~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/events/intel/ds.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #include <linux/bitops.h>
  3 #include <linux/types.h>
  4 #include <linux/slab.h>
  5 #include <linux/sched/clock.h>
  6 
  7 #include <asm/cpu_entry_area.h>
  8 #include <asm/debugreg.h>
  9 #include <asm/perf_event.h>
 10 #include <asm/tlbflush.h>
 11 #include <asm/insn.h>
 12 #include <asm/io.h>
 13 #include <asm/timer.h>
 14 
 15 #include "../perf_event.h"
 16 
 17 /* Waste a full page so it can be mapped into the cpu_entry_area */
 18 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
 19 
 20 /* The size of a BTS record in bytes: */
 21 #define BTS_RECORD_SIZE         24
 22 
 23 #define PEBS_FIXUP_SIZE         PAGE_SIZE
 24 
 25 /*
 26  * pebs_record_32 for p4 and core not supported
 27 
 28 struct pebs_record_32 {
 29         u32 flags, ip;
 30         u32 ax, bc, cx, dx;
 31         u32 si, di, bp, sp;
 32 };
 33 
 34  */
 35 
 36 union intel_x86_pebs_dse {
 37         u64 val;
 38         struct {
 39                 unsigned int ld_dse:4;
 40                 unsigned int ld_stlb_miss:1;
 41                 unsigned int ld_locked:1;
 42                 unsigned int ld_data_blk:1;
 43                 unsigned int ld_addr_blk:1;
 44                 unsigned int ld_reserved:24;
 45         };
 46         struct {
 47                 unsigned int st_l1d_hit:1;
 48                 unsigned int st_reserved1:3;
 49                 unsigned int st_stlb_miss:1;
 50                 unsigned int st_locked:1;
 51                 unsigned int st_reserved2:26;
 52         };
 53         struct {
 54                 unsigned int st_lat_dse:4;
 55                 unsigned int st_lat_stlb_miss:1;
 56                 unsigned int st_lat_locked:1;
 57                 unsigned int ld_reserved3:26;
 58         };
 59         struct {
 60                 unsigned int mtl_dse:5;
 61                 unsigned int mtl_locked:1;
 62                 unsigned int mtl_stlb_miss:1;
 63                 unsigned int mtl_fwd_blk:1;
 64                 unsigned int ld_reserved4:24;
 65         };
 66         struct {
 67                 unsigned int lnc_dse:8;
 68                 unsigned int ld_reserved5:2;
 69                 unsigned int lnc_stlb_miss:1;
 70                 unsigned int lnc_locked:1;
 71                 unsigned int lnc_data_blk:1;
 72                 unsigned int lnc_addr_blk:1;
 73                 unsigned int ld_reserved6:18;
 74         };
 75 };
 76 
 77 
 78 /*
 79  * Map PEBS Load Latency Data Source encodings to generic
 80  * memory data source information
 81  */
 82 #define P(a, b) PERF_MEM_S(a, b)
 83 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
 84 #define LEVEL(x) P(LVLNUM, x)
 85 #define REM P(REMOTE, REMOTE)
 86 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
 87 
 88 /* Version for Sandy Bridge and later */
 89 static u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
 90         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
 91         OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
 92         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
 93         OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
 94         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
 95         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
 96         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
 97         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
 98         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
 99         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
100         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
101         OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
102         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
103         OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
104         OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
105         OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
106 };
107 
108 /* Patch up minor differences in the bits */
109 void __init intel_pmu_pebs_data_source_nhm(void)
110 {
111         pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
112         pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
113         pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
114 }
115 
116 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
117 {
118         u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
119 
120         data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
121         data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
122         data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
123         data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
124         data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
125 }
126 
127 void __init intel_pmu_pebs_data_source_skl(bool pmem)
128 {
129         __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
130 }
131 
132 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
133 {
134         data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
135         data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
136         data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
137 }
138 
139 void __init intel_pmu_pebs_data_source_grt(void)
140 {
141         __intel_pmu_pebs_data_source_grt(pebs_data_source);
142 }
143 
144 void __init intel_pmu_pebs_data_source_adl(void)
145 {
146         u64 *data_source;
147 
148         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
149         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
150         __intel_pmu_pebs_data_source_skl(false, data_source);
151 
152         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
153         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
154         __intel_pmu_pebs_data_source_grt(data_source);
155 }
156 
157 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
158 {
159         data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
160         data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
161         data_source[0x0a] = OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE);
162         data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
163         data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
164         data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
165 }
166 
167 void __init intel_pmu_pebs_data_source_mtl(void)
168 {
169         u64 *data_source;
170 
171         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
172         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
173         __intel_pmu_pebs_data_source_skl(false, data_source);
174 
175         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
176         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
177         __intel_pmu_pebs_data_source_cmt(data_source);
178 }
179 
180 void __init intel_pmu_pebs_data_source_cmt(void)
181 {
182         __intel_pmu_pebs_data_source_cmt(pebs_data_source);
183 }
184 
185 /* Version for Lion Cove and later */
186 static u64 lnc_pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
187         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),  /* 0x00: ukn L3 */
188         OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),       /* 0x01: L1 hit */
189         OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),       /* 0x02: L1 hit */
190         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE),      /* 0x03: LFB/L1 Miss Handling Buffer hit */
191         0,                                                      /* 0x04: Reserved */
192         OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),       /* 0x05: L2 Hit */
193         OP_LH | LEVEL(L2_MHB) | P(SNOOP, NONE),                 /* 0x06: L2 Miss Handling Buffer Hit */
194         0,                                                      /* 0x07: Reserved */
195         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),       /* 0x08: L3 Hit */
196         0,                                                      /* 0x09: Reserved */
197         0,                                                      /* 0x0a: Reserved */
198         0,                                                      /* 0x0b: Reserved */
199         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOPX, FWD),       /* 0x0c: L3 Hit Snoop Fwd */
200         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),       /* 0x0d: L3 Hit Snoop HitM */
201         0,                                                      /* 0x0e: Reserved */
202         P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x0f: L3 Miss Snoop HitM */
203         OP_LH | LEVEL(MSC) | P(SNOOP, NONE),                    /* 0x10: Memory-side Cache Hit */
204         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE), /* 0x11: Local Memory Hit */
205 };
206 
207 void __init intel_pmu_pebs_data_source_lnl(void)
208 {
209         u64 *data_source;
210 
211         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
212         memcpy(data_source, lnc_pebs_data_source, sizeof(lnc_pebs_data_source));
213 
214         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
215         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
216         __intel_pmu_pebs_data_source_cmt(data_source);
217 }
218 
219 static u64 precise_store_data(u64 status)
220 {
221         union intel_x86_pebs_dse dse;
222         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
223 
224         dse.val = status;
225 
226         /*
227          * bit 4: TLB access
228          * 1 = stored missed 2nd level TLB
229          *
230          * so it either hit the walker or the OS
231          * otherwise hit 2nd level TLB
232          */
233         if (dse.st_stlb_miss)
234                 val |= P(TLB, MISS);
235         else
236                 val |= P(TLB, HIT);
237 
238         /*
239          * bit 0: hit L1 data cache
240          * if not set, then all we know is that
241          * it missed L1D
242          */
243         if (dse.st_l1d_hit)
244                 val |= P(LVL, HIT);
245         else
246                 val |= P(LVL, MISS);
247 
248         /*
249          * bit 5: Locked prefix
250          */
251         if (dse.st_locked)
252                 val |= P(LOCK, LOCKED);
253 
254         return val;
255 }
256 
257 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
258 {
259         union perf_mem_data_src dse;
260 
261         dse.val = PERF_MEM_NA;
262 
263         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
264                 dse.mem_op = PERF_MEM_OP_STORE;
265         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
266                 dse.mem_op = PERF_MEM_OP_LOAD;
267 
268         /*
269          * L1 info only valid for following events:
270          *
271          * MEM_UOPS_RETIRED.STLB_MISS_STORES
272          * MEM_UOPS_RETIRED.LOCK_STORES
273          * MEM_UOPS_RETIRED.SPLIT_STORES
274          * MEM_UOPS_RETIRED.ALL_STORES
275          */
276         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
277                 if (status & 1)
278                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
279                 else
280                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
281         }
282         return dse.val;
283 }
284 
285 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
286 {
287         /*
288          * TLB access
289          * 0 = did not miss 2nd level TLB
290          * 1 = missed 2nd level TLB
291          */
292         if (tlb)
293                 *val |= P(TLB, MISS) | P(TLB, L2);
294         else
295                 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
296 
297         /* locked prefix */
298         if (lock)
299                 *val |= P(LOCK, LOCKED);
300 }
301 
302 /* Retrieve the latency data for e-core of ADL */
303 static u64 __grt_latency_data(struct perf_event *event, u64 status,
304                                u8 dse, bool tlb, bool lock, bool blk)
305 {
306         u64 val;
307 
308         WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big);
309 
310         dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK;
311         val = hybrid_var(event->pmu, pebs_data_source)[dse];
312 
313         pebs_set_tlb_lock(&val, tlb, lock);
314 
315         if (blk)
316                 val |= P(BLK, DATA);
317         else
318                 val |= P(BLK, NA);
319 
320         return val;
321 }
322 
323 u64 grt_latency_data(struct perf_event *event, u64 status)
324 {
325         union intel_x86_pebs_dse dse;
326 
327         dse.val = status;
328 
329         return __grt_latency_data(event, status, dse.ld_dse,
330                                   dse.ld_locked, dse.ld_stlb_miss,
331                                   dse.ld_data_blk);
332 }
333 
334 /* Retrieve the latency data for e-core of MTL */
335 u64 cmt_latency_data(struct perf_event *event, u64 status)
336 {
337         union intel_x86_pebs_dse dse;
338 
339         dse.val = status;
340 
341         return __grt_latency_data(event, status, dse.mtl_dse,
342                                   dse.mtl_stlb_miss, dse.mtl_locked,
343                                   dse.mtl_fwd_blk);
344 }
345 
346 static u64 lnc_latency_data(struct perf_event *event, u64 status)
347 {
348         union intel_x86_pebs_dse dse;
349         union perf_mem_data_src src;
350         u64 val;
351 
352         dse.val = status;
353 
354         /* LNC core latency data */
355         val = hybrid_var(event->pmu, pebs_data_source)[status & PERF_PEBS_DATA_SOURCE_MASK];
356         if (!val)
357                 val = P(OP, LOAD) | LEVEL(NA) | P(SNOOP, NA);
358 
359         if (dse.lnc_stlb_miss)
360                 val |= P(TLB, MISS) | P(TLB, L2);
361         else
362                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
363 
364         if (dse.lnc_locked)
365                 val |= P(LOCK, LOCKED);
366 
367         if (dse.lnc_data_blk)
368                 val |= P(BLK, DATA);
369         if (dse.lnc_addr_blk)
370                 val |= P(BLK, ADDR);
371         if (!dse.lnc_data_blk && !dse.lnc_addr_blk)
372                 val |= P(BLK, NA);
373 
374         src.val = val;
375         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
376                 src.mem_op = P(OP, STORE);
377 
378         return src.val;
379 }
380 
381 u64 lnl_latency_data(struct perf_event *event, u64 status)
382 {
383         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
384 
385         if (pmu->pmu_type == hybrid_small)
386                 return cmt_latency_data(event, status);
387 
388         return lnc_latency_data(event, status);
389 }
390 
391 static u64 load_latency_data(struct perf_event *event, u64 status)
392 {
393         union intel_x86_pebs_dse dse;
394         u64 val;
395 
396         dse.val = status;
397 
398         /*
399          * use the mapping table for bit 0-3
400          */
401         val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
402 
403         /*
404          * Nehalem models do not support TLB, Lock infos
405          */
406         if (x86_pmu.pebs_no_tlb) {
407                 val |= P(TLB, NA) | P(LOCK, NA);
408                 return val;
409         }
410 
411         pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
412 
413         /*
414          * Ice Lake and earlier models do not support block infos.
415          */
416         if (!x86_pmu.pebs_block) {
417                 val |= P(BLK, NA);
418                 return val;
419         }
420         /*
421          * bit 6: load was blocked since its data could not be forwarded
422          *        from a preceding store
423          */
424         if (dse.ld_data_blk)
425                 val |= P(BLK, DATA);
426 
427         /*
428          * bit 7: load was blocked due to potential address conflict with
429          *        a preceding store
430          */
431         if (dse.ld_addr_blk)
432                 val |= P(BLK, ADDR);
433 
434         if (!dse.ld_data_blk && !dse.ld_addr_blk)
435                 val |= P(BLK, NA);
436 
437         return val;
438 }
439 
440 static u64 store_latency_data(struct perf_event *event, u64 status)
441 {
442         union intel_x86_pebs_dse dse;
443         union perf_mem_data_src src;
444         u64 val;
445 
446         dse.val = status;
447 
448         /*
449          * use the mapping table for bit 0-3
450          */
451         val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
452 
453         pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
454 
455         val |= P(BLK, NA);
456 
457         /*
458          * the pebs_data_source table is only for loads
459          * so override the mem_op to say STORE instead
460          */
461         src.val = val;
462         src.mem_op = P(OP,STORE);
463 
464         return src.val;
465 }
466 
467 struct pebs_record_core {
468         u64 flags, ip;
469         u64 ax, bx, cx, dx;
470         u64 si, di, bp, sp;
471         u64 r8,  r9,  r10, r11;
472         u64 r12, r13, r14, r15;
473 };
474 
475 struct pebs_record_nhm {
476         u64 flags, ip;
477         u64 ax, bx, cx, dx;
478         u64 si, di, bp, sp;
479         u64 r8,  r9,  r10, r11;
480         u64 r12, r13, r14, r15;
481         u64 status, dla, dse, lat;
482 };
483 
484 /*
485  * Same as pebs_record_nhm, with two additional fields.
486  */
487 struct pebs_record_hsw {
488         u64 flags, ip;
489         u64 ax, bx, cx, dx;
490         u64 si, di, bp, sp;
491         u64 r8,  r9,  r10, r11;
492         u64 r12, r13, r14, r15;
493         u64 status, dla, dse, lat;
494         u64 real_ip, tsx_tuning;
495 };
496 
497 union hsw_tsx_tuning {
498         struct {
499                 u32 cycles_last_block     : 32,
500                     hle_abort             : 1,
501                     rtm_abort             : 1,
502                     instruction_abort     : 1,
503                     non_instruction_abort : 1,
504                     retry                 : 1,
505                     data_conflict         : 1,
506                     capacity_writes       : 1,
507                     capacity_reads        : 1;
508         };
509         u64         value;
510 };
511 
512 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
513 
514 /* Same as HSW, plus TSC */
515 
516 struct pebs_record_skl {
517         u64 flags, ip;
518         u64 ax, bx, cx, dx;
519         u64 si, di, bp, sp;
520         u64 r8,  r9,  r10, r11;
521         u64 r12, r13, r14, r15;
522         u64 status, dla, dse, lat;
523         u64 real_ip, tsx_tuning;
524         u64 tsc;
525 };
526 
527 void init_debug_store_on_cpu(int cpu)
528 {
529         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
530 
531         if (!ds)
532                 return;
533 
534         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
535                      (u32)((u64)(unsigned long)ds),
536                      (u32)((u64)(unsigned long)ds >> 32));
537 }
538 
539 void fini_debug_store_on_cpu(int cpu)
540 {
541         if (!per_cpu(cpu_hw_events, cpu).ds)
542                 return;
543 
544         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
545 }
546 
547 static DEFINE_PER_CPU(void *, insn_buffer);
548 
549 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
550 {
551         unsigned long start = (unsigned long)cea;
552         phys_addr_t pa;
553         size_t msz = 0;
554 
555         pa = virt_to_phys(addr);
556 
557         preempt_disable();
558         for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
559                 cea_set_pte(cea, pa, prot);
560 
561         /*
562          * This is a cross-CPU update of the cpu_entry_area, we must shoot down
563          * all TLB entries for it.
564          */
565         flush_tlb_kernel_range(start, start + size);
566         preempt_enable();
567 }
568 
569 static void ds_clear_cea(void *cea, size_t size)
570 {
571         unsigned long start = (unsigned long)cea;
572         size_t msz = 0;
573 
574         preempt_disable();
575         for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
576                 cea_set_pte(cea, 0, PAGE_NONE);
577 
578         flush_tlb_kernel_range(start, start + size);
579         preempt_enable();
580 }
581 
582 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
583 {
584         unsigned int order = get_order(size);
585         int node = cpu_to_node(cpu);
586         struct page *page;
587 
588         page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
589         return page ? page_address(page) : NULL;
590 }
591 
592 static void dsfree_pages(const void *buffer, size_t size)
593 {
594         if (buffer)
595                 free_pages((unsigned long)buffer, get_order(size));
596 }
597 
598 static int alloc_pebs_buffer(int cpu)
599 {
600         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
601         struct debug_store *ds = hwev->ds;
602         size_t bsiz = x86_pmu.pebs_buffer_size;
603         int max, node = cpu_to_node(cpu);
604         void *buffer, *insn_buff, *cea;
605 
606         if (!x86_pmu.pebs)
607                 return 0;
608 
609         buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
610         if (unlikely(!buffer))
611                 return -ENOMEM;
612 
613         /*
614          * HSW+ already provides us the eventing ip; no need to allocate this
615          * buffer then.
616          */
617         if (x86_pmu.intel_cap.pebs_format < 2) {
618                 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
619                 if (!insn_buff) {
620                         dsfree_pages(buffer, bsiz);
621                         return -ENOMEM;
622                 }
623                 per_cpu(insn_buffer, cpu) = insn_buff;
624         }
625         hwev->ds_pebs_vaddr = buffer;
626         /* Update the cpu entry area mapping */
627         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
628         ds->pebs_buffer_base = (unsigned long) cea;
629         ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
630         ds->pebs_index = ds->pebs_buffer_base;
631         max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
632         ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
633         return 0;
634 }
635 
636 static void release_pebs_buffer(int cpu)
637 {
638         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
639         void *cea;
640 
641         if (!x86_pmu.pebs)
642                 return;
643 
644         kfree(per_cpu(insn_buffer, cpu));
645         per_cpu(insn_buffer, cpu) = NULL;
646 
647         /* Clear the fixmap */
648         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
649         ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
650         dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
651         hwev->ds_pebs_vaddr = NULL;
652 }
653 
654 static int alloc_bts_buffer(int cpu)
655 {
656         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
657         struct debug_store *ds = hwev->ds;
658         void *buffer, *cea;
659         int max;
660 
661         if (!x86_pmu.bts)
662                 return 0;
663 
664         buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
665         if (unlikely(!buffer)) {
666                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
667                 return -ENOMEM;
668         }
669         hwev->ds_bts_vaddr = buffer;
670         /* Update the fixmap */
671         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
672         ds->bts_buffer_base = (unsigned long) cea;
673         ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
674         ds->bts_index = ds->bts_buffer_base;
675         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
676         ds->bts_absolute_maximum = ds->bts_buffer_base +
677                                         max * BTS_RECORD_SIZE;
678         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
679                                         (max / 16) * BTS_RECORD_SIZE;
680         return 0;
681 }
682 
683 static void release_bts_buffer(int cpu)
684 {
685         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
686         void *cea;
687 
688         if (!x86_pmu.bts)
689                 return;
690 
691         /* Clear the fixmap */
692         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
693         ds_clear_cea(cea, BTS_BUFFER_SIZE);
694         dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
695         hwev->ds_bts_vaddr = NULL;
696 }
697 
698 static int alloc_ds_buffer(int cpu)
699 {
700         struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
701 
702         memset(ds, 0, sizeof(*ds));
703         per_cpu(cpu_hw_events, cpu).ds = ds;
704         return 0;
705 }
706 
707 static void release_ds_buffer(int cpu)
708 {
709         per_cpu(cpu_hw_events, cpu).ds = NULL;
710 }
711 
712 void release_ds_buffers(void)
713 {
714         int cpu;
715 
716         if (!x86_pmu.bts && !x86_pmu.pebs)
717                 return;
718 
719         for_each_possible_cpu(cpu)
720                 release_ds_buffer(cpu);
721 
722         for_each_possible_cpu(cpu) {
723                 /*
724                  * Again, ignore errors from offline CPUs, they will no longer
725                  * observe cpu_hw_events.ds and not program the DS_AREA when
726                  * they come up.
727                  */
728                 fini_debug_store_on_cpu(cpu);
729         }
730 
731         for_each_possible_cpu(cpu) {
732                 release_pebs_buffer(cpu);
733                 release_bts_buffer(cpu);
734         }
735 }
736 
737 void reserve_ds_buffers(void)
738 {
739         int bts_err = 0, pebs_err = 0;
740         int cpu;
741 
742         x86_pmu.bts_active = 0;
743         x86_pmu.pebs_active = 0;
744 
745         if (!x86_pmu.bts && !x86_pmu.pebs)
746                 return;
747 
748         if (!x86_pmu.bts)
749                 bts_err = 1;
750 
751         if (!x86_pmu.pebs)
752                 pebs_err = 1;
753 
754         for_each_possible_cpu(cpu) {
755                 if (alloc_ds_buffer(cpu)) {
756                         bts_err = 1;
757                         pebs_err = 1;
758                 }
759 
760                 if (!bts_err && alloc_bts_buffer(cpu))
761                         bts_err = 1;
762 
763                 if (!pebs_err && alloc_pebs_buffer(cpu))
764                         pebs_err = 1;
765 
766                 if (bts_err && pebs_err)
767                         break;
768         }
769 
770         if (bts_err) {
771                 for_each_possible_cpu(cpu)
772                         release_bts_buffer(cpu);
773         }
774 
775         if (pebs_err) {
776                 for_each_possible_cpu(cpu)
777                         release_pebs_buffer(cpu);
778         }
779 
780         if (bts_err && pebs_err) {
781                 for_each_possible_cpu(cpu)
782                         release_ds_buffer(cpu);
783         } else {
784                 if (x86_pmu.bts && !bts_err)
785                         x86_pmu.bts_active = 1;
786 
787                 if (x86_pmu.pebs && !pebs_err)
788                         x86_pmu.pebs_active = 1;
789 
790                 for_each_possible_cpu(cpu) {
791                         /*
792                          * Ignores wrmsr_on_cpu() errors for offline CPUs they
793                          * will get this call through intel_pmu_cpu_starting().
794                          */
795                         init_debug_store_on_cpu(cpu);
796                 }
797         }
798 }
799 
800 /*
801  * BTS
802  */
803 
804 struct event_constraint bts_constraint =
805         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
806 
807 void intel_pmu_enable_bts(u64 config)
808 {
809         unsigned long debugctlmsr;
810 
811         debugctlmsr = get_debugctlmsr();
812 
813         debugctlmsr |= DEBUGCTLMSR_TR;
814         debugctlmsr |= DEBUGCTLMSR_BTS;
815         if (config & ARCH_PERFMON_EVENTSEL_INT)
816                 debugctlmsr |= DEBUGCTLMSR_BTINT;
817 
818         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
819                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
820 
821         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
822                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
823 
824         update_debugctlmsr(debugctlmsr);
825 }
826 
827 void intel_pmu_disable_bts(void)
828 {
829         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
830         unsigned long debugctlmsr;
831 
832         if (!cpuc->ds)
833                 return;
834 
835         debugctlmsr = get_debugctlmsr();
836 
837         debugctlmsr &=
838                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
839                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
840 
841         update_debugctlmsr(debugctlmsr);
842 }
843 
844 int intel_pmu_drain_bts_buffer(void)
845 {
846         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
847         struct debug_store *ds = cpuc->ds;
848         struct bts_record {
849                 u64     from;
850                 u64     to;
851                 u64     flags;
852         };
853         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
854         struct bts_record *at, *base, *top;
855         struct perf_output_handle handle;
856         struct perf_event_header header;
857         struct perf_sample_data data;
858         unsigned long skip = 0;
859         struct pt_regs regs;
860 
861         if (!event)
862                 return 0;
863 
864         if (!x86_pmu.bts_active)
865                 return 0;
866 
867         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
868         top  = (struct bts_record *)(unsigned long)ds->bts_index;
869 
870         if (top <= base)
871                 return 0;
872 
873         memset(&regs, 0, sizeof(regs));
874 
875         ds->bts_index = ds->bts_buffer_base;
876 
877         perf_sample_data_init(&data, 0, event->hw.last_period);
878 
879         /*
880          * BTS leaks kernel addresses in branches across the cpl boundary,
881          * such as traps or system calls, so unless the user is asking for
882          * kernel tracing (and right now it's not possible), we'd need to
883          * filter them out. But first we need to count how many of those we
884          * have in the current batch. This is an extra O(n) pass, however,
885          * it's much faster than the other one especially considering that
886          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
887          * alloc_bts_buffer()).
888          */
889         for (at = base; at < top; at++) {
890                 /*
891                  * Note that right now *this* BTS code only works if
892                  * attr::exclude_kernel is set, but let's keep this extra
893                  * check here in case that changes.
894                  */
895                 if (event->attr.exclude_kernel &&
896                     (kernel_ip(at->from) || kernel_ip(at->to)))
897                         skip++;
898         }
899 
900         /*
901          * Prepare a generic sample, i.e. fill in the invariant fields.
902          * We will overwrite the from and to address before we output
903          * the sample.
904          */
905         rcu_read_lock();
906         perf_prepare_sample(&data, event, &regs);
907         perf_prepare_header(&header, &data, event, &regs);
908 
909         if (perf_output_begin(&handle, &data, event,
910                               header.size * (top - base - skip)))
911                 goto unlock;
912 
913         for (at = base; at < top; at++) {
914                 /* Filter out any records that contain kernel addresses. */
915                 if (event->attr.exclude_kernel &&
916                     (kernel_ip(at->from) || kernel_ip(at->to)))
917                         continue;
918 
919                 data.ip         = at->from;
920                 data.addr       = at->to;
921 
922                 perf_output_sample(&handle, &header, &data, event);
923         }
924 
925         perf_output_end(&handle);
926 
927         /* There's new data available. */
928         event->hw.interrupts++;
929         event->pending_kill = POLL_IN;
930 unlock:
931         rcu_read_unlock();
932         return 1;
933 }
934 
935 static inline void intel_pmu_drain_pebs_buffer(void)
936 {
937         struct perf_sample_data data;
938 
939         x86_pmu.drain_pebs(NULL, &data);
940 }
941 
942 /*
943  * PEBS
944  */
945 struct event_constraint intel_core2_pebs_event_constraints[] = {
946         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
947         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
948         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
949         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
950         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
951         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
952         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
953         EVENT_CONSTRAINT_END
954 };
955 
956 struct event_constraint intel_atom_pebs_event_constraints[] = {
957         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
958         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
959         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
960         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
961         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
962         /* Allow all events as PEBS with no flags */
963         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
964         EVENT_CONSTRAINT_END
965 };
966 
967 struct event_constraint intel_slm_pebs_event_constraints[] = {
968         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
969         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
970         /* Allow all events as PEBS with no flags */
971         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
972         EVENT_CONSTRAINT_END
973 };
974 
975 struct event_constraint intel_glm_pebs_event_constraints[] = {
976         /* Allow all events as PEBS with no flags */
977         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
978         EVENT_CONSTRAINT_END
979 };
980 
981 struct event_constraint intel_grt_pebs_event_constraints[] = {
982         /* Allow all events as PEBS with no flags */
983         INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
984         INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
985         EVENT_CONSTRAINT_END
986 };
987 
988 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
989         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
990         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
991         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
992         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
993         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
994         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
995         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
996         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
997         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
998         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
999         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
1000         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1001         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1002         EVENT_CONSTRAINT_END
1003 };
1004 
1005 struct event_constraint intel_westmere_pebs_event_constraints[] = {
1006         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
1007         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
1008         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1009         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
1010         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
1011         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
1012         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
1013         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
1014         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1015         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
1016         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
1017         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1018         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1019         EVENT_CONSTRAINT_END
1020 };
1021 
1022 struct event_constraint intel_snb_pebs_event_constraints[] = {
1023         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1024         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1025         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
1026         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1027         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1028         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
1029         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1030         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1031         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1032         /* Allow all events as PEBS with no flags */
1033         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1034         EVENT_CONSTRAINT_END
1035 };
1036 
1037 struct event_constraint intel_ivb_pebs_event_constraints[] = {
1038         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1039         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1040         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
1041         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1042         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1043         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1044         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1045         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
1046         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1047         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1048         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1049         /* Allow all events as PEBS with no flags */
1050         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1051         EVENT_CONSTRAINT_END
1052 };
1053 
1054 struct event_constraint intel_hsw_pebs_event_constraints[] = {
1055         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1056         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
1057         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1058         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1059         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1060         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1061         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1062         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1063         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1064         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1065         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1066         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1067         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1068         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1069         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1070         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1071         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1072         /* Allow all events as PEBS with no flags */
1073         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1074         EVENT_CONSTRAINT_END
1075 };
1076 
1077 struct event_constraint intel_bdw_pebs_event_constraints[] = {
1078         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1079         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
1080         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1081         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1082         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1083         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1084         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1085         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1086         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1087         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1088         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1089         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1090         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1091         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1092         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1093         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1094         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1095         /* Allow all events as PEBS with no flags */
1096         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1097         EVENT_CONSTRAINT_END
1098 };
1099 
1100 
1101 struct event_constraint intel_skl_pebs_event_constraints[] = {
1102         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
1103         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1104         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1105         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1106         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1107         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
1108         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1109         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1110         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1111         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1112         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1113         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1114         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1115         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1116         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
1117         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
1118         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
1119         /* Allow all events as PEBS with no flags */
1120         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1121         EVENT_CONSTRAINT_END
1122 };
1123 
1124 struct event_constraint intel_icl_pebs_event_constraints[] = {
1125         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),  /* old INST_RETIRED.PREC_DIST */
1126         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),  /* INST_RETIRED.PREC_DIST */
1127         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),  /* SLOTS */
1128 
1129         INTEL_PLD_CONSTRAINT(0x1cd, 0xff),                      /* MEM_TRANS_RETIRED.LOAD_LATENCY */
1130         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1131         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_STORES */
1132         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),   /* MEM_INST_RETIRED.LOCK_LOADS */
1133         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_LOADS */
1134         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_STORES */
1135         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),   /* MEM_INST_RETIRED.ALL_LOADS */
1136         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),   /* MEM_INST_RETIRED.ALL_STORES */
1137 
1138         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1139 
1140         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),                /* MEM_INST_RETIRED.* */
1141 
1142         /*
1143          * Everything else is handled by PMU_FL_PEBS_ALL, because we
1144          * need the full constraints from the main table.
1145          */
1146 
1147         EVENT_CONSTRAINT_END
1148 };
1149 
1150 struct event_constraint intel_glc_pebs_event_constraints[] = {
1151         INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),   /* INST_RETIRED.PREC_DIST */
1152         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1153 
1154         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1155         INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1156         INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1157         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1158         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_STORES */
1159         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),   /* MEM_INST_RETIRED.LOCK_LOADS */
1160         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_LOADS */
1161         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_STORES */
1162         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),   /* MEM_INST_RETIRED.ALL_LOADS */
1163         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),   /* MEM_INST_RETIRED.ALL_STORES */
1164 
1165         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1166 
1167         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1168 
1169         /*
1170          * Everything else is handled by PMU_FL_PEBS_ALL, because we
1171          * need the full constraints from the main table.
1172          */
1173 
1174         EVENT_CONSTRAINT_END
1175 };
1176 
1177 struct event_constraint intel_lnc_pebs_event_constraints[] = {
1178         INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),   /* INST_RETIRED.PREC_DIST */
1179         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1180 
1181         INTEL_HYBRID_LDLAT_CONSTRAINT(0x1cd, 0x3ff),
1182         INTEL_HYBRID_STLAT_CONSTRAINT(0x2cd, 0x3),
1183         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1184         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_STORES */
1185         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),   /* MEM_INST_RETIRED.LOCK_LOADS */
1186         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_LOADS */
1187         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_STORES */
1188         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),   /* MEM_INST_RETIRED.ALL_LOADS */
1189         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),   /* MEM_INST_RETIRED.ALL_STORES */
1190 
1191         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1192 
1193         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1194 
1195         /*
1196          * Everything else is handled by PMU_FL_PEBS_ALL, because we
1197          * need the full constraints from the main table.
1198          */
1199 
1200         EVENT_CONSTRAINT_END
1201 };
1202 
1203 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1204 {
1205         struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1206         struct event_constraint *c;
1207 
1208         if (!event->attr.precise_ip)
1209                 return NULL;
1210 
1211         if (pebs_constraints) {
1212                 for_each_event_constraint(c, pebs_constraints) {
1213                         if (constraint_match(c, event->hw.config)) {
1214                                 event->hw.flags |= c->flags;
1215                                 return c;
1216                         }
1217                 }
1218         }
1219 
1220         /*
1221          * Extended PEBS support
1222          * Makes the PEBS code search the normal constraints.
1223          */
1224         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1225                 return NULL;
1226 
1227         return &emptyconstraint;
1228 }
1229 
1230 /*
1231  * We need the sched_task callback even for per-cpu events when we use
1232  * the large interrupt threshold, such that we can provide PID and TID
1233  * to PEBS samples.
1234  */
1235 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1236 {
1237         if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1238                 return false;
1239 
1240         return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1241 }
1242 
1243 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1244 {
1245         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1246 
1247         if (!sched_in && pebs_needs_sched_cb(cpuc))
1248                 intel_pmu_drain_pebs_buffer();
1249 }
1250 
1251 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1252 {
1253         struct debug_store *ds = cpuc->ds;
1254         int max_pebs_events = intel_pmu_max_num_pebs(cpuc->pmu);
1255         u64 threshold;
1256         int reserved;
1257 
1258         if (cpuc->n_pebs_via_pt)
1259                 return;
1260 
1261         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1262                 reserved = max_pebs_events + x86_pmu_max_num_counters_fixed(cpuc->pmu);
1263         else
1264                 reserved = max_pebs_events;
1265 
1266         if (cpuc->n_pebs == cpuc->n_large_pebs) {
1267                 threshold = ds->pebs_absolute_maximum -
1268                         reserved * cpuc->pebs_record_size;
1269         } else {
1270                 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1271         }
1272 
1273         ds->pebs_interrupt_threshold = threshold;
1274 }
1275 
1276 static void adaptive_pebs_record_size_update(void)
1277 {
1278         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1279         u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1280         int sz = sizeof(struct pebs_basic);
1281 
1282         if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1283                 sz += sizeof(struct pebs_meminfo);
1284         if (pebs_data_cfg & PEBS_DATACFG_GP)
1285                 sz += sizeof(struct pebs_gprs);
1286         if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1287                 sz += sizeof(struct pebs_xmm);
1288         if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1289                 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1290 
1291         cpuc->pebs_record_size = sz;
1292 }
1293 
1294 #define PERF_PEBS_MEMINFO_TYPE  (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1295                                 PERF_SAMPLE_PHYS_ADDR |                      \
1296                                 PERF_SAMPLE_WEIGHT_TYPE |                    \
1297                                 PERF_SAMPLE_TRANSACTION |                    \
1298                                 PERF_SAMPLE_DATA_PAGE_SIZE)
1299 
1300 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1301 {
1302         struct perf_event_attr *attr = &event->attr;
1303         u64 sample_type = attr->sample_type;
1304         u64 pebs_data_cfg = 0;
1305         bool gprs, tsx_weight;
1306 
1307         if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1308             attr->precise_ip > 1)
1309                 return pebs_data_cfg;
1310 
1311         if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1312                 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1313 
1314         /*
1315          * We need GPRs when:
1316          * + user requested them
1317          * + precise_ip < 2 for the non event IP
1318          * + For RTM TSX weight we need GPRs for the abort code.
1319          */
1320         gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1321                (attr->sample_regs_intr & PEBS_GP_REGS);
1322 
1323         tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1324                      ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1325                       x86_pmu.rtm_abort_event);
1326 
1327         if (gprs || (attr->precise_ip < 2) || tsx_weight)
1328                 pebs_data_cfg |= PEBS_DATACFG_GP;
1329 
1330         if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1331             (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1332                 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1333 
1334         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1335                 /*
1336                  * For now always log all LBRs. Could configure this
1337                  * later.
1338                  */
1339                 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1340                         ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1341         }
1342 
1343         return pebs_data_cfg;
1344 }
1345 
1346 static void
1347 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1348                   struct perf_event *event, bool add)
1349 {
1350         struct pmu *pmu = event->pmu;
1351 
1352         /*
1353          * Make sure we get updated with the first PEBS event.
1354          * During removal, ->pebs_data_cfg is still valid for
1355          * the last PEBS event. Don't clear it.
1356          */
1357         if ((cpuc->n_pebs == 1) && add)
1358                 cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1359 
1360         if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1361                 if (!needed_cb)
1362                         perf_sched_cb_inc(pmu);
1363                 else
1364                         perf_sched_cb_dec(pmu);
1365 
1366                 cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1367         }
1368 
1369         /*
1370          * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1371          * iterating all remaining PEBS events to reconstruct the config.
1372          */
1373         if (x86_pmu.intel_cap.pebs_baseline && add) {
1374                 u64 pebs_data_cfg;
1375 
1376                 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1377                 /*
1378                  * Be sure to update the thresholds when we change the record.
1379                  */
1380                 if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1381                         cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1382         }
1383 }
1384 
1385 void intel_pmu_pebs_add(struct perf_event *event)
1386 {
1387         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1388         struct hw_perf_event *hwc = &event->hw;
1389         bool needed_cb = pebs_needs_sched_cb(cpuc);
1390 
1391         cpuc->n_pebs++;
1392         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1393                 cpuc->n_large_pebs++;
1394         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1395                 cpuc->n_pebs_via_pt++;
1396 
1397         pebs_update_state(needed_cb, cpuc, event, true);
1398 }
1399 
1400 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1401 {
1402         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1403 
1404         if (!is_pebs_pt(event))
1405                 return;
1406 
1407         if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1408                 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1409 }
1410 
1411 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1412 {
1413         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1414         struct hw_perf_event *hwc = &event->hw;
1415         struct debug_store *ds = cpuc->ds;
1416         u64 value = ds->pebs_event_reset[hwc->idx];
1417         u32 base = MSR_RELOAD_PMC0;
1418         unsigned int idx = hwc->idx;
1419 
1420         if (!is_pebs_pt(event))
1421                 return;
1422 
1423         if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1424                 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1425 
1426         cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1427 
1428         if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1429                 base = MSR_RELOAD_FIXED_CTR0;
1430                 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1431                 if (x86_pmu.intel_cap.pebs_format < 5)
1432                         value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1433                 else
1434                         value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1435         }
1436         wrmsrl(base + idx, value);
1437 }
1438 
1439 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1440 {
1441         if (cpuc->n_pebs == cpuc->n_large_pebs &&
1442             cpuc->n_pebs != cpuc->n_pebs_via_pt)
1443                 intel_pmu_drain_pebs_buffer();
1444 }
1445 
1446 void intel_pmu_pebs_enable(struct perf_event *event)
1447 {
1448         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1449         u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1450         struct hw_perf_event *hwc = &event->hw;
1451         struct debug_store *ds = cpuc->ds;
1452         unsigned int idx = hwc->idx;
1453 
1454         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1455 
1456         cpuc->pebs_enabled |= 1ULL << hwc->idx;
1457 
1458         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1459                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1460         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1461                 cpuc->pebs_enabled |= 1ULL << 63;
1462 
1463         if (x86_pmu.intel_cap.pebs_baseline) {
1464                 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1465                 if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1466                         /*
1467                          * drain_pebs() assumes uniform record size;
1468                          * hence we need to drain when changing said
1469                          * size.
1470                          */
1471                         intel_pmu_drain_large_pebs(cpuc);
1472                         adaptive_pebs_record_size_update();
1473                         wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1474                         cpuc->active_pebs_data_cfg = pebs_data_cfg;
1475                 }
1476         }
1477         if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1478                 cpuc->pebs_data_cfg = pebs_data_cfg;
1479                 pebs_update_threshold(cpuc);
1480         }
1481 
1482         if (idx >= INTEL_PMC_IDX_FIXED) {
1483                 if (x86_pmu.intel_cap.pebs_format < 5)
1484                         idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1485                 else
1486                         idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1487         }
1488 
1489         /*
1490          * Use auto-reload if possible to save a MSR write in the PMI.
1491          * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1492          */
1493         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1494                 ds->pebs_event_reset[idx] =
1495                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1496         } else {
1497                 ds->pebs_event_reset[idx] = 0;
1498         }
1499 
1500         intel_pmu_pebs_via_pt_enable(event);
1501 }
1502 
1503 void intel_pmu_pebs_del(struct perf_event *event)
1504 {
1505         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1506         struct hw_perf_event *hwc = &event->hw;
1507         bool needed_cb = pebs_needs_sched_cb(cpuc);
1508 
1509         cpuc->n_pebs--;
1510         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1511                 cpuc->n_large_pebs--;
1512         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1513                 cpuc->n_pebs_via_pt--;
1514 
1515         pebs_update_state(needed_cb, cpuc, event, false);
1516 }
1517 
1518 void intel_pmu_pebs_disable(struct perf_event *event)
1519 {
1520         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1521         struct hw_perf_event *hwc = &event->hw;
1522 
1523         intel_pmu_drain_large_pebs(cpuc);
1524 
1525         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1526 
1527         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1528             (x86_pmu.version < 5))
1529                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1530         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1531                 cpuc->pebs_enabled &= ~(1ULL << 63);
1532 
1533         intel_pmu_pebs_via_pt_disable(event);
1534 
1535         if (cpuc->enabled)
1536                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1537 
1538         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1539 }
1540 
1541 void intel_pmu_pebs_enable_all(void)
1542 {
1543         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1544 
1545         if (cpuc->pebs_enabled)
1546                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1547 }
1548 
1549 void intel_pmu_pebs_disable_all(void)
1550 {
1551         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1552 
1553         if (cpuc->pebs_enabled)
1554                 __intel_pmu_pebs_disable_all();
1555 }
1556 
1557 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1558 {
1559         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1560         unsigned long from = cpuc->lbr_entries[0].from;
1561         unsigned long old_to, to = cpuc->lbr_entries[0].to;
1562         unsigned long ip = regs->ip;
1563         int is_64bit = 0;
1564         void *kaddr;
1565         int size;
1566 
1567         /*
1568          * We don't need to fixup if the PEBS assist is fault like
1569          */
1570         if (!x86_pmu.intel_cap.pebs_trap)
1571                 return 1;
1572 
1573         /*
1574          * No LBR entry, no basic block, no rewinding
1575          */
1576         if (!cpuc->lbr_stack.nr || !from || !to)
1577                 return 0;
1578 
1579         /*
1580          * Basic blocks should never cross user/kernel boundaries
1581          */
1582         if (kernel_ip(ip) != kernel_ip(to))
1583                 return 0;
1584 
1585         /*
1586          * unsigned math, either ip is before the start (impossible) or
1587          * the basic block is larger than 1 page (sanity)
1588          */
1589         if ((ip - to) > PEBS_FIXUP_SIZE)
1590                 return 0;
1591 
1592         /*
1593          * We sampled a branch insn, rewind using the LBR stack
1594          */
1595         if (ip == to) {
1596                 set_linear_ip(regs, from);
1597                 return 1;
1598         }
1599 
1600         size = ip - to;
1601         if (!kernel_ip(ip)) {
1602                 int bytes;
1603                 u8 *buf = this_cpu_read(insn_buffer);
1604 
1605                 /* 'size' must fit our buffer, see above */
1606                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1607                 if (bytes != 0)
1608                         return 0;
1609 
1610                 kaddr = buf;
1611         } else {
1612                 kaddr = (void *)to;
1613         }
1614 
1615         do {
1616                 struct insn insn;
1617 
1618                 old_to = to;
1619 
1620 #ifdef CONFIG_X86_64
1621                 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1622 #endif
1623                 insn_init(&insn, kaddr, size, is_64bit);
1624 
1625                 /*
1626                  * Make sure there was not a problem decoding the instruction.
1627                  * This is doubly important because we have an infinite loop if
1628                  * insn.length=0.
1629                  */
1630                 if (insn_get_length(&insn))
1631                         break;
1632 
1633                 to += insn.length;
1634                 kaddr += insn.length;
1635                 size -= insn.length;
1636         } while (to < ip);
1637 
1638         if (to == ip) {
1639                 set_linear_ip(regs, old_to);
1640                 return 1;
1641         }
1642 
1643         /*
1644          * Even though we decoded the basic block, the instruction stream
1645          * never matched the given IP, either the TO or the IP got corrupted.
1646          */
1647         return 0;
1648 }
1649 
1650 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1651 {
1652         if (tsx_tuning) {
1653                 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1654                 return tsx.cycles_last_block;
1655         }
1656         return 0;
1657 }
1658 
1659 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1660 {
1661         u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1662 
1663         /* For RTM XABORTs also log the abort code from AX */
1664         if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1665                 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1666         return txn;
1667 }
1668 
1669 static inline u64 get_pebs_status(void *n)
1670 {
1671         if (x86_pmu.intel_cap.pebs_format < 4)
1672                 return ((struct pebs_record_nhm *)n)->status;
1673         return ((struct pebs_basic *)n)->applicable_counters;
1674 }
1675 
1676 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1677                 (PERF_X86_EVENT_PEBS_ST_HSW | \
1678                  PERF_X86_EVENT_PEBS_LD_HSW | \
1679                  PERF_X86_EVENT_PEBS_NA_HSW)
1680 
1681 static u64 get_data_src(struct perf_event *event, u64 aux)
1682 {
1683         u64 val = PERF_MEM_NA;
1684         int fl = event->hw.flags;
1685         bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1686 
1687         if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1688                 val = load_latency_data(event, aux);
1689         else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1690                 val = store_latency_data(event, aux);
1691         else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1692                 val = x86_pmu.pebs_latency_data(event, aux);
1693         else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1694                 val = precise_datala_hsw(event, aux);
1695         else if (fst)
1696                 val = precise_store_data(aux);
1697         return val;
1698 }
1699 
1700 static void setup_pebs_time(struct perf_event *event,
1701                             struct perf_sample_data *data,
1702                             u64 tsc)
1703 {
1704         /* Converting to a user-defined clock is not supported yet. */
1705         if (event->attr.use_clockid != 0)
1706                 return;
1707 
1708         /*
1709          * Doesn't support the conversion when the TSC is unstable.
1710          * The TSC unstable case is a corner case and very unlikely to
1711          * happen. If it happens, the TSC in a PEBS record will be
1712          * dropped and fall back to perf_event_clock().
1713          */
1714         if (!using_native_sched_clock() || !sched_clock_stable())
1715                 return;
1716 
1717         data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1718         data->sample_flags |= PERF_SAMPLE_TIME;
1719 }
1720 
1721 #define PERF_SAMPLE_ADDR_TYPE   (PERF_SAMPLE_ADDR |             \
1722                                  PERF_SAMPLE_PHYS_ADDR |        \
1723                                  PERF_SAMPLE_DATA_PAGE_SIZE)
1724 
1725 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1726                                    struct pt_regs *iregs, void *__pebs,
1727                                    struct perf_sample_data *data,
1728                                    struct pt_regs *regs)
1729 {
1730         /*
1731          * We cast to the biggest pebs_record but are careful not to
1732          * unconditionally access the 'extra' entries.
1733          */
1734         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1735         struct pebs_record_skl *pebs = __pebs;
1736         u64 sample_type;
1737         int fll;
1738 
1739         if (pebs == NULL)
1740                 return;
1741 
1742         sample_type = event->attr.sample_type;
1743         fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1744 
1745         perf_sample_data_init(data, 0, event->hw.last_period);
1746 
1747         data->period = event->hw.last_period;
1748 
1749         /*
1750          * Use latency for weight (only avail with PEBS-LL)
1751          */
1752         if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1753                 data->weight.full = pebs->lat;
1754                 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1755         }
1756 
1757         /*
1758          * data.data_src encodes the data source
1759          */
1760         if (sample_type & PERF_SAMPLE_DATA_SRC) {
1761                 data->data_src.val = get_data_src(event, pebs->dse);
1762                 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1763         }
1764 
1765         /*
1766          * We must however always use iregs for the unwinder to stay sane; the
1767          * record BP,SP,IP can point into thin air when the record is from a
1768          * previous PMI context or an (I)RET happened between the record and
1769          * PMI.
1770          */
1771         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1772                 perf_sample_save_callchain(data, event, iregs);
1773 
1774         /*
1775          * We use the interrupt regs as a base because the PEBS record does not
1776          * contain a full regs set, specifically it seems to lack segment
1777          * descriptors, which get used by things like user_mode().
1778          *
1779          * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1780          */
1781         *regs = *iregs;
1782 
1783         /*
1784          * Initialize regs_>flags from PEBS,
1785          * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1786          * i.e., do not rely on it being zero:
1787          */
1788         regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1789 
1790         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1791                 regs->ax = pebs->ax;
1792                 regs->bx = pebs->bx;
1793                 regs->cx = pebs->cx;
1794                 regs->dx = pebs->dx;
1795                 regs->si = pebs->si;
1796                 regs->di = pebs->di;
1797 
1798                 regs->bp = pebs->bp;
1799                 regs->sp = pebs->sp;
1800 
1801 #ifndef CONFIG_X86_32
1802                 regs->r8 = pebs->r8;
1803                 regs->r9 = pebs->r9;
1804                 regs->r10 = pebs->r10;
1805                 regs->r11 = pebs->r11;
1806                 regs->r12 = pebs->r12;
1807                 regs->r13 = pebs->r13;
1808                 regs->r14 = pebs->r14;
1809                 regs->r15 = pebs->r15;
1810 #endif
1811         }
1812 
1813         if (event->attr.precise_ip > 1) {
1814                 /*
1815                  * Haswell and later processors have an 'eventing IP'
1816                  * (real IP) which fixes the off-by-1 skid in hardware.
1817                  * Use it when precise_ip >= 2 :
1818                  */
1819                 if (x86_pmu.intel_cap.pebs_format >= 2) {
1820                         set_linear_ip(regs, pebs->real_ip);
1821                         regs->flags |= PERF_EFLAGS_EXACT;
1822                 } else {
1823                         /* Otherwise, use PEBS off-by-1 IP: */
1824                         set_linear_ip(regs, pebs->ip);
1825 
1826                         /*
1827                          * With precise_ip >= 2, try to fix up the off-by-1 IP
1828                          * using the LBR. If successful, the fixup function
1829                          * corrects regs->ip and calls set_linear_ip() on regs:
1830                          */
1831                         if (intel_pmu_pebs_fixup_ip(regs))
1832                                 regs->flags |= PERF_EFLAGS_EXACT;
1833                 }
1834         } else {
1835                 /*
1836                  * When precise_ip == 1, return the PEBS off-by-1 IP,
1837                  * no fixup attempted:
1838                  */
1839                 set_linear_ip(regs, pebs->ip);
1840         }
1841 
1842 
1843         if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1844             x86_pmu.intel_cap.pebs_format >= 1) {
1845                 data->addr = pebs->dla;
1846                 data->sample_flags |= PERF_SAMPLE_ADDR;
1847         }
1848 
1849         if (x86_pmu.intel_cap.pebs_format >= 2) {
1850                 /* Only set the TSX weight when no memory weight. */
1851                 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1852                         data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1853                         data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1854                 }
1855                 if (sample_type & PERF_SAMPLE_TRANSACTION) {
1856                         data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1857                                                               pebs->ax);
1858                         data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1859                 }
1860         }
1861 
1862         /*
1863          * v3 supplies an accurate time stamp, so we use that
1864          * for the time stamp.
1865          *
1866          * We can only do this for the default trace clock.
1867          */
1868         if (x86_pmu.intel_cap.pebs_format >= 3)
1869                 setup_pebs_time(event, data, pebs->tsc);
1870 
1871         if (has_branch_stack(event))
1872                 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
1873 }
1874 
1875 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1876                                     struct pebs_gprs *gprs)
1877 {
1878         regs->ax = gprs->ax;
1879         regs->bx = gprs->bx;
1880         regs->cx = gprs->cx;
1881         regs->dx = gprs->dx;
1882         regs->si = gprs->si;
1883         regs->di = gprs->di;
1884         regs->bp = gprs->bp;
1885         regs->sp = gprs->sp;
1886 #ifndef CONFIG_X86_32
1887         regs->r8 = gprs->r8;
1888         regs->r9 = gprs->r9;
1889         regs->r10 = gprs->r10;
1890         regs->r11 = gprs->r11;
1891         regs->r12 = gprs->r12;
1892         regs->r13 = gprs->r13;
1893         regs->r14 = gprs->r14;
1894         regs->r15 = gprs->r15;
1895 #endif
1896 }
1897 
1898 #define PEBS_LATENCY_MASK                       0xffff
1899 #define PEBS_CACHE_LATENCY_OFFSET               32
1900 #define PEBS_RETIRE_LATENCY_OFFSET              32
1901 
1902 /*
1903  * With adaptive PEBS the layout depends on what fields are configured.
1904  */
1905 
1906 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1907                                             struct pt_regs *iregs, void *__pebs,
1908                                             struct perf_sample_data *data,
1909                                             struct pt_regs *regs)
1910 {
1911         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1912         struct pebs_basic *basic = __pebs;
1913         void *next_record = basic + 1;
1914         u64 sample_type;
1915         u64 format_size;
1916         struct pebs_meminfo *meminfo = NULL;
1917         struct pebs_gprs *gprs = NULL;
1918         struct x86_perf_regs *perf_regs;
1919 
1920         if (basic == NULL)
1921                 return;
1922 
1923         perf_regs = container_of(regs, struct x86_perf_regs, regs);
1924         perf_regs->xmm_regs = NULL;
1925 
1926         sample_type = event->attr.sample_type;
1927         format_size = basic->format_size;
1928         perf_sample_data_init(data, 0, event->hw.last_period);
1929         data->period = event->hw.last_period;
1930 
1931         setup_pebs_time(event, data, basic->tsc);
1932 
1933         /*
1934          * We must however always use iregs for the unwinder to stay sane; the
1935          * record BP,SP,IP can point into thin air when the record is from a
1936          * previous PMI context or an (I)RET happened between the record and
1937          * PMI.
1938          */
1939         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1940                 perf_sample_save_callchain(data, event, iregs);
1941 
1942         *regs = *iregs;
1943         /* The ip in basic is EventingIP */
1944         set_linear_ip(regs, basic->ip);
1945         regs->flags = PERF_EFLAGS_EXACT;
1946 
1947         if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
1948                 if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)
1949                         data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK;
1950                 else
1951                         data->weight.var3_w = 0;
1952         }
1953 
1954         /*
1955          * The record for MEMINFO is in front of GP
1956          * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1957          * Save the pointer here but process later.
1958          */
1959         if (format_size & PEBS_DATACFG_MEMINFO) {
1960                 meminfo = next_record;
1961                 next_record = meminfo + 1;
1962         }
1963 
1964         if (format_size & PEBS_DATACFG_GP) {
1965                 gprs = next_record;
1966                 next_record = gprs + 1;
1967 
1968                 if (event->attr.precise_ip < 2) {
1969                         set_linear_ip(regs, gprs->ip);
1970                         regs->flags &= ~PERF_EFLAGS_EXACT;
1971                 }
1972 
1973                 if (sample_type & PERF_SAMPLE_REGS_INTR)
1974                         adaptive_pebs_save_regs(regs, gprs);
1975         }
1976 
1977         if (format_size & PEBS_DATACFG_MEMINFO) {
1978                 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1979                         u64 weight = meminfo->latency;
1980 
1981                         if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1982                                 data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1983                                 weight >>= PEBS_CACHE_LATENCY_OFFSET;
1984                         }
1985 
1986                         /*
1987                          * Although meminfo::latency is defined as a u64,
1988                          * only the lower 32 bits include the valid data
1989                          * in practice on Ice Lake and earlier platforms.
1990                          */
1991                         if (sample_type & PERF_SAMPLE_WEIGHT) {
1992                                 data->weight.full = weight ?:
1993                                         intel_get_tsx_weight(meminfo->tsx_tuning);
1994                         } else {
1995                                 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1996                                         intel_get_tsx_weight(meminfo->tsx_tuning);
1997                         }
1998                         data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1999                 }
2000 
2001                 if (sample_type & PERF_SAMPLE_DATA_SRC) {
2002                         data->data_src.val = get_data_src(event, meminfo->aux);
2003                         data->sample_flags |= PERF_SAMPLE_DATA_SRC;
2004                 }
2005 
2006                 if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
2007                         data->addr = meminfo->address;
2008                         data->sample_flags |= PERF_SAMPLE_ADDR;
2009                 }
2010 
2011                 if (sample_type & PERF_SAMPLE_TRANSACTION) {
2012                         data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
2013                                                           gprs ? gprs->ax : 0);
2014                         data->sample_flags |= PERF_SAMPLE_TRANSACTION;
2015                 }
2016         }
2017 
2018         if (format_size & PEBS_DATACFG_XMMS) {
2019                 struct pebs_xmm *xmm = next_record;
2020 
2021                 next_record = xmm + 1;
2022                 perf_regs->xmm_regs = xmm->xmm;
2023         }
2024 
2025         if (format_size & PEBS_DATACFG_LBRS) {
2026                 struct lbr_entry *lbr = next_record;
2027                 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
2028                                         & 0xff) + 1;
2029                 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
2030 
2031                 if (has_branch_stack(event)) {
2032                         intel_pmu_store_pebs_lbrs(lbr);
2033                         intel_pmu_lbr_save_brstack(data, cpuc, event);
2034                 }
2035         }
2036 
2037         WARN_ONCE(next_record != __pebs + (format_size >> 48),
2038                         "PEBS record size %llu, expected %llu, config %llx\n",
2039                         format_size >> 48,
2040                         (u64)(next_record - __pebs),
2041                         basic->format_size);
2042 }
2043 
2044 static inline void *
2045 get_next_pebs_record_by_bit(void *base, void *top, int bit)
2046 {
2047         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2048         void *at;
2049         u64 pebs_status;
2050 
2051         /*
2052          * fmt0 does not have a status bitfield (does not use
2053          * perf_record_nhm format)
2054          */
2055         if (x86_pmu.intel_cap.pebs_format < 1)
2056                 return base;
2057 
2058         if (base == NULL)
2059                 return NULL;
2060 
2061         for (at = base; at < top; at += cpuc->pebs_record_size) {
2062                 unsigned long status = get_pebs_status(at);
2063 
2064                 if (test_bit(bit, (unsigned long *)&status)) {
2065                         /* PEBS v3 has accurate status bits */
2066                         if (x86_pmu.intel_cap.pebs_format >= 3)
2067                                 return at;
2068 
2069                         if (status == (1 << bit))
2070                                 return at;
2071 
2072                         /* clear non-PEBS bit and re-check */
2073                         pebs_status = status & cpuc->pebs_enabled;
2074                         pebs_status &= PEBS_COUNTER_MASK;
2075                         if (pebs_status == (1 << bit))
2076                                 return at;
2077                 }
2078         }
2079         return NULL;
2080 }
2081 
2082 void intel_pmu_auto_reload_read(struct perf_event *event)
2083 {
2084         WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
2085 
2086         perf_pmu_disable(event->pmu);
2087         intel_pmu_drain_pebs_buffer();
2088         perf_pmu_enable(event->pmu);
2089 }
2090 
2091 /*
2092  * Special variant of intel_pmu_save_and_restart() for auto-reload.
2093  */
2094 static int
2095 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
2096 {
2097         struct hw_perf_event *hwc = &event->hw;
2098         int shift = 64 - x86_pmu.cntval_bits;
2099         u64 period = hwc->sample_period;
2100         u64 prev_raw_count, new_raw_count;
2101         s64 new, old;
2102 
2103         WARN_ON(!period);
2104 
2105         /*
2106          * drain_pebs() only happens when the PMU is disabled.
2107          */
2108         WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2109 
2110         prev_raw_count = local64_read(&hwc->prev_count);
2111         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
2112         local64_set(&hwc->prev_count, new_raw_count);
2113 
2114         /*
2115          * Since the counter increments a negative counter value and
2116          * overflows on the sign switch, giving the interval:
2117          *
2118          *   [-period, 0]
2119          *
2120          * the difference between two consecutive reads is:
2121          *
2122          *   A) value2 - value1;
2123          *      when no overflows have happened in between,
2124          *
2125          *   B) (0 - value1) + (value2 - (-period));
2126          *      when one overflow happened in between,
2127          *
2128          *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2129          *      when @n overflows happened in between.
2130          *
2131          * Here A) is the obvious difference, B) is the extension to the
2132          * discrete interval, where the first term is to the top of the
2133          * interval and the second term is from the bottom of the next
2134          * interval and C) the extension to multiple intervals, where the
2135          * middle term is the whole intervals covered.
2136          *
2137          * An equivalent of C, by reduction, is:
2138          *
2139          *   value2 - value1 + n * period
2140          */
2141         new = ((s64)(new_raw_count << shift) >> shift);
2142         old = ((s64)(prev_raw_count << shift) >> shift);
2143         local64_add(new - old + count * period, &event->count);
2144 
2145         local64_set(&hwc->period_left, -new);
2146 
2147         perf_event_update_userpage(event);
2148 
2149         return 0;
2150 }
2151 
2152 static __always_inline void
2153 __intel_pmu_pebs_event(struct perf_event *event,
2154                        struct pt_regs *iregs,
2155                        struct perf_sample_data *data,
2156                        void *base, void *top,
2157                        int bit, int count,
2158                        void (*setup_sample)(struct perf_event *,
2159                                             struct pt_regs *,
2160                                             void *,
2161                                             struct perf_sample_data *,
2162                                             struct pt_regs *))
2163 {
2164         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2165         struct hw_perf_event *hwc = &event->hw;
2166         struct x86_perf_regs perf_regs;
2167         struct pt_regs *regs = &perf_regs.regs;
2168         void *at = get_next_pebs_record_by_bit(base, top, bit);
2169         static struct pt_regs dummy_iregs;
2170 
2171         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2172                 /*
2173                  * Now, auto-reload is only enabled in fixed period mode.
2174                  * The reload value is always hwc->sample_period.
2175                  * May need to change it, if auto-reload is enabled in
2176                  * freq mode later.
2177                  */
2178                 intel_pmu_save_and_restart_reload(event, count);
2179         } else if (!intel_pmu_save_and_restart(event))
2180                 return;
2181 
2182         if (!iregs)
2183                 iregs = &dummy_iregs;
2184 
2185         while (count > 1) {
2186                 setup_sample(event, iregs, at, data, regs);
2187                 perf_event_output(event, data, regs);
2188                 at += cpuc->pebs_record_size;
2189                 at = get_next_pebs_record_by_bit(at, top, bit);
2190                 count--;
2191         }
2192 
2193         setup_sample(event, iregs, at, data, regs);
2194         if (iregs == &dummy_iregs) {
2195                 /*
2196                  * The PEBS records may be drained in the non-overflow context,
2197                  * e.g., large PEBS + context switch. Perf should treat the
2198                  * last record the same as other PEBS records, and doesn't
2199                  * invoke the generic overflow handler.
2200                  */
2201                 perf_event_output(event, data, regs);
2202         } else {
2203                 /*
2204                  * All but the last records are processed.
2205                  * The last one is left to be able to call the overflow handler.
2206                  */
2207                 if (perf_event_overflow(event, data, regs))
2208                         x86_pmu_stop(event, 0);
2209         }
2210 }
2211 
2212 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2213 {
2214         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2215         struct debug_store *ds = cpuc->ds;
2216         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2217         struct pebs_record_core *at, *top;
2218         int n;
2219 
2220         if (!x86_pmu.pebs_active)
2221                 return;
2222 
2223         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2224         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2225 
2226         /*
2227          * Whatever else happens, drain the thing
2228          */
2229         ds->pebs_index = ds->pebs_buffer_base;
2230 
2231         if (!test_bit(0, cpuc->active_mask))
2232                 return;
2233 
2234         WARN_ON_ONCE(!event);
2235 
2236         if (!event->attr.precise_ip)
2237                 return;
2238 
2239         n = top - at;
2240         if (n <= 0) {
2241                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2242                         intel_pmu_save_and_restart_reload(event, 0);
2243                 return;
2244         }
2245 
2246         __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
2247                                setup_pebs_fixed_sample_data);
2248 }
2249 
2250 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
2251 {
2252         struct perf_event *event;
2253         int bit;
2254 
2255         /*
2256          * The drain_pebs() could be called twice in a short period
2257          * for auto-reload event in pmu::read(). There are no
2258          * overflows have happened in between.
2259          * It needs to call intel_pmu_save_and_restart_reload() to
2260          * update the event->count for this case.
2261          */
2262         for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
2263                 event = cpuc->events[bit];
2264                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2265                         intel_pmu_save_and_restart_reload(event, 0);
2266         }
2267 }
2268 
2269 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2270 {
2271         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2272         struct debug_store *ds = cpuc->ds;
2273         struct perf_event *event;
2274         void *base, *at, *top;
2275         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2276         short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2277         int max_pebs_events = intel_pmu_max_num_pebs(NULL);
2278         int bit, i, size;
2279         u64 mask;
2280 
2281         if (!x86_pmu.pebs_active)
2282                 return;
2283 
2284         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2285         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2286 
2287         ds->pebs_index = ds->pebs_buffer_base;
2288 
2289         mask = x86_pmu.pebs_events_mask;
2290         size = max_pebs_events;
2291         if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2292                 mask |= x86_pmu.fixed_cntr_mask64 << INTEL_PMC_IDX_FIXED;
2293                 size = INTEL_PMC_IDX_FIXED + x86_pmu_max_num_counters_fixed(NULL);
2294         }
2295 
2296         if (unlikely(base >= top)) {
2297                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2298                 return;
2299         }
2300 
2301         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2302                 struct pebs_record_nhm *p = at;
2303                 u64 pebs_status;
2304 
2305                 pebs_status = p->status & cpuc->pebs_enabled;
2306                 pebs_status &= mask;
2307 
2308                 /* PEBS v3 has more accurate status bits */
2309                 if (x86_pmu.intel_cap.pebs_format >= 3) {
2310                         for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2311                                 counts[bit]++;
2312 
2313                         continue;
2314                 }
2315 
2316                 /*
2317                  * On some CPUs the PEBS status can be zero when PEBS is
2318                  * racing with clearing of GLOBAL_STATUS.
2319                  *
2320                  * Normally we would drop that record, but in the
2321                  * case when there is only a single active PEBS event
2322                  * we can assume it's for that event.
2323                  */
2324                 if (!pebs_status && cpuc->pebs_enabled &&
2325                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2326                         pebs_status = p->status = cpuc->pebs_enabled;
2327 
2328                 bit = find_first_bit((unsigned long *)&pebs_status,
2329                                      max_pebs_events);
2330 
2331                 if (!(x86_pmu.pebs_events_mask & (1 << bit)))
2332                         continue;
2333 
2334                 /*
2335                  * The PEBS hardware does not deal well with the situation
2336                  * when events happen near to each other and multiple bits
2337                  * are set. But it should happen rarely.
2338                  *
2339                  * If these events include one PEBS and multiple non-PEBS
2340                  * events, it doesn't impact PEBS record. The record will
2341                  * be handled normally. (slow path)
2342                  *
2343                  * If these events include two or more PEBS events, the
2344                  * records for the events can be collapsed into a single
2345                  * one, and it's not possible to reconstruct all events
2346                  * that caused the PEBS record. It's called collision.
2347                  * If collision happened, the record will be dropped.
2348                  */
2349                 if (pebs_status != (1ULL << bit)) {
2350                         for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2351                                 error[i]++;
2352                         continue;
2353                 }
2354 
2355                 counts[bit]++;
2356         }
2357 
2358         for_each_set_bit(bit, (unsigned long *)&mask, size) {
2359                 if ((counts[bit] == 0) && (error[bit] == 0))
2360                         continue;
2361 
2362                 event = cpuc->events[bit];
2363                 if (WARN_ON_ONCE(!event))
2364                         continue;
2365 
2366                 if (WARN_ON_ONCE(!event->attr.precise_ip))
2367                         continue;
2368 
2369                 /* log dropped samples number */
2370                 if (error[bit]) {
2371                         perf_log_lost_samples(event, error[bit]);
2372 
2373                         if (iregs && perf_event_account_interrupt(event))
2374                                 x86_pmu_stop(event, 0);
2375                 }
2376 
2377                 if (counts[bit]) {
2378                         __intel_pmu_pebs_event(event, iregs, data, base,
2379                                                top, bit, counts[bit],
2380                                                setup_pebs_fixed_sample_data);
2381                 }
2382         }
2383 }
2384 
2385 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2386 {
2387         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2388         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2389         struct debug_store *ds = cpuc->ds;
2390         struct perf_event *event;
2391         void *base, *at, *top;
2392         int bit;
2393         u64 mask;
2394 
2395         if (!x86_pmu.pebs_active)
2396                 return;
2397 
2398         base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2399         top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2400 
2401         ds->pebs_index = ds->pebs_buffer_base;
2402 
2403         mask = hybrid(cpuc->pmu, pebs_events_mask) |
2404                (hybrid(cpuc->pmu, fixed_cntr_mask64) << INTEL_PMC_IDX_FIXED);
2405 
2406         if (unlikely(base >= top)) {
2407                 intel_pmu_pebs_event_update_no_drain(cpuc, X86_PMC_IDX_MAX);
2408                 return;
2409         }
2410 
2411         for (at = base; at < top; at += cpuc->pebs_record_size) {
2412                 u64 pebs_status;
2413 
2414                 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2415                 pebs_status &= mask;
2416 
2417                 for_each_set_bit(bit, (unsigned long *)&pebs_status, X86_PMC_IDX_MAX)
2418                         counts[bit]++;
2419         }
2420 
2421         for_each_set_bit(bit, (unsigned long *)&mask, X86_PMC_IDX_MAX) {
2422                 if (counts[bit] == 0)
2423                         continue;
2424 
2425                 event = cpuc->events[bit];
2426                 if (WARN_ON_ONCE(!event))
2427                         continue;
2428 
2429                 if (WARN_ON_ONCE(!event->attr.precise_ip))
2430                         continue;
2431 
2432                 __intel_pmu_pebs_event(event, iregs, data, base,
2433                                        top, bit, counts[bit],
2434                                        setup_pebs_adaptive_sample_data);
2435         }
2436 }
2437 
2438 /*
2439  * BTS, PEBS probe and setup
2440  */
2441 
2442 void __init intel_ds_init(void)
2443 {
2444         /*
2445          * No support for 32bit formats
2446          */
2447         if (!boot_cpu_has(X86_FEATURE_DTES64))
2448                 return;
2449 
2450         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2451         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2452         x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2453         if (x86_pmu.version <= 4)
2454                 x86_pmu.pebs_no_isolation = 1;
2455 
2456         if (x86_pmu.pebs) {
2457                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2458                 char *pebs_qual = "";
2459                 int format = x86_pmu.intel_cap.pebs_format;
2460 
2461                 if (format < 4)
2462                         x86_pmu.intel_cap.pebs_baseline = 0;
2463 
2464                 switch (format) {
2465                 case 0:
2466                         pr_cont("PEBS fmt0%c, ", pebs_type);
2467                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2468                         /*
2469                          * Using >PAGE_SIZE buffers makes the WRMSR to
2470                          * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2471                          * mysteriously hang on Core2.
2472                          *
2473                          * As a workaround, we don't do this.
2474                          */
2475                         x86_pmu.pebs_buffer_size = PAGE_SIZE;
2476                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2477                         break;
2478 
2479                 case 1:
2480                         pr_cont("PEBS fmt1%c, ", pebs_type);
2481                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2482                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2483                         break;
2484 
2485                 case 2:
2486                         pr_cont("PEBS fmt2%c, ", pebs_type);
2487                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2488                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2489                         break;
2490 
2491                 case 3:
2492                         pr_cont("PEBS fmt3%c, ", pebs_type);
2493                         x86_pmu.pebs_record_size =
2494                                                 sizeof(struct pebs_record_skl);
2495                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2496                         x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2497                         break;
2498 
2499                 case 5:
2500                         x86_pmu.pebs_ept = 1;
2501                         fallthrough;
2502                 case 4:
2503                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2504                         x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2505                         if (x86_pmu.intel_cap.pebs_baseline) {
2506                                 x86_pmu.large_pebs_flags |=
2507                                         PERF_SAMPLE_BRANCH_STACK |
2508                                         PERF_SAMPLE_TIME;
2509                                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2510                                 x86_pmu.pebs_capable = ~0ULL;
2511                                 pebs_qual = "-baseline";
2512                                 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2513                         } else {
2514                                 /* Only basic record supported */
2515                                 x86_pmu.large_pebs_flags &=
2516                                         ~(PERF_SAMPLE_ADDR |
2517                                           PERF_SAMPLE_TIME |
2518                                           PERF_SAMPLE_DATA_SRC |
2519                                           PERF_SAMPLE_TRANSACTION |
2520                                           PERF_SAMPLE_REGS_USER |
2521                                           PERF_SAMPLE_REGS_INTR);
2522                         }
2523                         pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2524 
2525                         if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2526                                 pr_cont("PEBS-via-PT, ");
2527                                 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2528                         }
2529 
2530                         break;
2531 
2532                 default:
2533                         pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2534                         x86_pmu.pebs = 0;
2535                 }
2536         }
2537 }
2538 
2539 void perf_restore_debug_store(void)
2540 {
2541         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2542 
2543         if (!x86_pmu.bts && !x86_pmu.pebs)
2544                 return;
2545 
2546         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2547 }
2548 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php