu_data.x86) {
6375                 case 0x6:
6376                         return p6_pmu_init();
6377                 case 0xb:
6378                         return knc_pmu_init();
6379                 case 0xf:
6380                         return p4_pmu_init();
6381                 }
6382                 return -ENODEV;
6383         }
6384 
6385         /*
6386          * Check whether the Architectural PerfMon supports
6387          * Branch Misses Retired hw_event or not.
6388          */
6389         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
6390         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
6391                 return -ENODEV;
6392 
6393         version = eax.split.version_id;
6394         if (version < 2)
6395                 x86_pmu = core_pmu;
6396         else
6397                 x86_pmu = intel_pmu;
6398 
6399         x86_pmu.version                 = version;
6400         x86_pmu.cntr_mask64             = GENMASK_ULL(eax.split.num_counters - 1, 0);
6401         x86_pmu.cntval_bits             = eax.split.bit_width;
6402         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
6403 
6404         x86_pmu.events_maskl            = ebx.full;
6405         x86_pmu.events_mask_len         = eax.split.mask_length;
6406 
6407         x86_pmu.pebs_events_mask        = intel_pmu_pebs_mask(x86_pmu.cntr_mask64);
6408         x86_pmu.pebs_capable            = PEBS_COUNTER_MASK;
6409 
6410         /*
6411          * Quirk: v2 perfmon does not report fixed-purpose events, so
6412          * assume at least 3 events, when not running in a hypervisor:
6413          */
6414         if (version > 1 && version < 5) {
6415                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
6416 
6417                 x86_pmu.fixed_cntr_mask64 =
6418                         GENMASK_ULL(max((int)edx.split.num_counters_fixed, assume) - 1, 0);
6419         } else if (version >= 5)
6420                 x86_pmu.fixed_cntr_mask64 = fixed_mask;
6421 
6422         if (boot_cpu_has(X86_FEATURE_PDCM)) {
6423                 u64 capabilities;
6424 
6425                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
6426                 x86_pmu.intel_cap.capabilities = capabilities;
6427         }
6428 
6429         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
6430                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6431                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6432         }
6433 
6434         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6435                 intel_pmu_arch_lbr_init();
6436 
6437         intel_ds_init();
6438 
6439         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6440 
6441         if (version >= 5) {
6442                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6443                 if (x86_pmu.intel_cap.anythread_deprecated)
6444                         pr_cont(" AnyThread deprecated, ");
6445         }
6446 
6447         /*
6448          * Install the hw-cache-events table:
6449          */
6450         switch (boot_cpu_data.x86_vfm) {
6451         case INTEL_CORE_YONAH:
6452                 pr_cont("Core events, ");
6453                 name = "core";
6454                 break;
6455 
6456         case INTEL_CORE2_MEROM:
6457                 x86_add_quirk(intel_clovertown_quirk);
6458                 fallthrough;
6459 
6460         case INTEL_CORE2_MEROM_L:
6461         case INTEL_CORE2_PENRYN:
6462         case INTEL_CORE2_DUNNINGTON:
6463                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6464                        sizeof(hw_cache_event_ids));
6465 
6466                 intel_pmu_lbr_init_core();
6467 
6468                 x86_pmu.event_constraints = intel_core2_event_constraints;
6469                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6470                 pr_cont("Core2 events, ");
6471                 name = "core2";
6472                 break;
6473 
6474         case INTEL_NEHALEM:
6475         case INTEL_NEHALEM_EP:
6476         case INTEL_NEHALEM_EX:
6477                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6478                        sizeof(hw_cache_event_ids));
6479                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6480                        sizeof(hw_cache_extra_regs));
6481 
6482                 intel_pmu_lbr_init_nhm();
6483 
6484                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
6485                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6486                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6487                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
6488                 x86_pmu.limit_period = nhm_limit_period;
6489 
6490                 mem_attr = nhm_mem_events_attrs;
6491 
6492                 /* UOPS_ISSUED.STALLED_CYCLES */
6493                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6494                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6495                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6496                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6497                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6498 
6499                 intel_pmu_pebs_data_source_nhm();
6500                 x86_add_quirk(intel_nehalem_quirk);
6501                 x86_pmu.pebs_no_tlb = 1;
6502                 extra_attr = nhm_format_attr;
6503 
6504                 pr_cont("Nehalem events, ");
6505                 name = "nehalem";
6506                 break;
6507 
6508         case INTEL_ATOM_BONNELL:
6509         case INTEL_ATOM_BONNELL_MID:
6510         case INTEL_ATOM_SALTWELL:
6511         case INTEL_ATOM_SALTWELL_MID:
6512         case INTEL_ATOM_SALTWELL_TABLET:
6513                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
6514                        sizeof(hw_cache_event_ids));
6515 
6516                 intel_pmu_lbr_init_atom();
6517 
6518                 x86_pmu.event_constraints = intel_gen_event_constraints;
6519                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
6520                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
6521                 pr_cont("Atom events, ");
6522                 name = "bonnell";
6523                 break;
6524 
6525         case INTEL_ATOM_SILVERMONT:
6526         case INTEL_ATOM_SILVERMONT_D:
6527         case INTEL_ATOM_SILVERMONT_MID:
6528         case INTEL_ATOM_AIRMONT:
6529         case INTEL_ATOM_AIRMONT_MID:
6530                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
6531                         sizeof(hw_cache_event_ids));
6532                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
6533                        sizeof(hw_cache_extra_regs));
6534 
6535                 intel_pmu_lbr_init_slm();
6536 
6537                 x86_pmu.event_constraints = intel_slm_event_constraints;
6538                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6539                 x86_pmu.extra_regs = intel_slm_extra_regs;
6540                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6541                 td_attr = slm_events_attrs;
6542                 extra_attr = slm_format_attr;
6543                 pr_cont("Silvermont events, ");
6544                 name = "silvermont";
6545                 break;
6546 
6547         case INTEL_ATOM_GOLDMONT:
6548         case INTEL_ATOM_GOLDMONT_D:
6549                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
6550                        sizeof(hw_cache_event_ids));
6551                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
6552                        sizeof(hw_cache_extra_regs));
6553 
6554                 intel_pmu_lbr_init_skl();
6555 
6556                 x86_pmu.event_constraints = intel_slm_event_constraints;
6557                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
6558                 x86_pmu.extra_regs = intel_glm_extra_regs;
6559                 /*
6560                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6561                  * for precise cycles.
6562                  * :pp is identical to :ppp
6563                  */
6564                 x86_pmu.pebs_aliases = NULL;
6565                 x86_pmu.pebs_prec_dist = true;
6566                 x86_pmu.lbr_pt_coexist = true;
6567                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6568                 td_attr = glm_events_attrs;
6569                 extra_attr = slm_format_attr;
6570                 pr_cont("Goldmont events, ");
6571                 name = "goldmont";
6572                 break;
6573 
6574         case INTEL_ATOM_GOLDMONT_PLUS:
6575                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6576                        sizeof(hw_cache_event_ids));
6577                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
6578                        sizeof(hw_cache_extra_regs));
6579 
6580                 intel_pmu_lbr_init_skl();
6581 
6582                 x86_pmu.event_constraints = intel_slm_event_constraints;
6583                 x86_pmu.extra_regs = intel_glm_extra_regs;
6584                 /*
6585                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6586                  * for precise cycles.
6587                  */
6588                 x86_pmu.pebs_aliases = NULL;
6589                 x86_pmu.pebs_prec_dist = true;
6590                 x86_pmu.lbr_pt_coexist = true;
6591                 x86_pmu.pebs_capable = ~0ULL;
6592                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6593                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6594                 x86_pmu.get_event_constraints = glp_get_event_constraints;
6595                 td_attr = glm_events_attrs;
6596                 /* Goldmont Plus has 4-wide pipeline */
6597                 event_attr_td_total_slots_scale_glm.event_str = "4";
6598                 extra_attr = slm_format_attr;
6599                 pr_cont("Goldmont plus events, ");
6600                 name = "goldmont_plus";
6601                 break;
6602 
6603         case INTEL_ATOM_TREMONT_D:
6604         case INTEL_ATOM_TREMONT:
6605         case INTEL_ATOM_TREMONT_L:
6606                 x86_pmu.late_ack = true;
6607                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6608                        sizeof(hw_cache_event_ids));
6609                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6610                        sizeof(hw_cache_extra_regs));
6611                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6612 
6613                 intel_pmu_lbr_init_skl();
6614 
6615                 x86_pmu.event_constraints = intel_slm_event_constraints;
6616                 x86_pmu.extra_regs = intel_tnt_extra_regs;
6617                 /*
6618                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6619                  * for precise cycles.
6620                  */
6621                 x86_pmu.pebs_aliases = NULL;
6622                 x86_pmu.pebs_prec_dist = true;
6623                 x86_pmu.lbr_pt_coexist = true;
6624                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6625                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6626                 td_attr = tnt_events_attrs;
6627                 extra_attr = slm_format_attr;
6628                 pr_cont("Tremont events, ");
6629                 name = "Tremont";
6630                 break;
6631 
6632         case INTEL_ATOM_GRACEMONT:
6633                 intel_pmu_init_grt(NULL);
6634                 intel_pmu_pebs_data_source_grt();
6635                 x86_pmu.pebs_latency_data = grt_latency_data;
6636                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6637                 td_attr = tnt_events_attrs;
6638                 mem_attr = grt_mem_attrs;
6639                 extra_attr = nhm_format_attr;
6640                 pr_cont("Gracemont events, ");
6641                 name = "gracemont";
6642                 break;
6643 
6644         case INTEL_ATOM_CRESTMONT:
6645         case INTEL_ATOM_CRESTMONT_X:
6646                 intel_pmu_init_grt(NULL);
6647                 x86_pmu.extra_regs = intel_cmt_extra_regs;
6648                 intel_pmu_pebs_data_source_cmt();
6649                 x86_pmu.pebs_latency_data = cmt_latency_data;
6650                 x86_pmu.get_event_constraints = cmt_get_event_constraints;
6651                 td_attr = cmt_events_attrs;
6652                 mem_attr = grt_mem_attrs;
6653                 extra_attr = cmt_format_attr;
6654                 pr_cont("Crestmont events, ");
6655                 name = "crestmont";
6656                 break;
6657 
6658         case INTEL_WESTMERE:
6659         case INTEL_WESTMERE_EP:
6660         case INTEL_WESTMERE_EX:
6661                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6662                        sizeof(hw_cache_event_ids));
6663                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6664                        sizeof(hw_cache_extra_regs));
6665 
6666                 intel_pmu_lbr_init_nhm();
6667 
6668                 x86_pmu.event_constraints = intel_westmere_event_constraints;
6669                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6670                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6671                 x86_pmu.extra_regs = intel_westmere_extra_regs;
6672                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6673 
6674                 mem_attr = nhm_mem_events_attrs;
6675 
6676                 /* UOPS_ISSUED.STALLED_CYCLES */
6677                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6678                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6679                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6680                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6681                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6682 
6683                 intel_pmu_pebs_data_source_nhm();
6684                 extra_attr = nhm_format_attr;
6685                 pr_cont("Westmere events, ");
6686                 name = "westmere";
6687                 break;
6688 
6689         case INTEL_SANDYBRIDGE:
6690         case INTEL_SANDYBRIDGE_X:
6691                 x86_add_quirk(intel_sandybridge_quirk);
6692                 x86_add_quirk(intel_ht_bug);
6693                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6694                        sizeof(hw_cache_event_ids));
6695                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6696                        sizeof(hw_cache_extra_regs));
6697 
6698                 intel_pmu_lbr_init_snb();
6699 
6700                 x86_pmu.event_constraints = intel_snb_event_constraints;
6701                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6702                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6703                 if (boot_cpu_data.x86_vfm == INTEL_SANDYBRIDGE_X)
6704                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6705                 else
6706                         x86_pmu.extra_regs = intel_snb_extra_regs;
6707 
6708 
6709                 /* all extra regs are per-cpu when HT is on */
6710                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6711                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6712 
6713                 td_attr  = snb_events_attrs;
6714                 mem_attr = snb_mem_events_attrs;
6715 
6716                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6717                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6718                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6719                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6720                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6721                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6722 
6723                 extra_attr = nhm_format_attr;
6724 
6725                 pr_cont("SandyBridge events, ");
6726                 name = "sandybridge";
6727                 break;
6728 
6729         case INTEL_IVYBRIDGE:
6730         case INTEL_IVYBRIDGE_X:
6731                 x86_add_quirk(intel_ht_bug);
6732                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6733                        sizeof(hw_cache_event_ids));
6734                 /* dTLB-load-misses on IVB is different than SNB */
6735                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6736 
6737                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6738                        sizeof(hw_cache_extra_regs));
6739 
6740                 intel_pmu_lbr_init_snb();
6741 
6742                 x86_pmu.event_constraints = intel_ivb_event_constraints;
6743                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6744                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6745                 x86_pmu.pebs_prec_dist = true;
6746                 if (boot_cpu_data.x86_vfm == INTEL_IVYBRIDGE_X)
6747                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6748                 else
6749                         x86_pmu.extra_regs = intel_snb_extra_regs;
6750                 /* all extra regs are per-cpu when HT is on */
6751                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6752                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6753 
6754                 td_attr  = snb_events_attrs;
6755                 mem_attr = snb_mem_events_attrs;
6756 
6757                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6758                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6759                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6760 
6761                 extra_attr = nhm_format_attr;
6762 
6763                 pr_cont("IvyBridge events, ");
6764                 name = "ivybridge";
6765                 break;
6766 
6767 
6768         case INTEL_HASWELL:
6769         case INTEL_HASWELL_X:
6770         case INTEL_HASWELL_L:
6771         case INTEL_HASWELL_G:
6772                 x86_add_quirk(intel_ht_bug);
6773                 x86_add_quirk(intel_pebs_isolation_quirk);
6774                 x86_pmu.late_ack = true;
6775                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6776                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6777 
6778                 intel_pmu_lbr_init_hsw();
6779 
6780                 x86_pmu.event_constraints = intel_hsw_event_constraints;
6781                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6782                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6783                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6784                 x86_pmu.pebs_prec_dist = true;
6785                 /* all extra regs are per-cpu when HT is on */
6786                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6787                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6788 
6789                 x86_pmu.hw_config = hsw_hw_config;
6790                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6791                 x86_pmu.limit_period = hsw_limit_period;
6792                 x86_pmu.lbr_double_abort = true;
6793                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6794                         hsw_format_attr : nhm_format_attr;
6795                 td_attr  = hsw_events_attrs;
6796                 mem_attr = hsw_mem_events_attrs;
6797                 tsx_attr = hsw_tsx_events_attrs;
6798                 pr_cont("Haswell events, ");
6799                 name = "haswell";
6800                 break;
6801 
6802         case INTEL_BROADWELL:
6803         case INTEL_BROADWELL_D:
6804         case INTEL_BROADWELL_G:
6805         case INTEL_BROADWELL_X:
6806                 x86_add_quirk(intel_pebs_isolation_quirk);
6807                 x86_pmu.late_ack = true;
6808                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6809                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6810 
6811                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6812                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6813                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
6814                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6815                                                                           HSW_SNOOP_DRAM;
6816                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6817                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6818                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6819                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6820 
6821                 intel_pmu_lbr_init_hsw();
6822 
6823                 x86_pmu.event_constraints = intel_bdw_event_constraints;
6824                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6825                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6826                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6827                 x86_pmu.pebs_prec_dist = true;
6828                 /* all extra regs are per-cpu when HT is on */
6829                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6830                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6831 
6832                 x86_pmu.hw_config = hsw_hw_config;
6833                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6834                 x86_pmu.limit_period = bdw_limit_period;
6835                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6836                         hsw_format_attr : nhm_format_attr;
6837                 td_attr  = hsw_events_attrs;
6838                 mem_attr = hsw_mem_events_attrs;
6839                 tsx_attr = hsw_tsx_events_attrs;
6840                 pr_cont("Broadwell events, ");
6841                 name = "broadwell";
6842                 break;
6843 
6844         case INTEL_XEON_PHI_KNL:
6845         case INTEL_XEON_PHI_KNM:
6846                 memcpy(hw_cache_event_ids,
6847                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6848                 memcpy(hw_cache_extra_regs,
6849                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6850                 intel_pmu_lbr_init_knl();
6851 
6852                 x86_pmu.event_constraints = intel_slm_event_constraints;
6853                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6854                 x86_pmu.extra_regs = intel_knl_extra_regs;
6855 
6856                 /* all extra regs are per-cpu when HT is on */
6857                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6858                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6859                 extra_attr = slm_format_attr;
6860                 pr_cont("Knights Landing/Mill events, ");
6861                 name = "knights-landing";
6862                 break;
6863 
6864         case INTEL_SKYLAKE_X:
6865                 pmem = true;
6866                 fallthrough;
6867         case INTEL_SKYLAKE_L:
6868         case INTEL_SKYLAKE:
6869         case INTEL_KABYLAKE_L:
6870         case INTEL_KABYLAKE:
6871         case INTEL_COMETLAKE_L:
6872         case INTEL_COMETLAKE:
6873                 x86_add_quirk(intel_pebs_isolation_quirk);
6874                 x86_pmu.late_ack = true;
6875                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6876                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6877                 intel_pmu_lbr_init_skl();
6878 
6879                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6880                 event_attr_td_recovery_bubbles.event_str_noht =
6881                         "event=0xd,umask=0x1,cmask=1";
6882                 event_attr_td_recovery_bubbles.event_str_ht =
6883                         "event=0xd,umask=0x1,cmask=1,any=1";
6884 
6885                 x86_pmu.event_constraints = intel_skl_event_constraints;
6886                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6887                 x86_pmu.extra_regs = intel_skl_extra_regs;
6888                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6889                 x86_pmu.pebs_prec_dist = true;
6890                 /* all extra regs are per-cpu when HT is on */
6891                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6892                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6893 
6894                 x86_pmu.hw_config = hsw_hw_config;
6895                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6896                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6897                         hsw_format_attr : nhm_format_attr;
6898                 extra_skl_attr = skl_format_attr;
6899                 td_attr  = hsw_events_attrs;
6900                 mem_attr = hsw_mem_events_attrs;
6901                 tsx_attr = hsw_tsx_events_attrs;
6902                 intel_pmu_pebs_data_source_skl(pmem);
6903 
6904                 /*
6905                  * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6906                  * TSX force abort hooks are not required on these systems. Only deploy
6907                  * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6908                  */
6909                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6910                    !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6911                         x86_pmu.flags |= PMU_FL_TFA;
6912                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6913                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6914                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6915                 }
6916 
6917                 pr_cont("Skylake events, ");
6918                 name = "skylake";
6919                 break;
6920 
6921         case INTEL_ICELAKE_X:
6922         case INTEL_ICELAKE_D:
6923                 x86_pmu.pebs_ept = 1;
6924                 pmem = true;
6925                 fallthrough;
6926         case INTEL_ICELAKE_L:
6927         case INTEL_ICELAKE:
6928         case INTEL_TIGERLAKE_L:
6929         case INTEL_TIGERLAKE:
6930         case INTEL_ROCKETLAKE:
6931                 x86_pmu.late_ack = true;
6932                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6933                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6934                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6935                 intel_pmu_lbr_init_skl();
6936 
6937                 x86_pmu.event_constraints = intel_icl_event_constraints;
6938                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6939                 x86_pmu.extra_regs = intel_icl_extra_regs;
6940                 x86_pmu.pebs_aliases = NULL;
6941                 x86_pmu.pebs_prec_dist = true;
6942                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6943                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6944 
6945                 x86_pmu.hw_config = hsw_hw_config;
6946                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6947                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6948                         hsw_format_attr : nhm_format_attr;
6949                 extra_skl_attr = skl_format_attr;
6950                 mem_attr = icl_events_attrs;
6951                 td_attr = icl_td_events_attrs;
6952                 tsx_attr = icl_tsx_events_attrs;
6953                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6954                 x86_pmu.lbr_pt_coexist = true;
6955                 intel_pmu_pebs_data_source_skl(pmem);
6956                 x86_pmu.num_topdown_events = 4;
6957                 static_call_update(intel_pmu_update_topdown_event,
6958                                    &icl_update_topdown_event);
6959                 static_call_update(intel_pmu_set_topdown_event_period,
6960                                    &icl_set_topdown_event_period);
6961                 pr_cont("Icelake events, ");
6962                 name = "icelake";
6963                 break;
6964 
6965         case INTEL_SAPPHIRERAPIDS_X:
6966         case INTEL_EMERALDRAPIDS_X:
6967                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6968                 x86_pmu.extra_regs = intel_glc_extra_regs;
6969                 pr_cont("Sapphire Rapids events, ");
6970                 name = "sapphire_rapids";
6971                 goto glc_common;
6972 
6973         case INTEL_GRANITERAPIDS_X:
6974         case INTEL_GRANITERAPIDS_D:
6975                 x86_pmu.extra_regs = intel_rwc_extra_regs;
6976                 pr_cont("Granite Rapids events, ");
6977                 name = "granite_rapids";
6978 
6979         glc_common:
6980                 intel_pmu_init_glc(NULL);
6981                 x86_pmu.pebs_ept = 1;
6982                 x86_pmu.hw_config = hsw_hw_config;
6983                 x86_pmu.get_event_constraints = glc_get_event_constraints;
6984                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6985                         hsw_format_attr : nhm_format_attr;
6986                 extra_skl_attr = skl_format_attr;
6987                 mem_attr = glc_events_attrs;
6988                 td_attr = glc_td_events_attrs;
6989                 tsx_attr = glc_tsx_events_attrs;
6990                 intel_pmu_pebs_data_source_skl(true);
6991                 break;
6992 
6993         case INTEL_ALDERLAKE:
6994         case INTEL_ALDERLAKE_L:
6995         case INTEL_RAPTORLAKE:
6996         case INTEL_RAPTORLAKE_P:
6997         case INTEL_RAPTORLAKE_S:
6998                 /*
6999                  * Alder Lake has 2 types of CPU, core and atom.
7000                  *
7001                  * Initialize the common PerfMon capabilities here.
7002                  */
7003                 intel_pmu_init_hybrid(hybrid_big_small);
7004 
7005                 x86_pmu.pebs_latency_data = grt_latency_data;
7006                 x86_pmu.get_event_constraints = adl_get_event_constraints;
7007                 x86_pmu.hw_config = adl_hw_config;
7008                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
7009 
7010                 td_attr = adl_hybrid_events_attrs;
7011                 mem_attr = adl_hybrid_mem_attrs;
7012                 tsx_attr = adl_hybrid_tsx_attrs;
7013                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7014                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
7015 
7016                 /* Initialize big core specific PerfMon capabilities.*/
7017                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7018                 intel_pmu_init_glc(&pmu->pmu);
7019                 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
7020                         pmu->cntr_mask64 <<= 2;
7021                         pmu->cntr_mask64 |= 0x3;
7022                         pmu->fixed_cntr_mask64 <<= 1;
7023                         pmu->fixed_cntr_mask64 |= 0x1;
7024                 } else {
7025                         pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7026                         pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7027                 }
7028 
7029                 /*
7030                  * Quirk: For some Alder Lake machine, when all E-cores are disabled in
7031                  * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
7032                  * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
7033                  * mistakenly add extra counters for P-cores. Correct the number of
7034                  * counters here.
7035                  */
7036                 if ((x86_pmu_num_counters(&pmu->pmu) > 8) || (x86_pmu_num_counters_fixed(&pmu->pmu) > 4)) {
7037                         pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7038                         pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7039                 }
7040 
7041                 pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
7042                 pmu->unconstrained = (struct event_constraint)
7043                                      __EVENT_CONSTRAINT(0, pmu->cntr_mask64,
7044                                      0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
7045 
7046                 pmu->extra_regs = intel_glc_extra_regs;
7047 
7048                 /* Initialize Atom core specific PerfMon capabilities.*/
7049                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7050                 intel_pmu_init_grt(&pmu->pmu);
7051 
7052                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
7053                 intel_pmu_pebs_data_source_adl();
7054                 pr_cont("Alderlake Hybrid events, ");
7055                 name = "alderlake_hybrid";
7056                 break;
7057 
7058         case INTEL_METEORLAKE:
7059         case INTEL_METEORLAKE_L:
7060                 intel_pmu_init_hybrid(hybrid_big_small);
7061 
7062                 x86_pmu.pebs_latency_data = cmt_latency_data;
7063                 x86_pmu.get_event_constraints = mtl_get_event_constraints;
7064                 x86_pmu.hw_config = adl_hw_config;
7065 
7066                 td_attr = adl_hybrid_events_attrs;
7067                 mem_attr = mtl_hybrid_mem_attrs;
7068                 tsx_attr = adl_hybrid_tsx_attrs;
7069                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7070                         mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7071 
7072                 /* Initialize big core specific PerfMon capabilities.*/
7073                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7074                 intel_pmu_init_glc(&pmu->pmu);
7075                 pmu->extra_regs = intel_rwc_extra_regs;
7076 
7077                 /* Initialize Atom core specific PerfMon capabilities.*/
7078                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7079                 intel_pmu_init_grt(&pmu->pmu);
7080                 pmu->extra_regs = intel_cmt_extra_regs;
7081 
7082                 intel_pmu_pebs_data_source_mtl();
7083                 pr_cont("Meteorlake Hybrid events, ");
7084                 name = "meteorlake_hybrid";
7085                 break;
7086 
7087         case INTEL_LUNARLAKE_M:
7088         case INTEL_ARROWLAKE:
7089                 intel_pmu_init_hybrid(hybrid_big_small);
7090 
7091                 x86_pmu.pebs_latency_data = lnl_latency_data;
7092                 x86_pmu.get_event_constraints = mtl_get_event_constraints;
7093                 x86_pmu.hw_config = adl_hw_config;
7094 
7095                 td_attr = lnl_hybrid_events_attrs;
7096                 mem_attr = mtl_hybrid_mem_attrs;
7097                 tsx_attr = adl_hybrid_tsx_attrs;
7098                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7099                         mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7100 
7101                 /* Initialize big core specific PerfMon capabilities.*/
7102                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7103                 intel_pmu_init_lnc(&pmu->pmu);
7104 
7105                 /* Initialize Atom core specific PerfMon capabilities.*/
7106                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7107                 intel_pmu_init_skt(&pmu->pmu);
7108 
7109                 intel_pmu_pebs_data_source_lnl();
7110                 pr_cont("Lunarlake Hybrid events, ");
7111                 name = "lunarlake_hybrid";
7112                 break;
7113 
7114         default:
7115                 switch (x86_pmu.version) {
7116                 case 1:
7117                         x86_pmu.event_constraints = intel_v1_event_constraints;
7118                         pr_cont("generic architected perfmon v1, ");
7119                         name = "generic_arch_v1";
7120                         break;
7121                 case 2:
7122                 case 3:
7123                 case 4:
7124                         /*
7125                          * default constraints for v2 and up
7126                          */
7127                         x86_pmu.event_constraints = intel_gen_event_constraints;
7128                         pr_cont("generic architected perfmon, ");
7129                         name = "generic_arch_v2+";
7130                         break;
7131                 default:
7132                         /*
7133                          * The default constraints for v5 and up can support up to
7134                          * 16 fixed counters. For the fixed counters 4 and later,
7135                          * the pseudo-encoding is applied.
7136                          * The constraints may be cut according to the CPUID enumeration
7137                          * by inserting the EVENT_CONSTRAINT_END.
7138                          */
7139                         if (fls64(x86_pmu.fixed_cntr_mask64) > INTEL_PMC_MAX_FIXED)
7140                                 x86_pmu.fixed_cntr_mask64 &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
7141                         intel_v5_gen_event_constraints[fls64(x86_pmu.fixed_cntr_mask64)].weight = -1;
7142                         x86_pmu.event_constraints = intel_v5_gen_event_constraints;
7143                         pr_cont("generic architected perfmon, ");
7144                         name = "generic_arch_v5+";
7145                         break;
7146                 }
7147         }
7148 
7149         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
7150 
7151         if (!is_hybrid()) {
7152                 group_events_td.attrs  = td_attr;
7153                 group_events_mem.attrs = mem_attr;
7154                 group_events_tsx.attrs = tsx_attr;
7155                 group_format_extra.attrs = extra_attr;
7156                 group_format_extra_skl.attrs = extra_skl_attr;
7157 
7158                 x86_pmu.attr_update = attr_update;
7159         } else {
7160                 hybrid_group_events_td.attrs  = td_attr;
7161                 hybrid_group_events_mem.attrs = mem_attr;
7162                 hybrid_group_events_tsx.attrs = tsx_attr;
7163                 hybrid_group_format_extra.attrs = extra_attr;
7164 
7165                 x86_pmu.attr_update = hybrid_attr_update;
7166         }
7167 
7168         intel_pmu_check_counters_mask(&x86_pmu.cntr_mask64,
7169                                       &x86_pmu.fixed_cntr_mask64,
7170                                       &x86_pmu.intel_ctrl);
7171 
7172         /* AnyThread may be deprecated on arch perfmon v5 or later */
7173         if (x86_pmu.intel_cap.anythread_deprecated)
7174                 x86_pmu.format_attrs = intel_arch_formats_attr;
7175 
7176         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
7177                                           x86_pmu.cntr_mask64,
7178                                           x86_pmu.fixed_cntr_mask64,
7179                                           x86_pmu.intel_ctrl);
7180         /*
7181          * Access LBR MSR may cause #GP under certain circumstances.
7182          * Check all LBR MSR here.
7183          * Disable LBR access if any LBR MSRs can not be accessed.
7184          */
7185         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
7186                 x86_pmu.lbr_nr = 0;
7187         for (i = 0; i < x86_pmu.lbr_nr; i++) {
7188                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
7189                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
7190                         x86_pmu.lbr_nr = 0;
7191         }
7192 
7193         if (x86_pmu.lbr_nr) {
7194                 intel_pmu_lbr_init();
7195 
7196                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
7197 
7198                 /* only support branch_stack snapshot for perfmon >= v2 */
7199                 if (x86_pmu.disable_all == intel_pmu_disable_all) {
7200                         if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
7201                                 static_call_update(perf_snapshot_branch_stack,
7202                                                    intel_pmu_snapshot_arch_branch_stack);
7203                         } else {
7204                                 static_call_update(perf_snapshot_branch_stack,
7205                                                    intel_pmu_snapshot_branch_stack);
7206                         }
7207                 }
7208         }
7209 
7210         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
7211 
7212         /* Support full width counters using alternative MSR range */
7213         if (x86_pmu.intel_cap.full_width_write) {
7214                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
7215                 x86_pmu.perfctr = MSR_IA32_PMC0;
7216                 pr_cont("full-width counters, ");
7217         }
7218 
7219         /* Support V6+ MSR Aliasing */
7220         if (x86_pmu.version >= 6) {
7221                 x86_pmu.perfctr = MSR_IA32_PMC_V6_GP0_CTR;
7222                 x86_pmu.eventsel = MSR_IA32_PMC_V6_GP0_CFG_A;
7223                 x86_pmu.fixedctr = MSR_IA32_PMC_V6_FX0_CTR;
7224                 x86_pmu.addr_offset = intel_pmu_v6_addr_offset;
7225         }
7226 
7227         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
7228                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
7229 
7230         if (x86_pmu.intel_cap.pebs_timing_info)
7231                 x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
7232 
7233         intel_aux_output_init();
7234 
7235         return 0;
7236 }
7237 
7238 /*
7239  * HT bug: phase 2 init
7240  * Called once we have valid topology information to check
7241  * whether or not HT is enabled
7242  * If HT is off, then we disable the workaround
7243  */
7244 static __init int fixup_ht_bug(void)
7245 {
7246         int c;
7247         /*
7248          * problem not present on this CPU model, nothing to do
7249          */
7250         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
7251                 return 0;
7252 
7253         if (topology_max_smt_threads() > 1) {
7254                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
7255                 return 0;
7256         }
7257 
7258         cpus_read_lock();
7259 
7260         hardlockup_detector_perf_stop();
7261 
7262         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
7263 
7264         x86_pmu.start_scheduling = NULL;
7265         x86_pmu.commit_scheduling = NULL;
7266         x86_pmu.stop_scheduling = NULL;
7267 
7268         hardlockup_detector_perf_restart();
7269 
7270         for_each_online_cpu(c)
7271                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
7272 
7273         cpus_read_unlock();
7274         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
7275         return 0;
7276 }
7277 subsys_initcall(fixup_ht_bug)
7278 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php