~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/hyperv/hv_init.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * X86 specific Hyper-V initialization code.
  4  *
  5  * Copyright (C) 2016, Microsoft, Inc.
  6  *
  7  * Author : K. Y. Srinivasan <kys@microsoft.com>
  8  */
  9 
 10 #define pr_fmt(fmt)  "Hyper-V: " fmt
 11 
 12 #include <linux/efi.h>
 13 #include <linux/types.h>
 14 #include <linux/bitfield.h>
 15 #include <linux/io.h>
 16 #include <asm/apic.h>
 17 #include <asm/desc.h>
 18 #include <asm/e820/api.h>
 19 #include <asm/sev.h>
 20 #include <asm/ibt.h>
 21 #include <asm/hypervisor.h>
 22 #include <asm/hyperv-tlfs.h>
 23 #include <asm/mshyperv.h>
 24 #include <asm/idtentry.h>
 25 #include <asm/set_memory.h>
 26 #include <linux/kexec.h>
 27 #include <linux/version.h>
 28 #include <linux/vmalloc.h>
 29 #include <linux/mm.h>
 30 #include <linux/hyperv.h>
 31 #include <linux/slab.h>
 32 #include <linux/kernel.h>
 33 #include <linux/cpuhotplug.h>
 34 #include <linux/syscore_ops.h>
 35 #include <clocksource/hyperv_timer.h>
 36 #include <linux/highmem.h>
 37 
 38 u64 hv_current_partition_id = ~0ull;
 39 EXPORT_SYMBOL_GPL(hv_current_partition_id);
 40 
 41 void *hv_hypercall_pg;
 42 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
 43 
 44 union hv_ghcb * __percpu *hv_ghcb_pg;
 45 
 46 /* Storage to save the hypercall page temporarily for hibernation */
 47 static void *hv_hypercall_pg_saved;
 48 
 49 struct hv_vp_assist_page **hv_vp_assist_page;
 50 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
 51 
 52 static int hyperv_init_ghcb(void)
 53 {
 54         u64 ghcb_gpa;
 55         void *ghcb_va;
 56         void **ghcb_base;
 57 
 58         if (!ms_hyperv.paravisor_present || !hv_isolation_type_snp())
 59                 return 0;
 60 
 61         if (!hv_ghcb_pg)
 62                 return -EINVAL;
 63 
 64         /*
 65          * GHCB page is allocated by paravisor. The address
 66          * returned by MSR_AMD64_SEV_ES_GHCB is above shared
 67          * memory boundary and map it here.
 68          */
 69         rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
 70 
 71         /* Mask out vTOM bit. ioremap_cache() maps decrypted */
 72         ghcb_gpa &= ~ms_hyperv.shared_gpa_boundary;
 73         ghcb_va = (void *)ioremap_cache(ghcb_gpa, HV_HYP_PAGE_SIZE);
 74         if (!ghcb_va)
 75                 return -ENOMEM;
 76 
 77         ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
 78         *ghcb_base = ghcb_va;
 79 
 80         return 0;
 81 }
 82 
 83 static int hv_cpu_init(unsigned int cpu)
 84 {
 85         union hv_vp_assist_msr_contents msr = { 0 };
 86         struct hv_vp_assist_page **hvp;
 87         int ret;
 88 
 89         ret = hv_common_cpu_init(cpu);
 90         if (ret)
 91                 return ret;
 92 
 93         if (!hv_vp_assist_page)
 94                 return 0;
 95 
 96         hvp = &hv_vp_assist_page[cpu];
 97         if (hv_root_partition) {
 98                 /*
 99                  * For root partition we get the hypervisor provided VP assist
100                  * page, instead of allocating a new page.
101                  */
102                 rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
103                 *hvp = memremap(msr.pfn << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
104                                 PAGE_SIZE, MEMREMAP_WB);
105         } else {
106                 /*
107                  * The VP assist page is an "overlay" page (see Hyper-V TLFS's
108                  * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
109                  * out to make sure we always write the EOI MSR in
110                  * hv_apic_eoi_write() *after* the EOI optimization is disabled
111                  * in hv_cpu_die(), otherwise a CPU may not be stopped in the
112                  * case of CPU offlining and the VM will hang.
113                  */
114                 if (!*hvp) {
115                         *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
116 
117                         /*
118                          * Hyper-V should never specify a VM that is a Confidential
119                          * VM and also running in the root partition. Root partition
120                          * is blocked to run in Confidential VM. So only decrypt assist
121                          * page in non-root partition here.
122                          */
123                         if (*hvp && !ms_hyperv.paravisor_present && hv_isolation_type_snp()) {
124                                 WARN_ON_ONCE(set_memory_decrypted((unsigned long)(*hvp), 1));
125                                 memset(*hvp, 0, PAGE_SIZE);
126                         }
127                 }
128 
129                 if (*hvp)
130                         msr.pfn = vmalloc_to_pfn(*hvp);
131 
132         }
133         if (!WARN_ON(!(*hvp))) {
134                 msr.enable = 1;
135                 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
136         }
137 
138         return hyperv_init_ghcb();
139 }
140 
141 static void (*hv_reenlightenment_cb)(void);
142 
143 static void hv_reenlightenment_notify(struct work_struct *dummy)
144 {
145         struct hv_tsc_emulation_status emu_status;
146 
147         rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
148 
149         /* Don't issue the callback if TSC accesses are not emulated */
150         if (hv_reenlightenment_cb && emu_status.inprogress)
151                 hv_reenlightenment_cb();
152 }
153 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
154 
155 void hyperv_stop_tsc_emulation(void)
156 {
157         u64 freq;
158         struct hv_tsc_emulation_status emu_status;
159 
160         rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
161         emu_status.inprogress = 0;
162         wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
163 
164         rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
165         tsc_khz = div64_u64(freq, 1000);
166 }
167 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
168 
169 static inline bool hv_reenlightenment_available(void)
170 {
171         /*
172          * Check for required features and privileges to make TSC frequency
173          * change notifications work.
174          */
175         return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
176                 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
177                 ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
178 }
179 
180 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
181 {
182         apic_eoi();
183         inc_irq_stat(irq_hv_reenlightenment_count);
184         schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
185 }
186 
187 void set_hv_tscchange_cb(void (*cb)(void))
188 {
189         struct hv_reenlightenment_control re_ctrl = {
190                 .vector = HYPERV_REENLIGHTENMENT_VECTOR,
191                 .enabled = 1,
192         };
193         struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
194 
195         if (!hv_reenlightenment_available()) {
196                 pr_warn("reenlightenment support is unavailable\n");
197                 return;
198         }
199 
200         if (!hv_vp_index)
201                 return;
202 
203         hv_reenlightenment_cb = cb;
204 
205         /* Make sure callback is registered before we write to MSRs */
206         wmb();
207 
208         re_ctrl.target_vp = hv_vp_index[get_cpu()];
209 
210         wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
211         wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
212 
213         put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
216 
217 void clear_hv_tscchange_cb(void)
218 {
219         struct hv_reenlightenment_control re_ctrl;
220 
221         if (!hv_reenlightenment_available())
222                 return;
223 
224         rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
225         re_ctrl.enabled = 0;
226         wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
227 
228         hv_reenlightenment_cb = NULL;
229 }
230 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
231 
232 static int hv_cpu_die(unsigned int cpu)
233 {
234         struct hv_reenlightenment_control re_ctrl;
235         unsigned int new_cpu;
236         void **ghcb_va;
237 
238         if (hv_ghcb_pg) {
239                 ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
240                 if (*ghcb_va)
241                         iounmap(*ghcb_va);
242                 *ghcb_va = NULL;
243         }
244 
245         hv_common_cpu_die(cpu);
246 
247         if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
248                 union hv_vp_assist_msr_contents msr = { 0 };
249                 if (hv_root_partition) {
250                         /*
251                          * For root partition the VP assist page is mapped to
252                          * hypervisor provided page, and thus we unmap the
253                          * page here and nullify it, so that in future we have
254                          * correct page address mapped in hv_cpu_init.
255                          */
256                         memunmap(hv_vp_assist_page[cpu]);
257                         hv_vp_assist_page[cpu] = NULL;
258                         rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
259                         msr.enable = 0;
260                 }
261                 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
262         }
263 
264         if (hv_reenlightenment_cb == NULL)
265                 return 0;
266 
267         rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
268         if (re_ctrl.target_vp == hv_vp_index[cpu]) {
269                 /*
270                  * Reassign reenlightenment notifications to some other online
271                  * CPU or just disable the feature if there are no online CPUs
272                  * left (happens on hibernation).
273                  */
274                 new_cpu = cpumask_any_but(cpu_online_mask, cpu);
275 
276                 if (new_cpu < nr_cpu_ids)
277                         re_ctrl.target_vp = hv_vp_index[new_cpu];
278                 else
279                         re_ctrl.enabled = 0;
280 
281                 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
282         }
283 
284         return 0;
285 }
286 
287 static int __init hv_pci_init(void)
288 {
289         bool gen2vm = efi_enabled(EFI_BOOT);
290 
291         /*
292          * A Generation-2 VM doesn't support legacy PCI/PCIe, so both
293          * raw_pci_ops and raw_pci_ext_ops are NULL, and pci_subsys_init() ->
294          * pcibios_init() doesn't call pcibios_resource_survey() ->
295          * e820__reserve_resources_late(); as a result, any emulated persistent
296          * memory of E820_TYPE_PRAM (12) via the kernel parameter
297          * memmap=nn[KMG]!ss is not added into iomem_resource and hence can't be
298          * detected by register_e820_pmem(). Fix this by directly calling
299          * e820__reserve_resources_late() here: e820__reserve_resources_late()
300          * depends on e820__reserve_resources(), which has been called earlier
301          * from setup_arch(). Note: e820__reserve_resources_late() also adds
302          * any memory of E820_TYPE_PMEM (7) into iomem_resource, and
303          * acpi_nfit_register_region() -> acpi_nfit_insert_resource() ->
304          * region_intersects() returns REGION_INTERSECTS, so the memory of
305          * E820_TYPE_PMEM won't get added twice.
306          *
307          * We return 0 here so that pci_arch_init() won't print the warning:
308          * "PCI: Fatal: No config space access function found"
309          */
310         if (gen2vm) {
311                 e820__reserve_resources_late();
312                 return 0;
313         }
314 
315         /* For Generation-1 VM, we'll proceed in pci_arch_init().  */
316         return 1;
317 }
318 
319 static int hv_suspend(void)
320 {
321         union hv_x64_msr_hypercall_contents hypercall_msr;
322         int ret;
323 
324         if (hv_root_partition)
325                 return -EPERM;
326 
327         /*
328          * Reset the hypercall page as it is going to be invalidated
329          * across hibernation. Setting hv_hypercall_pg to NULL ensures
330          * that any subsequent hypercall operation fails safely instead of
331          * crashing due to an access of an invalid page. The hypercall page
332          * pointer is restored on resume.
333          */
334         hv_hypercall_pg_saved = hv_hypercall_pg;
335         hv_hypercall_pg = NULL;
336 
337         /* Disable the hypercall page in the hypervisor */
338         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
339         hypercall_msr.enable = 0;
340         wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
341 
342         ret = hv_cpu_die(0);
343         return ret;
344 }
345 
346 static void hv_resume(void)
347 {
348         union hv_x64_msr_hypercall_contents hypercall_msr;
349         int ret;
350 
351         ret = hv_cpu_init(0);
352         WARN_ON(ret);
353 
354         /* Re-enable the hypercall page */
355         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
356         hypercall_msr.enable = 1;
357         hypercall_msr.guest_physical_address =
358                 vmalloc_to_pfn(hv_hypercall_pg_saved);
359         wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
360 
361         hv_hypercall_pg = hv_hypercall_pg_saved;
362         hv_hypercall_pg_saved = NULL;
363 
364         /*
365          * Reenlightenment notifications are disabled by hv_cpu_die(0),
366          * reenable them here if hv_reenlightenment_cb was previously set.
367          */
368         if (hv_reenlightenment_cb)
369                 set_hv_tscchange_cb(hv_reenlightenment_cb);
370 }
371 
372 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
373 static struct syscore_ops hv_syscore_ops = {
374         .suspend        = hv_suspend,
375         .resume         = hv_resume,
376 };
377 
378 static void (* __initdata old_setup_percpu_clockev)(void);
379 
380 static void __init hv_stimer_setup_percpu_clockev(void)
381 {
382         /*
383          * Ignore any errors in setting up stimer clockevents
384          * as we can run with the LAPIC timer as a fallback.
385          */
386         (void)hv_stimer_alloc(false);
387 
388         /*
389          * Still register the LAPIC timer, because the direct-mode STIMER is
390          * not supported by old versions of Hyper-V. This also allows users
391          * to switch to LAPIC timer via /sys, if they want to.
392          */
393         if (old_setup_percpu_clockev)
394                 old_setup_percpu_clockev();
395 }
396 
397 static void __init hv_get_partition_id(void)
398 {
399         struct hv_get_partition_id *output_page;
400         u64 status;
401         unsigned long flags;
402 
403         local_irq_save(flags);
404         output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
405         status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
406         if (!hv_result_success(status)) {
407                 /* No point in proceeding if this failed */
408                 pr_err("Failed to get partition ID: %lld\n", status);
409                 BUG();
410         }
411         hv_current_partition_id = output_page->partition_id;
412         local_irq_restore(flags);
413 }
414 
415 #if IS_ENABLED(CONFIG_HYPERV_VTL_MODE)
416 static u8 __init get_vtl(void)
417 {
418         u64 control = HV_HYPERCALL_REP_COMP_1 | HVCALL_GET_VP_REGISTERS;
419         struct hv_get_vp_registers_input *input;
420         struct hv_get_vp_registers_output *output;
421         unsigned long flags;
422         u64 ret;
423 
424         local_irq_save(flags);
425         input = *this_cpu_ptr(hyperv_pcpu_input_arg);
426         output = (struct hv_get_vp_registers_output *)input;
427 
428         memset(input, 0, struct_size(input, element, 1));
429         input->header.partitionid = HV_PARTITION_ID_SELF;
430         input->header.vpindex = HV_VP_INDEX_SELF;
431         input->header.inputvtl = 0;
432         input->element[0].name0 = HV_X64_REGISTER_VSM_VP_STATUS;
433 
434         ret = hv_do_hypercall(control, input, output);
435         if (hv_result_success(ret)) {
436                 ret = output->as64.low & HV_X64_VTL_MASK;
437         } else {
438                 pr_err("Failed to get VTL(error: %lld) exiting...\n", ret);
439                 BUG();
440         }
441 
442         local_irq_restore(flags);
443         return ret;
444 }
445 #else
446 static inline u8 get_vtl(void) { return 0; }
447 #endif
448 
449 /*
450  * This function is to be invoked early in the boot sequence after the
451  * hypervisor has been detected.
452  *
453  * 1. Setup the hypercall page.
454  * 2. Register Hyper-V specific clocksource.
455  * 3. Setup Hyper-V specific APIC entry points.
456  */
457 void __init hyperv_init(void)
458 {
459         u64 guest_id;
460         union hv_x64_msr_hypercall_contents hypercall_msr;
461         int cpuhp;
462 
463         if (x86_hyper_type != X86_HYPER_MS_HYPERV)
464                 return;
465 
466         if (hv_common_init())
467                 return;
468 
469         /*
470          * The VP assist page is useless to a TDX guest: the only use we
471          * would have for it is lazy EOI, which can not be used with TDX.
472          */
473         if (hv_isolation_type_tdx())
474                 hv_vp_assist_page = NULL;
475         else
476                 hv_vp_assist_page = kcalloc(num_possible_cpus(),
477                                             sizeof(*hv_vp_assist_page),
478                                             GFP_KERNEL);
479         if (!hv_vp_assist_page) {
480                 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
481 
482                 if (!hv_isolation_type_tdx())
483                         goto common_free;
484         }
485 
486         if (ms_hyperv.paravisor_present && hv_isolation_type_snp()) {
487                 /* Negotiate GHCB Version. */
488                 if (!hv_ghcb_negotiate_protocol())
489                         hv_ghcb_terminate(SEV_TERM_SET_GEN,
490                                           GHCB_SEV_ES_PROT_UNSUPPORTED);
491 
492                 hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
493                 if (!hv_ghcb_pg)
494                         goto free_vp_assist_page;
495         }
496 
497         cpuhp = cpuhp_setup_state(CPUHP_AP_HYPERV_ONLINE, "x86/hyperv_init:online",
498                                   hv_cpu_init, hv_cpu_die);
499         if (cpuhp < 0)
500                 goto free_ghcb_page;
501 
502         /*
503          * Setup the hypercall page and enable hypercalls.
504          * 1. Register the guest ID
505          * 2. Enable the hypercall and register the hypercall page
506          *
507          * A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg:
508          * when the hypercall input is a page, such a VM must pass a decrypted
509          * page to Hyper-V, e.g. hv_post_message() uses the per-CPU page
510          * hyperv_pcpu_input_arg, which is decrypted if no paravisor is present.
511          *
512          * A TDX VM with the paravisor uses hv_hypercall_pg for most hypercalls,
513          * which are handled by the paravisor and the VM must use an encrypted
514          * input page: in such a VM, the hyperv_pcpu_input_arg is encrypted and
515          * used in the hypercalls, e.g. see hv_mark_gpa_visibility() and
516          * hv_arch_irq_unmask(). Such a VM uses TDX GHCI for two hypercalls:
517          * 1. HVCALL_SIGNAL_EVENT: see vmbus_set_event() and _hv_do_fast_hypercall8().
518          * 2. HVCALL_POST_MESSAGE: the input page must be a decrypted page, i.e.
519          * hv_post_message() in such a VM can't use the encrypted hyperv_pcpu_input_arg;
520          * instead, hv_post_message() uses the post_msg_page, which is decrypted
521          * in such a VM and is only used in such a VM.
522          */
523         guest_id = hv_generate_guest_id(LINUX_VERSION_CODE);
524         wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
525 
526         /* With the paravisor, the VM must also write the ID via GHCB/GHCI */
527         hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
528 
529         /* A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg */
530         if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present)
531                 goto skip_hypercall_pg_init;
532 
533         hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
534                         VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
535                         VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
536                         __builtin_return_address(0));
537         if (hv_hypercall_pg == NULL)
538                 goto clean_guest_os_id;
539 
540         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
541         hypercall_msr.enable = 1;
542 
543         if (hv_root_partition) {
544                 struct page *pg;
545                 void *src;
546 
547                 /*
548                  * For the root partition, the hypervisor will set up its
549                  * hypercall page. The hypervisor guarantees it will not show
550                  * up in the root's address space. The root can't change the
551                  * location of the hypercall page.
552                  *
553                  * Order is important here. We must enable the hypercall page
554                  * so it is populated with code, then copy the code to an
555                  * executable page.
556                  */
557                 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
558 
559                 pg = vmalloc_to_page(hv_hypercall_pg);
560                 src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
561                                 MEMREMAP_WB);
562                 BUG_ON(!src);
563                 memcpy_to_page(pg, 0, src, HV_HYP_PAGE_SIZE);
564                 memunmap(src);
565 
566                 hv_remap_tsc_clocksource();
567         } else {
568                 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
569                 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
570         }
571 
572 skip_hypercall_pg_init:
573         /*
574          * Some versions of Hyper-V that provide IBT in guest VMs have a bug
575          * in that there's no ENDBR64 instruction at the entry to the
576          * hypercall page. Because hypercalls are invoked via an indirect call
577          * to the hypercall page, all hypercall attempts fail when IBT is
578          * enabled, and Linux panics. For such buggy versions, disable IBT.
579          *
580          * Fixed versions of Hyper-V always provide ENDBR64 on the hypercall
581          * page, so if future Linux kernel versions enable IBT for 32-bit
582          * builds, additional hypercall page hackery will be required here
583          * to provide an ENDBR32.
584          */
585 #ifdef CONFIG_X86_KERNEL_IBT
586         if (cpu_feature_enabled(X86_FEATURE_IBT) &&
587             *(u32 *)hv_hypercall_pg != gen_endbr()) {
588                 setup_clear_cpu_cap(X86_FEATURE_IBT);
589                 pr_warn("Disabling IBT because of Hyper-V bug\n");
590         }
591 #endif
592 
593         /*
594          * hyperv_init() is called before LAPIC is initialized: see
595          * apic_intr_mode_init() -> x86_platform.apic_post_init() and
596          * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
597          * depends on LAPIC, so hv_stimer_alloc() should be called from
598          * x86_init.timers.setup_percpu_clockev.
599          */
600         old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
601         x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
602 
603         hv_apic_init();
604 
605         x86_init.pci.arch_init = hv_pci_init;
606 
607         register_syscore_ops(&hv_syscore_ops);
608 
609         if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
610                 hv_get_partition_id();
611 
612         BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
613 
614 #ifdef CONFIG_PCI_MSI
615         /*
616          * If we're running as root, we want to create our own PCI MSI domain.
617          * We can't set this in hv_pci_init because that would be too late.
618          */
619         if (hv_root_partition)
620                 x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
621 #endif
622 
623         /* Query the VMs extended capability once, so that it can be cached. */
624         hv_query_ext_cap(0);
625 
626         /* Find the VTL */
627         ms_hyperv.vtl = get_vtl();
628 
629         if (ms_hyperv.vtl > 0) /* non default VTL */
630                 hv_vtl_early_init();
631 
632         return;
633 
634 clean_guest_os_id:
635         wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
636         hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
637         cpuhp_remove_state(CPUHP_AP_HYPERV_ONLINE);
638 free_ghcb_page:
639         free_percpu(hv_ghcb_pg);
640 free_vp_assist_page:
641         kfree(hv_vp_assist_page);
642         hv_vp_assist_page = NULL;
643 common_free:
644         hv_common_free();
645 }
646 
647 /*
648  * This routine is called before kexec/kdump, it does the required cleanup.
649  */
650 void hyperv_cleanup(void)
651 {
652         union hv_x64_msr_hypercall_contents hypercall_msr;
653         union hv_reference_tsc_msr tsc_msr;
654 
655         /* Reset our OS id */
656         wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
657         hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
658 
659         /*
660          * Reset hypercall page reference before reset the page,
661          * let hypercall operations fail safely rather than
662          * panic the kernel for using invalid hypercall page
663          */
664         hv_hypercall_pg = NULL;
665 
666         /* Reset the hypercall page */
667         hypercall_msr.as_uint64 = hv_get_msr(HV_X64_MSR_HYPERCALL);
668         hypercall_msr.enable = 0;
669         hv_set_msr(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
670 
671         /* Reset the TSC page */
672         tsc_msr.as_uint64 = hv_get_msr(HV_X64_MSR_REFERENCE_TSC);
673         tsc_msr.enable = 0;
674         hv_set_msr(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
675 }
676 
677 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
678 {
679         static bool panic_reported;
680         u64 guest_id;
681 
682         if (in_die && !panic_on_oops)
683                 return;
684 
685         /*
686          * We prefer to report panic on 'die' chain as we have proper
687          * registers to report, but if we miss it (e.g. on BUG()) we need
688          * to report it on 'panic'.
689          */
690         if (panic_reported)
691                 return;
692         panic_reported = true;
693 
694         rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
695 
696         wrmsrl(HV_X64_MSR_CRASH_P0, err);
697         wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
698         wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
699         wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
700         wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
701 
702         /*
703          * Let Hyper-V know there is crash data available
704          */
705         wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
706 }
707 EXPORT_SYMBOL_GPL(hyperv_report_panic);
708 
709 bool hv_is_hyperv_initialized(void)
710 {
711         union hv_x64_msr_hypercall_contents hypercall_msr;
712 
713         /*
714          * Ensure that we're really on Hyper-V, and not a KVM or Xen
715          * emulation of Hyper-V
716          */
717         if (x86_hyper_type != X86_HYPER_MS_HYPERV)
718                 return false;
719 
720         /* A TDX VM with no paravisor uses TDX GHCI call rather than hv_hypercall_pg */
721         if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present)
722                 return true;
723         /*
724          * Verify that earlier initialization succeeded by checking
725          * that the hypercall page is setup
726          */
727         hypercall_msr.as_uint64 = 0;
728         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
729 
730         return hypercall_msr.enable;
731 }
732 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
733 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php