1 /* 2 * Performance events x86 architecture header 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 17 #include <asm/fpu/xstate.h> 18 #include <asm/intel_ds.h> 19 #include <asm/cpu.h> 20 21 /* To enable MSR tracing please use the generic trace points. */ 22 23 /* 24 * | NHM/WSM | SNB | 25 * register ------------------------------- 26 * | HT | no HT | HT | no HT | 27 *----------------------------------------- 28 * offcore | core | core | cpu | core | 29 * lbr_sel | core | core | cpu | core | 30 * ld_lat | cpu | core | cpu | core | 31 *----------------------------------------- 32 * 33 * Given that there is a small number of shared regs, 34 * we can pre-allocate their slot in the per-cpu 35 * per-core reg tables. 36 */ 37 enum extra_reg_type { 38 EXTRA_REG_NONE = -1, /* not used */ 39 40 EXTRA_REG_RSP_0 = 0, /* offcore_response_0 */ 41 EXTRA_REG_RSP_1 = 1, /* offcore_response_1 */ 42 EXTRA_REG_LBR = 2, /* lbr_select */ 43 EXTRA_REG_LDLAT = 3, /* ld_lat_threshold */ 44 EXTRA_REG_FE = 4, /* fe_* */ 45 EXTRA_REG_SNOOP_0 = 5, /* snoop response 0 */ 46 EXTRA_REG_SNOOP_1 = 6, /* snoop response 1 */ 47 48 EXTRA_REG_MAX /* number of entries needed */ 49 }; 50 51 struct event_constraint { 52 union { 53 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 54 u64 idxmsk64; 55 }; 56 u64 code; 57 u64 cmask; 58 int weight; 59 int overlap; 60 int flags; 61 unsigned int size; 62 }; 63 64 static inline bool constraint_match(struct event_constraint *c, u64 ecode) 65 { 66 return ((ecode & c->cmask) - c->code) <= (u64)c->size; 67 } 68 69 #define PERF_ARCH(name, val) \ 70 PERF_X86_EVENT_##name = val, 71 72 /* 73 * struct hw_perf_event.flags flags 74 */ 75 enum { 76 #include "perf_event_flags.h" 77 }; 78 79 #undef PERF_ARCH 80 81 #define PERF_ARCH(name, val) \ 82 static_assert((PERF_X86_EVENT_##name & PERF_EVENT_FLAG_ARCH) == \ 83 PERF_X86_EVENT_##name); 84 85 #include "perf_event_flags.h" 86 87 #undef PERF_ARCH 88 89 static inline bool is_topdown_count(struct perf_event *event) 90 { 91 return event->hw.flags & PERF_X86_EVENT_TOPDOWN; 92 } 93 94 static inline bool is_metric_event(struct perf_event *event) 95 { 96 u64 config = event->attr.config; 97 98 return ((config & ARCH_PERFMON_EVENTSEL_EVENT) == 0) && 99 ((config & INTEL_ARCH_EVENT_MASK) >= INTEL_TD_METRIC_RETIRING) && 100 ((config & INTEL_ARCH_EVENT_MASK) <= INTEL_TD_METRIC_MAX); 101 } 102 103 static inline bool is_slots_event(struct perf_event *event) 104 { 105 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_TD_SLOTS; 106 } 107 108 static inline bool is_topdown_event(struct perf_event *event) 109 { 110 return is_metric_event(event) || is_slots_event(event); 111 } 112 113 static inline bool is_branch_counters_group(struct perf_event *event) 114 { 115 return event->group_leader->hw.flags & PERF_X86_EVENT_BRANCH_COUNTERS; 116 } 117 118 struct amd_nb { 119 int nb_id; /* NorthBridge id */ 120 int refcnt; /* reference count */ 121 struct perf_event *owners[X86_PMC_IDX_MAX]; 122 struct event_constraint event_constraints[X86_PMC_IDX_MAX]; 123 }; 124 125 #define PEBS_COUNTER_MASK ((1ULL << MAX_PEBS_EVENTS) - 1) 126 #define PEBS_PMI_AFTER_EACH_RECORD BIT_ULL(60) 127 #define PEBS_OUTPUT_OFFSET 61 128 #define PEBS_OUTPUT_MASK (3ull << PEBS_OUTPUT_OFFSET) 129 #define PEBS_OUTPUT_PT (1ull << PEBS_OUTPUT_OFFSET) 130 #define PEBS_VIA_PT_MASK (PEBS_OUTPUT_PT | PEBS_PMI_AFTER_EACH_RECORD) 131 132 /* 133 * Flags PEBS can handle without an PMI. 134 * 135 * TID can only be handled by flushing at context switch. 136 * REGS_USER can be handled for events limited to ring 3. 137 * 138 */ 139 #define LARGE_PEBS_FLAGS \ 140 (PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR | \ 141 PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | \ 142 PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER | \ 143 PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR | \ 144 PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER | \ 145 PERF_SAMPLE_PERIOD | PERF_SAMPLE_CODE_PAGE_SIZE | \ 146 PERF_SAMPLE_WEIGHT_TYPE) 147 148 #define PEBS_GP_REGS \ 149 ((1ULL << PERF_REG_X86_AX) | \ 150 (1ULL << PERF_REG_X86_BX) | \ 151 (1ULL << PERF_REG_X86_CX) | \ 152 (1ULL << PERF_REG_X86_DX) | \ 153 (1ULL << PERF_REG_X86_DI) | \ 154 (1ULL << PERF_REG_X86_SI) | \ 155 (1ULL << PERF_REG_X86_SP) | \ 156 (1ULL << PERF_REG_X86_BP) | \ 157 (1ULL << PERF_REG_X86_IP) | \ 158 (1ULL << PERF_REG_X86_FLAGS) | \ 159 (1ULL << PERF_REG_X86_R8) | \ 160 (1ULL << PERF_REG_X86_R9) | \ 161 (1ULL << PERF_REG_X86_R10) | \ 162 (1ULL << PERF_REG_X86_R11) | \ 163 (1ULL << PERF_REG_X86_R12) | \ 164 (1ULL << PERF_REG_X86_R13) | \ 165 (1ULL << PERF_REG_X86_R14) | \ 166 (1ULL << PERF_REG_X86_R15)) 167 168 /* 169 * Per register state. 170 */ 171 struct er_account { 172 raw_spinlock_t lock; /* per-core: protect structure */ 173 u64 config; /* extra MSR config */ 174 u64 reg; /* extra MSR number */ 175 atomic_t ref; /* reference count */ 176 }; 177 178 /* 179 * Per core/cpu state 180 * 181 * Used to coordinate shared registers between HT threads or 182 * among events on a single PMU. 183 */ 184 struct intel_shared_regs { 185 struct er_account regs[EXTRA_REG_MAX]; 186 int refcnt; /* per-core: #HT threads */ 187 unsigned core_id; /* per-core: core id */ 188 }; 189 190 enum intel_excl_state_type { 191 INTEL_EXCL_UNUSED = 0, /* counter is unused */ 192 INTEL_EXCL_SHARED = 1, /* counter can be used by both threads */ 193 INTEL_EXCL_EXCLUSIVE = 2, /* counter can be used by one thread only */ 194 }; 195 196 struct intel_excl_states { 197 enum intel_excl_state_type state[X86_PMC_IDX_MAX]; 198 bool sched_started; /* true if scheduling has started */ 199 }; 200 201 struct intel_excl_cntrs { 202 raw_spinlock_t lock; 203 204 struct intel_excl_states states[2]; 205 206 union { 207 u16 has_exclusive[2]; 208 u32 exclusive_present; 209 }; 210 211 int refcnt; /* per-core: #HT threads */ 212 unsigned core_id; /* per-core: core id */ 213 }; 214 215 struct x86_perf_task_context; 216 #define MAX_LBR_ENTRIES 32 217 218 enum { 219 LBR_FORMAT_32 = 0x00, 220 LBR_FORMAT_LIP = 0x01, 221 LBR_FORMAT_EIP = 0x02, 222 LBR_FORMAT_EIP_FLAGS = 0x03, 223 LBR_FORMAT_EIP_FLAGS2 = 0x04, 224 LBR_FORMAT_INFO = 0x05, 225 LBR_FORMAT_TIME = 0x06, 226 LBR_FORMAT_INFO2 = 0x07, 227 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_INFO2, 228 }; 229 230 enum { 231 X86_PERF_KFREE_SHARED = 0, 232 X86_PERF_KFREE_EXCL = 1, 233 X86_PERF_KFREE_MAX 234 }; 235 236 struct cpu_hw_events { 237 /* 238 * Generic x86 PMC bits 239 */ 240 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */ 241 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 242 unsigned long dirty[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 243 int enabled; 244 245 int n_events; /* the # of events in the below arrays */ 246 int n_added; /* the # last events in the below arrays; 247 they've never been enabled yet */ 248 int n_txn; /* the # last events in the below arrays; 249 added in the current transaction */ 250 int n_txn_pair; 251 int n_txn_metric; 252 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */ 253 u64 tags[X86_PMC_IDX_MAX]; 254 255 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */ 256 struct event_constraint *event_constraint[X86_PMC_IDX_MAX]; 257 258 int n_excl; /* the number of exclusive events */ 259 260 unsigned int txn_flags; 261 int is_fake; 262 263 /* 264 * Intel DebugStore bits 265 */ 266 struct debug_store *ds; 267 void *ds_pebs_vaddr; 268 void *ds_bts_vaddr; 269 u64 pebs_enabled; 270 int n_pebs; 271 int n_large_pebs; 272 int n_pebs_via_pt; 273 int pebs_output; 274 275 /* Current super set of events hardware configuration */ 276 u64 pebs_data_cfg; 277 u64 active_pebs_data_cfg; 278 int pebs_record_size; 279 280 /* Intel Fixed counter configuration */ 281 u64 fixed_ctrl_val; 282 u64 active_fixed_ctrl_val; 283 284 /* 285 * Intel LBR bits 286 */ 287 int lbr_users; 288 int lbr_pebs_users; 289 struct perf_branch_stack lbr_stack; 290 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES]; 291 u64 lbr_counters[MAX_LBR_ENTRIES]; /* branch stack extra */ 292 union { 293 struct er_account *lbr_sel; 294 struct er_account *lbr_ctl; 295 }; 296 u64 br_sel; 297 void *last_task_ctx; 298 int last_log_id; 299 int lbr_select; 300 void *lbr_xsave; 301 302 /* 303 * Intel host/guest exclude bits 304 */ 305 u64 intel_ctrl_guest_mask; 306 u64 intel_ctrl_host_mask; 307 struct perf_guest_switch_msr guest_switch_msrs[X86_PMC_IDX_MAX]; 308 309 /* 310 * Intel checkpoint mask 311 */ 312 u64 intel_cp_status; 313 314 /* 315 * manage shared (per-core, per-cpu) registers 316 * used on Intel NHM/WSM/SNB 317 */ 318 struct intel_shared_regs *shared_regs; 319 /* 320 * manage exclusive counter access between hyperthread 321 */ 322 struct event_constraint *constraint_list; /* in enable order */ 323 struct intel_excl_cntrs *excl_cntrs; 324 int excl_thread_id; /* 0 or 1 */ 325 326 /* 327 * SKL TSX_FORCE_ABORT shadow 328 */ 329 u64 tfa_shadow; 330 331 /* 332 * Perf Metrics 333 */ 334 /* number of accepted metrics events */ 335 int n_metric; 336 337 /* 338 * AMD specific bits 339 */ 340 struct amd_nb *amd_nb; 341 int brs_active; /* BRS is enabled */ 342 343 /* Inverted mask of bits to clear in the perf_ctr ctrl registers */ 344 u64 perf_ctr_virt_mask; 345 int n_pair; /* Large increment events */ 346 347 void *kfree_on_online[X86_PERF_KFREE_MAX]; 348 349 struct pmu *pmu; 350 }; 351 352 #define __EVENT_CONSTRAINT_RANGE(c, e, n, m, w, o, f) { \ 353 { .idxmsk64 = (n) }, \ 354 .code = (c), \ 355 .size = (e) - (c), \ 356 .cmask = (m), \ 357 .weight = (w), \ 358 .overlap = (o), \ 359 .flags = f, \ 360 } 361 362 #define __EVENT_CONSTRAINT(c, n, m, w, o, f) \ 363 __EVENT_CONSTRAINT_RANGE(c, c, n, m, w, o, f) 364 365 #define EVENT_CONSTRAINT(c, n, m) \ 366 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 0, 0) 367 368 /* 369 * The constraint_match() function only works for 'simple' event codes 370 * and not for extended (AMD64_EVENTSEL_EVENT) events codes. 371 */ 372 #define EVENT_CONSTRAINT_RANGE(c, e, n, m) \ 373 __EVENT_CONSTRAINT_RANGE(c, e, n, m, HWEIGHT(n), 0, 0) 374 375 #define INTEL_EXCLEVT_CONSTRAINT(c, n) \ 376 __EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT, HWEIGHT(n),\ 377 0, PERF_X86_EVENT_EXCL) 378 379 /* 380 * The overlap flag marks event constraints with overlapping counter 381 * masks. This is the case if the counter mask of such an event is not 382 * a subset of any other counter mask of a constraint with an equal or 383 * higher weight, e.g.: 384 * 385 * c_overlaps = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0); 386 * c_another1 = EVENT_CONSTRAINT(0, 0x07, 0); 387 * c_another2 = EVENT_CONSTRAINT(0, 0x38, 0); 388 * 389 * The event scheduler may not select the correct counter in the first 390 * cycle because it needs to know which subsequent events will be 391 * scheduled. It may fail to schedule the events then. So we set the 392 * overlap flag for such constraints to give the scheduler a hint which 393 * events to select for counter rescheduling. 394 * 395 * Care must be taken as the rescheduling algorithm is O(n!) which 396 * will increase scheduling cycles for an over-committed system 397 * dramatically. The number of such EVENT_CONSTRAINT_OVERLAP() macros 398 * and its counter masks must be kept at a minimum. 399 */ 400 #define EVENT_CONSTRAINT_OVERLAP(c, n, m) \ 401 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 1, 0) 402 403 /* 404 * Constraint on the Event code. 405 */ 406 #define INTEL_EVENT_CONSTRAINT(c, n) \ 407 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT) 408 409 /* 410 * Constraint on a range of Event codes 411 */ 412 #define INTEL_EVENT_CONSTRAINT_RANGE(c, e, n) \ 413 EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT) 414 415 /* 416 * Constraint on the Event code + UMask + fixed-mask 417 * 418 * filter mask to validate fixed counter events. 419 * the following filters disqualify for fixed counters: 420 * - inv 421 * - edge 422 * - cnt-mask 423 * - in_tx 424 * - in_tx_checkpointed 425 * The other filters are supported by fixed counters. 426 * The any-thread option is supported starting with v3. 427 */ 428 #define FIXED_EVENT_FLAGS (X86_RAW_EVENT_MASK|HSW_IN_TX|HSW_IN_TX_CHECKPOINTED) 429 #define FIXED_EVENT_CONSTRAINT(c, n) \ 430 EVENT_CONSTRAINT(c, (1ULL << (32+n)), FIXED_EVENT_FLAGS) 431 432 /* 433 * The special metric counters do not actually exist. They are calculated from 434 * the combination of the FxCtr3 + MSR_PERF_METRICS. 435 * 436 * The special metric counters are mapped to a dummy offset for the scheduler. 437 * The sharing between multiple users of the same metric without multiplexing 438 * is not allowed, even though the hardware supports that in principle. 439 */ 440 441 #define METRIC_EVENT_CONSTRAINT(c, n) \ 442 EVENT_CONSTRAINT(c, (1ULL << (INTEL_PMC_IDX_METRIC_BASE + n)), \ 443 INTEL_ARCH_EVENT_MASK) 444 445 /* 446 * Constraint on the Event code + UMask 447 */ 448 #define INTEL_UEVENT_CONSTRAINT(c, n) \ 449 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK) 450 451 /* Constraint on specific umask bit only + event */ 452 #define INTEL_UBIT_EVENT_CONSTRAINT(c, n) \ 453 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|(c)) 454 455 /* Like UEVENT_CONSTRAINT, but match flags too */ 456 #define INTEL_FLAGS_UEVENT_CONSTRAINT(c, n) \ 457 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS) 458 459 #define INTEL_EXCLUEVT_CONSTRAINT(c, n) \ 460 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK, \ 461 HWEIGHT(n), 0, PERF_X86_EVENT_EXCL) 462 463 #define INTEL_PLD_CONSTRAINT(c, n) \ 464 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 465 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LDLAT) 466 467 #define INTEL_PSD_CONSTRAINT(c, n) \ 468 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 469 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_STLAT) 470 471 #define INTEL_PST_CONSTRAINT(c, n) \ 472 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 473 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST) 474 475 #define INTEL_HYBRID_LAT_CONSTRAINT(c, n) \ 476 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 477 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID) 478 479 #define INTEL_HYBRID_LDLAT_CONSTRAINT(c, n) \ 480 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 481 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID|PERF_X86_EVENT_PEBS_LD_HSW) 482 483 #define INTEL_HYBRID_STLAT_CONSTRAINT(c, n) \ 484 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 485 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID|PERF_X86_EVENT_PEBS_ST_HSW) 486 487 /* Event constraint, but match on all event flags too. */ 488 #define INTEL_FLAGS_EVENT_CONSTRAINT(c, n) \ 489 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS) 490 491 #define INTEL_FLAGS_EVENT_CONSTRAINT_RANGE(c, e, n) \ 492 EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS) 493 494 /* Check only flags, but allow all event/umask */ 495 #define INTEL_ALL_EVENT_CONSTRAINT(code, n) \ 496 EVENT_CONSTRAINT(code, n, X86_ALL_EVENT_FLAGS) 497 498 /* Check flags and event code, and set the HSW store flag */ 499 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_ST(code, n) \ 500 __EVENT_CONSTRAINT(code, n, \ 501 ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ 502 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW) 503 504 /* Check flags and event code, and set the HSW load flag */ 505 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(code, n) \ 506 __EVENT_CONSTRAINT(code, n, \ 507 ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ 508 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) 509 510 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(code, end, n) \ 511 __EVENT_CONSTRAINT_RANGE(code, end, n, \ 512 ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ 513 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) 514 515 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(code, n) \ 516 __EVENT_CONSTRAINT(code, n, \ 517 ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ 518 HWEIGHT(n), 0, \ 519 PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL) 520 521 /* Check flags and event code/umask, and set the HSW store flag */ 522 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(code, n) \ 523 __EVENT_CONSTRAINT(code, n, \ 524 INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 525 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW) 526 527 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(code, n) \ 528 __EVENT_CONSTRAINT(code, n, \ 529 INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 530 HWEIGHT(n), 0, \ 531 PERF_X86_EVENT_PEBS_ST_HSW|PERF_X86_EVENT_EXCL) 532 533 /* Check flags and event code/umask, and set the HSW load flag */ 534 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(code, n) \ 535 __EVENT_CONSTRAINT(code, n, \ 536 INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 537 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) 538 539 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(code, n) \ 540 __EVENT_CONSTRAINT(code, n, \ 541 INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 542 HWEIGHT(n), 0, \ 543 PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL) 544 545 /* Check flags and event code/umask, and set the HSW N/A flag */ 546 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(code, n) \ 547 __EVENT_CONSTRAINT(code, n, \ 548 INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 549 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_NA_HSW) 550 551 552 /* 553 * We define the end marker as having a weight of -1 554 * to enable blacklisting of events using a counter bitmask 555 * of zero and thus a weight of zero. 556 * The end marker has a weight that cannot possibly be 557 * obtained from counting the bits in the bitmask. 558 */ 559 #define EVENT_CONSTRAINT_END { .weight = -1 } 560 561 /* 562 * Check for end marker with weight == -1 563 */ 564 #define for_each_event_constraint(e, c) \ 565 for ((e) = (c); (e)->weight != -1; (e)++) 566 567 /* 568 * Extra registers for specific events. 569 * 570 * Some events need large masks and require external MSRs. 571 * Those extra MSRs end up being shared for all events on 572 * a PMU and sometimes between PMU of sibling HT threads. 573 * In either case, the kernel needs to handle conflicting 574 * accesses to those extra, shared, regs. The data structure 575 * to manage those registers is stored in cpu_hw_event. 576 */ 577 struct extra_reg { 578 unsigned int event; 579 unsigned int msr; 580 u64 config_mask; 581 u64 valid_mask; 582 int idx; /* per_xxx->regs[] reg index */ 583 bool extra_msr_access; 584 }; 585 586 #define EVENT_EXTRA_REG(e, ms, m, vm, i) { \ 587 .event = (e), \ 588 .msr = (ms), \ 589 .config_mask = (m), \ 590 .valid_mask = (vm), \ 591 .idx = EXTRA_REG_##i, \ 592 .extra_msr_access = true, \ 593 } 594 595 #define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx) \ 596 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx) 597 598 #define INTEL_UEVENT_EXTRA_REG(event, msr, vm, idx) \ 599 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT | \ 600 ARCH_PERFMON_EVENTSEL_UMASK, vm, idx) 601 602 #define INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(c) \ 603 INTEL_UEVENT_EXTRA_REG(c, \ 604 MSR_PEBS_LD_LAT_THRESHOLD, \ 605 0xffff, \ 606 LDLAT) 607 608 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0) 609 610 union perf_capabilities { 611 struct { 612 u64 lbr_format:6; 613 u64 pebs_trap:1; 614 u64 pebs_arch_reg:1; 615 u64 pebs_format:4; 616 u64 smm_freeze:1; 617 /* 618 * PMU supports separate counter range for writing 619 * values > 32bit. 620 */ 621 u64 full_width_write:1; 622 u64 pebs_baseline:1; 623 u64 perf_metrics:1; 624 u64 pebs_output_pt_available:1; 625 u64 pebs_timing_info:1; 626 u64 anythread_deprecated:1; 627 }; 628 u64 capabilities; 629 }; 630 631 struct x86_pmu_quirk { 632 struct x86_pmu_quirk *next; 633 void (*func)(void); 634 }; 635 636 union x86_pmu_config { 637 struct { 638 u64 event:8, 639 umask:8, 640 usr:1, 641 os:1, 642 edge:1, 643 pc:1, 644 interrupt:1, 645 __reserved1:1, 646 en:1, 647 inv:1, 648 cmask:8, 649 event2:4, 650 __reserved2:4, 651 go:1, 652 ho:1; 653 } bits; 654 u64 value; 655 }; 656 657 #define X86_CONFIG(args...) ((union x86_pmu_config){.bits = {args}}).value 658 659 enum { 660 x86_lbr_exclusive_lbr, 661 x86_lbr_exclusive_bts, 662 x86_lbr_exclusive_pt, 663 x86_lbr_exclusive_max, 664 }; 665 666 #define PERF_PEBS_DATA_SOURCE_MAX 0x100 667 #define PERF_PEBS_DATA_SOURCE_MASK (PERF_PEBS_DATA_SOURCE_MAX - 1) 668 #define PERF_PEBS_DATA_SOURCE_GRT_MAX 0x10 669 #define PERF_PEBS_DATA_SOURCE_GRT_MASK (PERF_PEBS_DATA_SOURCE_GRT_MAX - 1) 670 671 enum hybrid_cpu_type { 672 HYBRID_INTEL_NONE, 673 HYBRID_INTEL_ATOM = 0x20, 674 HYBRID_INTEL_CORE = 0x40, 675 }; 676 677 enum hybrid_pmu_type { 678 not_hybrid, 679 hybrid_small = BIT(0), 680 hybrid_big = BIT(1), 681 682 hybrid_big_small = hybrid_big | hybrid_small, /* only used for matching */ 683 }; 684 685 #define X86_HYBRID_PMU_ATOM_IDX 0 686 #define X86_HYBRID_PMU_CORE_IDX 1 687 688 #define X86_HYBRID_NUM_PMUS 2 689 690 struct x86_hybrid_pmu { 691 struct pmu pmu; 692 const char *name; 693 enum hybrid_pmu_type pmu_type; 694 cpumask_t supported_cpus; 695 union perf_capabilities intel_cap; 696 u64 intel_ctrl; 697 u64 pebs_events_mask; 698 u64 config_mask; 699 union { 700 u64 cntr_mask64; 701 unsigned long cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 702 }; 703 union { 704 u64 fixed_cntr_mask64; 705 unsigned long fixed_cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 706 }; 707 struct event_constraint unconstrained; 708 709 u64 hw_cache_event_ids 710 [PERF_COUNT_HW_CACHE_MAX] 711 [PERF_COUNT_HW_CACHE_OP_MAX] 712 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 713 u64 hw_cache_extra_regs 714 [PERF_COUNT_HW_CACHE_MAX] 715 [PERF_COUNT_HW_CACHE_OP_MAX] 716 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 717 struct event_constraint *event_constraints; 718 struct event_constraint *pebs_constraints; 719 struct extra_reg *extra_regs; 720 721 unsigned int late_ack :1, 722 mid_ack :1, 723 enabled_ack :1; 724 725 u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX]; 726 }; 727 728 static __always_inline struct x86_hybrid_pmu *hybrid_pmu(struct pmu *pmu) 729 { 730 return container_of(pmu, struct x86_hybrid_pmu, pmu); 731 } 732 733 extern struct static_key_false perf_is_hybrid; 734 #define is_hybrid() static_branch_unlikely(&perf_is_hybrid) 735 736 #define hybrid(_pmu, _field) \ 737 (*({ \ 738 typeof(&x86_pmu._field) __Fp = &x86_pmu._field; \ 739 \ 740 if (is_hybrid() && (_pmu)) \ 741 __Fp = &hybrid_pmu(_pmu)->_field; \ 742 \ 743 __Fp; \ 744 })) 745 746 #define hybrid_var(_pmu, _var) \ 747 (*({ \ 748 typeof(&_var) __Fp = &_var; \ 749 \ 750 if (is_hybrid() && (_pmu)) \ 751 __Fp = &hybrid_pmu(_pmu)->_var; \ 752 \ 753 __Fp; \ 754 })) 755 756 #define hybrid_bit(_pmu, _field) \ 757 ({ \ 758 bool __Fp = x86_pmu._field; \ 759 \ 760 if (is_hybrid() && (_pmu)) \ 761 __Fp = hybrid_pmu(_pmu)->_field; \ 762 \ 763 __Fp; \ 764 }) 765 766 /* 767 * struct x86_pmu - generic x86 pmu 768 */ 769 struct x86_pmu { 770 /* 771 * Generic x86 PMC bits 772 */ 773 const char *name; 774 int version; 775 int (*handle_irq)(struct pt_regs *); 776 void (*disable_all)(void); 777 void (*enable_all)(int added); 778 void (*enable)(struct perf_event *); 779 void (*disable)(struct perf_event *); 780 void (*assign)(struct perf_event *event, int idx); 781 void (*add)(struct perf_event *); 782 void (*del)(struct perf_event *); 783 void (*read)(struct perf_event *event); 784 int (*set_period)(struct perf_event *event); 785 u64 (*update)(struct perf_event *event); 786 int (*hw_config)(struct perf_event *event); 787 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign); 788 unsigned eventsel; 789 unsigned perfctr; 790 unsigned fixedctr; 791 int (*addr_offset)(int index, bool eventsel); 792 int (*rdpmc_index)(int index); 793 u64 (*event_map)(int); 794 int max_events; 795 u64 config_mask; 796 union { 797 u64 cntr_mask64; 798 unsigned long cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 799 }; 800 union { 801 u64 fixed_cntr_mask64; 802 unsigned long fixed_cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 803 }; 804 int cntval_bits; 805 u64 cntval_mask; 806 union { 807 unsigned long events_maskl; 808 unsigned long events_mask[BITS_TO_LONGS(ARCH_PERFMON_EVENTS_COUNT)]; 809 }; 810 int events_mask_len; 811 int apic; 812 u64 max_period; 813 struct event_constraint * 814 (*get_event_constraints)(struct cpu_hw_events *cpuc, 815 int idx, 816 struct perf_event *event); 817 818 void (*put_event_constraints)(struct cpu_hw_events *cpuc, 819 struct perf_event *event); 820 821 void (*start_scheduling)(struct cpu_hw_events *cpuc); 822 823 void (*commit_scheduling)(struct cpu_hw_events *cpuc, int idx, int cntr); 824 825 void (*stop_scheduling)(struct cpu_hw_events *cpuc); 826 827 struct event_constraint *event_constraints; 828 struct x86_pmu_quirk *quirks; 829 void (*limit_period)(struct perf_event *event, s64 *l); 830 831 /* PMI handler bits */ 832 unsigned int late_ack :1, 833 mid_ack :1, 834 enabled_ack :1; 835 /* 836 * sysfs attrs 837 */ 838 int attr_rdpmc_broken; 839 int attr_rdpmc; 840 struct attribute **format_attrs; 841 842 ssize_t (*events_sysfs_show)(char *page, u64 config); 843 const struct attribute_group **attr_update; 844 845 unsigned long attr_freeze_on_smi; 846 847 /* 848 * CPU Hotplug hooks 849 */ 850 int (*cpu_prepare)(int cpu); 851 void (*cpu_starting)(int cpu); 852 void (*cpu_dying)(int cpu); 853 void (*cpu_dead)(int cpu); 854 855 void (*check_microcode)(void); 856 void (*sched_task)(struct perf_event_pmu_context *pmu_ctx, 857 bool sched_in); 858 859 /* 860 * Intel Arch Perfmon v2+ 861 */ 862 u64 intel_ctrl; 863 union perf_capabilities intel_cap; 864 865 /* 866 * Intel DebugStore bits 867 */ 868 unsigned int bts :1, 869 bts_active :1, 870 pebs :1, 871 pebs_active :1, 872 pebs_broken :1, 873 pebs_prec_dist :1, 874 pebs_no_tlb :1, 875 pebs_no_isolation :1, 876 pebs_block :1, 877 pebs_ept :1; 878 int pebs_record_size; 879 int pebs_buffer_size; 880 u64 pebs_events_mask; 881 void (*drain_pebs)(struct pt_regs *regs, struct perf_sample_data *data); 882 struct event_constraint *pebs_constraints; 883 void (*pebs_aliases)(struct perf_event *event); 884 u64 (*pebs_latency_data)(struct perf_event *event, u64 status); 885 unsigned long large_pebs_flags; 886 u64 rtm_abort_event; 887 u64 pebs_capable; 888 889 /* 890 * Intel LBR 891 */ 892 unsigned int lbr_tos, lbr_from, lbr_to, 893 lbr_info, lbr_nr; /* LBR base regs and size */ 894 union { 895 u64 lbr_sel_mask; /* LBR_SELECT valid bits */ 896 u64 lbr_ctl_mask; /* LBR_CTL valid bits */ 897 }; 898 union { 899 const int *lbr_sel_map; /* lbr_select mappings */ 900 int *lbr_ctl_map; /* LBR_CTL mappings */ 901 }; 902 bool lbr_double_abort; /* duplicated lbr aborts */ 903 bool lbr_pt_coexist; /* (LBR|BTS) may coexist with PT */ 904 905 unsigned int lbr_has_info:1; 906 unsigned int lbr_has_tsx:1; 907 unsigned int lbr_from_flags:1; 908 unsigned int lbr_to_cycles:1; 909 910 /* 911 * Intel Architectural LBR CPUID Enumeration 912 */ 913 unsigned int lbr_depth_mask:8; 914 unsigned int lbr_deep_c_reset:1; 915 unsigned int lbr_lip:1; 916 unsigned int lbr_cpl:1; 917 unsigned int lbr_filter:1; 918 unsigned int lbr_call_stack:1; 919 unsigned int lbr_mispred:1; 920 unsigned int lbr_timed_lbr:1; 921 unsigned int lbr_br_type:1; 922 unsigned int lbr_counters:4; 923 924 void (*lbr_reset)(void); 925 void (*lbr_read)(struct cpu_hw_events *cpuc); 926 void (*lbr_save)(void *ctx); 927 void (*lbr_restore)(void *ctx); 928 929 /* 930 * Intel PT/LBR/BTS are exclusive 931 */ 932 atomic_t lbr_exclusive[x86_lbr_exclusive_max]; 933 934 /* 935 * Intel perf metrics 936 */ 937 int num_topdown_events; 938 939 /* 940 * perf task context (i.e. struct perf_event_pmu_context::task_ctx_data) 941 * switch helper to bridge calls from perf/core to perf/x86. 942 * See struct pmu::swap_task_ctx() usage for examples; 943 */ 944 void (*swap_task_ctx)(struct perf_event_pmu_context *prev_epc, 945 struct perf_event_pmu_context *next_epc); 946 947 /* 948 * AMD bits 949 */ 950 unsigned int amd_nb_constraints : 1; 951 u64 perf_ctr_pair_en; 952 953 /* 954 * Extra registers for events 955 */ 956 struct extra_reg *extra_regs; 957 unsigned int flags; 958 959 /* 960 * Intel host/guest support (KVM) 961 */ 962 struct perf_guest_switch_msr *(*guest_get_msrs)(int *nr, void *data); 963 964 /* 965 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 966 */ 967 int (*check_period) (struct perf_event *event, u64 period); 968 969 int (*aux_output_match) (struct perf_event *event); 970 971 void (*filter)(struct pmu *pmu, int cpu, bool *ret); 972 /* 973 * Hybrid support 974 * 975 * Most PMU capabilities are the same among different hybrid PMUs. 976 * The global x86_pmu saves the architecture capabilities, which 977 * are available for all PMUs. The hybrid_pmu only includes the 978 * unique capabilities. 979 */ 980 int num_hybrid_pmus; 981 struct x86_hybrid_pmu *hybrid_pmu; 982 enum hybrid_cpu_type (*get_hybrid_cpu_type) (void); 983 }; 984 985 struct x86_perf_task_context_opt { 986 int lbr_callstack_users; 987 int lbr_stack_state; 988 int log_id; 989 }; 990 991 struct x86_perf_task_context { 992 u64 lbr_sel; 993 int tos; 994 int valid_lbrs; 995 struct x86_perf_task_context_opt opt; 996 struct lbr_entry lbr[MAX_LBR_ENTRIES]; 997 }; 998 999 struct x86_perf_task_context_arch_lbr { 1000 struct x86_perf_task_context_opt opt; 1001 struct lbr_entry entries[]; 1002 }; 1003 1004 /* 1005 * Add padding to guarantee the 64-byte alignment of the state buffer. 1006 * 1007 * The structure is dynamically allocated. The size of the LBR state may vary 1008 * based on the number of LBR registers. 1009 * 1010 * Do not put anything after the LBR state. 1011 */ 1012 struct x86_perf_task_context_arch_lbr_xsave { 1013 struct x86_perf_task_context_opt opt; 1014 1015 union { 1016 struct xregs_state xsave; 1017 struct { 1018 struct fxregs_state i387; 1019 struct xstate_header header; 1020 struct arch_lbr_state lbr; 1021 } __attribute__ ((packed, aligned (XSAVE_ALIGNMENT))); 1022 }; 1023 }; 1024 1025 #define x86_add_quirk(func_) \ 1026 do { \ 1027 static struct x86_pmu_quirk __quirk __initdata = { \ 1028 .func = func_, \ 1029 }; \ 1030 __quirk.next = x86_pmu.quirks; \ 1031 x86_pmu.quirks = &__quirk; \ 1032 } while (0) 1033 1034 /* 1035 * x86_pmu flags 1036 */ 1037 #define PMU_FL_NO_HT_SHARING 0x1 /* no hyper-threading resource sharing */ 1038 #define PMU_FL_HAS_RSP_1 0x2 /* has 2 equivalent offcore_rsp regs */ 1039 #define PMU_FL_EXCL_CNTRS 0x4 /* has exclusive counter requirements */ 1040 #define PMU_FL_EXCL_ENABLED 0x8 /* exclusive counter active */ 1041 #define PMU_FL_PEBS_ALL 0x10 /* all events are valid PEBS events */ 1042 #define PMU_FL_TFA 0x20 /* deal with TSX force abort */ 1043 #define PMU_FL_PAIR 0x40 /* merge counters for large incr. events */ 1044 #define PMU_FL_INSTR_LATENCY 0x80 /* Support Instruction Latency in PEBS Memory Info Record */ 1045 #define PMU_FL_MEM_LOADS_AUX 0x100 /* Require an auxiliary event for the complete memory info */ 1046 #define PMU_FL_RETIRE_LATENCY 0x200 /* Support Retire Latency in PEBS */ 1047 #define PMU_FL_BR_CNTR 0x400 /* Support branch counter logging */ 1048 1049 #define EVENT_VAR(_id) event_attr_##_id 1050 #define EVENT_PTR(_id) &event_attr_##_id.attr.attr 1051 1052 #define EVENT_ATTR(_name, _id) \ 1053 static struct perf_pmu_events_attr EVENT_VAR(_id) = { \ 1054 .attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \ 1055 .id = PERF_COUNT_HW_##_id, \ 1056 .event_str = NULL, \ 1057 }; 1058 1059 #define EVENT_ATTR_STR(_name, v, str) \ 1060 static struct perf_pmu_events_attr event_attr_##v = { \ 1061 .attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \ 1062 .id = 0, \ 1063 .event_str = str, \ 1064 }; 1065 1066 #define EVENT_ATTR_STR_HT(_name, v, noht, ht) \ 1067 static struct perf_pmu_events_ht_attr event_attr_##v = { \ 1068 .attr = __ATTR(_name, 0444, events_ht_sysfs_show, NULL),\ 1069 .id = 0, \ 1070 .event_str_noht = noht, \ 1071 .event_str_ht = ht, \ 1072 } 1073 1074 #define EVENT_ATTR_STR_HYBRID(_name, v, str, _pmu) \ 1075 static struct perf_pmu_events_hybrid_attr event_attr_##v = { \ 1076 .attr = __ATTR(_name, 0444, events_hybrid_sysfs_show, NULL),\ 1077 .id = 0, \ 1078 .event_str = str, \ 1079 .pmu_type = _pmu, \ 1080 } 1081 1082 #define FORMAT_HYBRID_PTR(_id) (&format_attr_hybrid_##_id.attr.attr) 1083 1084 #define FORMAT_ATTR_HYBRID(_name, _pmu) \ 1085 static struct perf_pmu_format_hybrid_attr format_attr_hybrid_##_name = {\ 1086 .attr = __ATTR_RO(_name), \ 1087 .pmu_type = _pmu, \ 1088 } 1089 1090 struct pmu *x86_get_pmu(unsigned int cpu); 1091 extern struct x86_pmu x86_pmu __read_mostly; 1092 1093 DECLARE_STATIC_CALL(x86_pmu_set_period, *x86_pmu.set_period); 1094 DECLARE_STATIC_CALL(x86_pmu_update, *x86_pmu.update); 1095 1096 static __always_inline struct x86_perf_task_context_opt *task_context_opt(void *ctx) 1097 { 1098 if (static_cpu_has(X86_FEATURE_ARCH_LBR)) 1099 return &((struct x86_perf_task_context_arch_lbr *)ctx)->opt; 1100 1101 return &((struct x86_perf_task_context *)ctx)->opt; 1102 } 1103 1104 static inline bool x86_pmu_has_lbr_callstack(void) 1105 { 1106 return x86_pmu.lbr_sel_map && 1107 x86_pmu.lbr_sel_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] > 0; 1108 } 1109 1110 DECLARE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 1111 DECLARE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1112 1113 int x86_perf_event_set_period(struct perf_event *event); 1114 1115 /* 1116 * Generalized hw caching related hw_event table, filled 1117 * in on a per model basis. A value of 0 means 1118 * 'not supported', -1 means 'hw_event makes no sense on 1119 * this CPU', any other value means the raw hw_event 1120 * ID. 1121 */ 1122 1123 #define C(x) PERF_COUNT_HW_CACHE_##x 1124 1125 extern u64 __read_mostly hw_cache_event_ids 1126 [PERF_COUNT_HW_CACHE_MAX] 1127 [PERF_COUNT_HW_CACHE_OP_MAX] 1128 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 1129 extern u64 __read_mostly hw_cache_extra_regs 1130 [PERF_COUNT_HW_CACHE_MAX] 1131 [PERF_COUNT_HW_CACHE_OP_MAX] 1132 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 1133 1134 u64 x86_perf_event_update(struct perf_event *event); 1135 1136 static inline unsigned int x86_pmu_config_addr(int index) 1137 { 1138 return x86_pmu.eventsel + (x86_pmu.addr_offset ? 1139 x86_pmu.addr_offset(index, true) : index); 1140 } 1141 1142 static inline unsigned int x86_pmu_event_addr(int index) 1143 { 1144 return x86_pmu.perfctr + (x86_pmu.addr_offset ? 1145 x86_pmu.addr_offset(index, false) : index); 1146 } 1147 1148 static inline unsigned int x86_pmu_fixed_ctr_addr(int index) 1149 { 1150 return x86_pmu.fixedctr + (x86_pmu.addr_offset ? 1151 x86_pmu.addr_offset(index, false) : index); 1152 } 1153 1154 static inline int x86_pmu_rdpmc_index(int index) 1155 { 1156 return x86_pmu.rdpmc_index ? x86_pmu.rdpmc_index(index) : index; 1157 } 1158 1159 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask, 1160 unsigned long *fixed_cntr_mask); 1161 1162 int x86_add_exclusive(unsigned int what); 1163 1164 void x86_del_exclusive(unsigned int what); 1165 1166 int x86_reserve_hardware(void); 1167 1168 void x86_release_hardware(void); 1169 1170 int x86_pmu_max_precise(void); 1171 1172 void hw_perf_lbr_event_destroy(struct perf_event *event); 1173 1174 int x86_setup_perfctr(struct perf_event *event); 1175 1176 int x86_pmu_hw_config(struct perf_event *event); 1177 1178 void x86_pmu_disable_all(void); 1179 1180 static inline bool has_amd_brs(struct hw_perf_event *hwc) 1181 { 1182 return hwc->flags & PERF_X86_EVENT_AMD_BRS; 1183 } 1184 1185 static inline bool is_counter_pair(struct hw_perf_event *hwc) 1186 { 1187 return hwc->flags & PERF_X86_EVENT_PAIR; 1188 } 1189 1190 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, 1191 u64 enable_mask) 1192 { 1193 u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask); 1194 1195 if (hwc->extra_reg.reg) 1196 wrmsrl(hwc->extra_reg.reg, hwc->extra_reg.config); 1197 1198 /* 1199 * Add enabled Merge event on next counter 1200 * if large increment event being enabled on this counter 1201 */ 1202 if (is_counter_pair(hwc)) 1203 wrmsrl(x86_pmu_config_addr(hwc->idx + 1), x86_pmu.perf_ctr_pair_en); 1204 1205 wrmsrl(hwc->config_base, (hwc->config | enable_mask) & ~disable_mask); 1206 } 1207 1208 void x86_pmu_enable_all(int added); 1209 1210 int perf_assign_events(struct event_constraint **constraints, int n, 1211 int wmin, int wmax, int gpmax, int *assign); 1212 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign); 1213 1214 void x86_pmu_stop(struct perf_event *event, int flags); 1215 1216 static inline void x86_pmu_disable_event(struct perf_event *event) 1217 { 1218 u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask); 1219 struct hw_perf_event *hwc = &event->hw; 1220 1221 wrmsrl(hwc->config_base, hwc->config & ~disable_mask); 1222 1223 if (is_counter_pair(hwc)) 1224 wrmsrl(x86_pmu_config_addr(hwc->idx + 1), 0); 1225 } 1226 1227 void x86_pmu_enable_event(struct perf_event *event); 1228 1229 int x86_pmu_handle_irq(struct pt_regs *regs); 1230 1231 void x86_pmu_show_pmu_cap(struct pmu *pmu); 1232 1233 static inline int x86_pmu_num_counters(struct pmu *pmu) 1234 { 1235 return hweight64(hybrid(pmu, cntr_mask64)); 1236 } 1237 1238 static inline int x86_pmu_max_num_counters(struct pmu *pmu) 1239 { 1240 return fls64(hybrid(pmu, cntr_mask64)); 1241 } 1242 1243 static inline int x86_pmu_num_counters_fixed(struct pmu *pmu) 1244 { 1245 return hweight64(hybrid(pmu, fixed_cntr_mask64)); 1246 } 1247 1248 static inline int x86_pmu_max_num_counters_fixed(struct pmu *pmu) 1249 { 1250 return fls64(hybrid(pmu, fixed_cntr_mask64)); 1251 } 1252 1253 static inline u64 x86_pmu_get_event_config(struct perf_event *event) 1254 { 1255 return event->attr.config & hybrid(event->pmu, config_mask); 1256 } 1257 1258 extern struct event_constraint emptyconstraint; 1259 1260 extern struct event_constraint unconstrained; 1261 1262 static inline bool kernel_ip(unsigned long ip) 1263 { 1264 #ifdef CONFIG_X86_32 1265 return ip > PAGE_OFFSET; 1266 #else 1267 return (long)ip < 0; 1268 #endif 1269 } 1270 1271 /* 1272 * Not all PMUs provide the right context information to place the reported IP 1273 * into full context. Specifically segment registers are typically not 1274 * supplied. 1275 * 1276 * Assuming the address is a linear address (it is for IBS), we fake the CS and 1277 * vm86 mode using the known zero-based code segment and 'fix up' the registers 1278 * to reflect this. 1279 * 1280 * Intel PEBS/LBR appear to typically provide the effective address, nothing 1281 * much we can do about that but pray and treat it like a linear address. 1282 */ 1283 static inline void set_linear_ip(struct pt_regs *regs, unsigned long ip) 1284 { 1285 regs->cs = kernel_ip(ip) ? __KERNEL_CS : __USER_CS; 1286 if (regs->flags & X86_VM_MASK) 1287 regs->flags ^= (PERF_EFLAGS_VM | X86_VM_MASK); 1288 regs->ip = ip; 1289 } 1290 1291 /* 1292 * x86control flow change classification 1293 * x86control flow changes include branches, interrupts, traps, faults 1294 */ 1295 enum { 1296 X86_BR_NONE = 0, /* unknown */ 1297 1298 X86_BR_USER = 1 << 0, /* branch target is user */ 1299 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */ 1300 1301 X86_BR_CALL = 1 << 2, /* call */ 1302 X86_BR_RET = 1 << 3, /* return */ 1303 X86_BR_SYSCALL = 1 << 4, /* syscall */ 1304 X86_BR_SYSRET = 1 << 5, /* syscall return */ 1305 X86_BR_INT = 1 << 6, /* sw interrupt */ 1306 X86_BR_IRET = 1 << 7, /* return from interrupt */ 1307 X86_BR_JCC = 1 << 8, /* conditional */ 1308 X86_BR_JMP = 1 << 9, /* jump */ 1309 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */ 1310 X86_BR_IND_CALL = 1 << 11,/* indirect calls */ 1311 X86_BR_ABORT = 1 << 12,/* transaction abort */ 1312 X86_BR_IN_TX = 1 << 13,/* in transaction */ 1313 X86_BR_NO_TX = 1 << 14,/* not in transaction */ 1314 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */ 1315 X86_BR_CALL_STACK = 1 << 16,/* call stack */ 1316 X86_BR_IND_JMP = 1 << 17,/* indirect jump */ 1317 1318 X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */ 1319 1320 }; 1321 1322 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL) 1323 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX) 1324 1325 #define X86_BR_ANY \ 1326 (X86_BR_CALL |\ 1327 X86_BR_RET |\ 1328 X86_BR_SYSCALL |\ 1329 X86_BR_SYSRET |\ 1330 X86_BR_INT |\ 1331 X86_BR_IRET |\ 1332 X86_BR_JCC |\ 1333 X86_BR_JMP |\ 1334 X86_BR_IRQ |\ 1335 X86_BR_ABORT |\ 1336 X86_BR_IND_CALL |\ 1337 X86_BR_IND_JMP |\ 1338 X86_BR_ZERO_CALL) 1339 1340 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY) 1341 1342 #define X86_BR_ANY_CALL \ 1343 (X86_BR_CALL |\ 1344 X86_BR_IND_CALL |\ 1345 X86_BR_ZERO_CALL |\ 1346 X86_BR_SYSCALL |\ 1347 X86_BR_IRQ |\ 1348 X86_BR_INT) 1349 1350 int common_branch_type(int type); 1351 int branch_type(unsigned long from, unsigned long to, int abort); 1352 int branch_type_fused(unsigned long from, unsigned long to, int abort, 1353 int *offset); 1354 1355 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event); 1356 ssize_t intel_event_sysfs_show(char *page, u64 config); 1357 1358 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, 1359 char *page); 1360 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, 1361 char *page); 1362 ssize_t events_hybrid_sysfs_show(struct device *dev, 1363 struct device_attribute *attr, 1364 char *page); 1365 1366 static inline bool fixed_counter_disabled(int i, struct pmu *pmu) 1367 { 1368 u64 intel_ctrl = hybrid(pmu, intel_ctrl); 1369 1370 return !(intel_ctrl >> (i + INTEL_PMC_IDX_FIXED)); 1371 } 1372 1373 #ifdef CONFIG_CPU_SUP_AMD 1374 1375 int amd_pmu_init(void); 1376 1377 int amd_pmu_lbr_init(void); 1378 void amd_pmu_lbr_reset(void); 1379 void amd_pmu_lbr_read(void); 1380 void amd_pmu_lbr_add(struct perf_event *event); 1381 void amd_pmu_lbr_del(struct perf_event *event); 1382 void amd_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in); 1383 void amd_pmu_lbr_enable_all(void); 1384 void amd_pmu_lbr_disable_all(void); 1385 int amd_pmu_lbr_hw_config(struct perf_event *event); 1386 1387 static __always_inline void __amd_pmu_lbr_disable(void) 1388 { 1389 u64 dbg_ctl, dbg_extn_cfg; 1390 1391 rdmsrl(MSR_AMD_DBG_EXTN_CFG, dbg_extn_cfg); 1392 wrmsrl(MSR_AMD_DBG_EXTN_CFG, dbg_extn_cfg & ~DBG_EXTN_CFG_LBRV2EN); 1393 1394 if (cpu_feature_enabled(X86_FEATURE_AMD_LBR_PMC_FREEZE)) { 1395 rdmsrl(MSR_IA32_DEBUGCTLMSR, dbg_ctl); 1396 wrmsrl(MSR_IA32_DEBUGCTLMSR, dbg_ctl & ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI); 1397 } 1398 } 1399 1400 #ifdef CONFIG_PERF_EVENTS_AMD_BRS 1401 1402 #define AMD_FAM19H_BRS_EVENT 0xc4 /* RETIRED_TAKEN_BRANCH_INSTRUCTIONS */ 1403 1404 int amd_brs_init(void); 1405 void amd_brs_disable(void); 1406 void amd_brs_enable(void); 1407 void amd_brs_enable_all(void); 1408 void amd_brs_disable_all(void); 1409 void amd_brs_drain(void); 1410 void amd_brs_lopwr_init(void); 1411 int amd_brs_hw_config(struct perf_event *event); 1412 void amd_brs_reset(void); 1413 1414 static inline void amd_pmu_brs_add(struct perf_event *event) 1415 { 1416 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1417 1418 perf_sched_cb_inc(event->pmu); 1419 cpuc->lbr_users++; 1420 /* 1421 * No need to reset BRS because it is reset 1422 * on brs_enable() and it is saturating 1423 */ 1424 } 1425 1426 static inline void amd_pmu_brs_del(struct perf_event *event) 1427 { 1428 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1429 1430 cpuc->lbr_users--; 1431 WARN_ON_ONCE(cpuc->lbr_users < 0); 1432 1433 perf_sched_cb_dec(event->pmu); 1434 } 1435 1436 void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in); 1437 #else 1438 static inline int amd_brs_init(void) 1439 { 1440 return 0; 1441 } 1442 static inline void amd_brs_disable(void) {} 1443 static inline void amd_brs_enable(void) {} 1444 static inline void amd_brs_drain(void) {} 1445 static inline void amd_brs_lopwr_init(void) {} 1446 static inline void amd_brs_disable_all(void) {} 1447 static inline int amd_brs_hw_config(struct perf_event *event) 1448 { 1449 return 0; 1450 } 1451 static inline void amd_brs_reset(void) {} 1452 1453 static inline void amd_pmu_brs_add(struct perf_event *event) 1454 { 1455 } 1456 1457 static inline void amd_pmu_brs_del(struct perf_event *event) 1458 { 1459 } 1460 1461 static inline void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) 1462 { 1463 } 1464 1465 static inline void amd_brs_enable_all(void) 1466 { 1467 } 1468 1469 #endif 1470 1471 #else /* CONFIG_CPU_SUP_AMD */ 1472 1473 static inline int amd_pmu_init(void) 1474 { 1475 return 0; 1476 } 1477 1478 static inline int amd_brs_init(void) 1479 { 1480 return -EOPNOTSUPP; 1481 } 1482 1483 static inline void amd_brs_drain(void) 1484 { 1485 } 1486 1487 static inline void amd_brs_enable_all(void) 1488 { 1489 } 1490 1491 static inline void amd_brs_disable_all(void) 1492 { 1493 } 1494 #endif /* CONFIG_CPU_SUP_AMD */ 1495 1496 static inline int is_pebs_pt(struct perf_event *event) 1497 { 1498 return !!(event->hw.flags & PERF_X86_EVENT_PEBS_VIA_PT); 1499 } 1500 1501 #ifdef CONFIG_CPU_SUP_INTEL 1502 1503 static inline bool intel_pmu_has_bts_period(struct perf_event *event, u64 period) 1504 { 1505 struct hw_perf_event *hwc = &event->hw; 1506 unsigned int hw_event, bts_event; 1507 1508 if (event->attr.freq) 1509 return false; 1510 1511 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; 1512 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 1513 1514 return hw_event == bts_event && period == 1; 1515 } 1516 1517 static inline bool intel_pmu_has_bts(struct perf_event *event) 1518 { 1519 struct hw_perf_event *hwc = &event->hw; 1520 1521 return intel_pmu_has_bts_period(event, hwc->sample_period); 1522 } 1523 1524 static __always_inline void __intel_pmu_pebs_disable_all(void) 1525 { 1526 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1527 } 1528 1529 static __always_inline void __intel_pmu_arch_lbr_disable(void) 1530 { 1531 wrmsrl(MSR_ARCH_LBR_CTL, 0); 1532 } 1533 1534 static __always_inline void __intel_pmu_lbr_disable(void) 1535 { 1536 u64 debugctl; 1537 1538 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1539 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI); 1540 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1541 } 1542 1543 int intel_pmu_save_and_restart(struct perf_event *event); 1544 1545 struct event_constraint * 1546 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 1547 struct perf_event *event); 1548 1549 extern int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu); 1550 extern void intel_cpuc_finish(struct cpu_hw_events *cpuc); 1551 1552 int intel_pmu_init(void); 1553 1554 void init_debug_store_on_cpu(int cpu); 1555 1556 void fini_debug_store_on_cpu(int cpu); 1557 1558 void release_ds_buffers(void); 1559 1560 void reserve_ds_buffers(void); 1561 1562 void release_lbr_buffers(void); 1563 1564 void reserve_lbr_buffers(void); 1565 1566 extern struct event_constraint bts_constraint; 1567 extern struct event_constraint vlbr_constraint; 1568 1569 void intel_pmu_enable_bts(u64 config); 1570 1571 void intel_pmu_disable_bts(void); 1572 1573 int intel_pmu_drain_bts_buffer(void); 1574 1575 u64 grt_latency_data(struct perf_event *event, u64 status); 1576 1577 u64 cmt_latency_data(struct perf_event *event, u64 status); 1578 1579 u64 lnl_latency_data(struct perf_event *event, u64 status); 1580 1581 extern struct event_constraint intel_core2_pebs_event_constraints[]; 1582 1583 extern struct event_constraint intel_atom_pebs_event_constraints[]; 1584 1585 extern struct event_constraint intel_slm_pebs_event_constraints[]; 1586 1587 extern struct event_constraint intel_glm_pebs_event_constraints[]; 1588 1589 extern struct event_constraint intel_glp_pebs_event_constraints[]; 1590 1591 extern struct event_constraint intel_grt_pebs_event_constraints[]; 1592 1593 extern struct event_constraint intel_nehalem_pebs_event_constraints[]; 1594 1595 extern struct event_constraint intel_westmere_pebs_event_constraints[]; 1596 1597 extern struct event_constraint intel_snb_pebs_event_constraints[]; 1598 1599 extern struct event_constraint intel_ivb_pebs_event_constraints[]; 1600 1601 extern struct event_constraint intel_hsw_pebs_event_constraints[]; 1602 1603 extern struct event_constraint intel_bdw_pebs_event_constraints[]; 1604 1605 extern struct event_constraint intel_skl_pebs_event_constraints[]; 1606 1607 extern struct event_constraint intel_icl_pebs_event_constraints[]; 1608 1609 extern struct event_constraint intel_glc_pebs_event_constraints[]; 1610 1611 extern struct event_constraint intel_lnc_pebs_event_constraints[]; 1612 1613 struct event_constraint *intel_pebs_constraints(struct perf_event *event); 1614 1615 void intel_pmu_pebs_add(struct perf_event *event); 1616 1617 void intel_pmu_pebs_del(struct perf_event *event); 1618 1619 void intel_pmu_pebs_enable(struct perf_event *event); 1620 1621 void intel_pmu_pebs_disable(struct perf_event *event); 1622 1623 void intel_pmu_pebs_enable_all(void); 1624 1625 void intel_pmu_pebs_disable_all(void); 1626 1627 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in); 1628 1629 void intel_pmu_auto_reload_read(struct perf_event *event); 1630 1631 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr); 1632 1633 void intel_ds_init(void); 1634 1635 void intel_pmu_lbr_save_brstack(struct perf_sample_data *data, 1636 struct cpu_hw_events *cpuc, 1637 struct perf_event *event); 1638 1639 void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc, 1640 struct perf_event_pmu_context *next_epc); 1641 1642 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in); 1643 1644 u64 lbr_from_signext_quirk_wr(u64 val); 1645 1646 void intel_pmu_lbr_reset(void); 1647 1648 void intel_pmu_lbr_reset_32(void); 1649 1650 void intel_pmu_lbr_reset_64(void); 1651 1652 void intel_pmu_lbr_add(struct perf_event *event); 1653 1654 void intel_pmu_lbr_del(struct perf_event *event); 1655 1656 void intel_pmu_lbr_enable_all(bool pmi); 1657 1658 void intel_pmu_lbr_disable_all(void); 1659 1660 void intel_pmu_lbr_read(void); 1661 1662 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc); 1663 1664 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc); 1665 1666 void intel_pmu_lbr_save(void *ctx); 1667 1668 void intel_pmu_lbr_restore(void *ctx); 1669 1670 void intel_pmu_lbr_init_core(void); 1671 1672 void intel_pmu_lbr_init_nhm(void); 1673 1674 void intel_pmu_lbr_init_atom(void); 1675 1676 void intel_pmu_lbr_init_slm(void); 1677 1678 void intel_pmu_lbr_init_snb(void); 1679 1680 void intel_pmu_lbr_init_hsw(void); 1681 1682 void intel_pmu_lbr_init_skl(void); 1683 1684 void intel_pmu_lbr_init_knl(void); 1685 1686 void intel_pmu_lbr_init(void); 1687 1688 void intel_pmu_arch_lbr_init(void); 1689 1690 void intel_pmu_pebs_data_source_nhm(void); 1691 1692 void intel_pmu_pebs_data_source_skl(bool pmem); 1693 1694 void intel_pmu_pebs_data_source_adl(void); 1695 1696 void intel_pmu_pebs_data_source_grt(void); 1697 1698 void intel_pmu_pebs_data_source_mtl(void); 1699 1700 void intel_pmu_pebs_data_source_cmt(void); 1701 1702 void intel_pmu_pebs_data_source_lnl(void); 1703 1704 int intel_pmu_setup_lbr_filter(struct perf_event *event); 1705 1706 void intel_pt_interrupt(void); 1707 1708 int intel_bts_interrupt(void); 1709 1710 void intel_bts_enable_local(void); 1711 1712 void intel_bts_disable_local(void); 1713 1714 int p4_pmu_init(void); 1715 1716 int p6_pmu_init(void); 1717 1718 int knc_pmu_init(void); 1719 1720 static inline int is_ht_workaround_enabled(void) 1721 { 1722 return !!(x86_pmu.flags & PMU_FL_EXCL_ENABLED); 1723 } 1724 1725 static inline u64 intel_pmu_pebs_mask(u64 cntr_mask) 1726 { 1727 return MAX_PEBS_EVENTS_MASK & cntr_mask; 1728 } 1729 1730 static inline int intel_pmu_max_num_pebs(struct pmu *pmu) 1731 { 1732 static_assert(MAX_PEBS_EVENTS == 32); 1733 return fls((u32)hybrid(pmu, pebs_events_mask)); 1734 } 1735 1736 #else /* CONFIG_CPU_SUP_INTEL */ 1737 1738 static inline void reserve_ds_buffers(void) 1739 { 1740 } 1741 1742 static inline void release_ds_buffers(void) 1743 { 1744 } 1745 1746 static inline void release_lbr_buffers(void) 1747 { 1748 } 1749 1750 static inline void reserve_lbr_buffers(void) 1751 { 1752 } 1753 1754 static inline int intel_pmu_init(void) 1755 { 1756 return 0; 1757 } 1758 1759 static inline int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu) 1760 { 1761 return 0; 1762 } 1763 1764 static inline void intel_cpuc_finish(struct cpu_hw_events *cpuc) 1765 { 1766 } 1767 1768 static inline int is_ht_workaround_enabled(void) 1769 { 1770 return 0; 1771 } 1772 #endif /* CONFIG_CPU_SUP_INTEL */ 1773 1774 #if ((defined CONFIG_CPU_SUP_CENTAUR) || (defined CONFIG_CPU_SUP_ZHAOXIN)) 1775 int zhaoxin_pmu_init(void); 1776 #else 1777 static inline int zhaoxin_pmu_init(void) 1778 { 1779 return 0; 1780 } 1781 #endif /*CONFIG_CPU_SUP_CENTAUR or CONFIG_CPU_SUP_ZHAOXIN*/ 1782
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.