~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/include/asm/kvm_host.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-only */
  2 /*
  3  * Kernel-based Virtual Machine driver for Linux
  4  *
  5  * This header defines architecture specific interfaces, x86 version
  6  */
  7 
  8 #ifndef _ASM_X86_KVM_HOST_H
  9 #define _ASM_X86_KVM_HOST_H
 10 
 11 #include <linux/types.h>
 12 #include <linux/mm.h>
 13 #include <linux/mmu_notifier.h>
 14 #include <linux/tracepoint.h>
 15 #include <linux/cpumask.h>
 16 #include <linux/irq_work.h>
 17 #include <linux/irq.h>
 18 #include <linux/workqueue.h>
 19 
 20 #include <linux/kvm.h>
 21 #include <linux/kvm_para.h>
 22 #include <linux/kvm_types.h>
 23 #include <linux/perf_event.h>
 24 #include <linux/pvclock_gtod.h>
 25 #include <linux/clocksource.h>
 26 #include <linux/irqbypass.h>
 27 #include <linux/hyperv.h>
 28 #include <linux/kfifo.h>
 29 
 30 #include <asm/apic.h>
 31 #include <asm/pvclock-abi.h>
 32 #include <asm/desc.h>
 33 #include <asm/mtrr.h>
 34 #include <asm/msr-index.h>
 35 #include <asm/asm.h>
 36 #include <asm/kvm_page_track.h>
 37 #include <asm/kvm_vcpu_regs.h>
 38 #include <asm/hyperv-tlfs.h>
 39 
 40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
 41 
 42 /*
 43  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
 44  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
 45  */
 46 #ifdef CONFIG_KVM_MAX_NR_VCPUS
 47 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
 48 #else
 49 #define KVM_MAX_VCPUS 1024
 50 #endif
 51 
 52 /*
 53  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
 54  * might be larger than the actual number of VCPUs because the
 55  * APIC ID encodes CPU topology information.
 56  *
 57  * In the worst case, we'll need less than one extra bit for the
 58  * Core ID, and less than one extra bit for the Package (Die) ID,
 59  * so ratio of 4 should be enough.
 60  */
 61 #define KVM_VCPU_ID_RATIO 4
 62 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
 63 
 64 /* memory slots that are not exposed to userspace */
 65 #define KVM_INTERNAL_MEM_SLOTS 3
 66 
 67 #define KVM_HALT_POLL_NS_DEFAULT 200000
 68 
 69 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
 70 
 71 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
 72                                         KVM_DIRTY_LOG_INITIALLY_SET)
 73 
 74 #define KVM_BUS_LOCK_DETECTION_VALID_MODE       (KVM_BUS_LOCK_DETECTION_OFF | \
 75                                                  KVM_BUS_LOCK_DETECTION_EXIT)
 76 
 77 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS        (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
 78                                                  KVM_X86_NOTIFY_VMEXIT_USER)
 79 
 80 /* x86-specific vcpu->requests bit members */
 81 #define KVM_REQ_MIGRATE_TIMER           KVM_ARCH_REQ(0)
 82 #define KVM_REQ_REPORT_TPR_ACCESS       KVM_ARCH_REQ(1)
 83 #define KVM_REQ_TRIPLE_FAULT            KVM_ARCH_REQ(2)
 84 #define KVM_REQ_MMU_SYNC                KVM_ARCH_REQ(3)
 85 #define KVM_REQ_CLOCK_UPDATE            KVM_ARCH_REQ(4)
 86 #define KVM_REQ_LOAD_MMU_PGD            KVM_ARCH_REQ(5)
 87 #define KVM_REQ_EVENT                   KVM_ARCH_REQ(6)
 88 #define KVM_REQ_APF_HALT                KVM_ARCH_REQ(7)
 89 #define KVM_REQ_STEAL_UPDATE            KVM_ARCH_REQ(8)
 90 #define KVM_REQ_NMI                     KVM_ARCH_REQ(9)
 91 #define KVM_REQ_PMU                     KVM_ARCH_REQ(10)
 92 #define KVM_REQ_PMI                     KVM_ARCH_REQ(11)
 93 #ifdef CONFIG_KVM_SMM
 94 #define KVM_REQ_SMI                     KVM_ARCH_REQ(12)
 95 #endif
 96 #define KVM_REQ_MASTERCLOCK_UPDATE      KVM_ARCH_REQ(13)
 97 #define KVM_REQ_MCLOCK_INPROGRESS \
 98         KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 99 #define KVM_REQ_SCAN_IOAPIC \
100         KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
101 #define KVM_REQ_GLOBAL_CLOCK_UPDATE     KVM_ARCH_REQ(16)
102 #define KVM_REQ_APIC_PAGE_RELOAD \
103         KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
104 #define KVM_REQ_HV_CRASH                KVM_ARCH_REQ(18)
105 #define KVM_REQ_IOAPIC_EOI_EXIT         KVM_ARCH_REQ(19)
106 #define KVM_REQ_HV_RESET                KVM_ARCH_REQ(20)
107 #define KVM_REQ_HV_EXIT                 KVM_ARCH_REQ(21)
108 #define KVM_REQ_HV_STIMER               KVM_ARCH_REQ(22)
109 #define KVM_REQ_LOAD_EOI_EXITMAP        KVM_ARCH_REQ(23)
110 #define KVM_REQ_GET_NESTED_STATE_PAGES  KVM_ARCH_REQ(24)
111 #define KVM_REQ_APICV_UPDATE \
112         KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
113 #define KVM_REQ_TLB_FLUSH_CURRENT       KVM_ARCH_REQ(26)
114 #define KVM_REQ_TLB_FLUSH_GUEST \
115         KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
116 #define KVM_REQ_APF_READY               KVM_ARCH_REQ(28)
117 #define KVM_REQ_MSR_FILTER_CHANGED      KVM_ARCH_REQ(29)
118 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
119         KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
120 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
121         KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_HV_TLB_FLUSH \
123         KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
124 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE    KVM_ARCH_REQ(34)
125 
126 #define CR0_RESERVED_BITS                                               \
127         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
128                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
129                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
130 
131 #define CR4_RESERVED_BITS                                               \
132         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
133                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
134                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
135                           | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
136                           | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
137                           | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
138                           | X86_CR4_LAM_SUP))
139 
140 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
141 
142 
143 
144 #define INVALID_PAGE (~(hpa_t)0)
145 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
146 
147 /* KVM Hugepage definitions for x86 */
148 #define KVM_MAX_HUGEPAGE_LEVEL  PG_LEVEL_1G
149 #define KVM_NR_PAGE_SIZES       (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
150 #define KVM_HPAGE_GFN_SHIFT(x)  (((x) - 1) * 9)
151 #define KVM_HPAGE_SHIFT(x)      (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
152 #define KVM_HPAGE_SIZE(x)       (1UL << KVM_HPAGE_SHIFT(x))
153 #define KVM_HPAGE_MASK(x)       (~(KVM_HPAGE_SIZE(x) - 1))
154 #define KVM_PAGES_PER_HPAGE(x)  (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
155 
156 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
157 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
158 #define KVM_MMU_HASH_SHIFT 12
159 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
160 #define KVM_MIN_FREE_MMU_PAGES 5
161 #define KVM_REFILL_PAGES 25
162 #define KVM_MAX_CPUID_ENTRIES 256
163 #define KVM_NR_VAR_MTRR 8
164 
165 #define ASYNC_PF_PER_VCPU 64
166 
167 enum kvm_reg {
168         VCPU_REGS_RAX = __VCPU_REGS_RAX,
169         VCPU_REGS_RCX = __VCPU_REGS_RCX,
170         VCPU_REGS_RDX = __VCPU_REGS_RDX,
171         VCPU_REGS_RBX = __VCPU_REGS_RBX,
172         VCPU_REGS_RSP = __VCPU_REGS_RSP,
173         VCPU_REGS_RBP = __VCPU_REGS_RBP,
174         VCPU_REGS_RSI = __VCPU_REGS_RSI,
175         VCPU_REGS_RDI = __VCPU_REGS_RDI,
176 #ifdef CONFIG_X86_64
177         VCPU_REGS_R8  = __VCPU_REGS_R8,
178         VCPU_REGS_R9  = __VCPU_REGS_R9,
179         VCPU_REGS_R10 = __VCPU_REGS_R10,
180         VCPU_REGS_R11 = __VCPU_REGS_R11,
181         VCPU_REGS_R12 = __VCPU_REGS_R12,
182         VCPU_REGS_R13 = __VCPU_REGS_R13,
183         VCPU_REGS_R14 = __VCPU_REGS_R14,
184         VCPU_REGS_R15 = __VCPU_REGS_R15,
185 #endif
186         VCPU_REGS_RIP,
187         NR_VCPU_REGS,
188 
189         VCPU_EXREG_PDPTR = NR_VCPU_REGS,
190         VCPU_EXREG_CR0,
191         VCPU_EXREG_CR3,
192         VCPU_EXREG_CR4,
193         VCPU_EXREG_RFLAGS,
194         VCPU_EXREG_SEGMENTS,
195         VCPU_EXREG_EXIT_INFO_1,
196         VCPU_EXREG_EXIT_INFO_2,
197 };
198 
199 enum {
200         VCPU_SREG_ES,
201         VCPU_SREG_CS,
202         VCPU_SREG_SS,
203         VCPU_SREG_DS,
204         VCPU_SREG_FS,
205         VCPU_SREG_GS,
206         VCPU_SREG_TR,
207         VCPU_SREG_LDTR,
208 };
209 
210 enum exit_fastpath_completion {
211         EXIT_FASTPATH_NONE,
212         EXIT_FASTPATH_REENTER_GUEST,
213         EXIT_FASTPATH_EXIT_HANDLED,
214 };
215 typedef enum exit_fastpath_completion fastpath_t;
216 
217 struct x86_emulate_ctxt;
218 struct x86_exception;
219 union kvm_smram;
220 enum x86_intercept;
221 enum x86_intercept_stage;
222 
223 #define KVM_NR_DB_REGS  4
224 
225 #define DR6_BUS_LOCK   (1 << 11)
226 #define DR6_BD          (1 << 13)
227 #define DR6_BS          (1 << 14)
228 #define DR6_BT          (1 << 15)
229 #define DR6_RTM         (1 << 16)
230 /*
231  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
232  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
233  * they will never be 0 for now, but when they are defined
234  * in the future it will require no code change.
235  *
236  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
237  */
238 #define DR6_ACTIVE_LOW  0xffff0ff0
239 #define DR6_VOLATILE    0x0001e80f
240 #define DR6_FIXED_1     (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
241 
242 #define DR7_BP_EN_MASK  0x000000ff
243 #define DR7_GE          (1 << 9)
244 #define DR7_GD          (1 << 13)
245 #define DR7_FIXED_1     0x00000400
246 #define DR7_VOLATILE    0xffff2bff
247 
248 #define KVM_GUESTDBG_VALID_MASK \
249         (KVM_GUESTDBG_ENABLE | \
250         KVM_GUESTDBG_SINGLESTEP | \
251         KVM_GUESTDBG_USE_HW_BP | \
252         KVM_GUESTDBG_USE_SW_BP | \
253         KVM_GUESTDBG_INJECT_BP | \
254         KVM_GUESTDBG_INJECT_DB | \
255         KVM_GUESTDBG_BLOCKIRQ)
256 
257 #define PFERR_PRESENT_MASK      BIT(0)
258 #define PFERR_WRITE_MASK        BIT(1)
259 #define PFERR_USER_MASK         BIT(2)
260 #define PFERR_RSVD_MASK         BIT(3)
261 #define PFERR_FETCH_MASK        BIT(4)
262 #define PFERR_PK_MASK           BIT(5)
263 #define PFERR_SGX_MASK          BIT(15)
264 #define PFERR_GUEST_RMP_MASK    BIT_ULL(31)
265 #define PFERR_GUEST_FINAL_MASK  BIT_ULL(32)
266 #define PFERR_GUEST_PAGE_MASK   BIT_ULL(33)
267 #define PFERR_GUEST_ENC_MASK    BIT_ULL(34)
268 #define PFERR_GUEST_SIZEM_MASK  BIT_ULL(35)
269 #define PFERR_GUEST_VMPL_MASK   BIT_ULL(36)
270 
271 /*
272  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
273  * when emulating instructions that triggers implicit access.
274  */
275 #define PFERR_IMPLICIT_ACCESS   BIT_ULL(48)
276 /*
277  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
278  * when the guest was accessing private memory.
279  */
280 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
281 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
282 
283 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |        \
284                                  PFERR_WRITE_MASK |             \
285                                  PFERR_PRESENT_MASK)
286 
287 /* apic attention bits */
288 #define KVM_APIC_CHECK_VAPIC    0
289 /*
290  * The following bit is set with PV-EOI, unset on EOI.
291  * We detect PV-EOI changes by guest by comparing
292  * this bit with PV-EOI in guest memory.
293  * See the implementation in apic_update_pv_eoi.
294  */
295 #define KVM_APIC_PV_EOI_PENDING 1
296 
297 struct kvm_kernel_irq_routing_entry;
298 
299 /*
300  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
301  * also includes TDP pages) to determine whether or not a page can be used in
302  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
303  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
304  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
305  *
306  * Upper-level shadow pages having gptes are tracked for write-protection via
307  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
308  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
309  * otherwise gfn_write_track will overflow and explosions will ensue.
310  *
311  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
312  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
313  * incorporates various mode bits and properties of the SP.  Roughly speaking,
314  * the number of unique SPs that can theoretically be created is 2^n, where n
315  * is the number of bits that are used to compute the role.
316  *
317  * But, even though there are 19 bits in the mask below, not all combinations
318  * of modes and flags are possible:
319  *
320  *   - invalid shadow pages are not accounted, so the bits are effectively 18
321  *
322  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
323  *     execonly and ad_disabled are only used for nested EPT which has
324  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
325  *
326  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
327  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
328  *     paging has exactly one upper level, making level completely redundant
329  *     when has_4_byte_gpte=1.
330  *
331  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
332  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
333  *
334  * Therefore, the maximum number of possible upper-level shadow pages for a
335  * single gfn is a bit less than 2^13.
336  */
337 union kvm_mmu_page_role {
338         u32 word;
339         struct {
340                 unsigned level:4;
341                 unsigned has_4_byte_gpte:1;
342                 unsigned quadrant:2;
343                 unsigned direct:1;
344                 unsigned access:3;
345                 unsigned invalid:1;
346                 unsigned efer_nx:1;
347                 unsigned cr0_wp:1;
348                 unsigned smep_andnot_wp:1;
349                 unsigned smap_andnot_wp:1;
350                 unsigned ad_disabled:1;
351                 unsigned guest_mode:1;
352                 unsigned passthrough:1;
353                 unsigned :5;
354 
355                 /*
356                  * This is left at the top of the word so that
357                  * kvm_memslots_for_spte_role can extract it with a
358                  * simple shift.  While there is room, give it a whole
359                  * byte so it is also faster to load it from memory.
360                  */
361                 unsigned smm:8;
362         };
363 };
364 
365 /*
366  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
367  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
368  * including on nested transitions, if nothing in the full role changes then
369  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
370  * don't treat all-zero structure as valid data.
371  *
372  * The properties that are tracked in the extended role but not the page role
373  * are for things that either (a) do not affect the validity of the shadow page
374  * or (b) are indirectly reflected in the shadow page's role.  For example,
375  * CR4.PKE only affects permission checks for software walks of the guest page
376  * tables (because KVM doesn't support Protection Keys with shadow paging), and
377  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
378  *
379  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
380  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
381  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
382  * SMAP aware regardless of CR0.WP.
383  */
384 union kvm_mmu_extended_role {
385         u32 word;
386         struct {
387                 unsigned int valid:1;
388                 unsigned int execonly:1;
389                 unsigned int cr4_pse:1;
390                 unsigned int cr4_pke:1;
391                 unsigned int cr4_smap:1;
392                 unsigned int cr4_smep:1;
393                 unsigned int cr4_la57:1;
394                 unsigned int efer_lma:1;
395         };
396 };
397 
398 union kvm_cpu_role {
399         u64 as_u64;
400         struct {
401                 union kvm_mmu_page_role base;
402                 union kvm_mmu_extended_role ext;
403         };
404 };
405 
406 struct kvm_rmap_head {
407         unsigned long val;
408 };
409 
410 struct kvm_pio_request {
411         unsigned long linear_rip;
412         unsigned long count;
413         int in;
414         int port;
415         int size;
416 };
417 
418 #define PT64_ROOT_MAX_LEVEL 5
419 
420 struct rsvd_bits_validate {
421         u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
422         u64 bad_mt_xwr;
423 };
424 
425 struct kvm_mmu_root_info {
426         gpa_t pgd;
427         hpa_t hpa;
428 };
429 
430 #define KVM_MMU_ROOT_INFO_INVALID \
431         ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
432 
433 #define KVM_MMU_NUM_PREV_ROOTS 3
434 
435 #define KVM_MMU_ROOT_CURRENT            BIT(0)
436 #define KVM_MMU_ROOT_PREVIOUS(i)        BIT(1+i)
437 #define KVM_MMU_ROOTS_ALL               (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
438 
439 #define KVM_HAVE_MMU_RWLOCK
440 
441 struct kvm_mmu_page;
442 struct kvm_page_fault;
443 
444 /*
445  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
446  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
447  * current mmu mode.
448  */
449 struct kvm_mmu {
450         unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
451         u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
452         int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
453         void (*inject_page_fault)(struct kvm_vcpu *vcpu,
454                                   struct x86_exception *fault);
455         gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
456                             gpa_t gva_or_gpa, u64 access,
457                             struct x86_exception *exception);
458         int (*sync_spte)(struct kvm_vcpu *vcpu,
459                          struct kvm_mmu_page *sp, int i);
460         struct kvm_mmu_root_info root;
461         union kvm_cpu_role cpu_role;
462         union kvm_mmu_page_role root_role;
463 
464         /*
465         * The pkru_mask indicates if protection key checks are needed.  It
466         * consists of 16 domains indexed by page fault error code bits [4:1],
467         * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
468         * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
469         */
470         u32 pkru_mask;
471 
472         struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
473 
474         /*
475          * Bitmap; bit set = permission fault
476          * Byte index: page fault error code [4:1]
477          * Bit index: pte permissions in ACC_* format
478          */
479         u8 permissions[16];
480 
481         u64 *pae_root;
482         u64 *pml4_root;
483         u64 *pml5_root;
484 
485         /*
486          * check zero bits on shadow page table entries, these
487          * bits include not only hardware reserved bits but also
488          * the bits spte never used.
489          */
490         struct rsvd_bits_validate shadow_zero_check;
491 
492         struct rsvd_bits_validate guest_rsvd_check;
493 
494         u64 pdptrs[4]; /* pae */
495 };
496 
497 enum pmc_type {
498         KVM_PMC_GP = 0,
499         KVM_PMC_FIXED,
500 };
501 
502 struct kvm_pmc {
503         enum pmc_type type;
504         u8 idx;
505         bool is_paused;
506         bool intr;
507         /*
508          * Base value of the PMC counter, relative to the *consumed* count in
509          * the associated perf_event.  This value includes counter updates from
510          * the perf_event and emulated_count since the last time the counter
511          * was reprogrammed, but it is *not* the current value as seen by the
512          * guest or userspace.
513          *
514          * The count is relative to the associated perf_event so that KVM
515          * doesn't need to reprogram the perf_event every time the guest writes
516          * to the counter.
517          */
518         u64 counter;
519         /*
520          * PMC events triggered by KVM emulation that haven't been fully
521          * processed, i.e. haven't undergone overflow detection.
522          */
523         u64 emulated_counter;
524         u64 eventsel;
525         struct perf_event *perf_event;
526         struct kvm_vcpu *vcpu;
527         /*
528          * only for creating or reusing perf_event,
529          * eventsel value for general purpose counters,
530          * ctrl value for fixed counters.
531          */
532         u64 current_config;
533 };
534 
535 /* More counters may conflict with other existing Architectural MSRs */
536 #define KVM_MAX(a, b)   ((a) >= (b) ? (a) : (b))
537 #define KVM_MAX_NR_INTEL_GP_COUNTERS    8
538 #define KVM_MAX_NR_AMD_GP_COUNTERS      6
539 #define KVM_MAX_NR_GP_COUNTERS          KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
540                                                 KVM_MAX_NR_AMD_GP_COUNTERS)
541 
542 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3
543 #define KVM_MAX_NR_AMD_FIXED_COUTNERS   0
544 #define KVM_MAX_NR_FIXED_COUNTERS       KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
545                                                 KVM_MAX_NR_AMD_FIXED_COUTNERS)
546 
547 struct kvm_pmu {
548         u8 version;
549         unsigned nr_arch_gp_counters;
550         unsigned nr_arch_fixed_counters;
551         unsigned available_event_types;
552         u64 fixed_ctr_ctrl;
553         u64 fixed_ctr_ctrl_rsvd;
554         u64 global_ctrl;
555         u64 global_status;
556         u64 counter_bitmask[2];
557         u64 global_ctrl_rsvd;
558         u64 global_status_rsvd;
559         u64 reserved_bits;
560         u64 raw_event_mask;
561         struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
562         struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
563 
564         /*
565          * Overlay the bitmap with a 64-bit atomic so that all bits can be
566          * set in a single access, e.g. to reprogram all counters when the PMU
567          * filter changes.
568          */
569         union {
570                 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
571                 atomic64_t __reprogram_pmi;
572         };
573         DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
574         DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
575 
576         u64 ds_area;
577         u64 pebs_enable;
578         u64 pebs_enable_rsvd;
579         u64 pebs_data_cfg;
580         u64 pebs_data_cfg_rsvd;
581 
582         /*
583          * If a guest counter is cross-mapped to host counter with different
584          * index, its PEBS capability will be temporarily disabled.
585          *
586          * The user should make sure that this mask is updated
587          * after disabling interrupts and before perf_guest_get_msrs();
588          */
589         u64 host_cross_mapped_mask;
590 
591         /*
592          * The gate to release perf_events not marked in
593          * pmc_in_use only once in a vcpu time slice.
594          */
595         bool need_cleanup;
596 
597         /*
598          * The total number of programmed perf_events and it helps to avoid
599          * redundant check before cleanup if guest don't use vPMU at all.
600          */
601         u8 event_count;
602 };
603 
604 struct kvm_pmu_ops;
605 
606 enum {
607         KVM_DEBUGREG_BP_ENABLED = 1,
608         KVM_DEBUGREG_WONT_EXIT = 2,
609 };
610 
611 struct kvm_mtrr {
612         u64 var[KVM_NR_VAR_MTRR * 2];
613         u64 fixed_64k;
614         u64 fixed_16k[2];
615         u64 fixed_4k[8];
616         u64 deftype;
617 };
618 
619 /* Hyper-V SynIC timer */
620 struct kvm_vcpu_hv_stimer {
621         struct hrtimer timer;
622         int index;
623         union hv_stimer_config config;
624         u64 count;
625         u64 exp_time;
626         struct hv_message msg;
627         bool msg_pending;
628 };
629 
630 /* Hyper-V synthetic interrupt controller (SynIC)*/
631 struct kvm_vcpu_hv_synic {
632         u64 version;
633         u64 control;
634         u64 msg_page;
635         u64 evt_page;
636         atomic64_t sint[HV_SYNIC_SINT_COUNT];
637         atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
638         DECLARE_BITMAP(auto_eoi_bitmap, 256);
639         DECLARE_BITMAP(vec_bitmap, 256);
640         bool active;
641         bool dont_zero_synic_pages;
642 };
643 
644 /* The maximum number of entries on the TLB flush fifo. */
645 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
646 /*
647  * Note: the following 'magic' entry is made up by KVM to avoid putting
648  * anything besides GVA on the TLB flush fifo. It is theoretically possible
649  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
650  * which will look identical. KVM's action to 'flush everything' instead of
651  * flushing these particular addresses is, however, fully legitimate as
652  * flushing more than requested is always OK.
653  */
654 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
655 
656 enum hv_tlb_flush_fifos {
657         HV_L1_TLB_FLUSH_FIFO,
658         HV_L2_TLB_FLUSH_FIFO,
659         HV_NR_TLB_FLUSH_FIFOS,
660 };
661 
662 struct kvm_vcpu_hv_tlb_flush_fifo {
663         spinlock_t write_lock;
664         DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
665 };
666 
667 /* Hyper-V per vcpu emulation context */
668 struct kvm_vcpu_hv {
669         struct kvm_vcpu *vcpu;
670         u32 vp_index;
671         u64 hv_vapic;
672         s64 runtime_offset;
673         struct kvm_vcpu_hv_synic synic;
674         struct kvm_hyperv_exit exit;
675         struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
676         DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
677         bool enforce_cpuid;
678         struct {
679                 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
680                 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
681                 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
682                 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
683                 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
684                 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
685                 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
686                 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
687         } cpuid_cache;
688 
689         struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
690 
691         /* Preallocated buffer for handling hypercalls passing sparse vCPU set */
692         u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
693 
694         struct hv_vp_assist_page vp_assist_page;
695 
696         struct {
697                 u64 pa_page_gpa;
698                 u64 vm_id;
699                 u32 vp_id;
700         } nested;
701 };
702 
703 struct kvm_hypervisor_cpuid {
704         u32 base;
705         u32 limit;
706 };
707 
708 #ifdef CONFIG_KVM_XEN
709 /* Xen HVM per vcpu emulation context */
710 struct kvm_vcpu_xen {
711         u64 hypercall_rip;
712         u32 current_runstate;
713         u8 upcall_vector;
714         struct gfn_to_pfn_cache vcpu_info_cache;
715         struct gfn_to_pfn_cache vcpu_time_info_cache;
716         struct gfn_to_pfn_cache runstate_cache;
717         struct gfn_to_pfn_cache runstate2_cache;
718         u64 last_steal;
719         u64 runstate_entry_time;
720         u64 runstate_times[4];
721         unsigned long evtchn_pending_sel;
722         u32 vcpu_id; /* The Xen / ACPI vCPU ID */
723         u32 timer_virq;
724         u64 timer_expires; /* In guest epoch */
725         atomic_t timer_pending;
726         struct hrtimer timer;
727         int poll_evtchn;
728         struct timer_list poll_timer;
729         struct kvm_hypervisor_cpuid cpuid;
730 };
731 #endif
732 
733 struct kvm_queued_exception {
734         bool pending;
735         bool injected;
736         bool has_error_code;
737         u8 vector;
738         u32 error_code;
739         unsigned long payload;
740         bool has_payload;
741 };
742 
743 struct kvm_vcpu_arch {
744         /*
745          * rip and regs accesses must go through
746          * kvm_{register,rip}_{read,write} functions.
747          */
748         unsigned long regs[NR_VCPU_REGS];
749         u32 regs_avail;
750         u32 regs_dirty;
751 
752         unsigned long cr0;
753         unsigned long cr0_guest_owned_bits;
754         unsigned long cr2;
755         unsigned long cr3;
756         unsigned long cr4;
757         unsigned long cr4_guest_owned_bits;
758         unsigned long cr4_guest_rsvd_bits;
759         unsigned long cr8;
760         u32 host_pkru;
761         u32 pkru;
762         u32 hflags;
763         u64 efer;
764         u64 apic_base;
765         struct kvm_lapic *apic;    /* kernel irqchip context */
766         bool load_eoi_exitmap_pending;
767         DECLARE_BITMAP(ioapic_handled_vectors, 256);
768         unsigned long apic_attention;
769         int32_t apic_arb_prio;
770         int mp_state;
771         u64 ia32_misc_enable_msr;
772         u64 smbase;
773         u64 smi_count;
774         bool at_instruction_boundary;
775         bool tpr_access_reporting;
776         bool xfd_no_write_intercept;
777         u64 ia32_xss;
778         u64 microcode_version;
779         u64 arch_capabilities;
780         u64 perf_capabilities;
781 
782         /*
783          * Paging state of the vcpu
784          *
785          * If the vcpu runs in guest mode with two level paging this still saves
786          * the paging mode of the l1 guest. This context is always used to
787          * handle faults.
788          */
789         struct kvm_mmu *mmu;
790 
791         /* Non-nested MMU for L1 */
792         struct kvm_mmu root_mmu;
793 
794         /* L1 MMU when running nested */
795         struct kvm_mmu guest_mmu;
796 
797         /*
798          * Paging state of an L2 guest (used for nested npt)
799          *
800          * This context will save all necessary information to walk page tables
801          * of an L2 guest. This context is only initialized for page table
802          * walking and not for faulting since we never handle l2 page faults on
803          * the host.
804          */
805         struct kvm_mmu nested_mmu;
806 
807         /*
808          * Pointer to the mmu context currently used for
809          * gva_to_gpa translations.
810          */
811         struct kvm_mmu *walk_mmu;
812 
813         struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
814         struct kvm_mmu_memory_cache mmu_shadow_page_cache;
815         struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
816         struct kvm_mmu_memory_cache mmu_page_header_cache;
817 
818         /*
819          * QEMU userspace and the guest each have their own FPU state.
820          * In vcpu_run, we switch between the user and guest FPU contexts.
821          * While running a VCPU, the VCPU thread will have the guest FPU
822          * context.
823          *
824          * Note that while the PKRU state lives inside the fpu registers,
825          * it is switched out separately at VMENTER and VMEXIT time. The
826          * "guest_fpstate" state here contains the guest FPU context, with the
827          * host PRKU bits.
828          */
829         struct fpu_guest guest_fpu;
830 
831         u64 xcr0;
832         u64 guest_supported_xcr0;
833 
834         struct kvm_pio_request pio;
835         void *pio_data;
836         void *sev_pio_data;
837         unsigned sev_pio_count;
838 
839         u8 event_exit_inst_len;
840 
841         bool exception_from_userspace;
842 
843         /* Exceptions to be injected to the guest. */
844         struct kvm_queued_exception exception;
845         /* Exception VM-Exits to be synthesized to L1. */
846         struct kvm_queued_exception exception_vmexit;
847 
848         struct kvm_queued_interrupt {
849                 bool injected;
850                 bool soft;
851                 u8 nr;
852         } interrupt;
853 
854         int halt_request; /* real mode on Intel only */
855 
856         int cpuid_nent;
857         struct kvm_cpuid_entry2 *cpuid_entries;
858         struct kvm_hypervisor_cpuid kvm_cpuid;
859         bool is_amd_compatible;
860 
861         /*
862          * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
863          * when "struct kvm_vcpu_arch" is no longer defined in an
864          * arch/x86/include/asm header.  The max is mostly arbitrary, i.e.
865          * can be increased as necessary.
866          */
867 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
868 
869         /*
870          * Track whether or not the guest is allowed to use features that are
871          * governed by KVM, where "governed" means KVM needs to manage state
872          * and/or explicitly enable the feature in hardware.  Typically, but
873          * not always, governed features can be used by the guest if and only
874          * if both KVM and userspace want to expose the feature to the guest.
875          */
876         struct {
877                 DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
878         } governed_features;
879 
880         u64 reserved_gpa_bits;
881         int maxphyaddr;
882 
883         /* emulate context */
884 
885         struct x86_emulate_ctxt *emulate_ctxt;
886         bool emulate_regs_need_sync_to_vcpu;
887         bool emulate_regs_need_sync_from_vcpu;
888         int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
889 
890         gpa_t time;
891         struct pvclock_vcpu_time_info hv_clock;
892         unsigned int hw_tsc_khz;
893         struct gfn_to_pfn_cache pv_time;
894         /* set guest stopped flag in pvclock flags field */
895         bool pvclock_set_guest_stopped_request;
896 
897         struct {
898                 u8 preempted;
899                 u64 msr_val;
900                 u64 last_steal;
901                 struct gfn_to_hva_cache cache;
902         } st;
903 
904         u64 l1_tsc_offset;
905         u64 tsc_offset; /* current tsc offset */
906         u64 last_guest_tsc;
907         u64 last_host_tsc;
908         u64 tsc_offset_adjustment;
909         u64 this_tsc_nsec;
910         u64 this_tsc_write;
911         u64 this_tsc_generation;
912         bool tsc_catchup;
913         bool tsc_always_catchup;
914         s8 virtual_tsc_shift;
915         u32 virtual_tsc_mult;
916         u32 virtual_tsc_khz;
917         s64 ia32_tsc_adjust_msr;
918         u64 msr_ia32_power_ctl;
919         u64 l1_tsc_scaling_ratio;
920         u64 tsc_scaling_ratio; /* current scaling ratio */
921 
922         atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
923         /* Number of NMIs pending injection, not including hardware vNMIs. */
924         unsigned int nmi_pending;
925         bool nmi_injected;    /* Trying to inject an NMI this entry */
926         bool smi_pending;    /* SMI queued after currently running handler */
927         u8 handling_intr_from_guest;
928 
929         struct kvm_mtrr mtrr_state;
930         u64 pat;
931 
932         unsigned switch_db_regs;
933         unsigned long db[KVM_NR_DB_REGS];
934         unsigned long dr6;
935         unsigned long dr7;
936         unsigned long eff_db[KVM_NR_DB_REGS];
937         unsigned long guest_debug_dr7;
938         u64 msr_platform_info;
939         u64 msr_misc_features_enables;
940 
941         u64 mcg_cap;
942         u64 mcg_status;
943         u64 mcg_ctl;
944         u64 mcg_ext_ctl;
945         u64 *mce_banks;
946         u64 *mci_ctl2_banks;
947 
948         /* Cache MMIO info */
949         u64 mmio_gva;
950         unsigned mmio_access;
951         gfn_t mmio_gfn;
952         u64 mmio_gen;
953 
954         struct kvm_pmu pmu;
955 
956         /* used for guest single stepping over the given code position */
957         unsigned long singlestep_rip;
958 
959 #ifdef CONFIG_KVM_HYPERV
960         bool hyperv_enabled;
961         struct kvm_vcpu_hv *hyperv;
962 #endif
963 #ifdef CONFIG_KVM_XEN
964         struct kvm_vcpu_xen xen;
965 #endif
966         cpumask_var_t wbinvd_dirty_mask;
967 
968         unsigned long last_retry_eip;
969         unsigned long last_retry_addr;
970 
971         struct {
972                 bool halted;
973                 gfn_t gfns[ASYNC_PF_PER_VCPU];
974                 struct gfn_to_hva_cache data;
975                 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
976                 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
977                 u16 vec;
978                 u32 id;
979                 bool send_user_only;
980                 u32 host_apf_flags;
981                 bool delivery_as_pf_vmexit;
982                 bool pageready_pending;
983         } apf;
984 
985         /* OSVW MSRs (AMD only) */
986         struct {
987                 u64 length;
988                 u64 status;
989         } osvw;
990 
991         struct {
992                 u64 msr_val;
993                 struct gfn_to_hva_cache data;
994         } pv_eoi;
995 
996         u64 msr_kvm_poll_control;
997 
998         /* pv related host specific info */
999         struct {
1000                 bool pv_unhalted;
1001         } pv;
1002 
1003         int pending_ioapic_eoi;
1004         int pending_external_vector;
1005 
1006         /* be preempted when it's in kernel-mode(cpl=0) */
1007         bool preempted_in_kernel;
1008 
1009         /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1010         bool l1tf_flush_l1d;
1011 
1012         /* Host CPU on which VM-entry was most recently attempted */
1013         int last_vmentry_cpu;
1014 
1015         /* AMD MSRC001_0015 Hardware Configuration */
1016         u64 msr_hwcr;
1017 
1018         /* pv related cpuid info */
1019         struct {
1020                 /*
1021                  * value of the eax register in the KVM_CPUID_FEATURES CPUID
1022                  * leaf.
1023                  */
1024                 u32 features;
1025 
1026                 /*
1027                  * indicates whether pv emulation should be disabled if features
1028                  * are not present in the guest's cpuid
1029                  */
1030                 bool enforce;
1031         } pv_cpuid;
1032 
1033         /* Protected Guests */
1034         bool guest_state_protected;
1035 
1036         /*
1037          * Set when PDPTS were loaded directly by the userspace without
1038          * reading the guest memory
1039          */
1040         bool pdptrs_from_userspace;
1041 
1042 #if IS_ENABLED(CONFIG_HYPERV)
1043         hpa_t hv_root_tdp;
1044 #endif
1045 };
1046 
1047 struct kvm_lpage_info {
1048         int disallow_lpage;
1049 };
1050 
1051 struct kvm_arch_memory_slot {
1052         struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1053         struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1054         unsigned short *gfn_write_track;
1055 };
1056 
1057 /*
1058  * Track the mode of the optimized logical map, as the rules for decoding the
1059  * destination vary per mode.  Enabling the optimized logical map requires all
1060  * software-enabled local APIs to be in the same mode, each addressable APIC to
1061  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1062  */
1063 enum kvm_apic_logical_mode {
1064         /* All local APICs are software disabled. */
1065         KVM_APIC_MODE_SW_DISABLED,
1066         /* All software enabled local APICs in xAPIC cluster addressing mode. */
1067         KVM_APIC_MODE_XAPIC_CLUSTER,
1068         /* All software enabled local APICs in xAPIC flat addressing mode. */
1069         KVM_APIC_MODE_XAPIC_FLAT,
1070         /* All software enabled local APICs in x2APIC mode. */
1071         KVM_APIC_MODE_X2APIC,
1072         /*
1073          * Optimized map disabled, e.g. not all local APICs in the same logical
1074          * mode, same logical ID assigned to multiple APICs, etc.
1075          */
1076         KVM_APIC_MODE_MAP_DISABLED,
1077 };
1078 
1079 struct kvm_apic_map {
1080         struct rcu_head rcu;
1081         enum kvm_apic_logical_mode logical_mode;
1082         u32 max_apic_id;
1083         union {
1084                 struct kvm_lapic *xapic_flat_map[8];
1085                 struct kvm_lapic *xapic_cluster_map[16][4];
1086         };
1087         struct kvm_lapic *phys_map[];
1088 };
1089 
1090 /* Hyper-V synthetic debugger (SynDbg)*/
1091 struct kvm_hv_syndbg {
1092         struct {
1093                 u64 control;
1094                 u64 status;
1095                 u64 send_page;
1096                 u64 recv_page;
1097                 u64 pending_page;
1098         } control;
1099         u64 options;
1100 };
1101 
1102 /* Current state of Hyper-V TSC page clocksource */
1103 enum hv_tsc_page_status {
1104         /* TSC page was not set up or disabled */
1105         HV_TSC_PAGE_UNSET = 0,
1106         /* TSC page MSR was written by the guest, update pending */
1107         HV_TSC_PAGE_GUEST_CHANGED,
1108         /* TSC page update was triggered from the host side */
1109         HV_TSC_PAGE_HOST_CHANGED,
1110         /* TSC page was properly set up and is currently active  */
1111         HV_TSC_PAGE_SET,
1112         /* TSC page was set up with an inaccessible GPA */
1113         HV_TSC_PAGE_BROKEN,
1114 };
1115 
1116 #ifdef CONFIG_KVM_HYPERV
1117 /* Hyper-V emulation context */
1118 struct kvm_hv {
1119         struct mutex hv_lock;
1120         u64 hv_guest_os_id;
1121         u64 hv_hypercall;
1122         u64 hv_tsc_page;
1123         enum hv_tsc_page_status hv_tsc_page_status;
1124 
1125         /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1126         u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1127         u64 hv_crash_ctl;
1128 
1129         struct ms_hyperv_tsc_page tsc_ref;
1130 
1131         struct idr conn_to_evt;
1132 
1133         u64 hv_reenlightenment_control;
1134         u64 hv_tsc_emulation_control;
1135         u64 hv_tsc_emulation_status;
1136         u64 hv_invtsc_control;
1137 
1138         /* How many vCPUs have VP index != vCPU index */
1139         atomic_t num_mismatched_vp_indexes;
1140 
1141         /*
1142          * How many SynICs use 'AutoEOI' feature
1143          * (protected by arch.apicv_update_lock)
1144          */
1145         unsigned int synic_auto_eoi_used;
1146 
1147         struct kvm_hv_syndbg hv_syndbg;
1148 
1149         bool xsaves_xsavec_checked;
1150 };
1151 #endif
1152 
1153 struct msr_bitmap_range {
1154         u32 flags;
1155         u32 nmsrs;
1156         u32 base;
1157         unsigned long *bitmap;
1158 };
1159 
1160 #ifdef CONFIG_KVM_XEN
1161 /* Xen emulation context */
1162 struct kvm_xen {
1163         struct mutex xen_lock;
1164         u32 xen_version;
1165         bool long_mode;
1166         bool runstate_update_flag;
1167         u8 upcall_vector;
1168         struct gfn_to_pfn_cache shinfo_cache;
1169         struct idr evtchn_ports;
1170         unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1171 };
1172 #endif
1173 
1174 enum kvm_irqchip_mode {
1175         KVM_IRQCHIP_NONE,
1176         KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1177         KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1178 };
1179 
1180 struct kvm_x86_msr_filter {
1181         u8 count;
1182         bool default_allow:1;
1183         struct msr_bitmap_range ranges[16];
1184 };
1185 
1186 struct kvm_x86_pmu_event_filter {
1187         __u32 action;
1188         __u32 nevents;
1189         __u32 fixed_counter_bitmap;
1190         __u32 flags;
1191         __u32 nr_includes;
1192         __u32 nr_excludes;
1193         __u64 *includes;
1194         __u64 *excludes;
1195         __u64 events[];
1196 };
1197 
1198 enum kvm_apicv_inhibit {
1199 
1200         /********************************************************************/
1201         /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1202         /********************************************************************/
1203 
1204         /*
1205          * APIC acceleration is disabled by a module parameter
1206          * and/or not supported in hardware.
1207          */
1208         APICV_INHIBIT_REASON_DISABLED,
1209 
1210         /*
1211          * APIC acceleration is inhibited because AutoEOI feature is
1212          * being used by a HyperV guest.
1213          */
1214         APICV_INHIBIT_REASON_HYPERV,
1215 
1216         /*
1217          * APIC acceleration is inhibited because the userspace didn't yet
1218          * enable the kernel/split irqchip.
1219          */
1220         APICV_INHIBIT_REASON_ABSENT,
1221 
1222         /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1223          * (out of band, debug measure of blocking all interrupts on this vCPU)
1224          * was enabled, to avoid AVIC/APICv bypassing it.
1225          */
1226         APICV_INHIBIT_REASON_BLOCKIRQ,
1227 
1228         /*
1229          * APICv is disabled because not all vCPUs have a 1:1 mapping between
1230          * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1231          */
1232         APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1233 
1234         /*
1235          * For simplicity, the APIC acceleration is inhibited
1236          * first time either APIC ID or APIC base are changed by the guest
1237          * from their reset values.
1238          */
1239         APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1240         APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1241 
1242         /******************************************************/
1243         /* INHIBITs that are relevant only to the AMD's AVIC. */
1244         /******************************************************/
1245 
1246         /*
1247          * AVIC is inhibited on a vCPU because it runs a nested guest.
1248          *
1249          * This is needed because unlike APICv, the peers of this vCPU
1250          * cannot use the doorbell mechanism to signal interrupts via AVIC when
1251          * a vCPU runs nested.
1252          */
1253         APICV_INHIBIT_REASON_NESTED,
1254 
1255         /*
1256          * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1257          * which cannot be injected when the AVIC is enabled, thus AVIC
1258          * is inhibited while KVM waits for IRQ window.
1259          */
1260         APICV_INHIBIT_REASON_IRQWIN,
1261 
1262         /*
1263          * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1264          * which AVIC doesn't support for edge triggered interrupts.
1265          */
1266         APICV_INHIBIT_REASON_PIT_REINJ,
1267 
1268         /*
1269          * AVIC is disabled because SEV doesn't support it.
1270          */
1271         APICV_INHIBIT_REASON_SEV,
1272 
1273         /*
1274          * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1275          * mapping between logical ID and vCPU.
1276          */
1277         APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1278 
1279         NR_APICV_INHIBIT_REASONS,
1280 };
1281 
1282 #define __APICV_INHIBIT_REASON(reason)                  \
1283         { BIT(APICV_INHIBIT_REASON_##reason), #reason }
1284 
1285 #define APICV_INHIBIT_REASONS                           \
1286         __APICV_INHIBIT_REASON(DISABLED),               \
1287         __APICV_INHIBIT_REASON(HYPERV),                 \
1288         __APICV_INHIBIT_REASON(ABSENT),                 \
1289         __APICV_INHIBIT_REASON(BLOCKIRQ),               \
1290         __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),    \
1291         __APICV_INHIBIT_REASON(APIC_ID_MODIFIED),       \
1292         __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),     \
1293         __APICV_INHIBIT_REASON(NESTED),                 \
1294         __APICV_INHIBIT_REASON(IRQWIN),                 \
1295         __APICV_INHIBIT_REASON(PIT_REINJ),              \
1296         __APICV_INHIBIT_REASON(SEV),                    \
1297         __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1298 
1299 struct kvm_arch {
1300         unsigned long n_used_mmu_pages;
1301         unsigned long n_requested_mmu_pages;
1302         unsigned long n_max_mmu_pages;
1303         unsigned int indirect_shadow_pages;
1304         u8 mmu_valid_gen;
1305         u8 vm_type;
1306         bool has_private_mem;
1307         bool has_protected_state;
1308         bool pre_fault_allowed;
1309         struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1310         struct list_head active_mmu_pages;
1311         struct list_head zapped_obsolete_pages;
1312         /*
1313          * A list of kvm_mmu_page structs that, if zapped, could possibly be
1314          * replaced by an NX huge page.  A shadow page is on this list if its
1315          * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1316          * and there are no other conditions that prevent a huge page, e.g.
1317          * the backing host page is huge, dirtly logging is not enabled for its
1318          * memslot, etc...  Note, zapping shadow pages on this list doesn't
1319          * guarantee an NX huge page will be created in its stead, e.g. if the
1320          * guest attempts to execute from the region then KVM obviously can't
1321          * create an NX huge page (without hanging the guest).
1322          */
1323         struct list_head possible_nx_huge_pages;
1324 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1325         struct kvm_page_track_notifier_head track_notifier_head;
1326 #endif
1327         /*
1328          * Protects marking pages unsync during page faults, as TDP MMU page
1329          * faults only take mmu_lock for read.  For simplicity, the unsync
1330          * pages lock is always taken when marking pages unsync regardless of
1331          * whether mmu_lock is held for read or write.
1332          */
1333         spinlock_t mmu_unsync_pages_lock;
1334 
1335         u64 shadow_mmio_value;
1336 
1337         struct iommu_domain *iommu_domain;
1338         bool iommu_noncoherent;
1339 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1340         atomic_t noncoherent_dma_count;
1341 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1342         atomic_t assigned_device_count;
1343         struct kvm_pic *vpic;
1344         struct kvm_ioapic *vioapic;
1345         struct kvm_pit *vpit;
1346         atomic_t vapics_in_nmi_mode;
1347         struct mutex apic_map_lock;
1348         struct kvm_apic_map __rcu *apic_map;
1349         atomic_t apic_map_dirty;
1350 
1351         bool apic_access_memslot_enabled;
1352         bool apic_access_memslot_inhibited;
1353 
1354         /* Protects apicv_inhibit_reasons */
1355         struct rw_semaphore apicv_update_lock;
1356         unsigned long apicv_inhibit_reasons;
1357 
1358         gpa_t wall_clock;
1359 
1360         bool mwait_in_guest;
1361         bool hlt_in_guest;
1362         bool pause_in_guest;
1363         bool cstate_in_guest;
1364 
1365         unsigned long irq_sources_bitmap;
1366         s64 kvmclock_offset;
1367 
1368         /*
1369          * This also protects nr_vcpus_matched_tsc which is read from a
1370          * preemption-disabled region, so it must be a raw spinlock.
1371          */
1372         raw_spinlock_t tsc_write_lock;
1373         u64 last_tsc_nsec;
1374         u64 last_tsc_write;
1375         u32 last_tsc_khz;
1376         u64 last_tsc_offset;
1377         u64 cur_tsc_nsec;
1378         u64 cur_tsc_write;
1379         u64 cur_tsc_offset;
1380         u64 cur_tsc_generation;
1381         int nr_vcpus_matched_tsc;
1382 
1383         u32 default_tsc_khz;
1384         bool user_set_tsc;
1385         u64 apic_bus_cycle_ns;
1386 
1387         seqcount_raw_spinlock_t pvclock_sc;
1388         bool use_master_clock;
1389         u64 master_kernel_ns;
1390         u64 master_cycle_now;
1391         struct delayed_work kvmclock_update_work;
1392         struct delayed_work kvmclock_sync_work;
1393 
1394         struct kvm_xen_hvm_config xen_hvm_config;
1395 
1396         /* reads protected by irq_srcu, writes by irq_lock */
1397         struct hlist_head mask_notifier_list;
1398 
1399 #ifdef CONFIG_KVM_HYPERV
1400         struct kvm_hv hyperv;
1401 #endif
1402 
1403 #ifdef CONFIG_KVM_XEN
1404         struct kvm_xen xen;
1405 #endif
1406 
1407         bool backwards_tsc_observed;
1408         bool boot_vcpu_runs_old_kvmclock;
1409         u32 bsp_vcpu_id;
1410 
1411         u64 disabled_quirks;
1412 
1413         enum kvm_irqchip_mode irqchip_mode;
1414         u8 nr_reserved_ioapic_pins;
1415 
1416         bool disabled_lapic_found;
1417 
1418         bool x2apic_format;
1419         bool x2apic_broadcast_quirk_disabled;
1420 
1421         bool guest_can_read_msr_platform_info;
1422         bool exception_payload_enabled;
1423 
1424         bool triple_fault_event;
1425 
1426         bool bus_lock_detection_enabled;
1427         bool enable_pmu;
1428 
1429         u32 notify_window;
1430         u32 notify_vmexit_flags;
1431         /*
1432          * If exit_on_emulation_error is set, and the in-kernel instruction
1433          * emulator fails to emulate an instruction, allow userspace
1434          * the opportunity to look at it.
1435          */
1436         bool exit_on_emulation_error;
1437 
1438         /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1439         u32 user_space_msr_mask;
1440         struct kvm_x86_msr_filter __rcu *msr_filter;
1441 
1442         u32 hypercall_exit_enabled;
1443 
1444         /* Guest can access the SGX PROVISIONKEY. */
1445         bool sgx_provisioning_allowed;
1446 
1447         struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1448         struct task_struct *nx_huge_page_recovery_thread;
1449 
1450 #ifdef CONFIG_X86_64
1451         /* The number of TDP MMU pages across all roots. */
1452         atomic64_t tdp_mmu_pages;
1453 
1454         /*
1455          * List of struct kvm_mmu_pages being used as roots.
1456          * All struct kvm_mmu_pages in the list should have
1457          * tdp_mmu_page set.
1458          *
1459          * For reads, this list is protected by:
1460          *      the MMU lock in read mode + RCU or
1461          *      the MMU lock in write mode
1462          *
1463          * For writes, this list is protected by tdp_mmu_pages_lock; see
1464          * below for the details.
1465          *
1466          * Roots will remain in the list until their tdp_mmu_root_count
1467          * drops to zero, at which point the thread that decremented the
1468          * count to zero should removed the root from the list and clean
1469          * it up, freeing the root after an RCU grace period.
1470          */
1471         struct list_head tdp_mmu_roots;
1472 
1473         /*
1474          * Protects accesses to the following fields when the MMU lock
1475          * is held in read mode:
1476          *  - tdp_mmu_roots (above)
1477          *  - the link field of kvm_mmu_page structs used by the TDP MMU
1478          *  - possible_nx_huge_pages;
1479          *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1480          *    by the TDP MMU
1481          * Because the lock is only taken within the MMU lock, strictly
1482          * speaking it is redundant to acquire this lock when the thread
1483          * holds the MMU lock in write mode.  However it often simplifies
1484          * the code to do so.
1485          */
1486         spinlock_t tdp_mmu_pages_lock;
1487 #endif /* CONFIG_X86_64 */
1488 
1489         /*
1490          * If set, at least one shadow root has been allocated. This flag
1491          * is used as one input when determining whether certain memslot
1492          * related allocations are necessary.
1493          */
1494         bool shadow_root_allocated;
1495 
1496 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1497         /*
1498          * If set, the VM has (or had) an external write tracking user, and
1499          * thus all write tracking metadata has been allocated, even if KVM
1500          * itself isn't using write tracking.
1501          */
1502         bool external_write_tracking_enabled;
1503 #endif
1504 
1505 #if IS_ENABLED(CONFIG_HYPERV)
1506         hpa_t   hv_root_tdp;
1507         spinlock_t hv_root_tdp_lock;
1508         struct hv_partition_assist_pg *hv_pa_pg;
1509 #endif
1510         /*
1511          * VM-scope maximum vCPU ID. Used to determine the size of structures
1512          * that increase along with the maximum vCPU ID, in which case, using
1513          * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1514          */
1515         u32 max_vcpu_ids;
1516 
1517         bool disable_nx_huge_pages;
1518 
1519         /*
1520          * Memory caches used to allocate shadow pages when performing eager
1521          * page splitting. No need for a shadowed_info_cache since eager page
1522          * splitting only allocates direct shadow pages.
1523          *
1524          * Protected by kvm->slots_lock.
1525          */
1526         struct kvm_mmu_memory_cache split_shadow_page_cache;
1527         struct kvm_mmu_memory_cache split_page_header_cache;
1528 
1529         /*
1530          * Memory cache used to allocate pte_list_desc structs while splitting
1531          * huge pages. In the worst case, to split one huge page, 512
1532          * pte_list_desc structs are needed to add each lower level leaf sptep
1533          * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1534          * page table.
1535          *
1536          * Protected by kvm->slots_lock.
1537          */
1538 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1539         struct kvm_mmu_memory_cache split_desc_cache;
1540 };
1541 
1542 struct kvm_vm_stat {
1543         struct kvm_vm_stat_generic generic;
1544         u64 mmu_shadow_zapped;
1545         u64 mmu_pte_write;
1546         u64 mmu_pde_zapped;
1547         u64 mmu_flooded;
1548         u64 mmu_recycled;
1549         u64 mmu_cache_miss;
1550         u64 mmu_unsync;
1551         union {
1552                 struct {
1553                         atomic64_t pages_4k;
1554                         atomic64_t pages_2m;
1555                         atomic64_t pages_1g;
1556                 };
1557                 atomic64_t pages[KVM_NR_PAGE_SIZES];
1558         };
1559         u64 nx_lpage_splits;
1560         u64 max_mmu_page_hash_collisions;
1561         u64 max_mmu_rmap_size;
1562 };
1563 
1564 struct kvm_vcpu_stat {
1565         struct kvm_vcpu_stat_generic generic;
1566         u64 pf_taken;
1567         u64 pf_fixed;
1568         u64 pf_emulate;
1569         u64 pf_spurious;
1570         u64 pf_fast;
1571         u64 pf_mmio_spte_created;
1572         u64 pf_guest;
1573         u64 tlb_flush;
1574         u64 invlpg;
1575 
1576         u64 exits;
1577         u64 io_exits;
1578         u64 mmio_exits;
1579         u64 signal_exits;
1580         u64 irq_window_exits;
1581         u64 nmi_window_exits;
1582         u64 l1d_flush;
1583         u64 halt_exits;
1584         u64 request_irq_exits;
1585         u64 irq_exits;
1586         u64 host_state_reload;
1587         u64 fpu_reload;
1588         u64 insn_emulation;
1589         u64 insn_emulation_fail;
1590         u64 hypercalls;
1591         u64 irq_injections;
1592         u64 nmi_injections;
1593         u64 req_event;
1594         u64 nested_run;
1595         u64 directed_yield_attempted;
1596         u64 directed_yield_successful;
1597         u64 preemption_reported;
1598         u64 preemption_other;
1599         u64 guest_mode;
1600         u64 notify_window_exits;
1601 };
1602 
1603 struct x86_instruction_info;
1604 
1605 struct msr_data {
1606         bool host_initiated;
1607         u32 index;
1608         u64 data;
1609 };
1610 
1611 struct kvm_lapic_irq {
1612         u32 vector;
1613         u16 delivery_mode;
1614         u16 dest_mode;
1615         bool level;
1616         u16 trig_mode;
1617         u32 shorthand;
1618         u32 dest_id;
1619         bool msi_redir_hint;
1620 };
1621 
1622 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1623 {
1624         return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1625 }
1626 
1627 struct kvm_x86_ops {
1628         const char *name;
1629 
1630         int (*check_processor_compatibility)(void);
1631 
1632         int (*hardware_enable)(void);
1633         void (*hardware_disable)(void);
1634         void (*hardware_unsetup)(void);
1635         bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1636         void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1637 
1638         unsigned int vm_size;
1639         int (*vm_init)(struct kvm *kvm);
1640         void (*vm_destroy)(struct kvm *kvm);
1641 
1642         /* Create, but do not attach this VCPU */
1643         int (*vcpu_precreate)(struct kvm *kvm);
1644         int (*vcpu_create)(struct kvm_vcpu *vcpu);
1645         void (*vcpu_free)(struct kvm_vcpu *vcpu);
1646         void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1647 
1648         void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1649         void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1650         void (*vcpu_put)(struct kvm_vcpu *vcpu);
1651 
1652         void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1653         int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1654         int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1655         u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1656         void (*get_segment)(struct kvm_vcpu *vcpu,
1657                             struct kvm_segment *var, int seg);
1658         int (*get_cpl)(struct kvm_vcpu *vcpu);
1659         void (*set_segment)(struct kvm_vcpu *vcpu,
1660                             struct kvm_segment *var, int seg);
1661         void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1662         bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1663         void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1664         void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1665         bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1666         void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1667         int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1668         void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1669         void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1670         void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1671         void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1672         void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1673         void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1674         void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1675         unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1676         void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1677         bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1678 
1679         void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1680         void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1681 #if IS_ENABLED(CONFIG_HYPERV)
1682         int  (*flush_remote_tlbs)(struct kvm *kvm);
1683         int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1684                                         gfn_t nr_pages);
1685 #endif
1686 
1687         /*
1688          * Flush any TLB entries associated with the given GVA.
1689          * Does not need to flush GPA->HPA mappings.
1690          * Can potentially get non-canonical addresses through INVLPGs, which
1691          * the implementation may choose to ignore if appropriate.
1692          */
1693         void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1694 
1695         /*
1696          * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1697          * does not need to flush GPA->HPA mappings.
1698          */
1699         void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1700 
1701         int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1702         enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1703                                                   bool force_immediate_exit);
1704         int (*handle_exit)(struct kvm_vcpu *vcpu,
1705                 enum exit_fastpath_completion exit_fastpath);
1706         int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1707         void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1708         void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1709         u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1710         void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1711                                 unsigned char *hypercall_addr);
1712         void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1713         void (*inject_nmi)(struct kvm_vcpu *vcpu);
1714         void (*inject_exception)(struct kvm_vcpu *vcpu);
1715         void (*cancel_injection)(struct kvm_vcpu *vcpu);
1716         int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1717         int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1718         bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1719         void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1720         /* Whether or not a virtual NMI is pending in hardware. */
1721         bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1722         /*
1723          * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1724          * to allow using static_call_ret0 as the fallback.
1725          */
1726         bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1727         void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1728         void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1729         void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1730 
1731         const bool x2apic_icr_is_split;
1732         const unsigned long required_apicv_inhibits;
1733         bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1734         void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1735         void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1736         void (*hwapic_isr_update)(int isr);
1737         void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1738         void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1739         void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1740         void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1741                                   int trig_mode, int vector);
1742         int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1743         int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1744         int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1745         u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1746 
1747         void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1748                              int root_level);
1749 
1750         bool (*has_wbinvd_exit)(void);
1751 
1752         u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1753         u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1754         void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1755         void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1756 
1757         /*
1758          * Retrieve somewhat arbitrary exit information.  Intended to
1759          * be used only from within tracepoints or error paths.
1760          */
1761         void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1762                               u64 *info1, u64 *info2,
1763                               u32 *exit_int_info, u32 *exit_int_info_err_code);
1764 
1765         int (*check_intercept)(struct kvm_vcpu *vcpu,
1766                                struct x86_instruction_info *info,
1767                                enum x86_intercept_stage stage,
1768                                struct x86_exception *exception);
1769         void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1770 
1771         /*
1772          * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1773          * value indicates CPU dirty logging is unsupported or disabled.
1774          */
1775         int cpu_dirty_log_size;
1776         void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1777 
1778         const struct kvm_x86_nested_ops *nested_ops;
1779 
1780         void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1781         void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1782 
1783         int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1784                               uint32_t guest_irq, bool set);
1785         void (*pi_start_assignment)(struct kvm *kvm);
1786         void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1787         void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1788         bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1789 
1790         int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1791                             bool *expired);
1792         void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1793 
1794         void (*setup_mce)(struct kvm_vcpu *vcpu);
1795 
1796 #ifdef CONFIG_KVM_SMM
1797         int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1798         int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1799         int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1800         void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1801 #endif
1802 
1803         int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1804         int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1805         int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1806         int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1807         int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1808         int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1809         void (*guest_memory_reclaimed)(struct kvm *kvm);
1810 
1811         int (*get_msr_feature)(struct kvm_msr_entry *entry);
1812 
1813         int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1814                                          void *insn, int insn_len);
1815 
1816         bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1817         int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1818 
1819         void (*migrate_timers)(struct kvm_vcpu *vcpu);
1820         void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1821         int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1822 
1823         void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1824 
1825         /*
1826          * Returns vCPU specific APICv inhibit reasons
1827          */
1828         unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1829 
1830         gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1831         void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1832         int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1833         void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1834         int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1835 };
1836 
1837 struct kvm_x86_nested_ops {
1838         void (*leave_nested)(struct kvm_vcpu *vcpu);
1839         bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1840                                     u32 error_code);
1841         int (*check_events)(struct kvm_vcpu *vcpu);
1842         bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1843         void (*triple_fault)(struct kvm_vcpu *vcpu);
1844         int (*get_state)(struct kvm_vcpu *vcpu,
1845                          struct kvm_nested_state __user *user_kvm_nested_state,
1846                          unsigned user_data_size);
1847         int (*set_state)(struct kvm_vcpu *vcpu,
1848                          struct kvm_nested_state __user *user_kvm_nested_state,
1849                          struct kvm_nested_state *kvm_state);
1850         bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1851         int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1852 
1853         int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1854                             uint16_t *vmcs_version);
1855         uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1856         void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1857 };
1858 
1859 struct kvm_x86_init_ops {
1860         int (*hardware_setup)(void);
1861         unsigned int (*handle_intel_pt_intr)(void);
1862 
1863         struct kvm_x86_ops *runtime_ops;
1864         struct kvm_pmu_ops *pmu_ops;
1865 };
1866 
1867 struct kvm_arch_async_pf {
1868         u32 token;
1869         gfn_t gfn;
1870         unsigned long cr3;
1871         bool direct_map;
1872         u64 error_code;
1873 };
1874 
1875 extern u32 __read_mostly kvm_nr_uret_msrs;
1876 extern bool __read_mostly allow_smaller_maxphyaddr;
1877 extern bool __read_mostly enable_apicv;
1878 extern struct kvm_x86_ops kvm_x86_ops;
1879 
1880 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1881 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1882 
1883 #define KVM_X86_OP(func) \
1884         DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1885 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1886 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1887 #include <asm/kvm-x86-ops.h>
1888 
1889 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1890 void kvm_x86_vendor_exit(void);
1891 
1892 #define __KVM_HAVE_ARCH_VM_ALLOC
1893 static inline struct kvm *kvm_arch_alloc_vm(void)
1894 {
1895         return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1896 }
1897 
1898 #define __KVM_HAVE_ARCH_VM_FREE
1899 void kvm_arch_free_vm(struct kvm *kvm);
1900 
1901 #if IS_ENABLED(CONFIG_HYPERV)
1902 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1903 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1904 {
1905         if (kvm_x86_ops.flush_remote_tlbs &&
1906             !kvm_x86_call(flush_remote_tlbs)(kvm))
1907                 return 0;
1908         else
1909                 return -ENOTSUPP;
1910 }
1911 
1912 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1913 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1914                                                    u64 nr_pages)
1915 {
1916         if (!kvm_x86_ops.flush_remote_tlbs_range)
1917                 return -EOPNOTSUPP;
1918 
1919         return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1920 }
1921 #endif /* CONFIG_HYPERV */
1922 
1923 enum kvm_intr_type {
1924         /* Values are arbitrary, but must be non-zero. */
1925         KVM_HANDLING_IRQ = 1,
1926         KVM_HANDLING_NMI,
1927 };
1928 
1929 /* Enable perf NMI and timer modes to work, and minimise false positives. */
1930 #define kvm_arch_pmi_in_guest(vcpu) \
1931         ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1932          (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1933 
1934 void __init kvm_mmu_x86_module_init(void);
1935 int kvm_mmu_vendor_module_init(void);
1936 void kvm_mmu_vendor_module_exit(void);
1937 
1938 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1939 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1940 void kvm_mmu_init_vm(struct kvm *kvm);
1941 void kvm_mmu_uninit_vm(struct kvm *kvm);
1942 
1943 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1944                                             struct kvm_memory_slot *slot);
1945 
1946 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1947 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1948 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1949                                       const struct kvm_memory_slot *memslot,
1950                                       int start_level);
1951 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1952                                        const struct kvm_memory_slot *memslot,
1953                                        int target_level);
1954 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1955                                   const struct kvm_memory_slot *memslot,
1956                                   u64 start, u64 end,
1957                                   int target_level);
1958 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1959                                    const struct kvm_memory_slot *memslot);
1960 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1961                                    const struct kvm_memory_slot *memslot);
1962 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1963 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1964 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
1965 
1966 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1967 
1968 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1969                           const void *val, int bytes);
1970 
1971 struct kvm_irq_mask_notifier {
1972         void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1973         int irq;
1974         struct hlist_node link;
1975 };
1976 
1977 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1978                                     struct kvm_irq_mask_notifier *kimn);
1979 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1980                                       struct kvm_irq_mask_notifier *kimn);
1981 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1982                              bool mask);
1983 
1984 extern bool tdp_enabled;
1985 
1986 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1987 
1988 /*
1989  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1990  *                      userspace I/O) to indicate that the emulation context
1991  *                      should be reused as is, i.e. skip initialization of
1992  *                      emulation context, instruction fetch and decode.
1993  *
1994  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1995  *                    Indicates that only select instructions (tagged with
1996  *                    EmulateOnUD) should be emulated (to minimize the emulator
1997  *                    attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1998  *
1999  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2000  *                 decode the instruction length.  For use *only* by
2001  *                 kvm_x86_ops.skip_emulated_instruction() implementations if
2002  *                 EMULTYPE_COMPLETE_USER_EXIT is not set.
2003  *
2004  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2005  *                           retry native execution under certain conditions,
2006  *                           Can only be set in conjunction with EMULTYPE_PF.
2007  *
2008  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2009  *                           triggered by KVM's magic "force emulation" prefix,
2010  *                           which is opt in via module param (off by default).
2011  *                           Bypasses EmulateOnUD restriction despite emulating
2012  *                           due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2013  *                           Used to test the full emulator from userspace.
2014  *
2015  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2016  *                      backdoor emulation, which is opt in via module param.
2017  *                      VMware backdoor emulation handles select instructions
2018  *                      and reinjects the #GP for all other cases.
2019  *
2020  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
2021  *               case the CR2/GPA value pass on the stack is valid.
2022  *
2023  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2024  *                               state and inject single-step #DBs after skipping
2025  *                               an instruction (after completing userspace I/O).
2026  *
2027  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2028  *                           is attempting to write a gfn that contains one or
2029  *                           more of the PTEs used to translate the write itself,
2030  *                           and the owning page table is being shadowed by KVM.
2031  *                           If emulation of the faulting instruction fails and
2032  *                           this flag is set, KVM will exit to userspace instead
2033  *                           of retrying emulation as KVM cannot make forward
2034  *                           progress.
2035  *
2036  *                           If emulation fails for a write to guest page tables,
2037  *                           KVM unprotects (zaps) the shadow page for the target
2038  *                           gfn and resumes the guest to retry the non-emulatable
2039  *                           instruction (on hardware).  Unprotecting the gfn
2040  *                           doesn't allow forward progress for a self-changing
2041  *                           access because doing so also zaps the translation for
2042  *                           the gfn, i.e. retrying the instruction will hit a
2043  *                           !PRESENT fault, which results in a new shadow page
2044  *                           and sends KVM back to square one.
2045  */
2046 #define EMULTYPE_NO_DECODE          (1 << 0)
2047 #define EMULTYPE_TRAP_UD            (1 << 1)
2048 #define EMULTYPE_SKIP               (1 << 2)
2049 #define EMULTYPE_ALLOW_RETRY_PF     (1 << 3)
2050 #define EMULTYPE_TRAP_UD_FORCED     (1 << 4)
2051 #define EMULTYPE_VMWARE_GP          (1 << 5)
2052 #define EMULTYPE_PF                 (1 << 6)
2053 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2054 #define EMULTYPE_WRITE_PF_TO_SP     (1 << 8)
2055 
2056 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2057 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2058                                         void *insn, int insn_len);
2059 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2060                                           u64 *data, u8 ndata);
2061 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2062 
2063 void kvm_enable_efer_bits(u64);
2064 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2065 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2066 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2067 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2068 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2069 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2070 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2071 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2072 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2073 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2074 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2075 
2076 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2077 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2078 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2079 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2080 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2081 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2082 
2083 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2084 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2085 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2086 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2087 
2088 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2089                     int reason, bool has_error_code, u32 error_code);
2090 
2091 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2092 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2093 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2094 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2095 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2096 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2097 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2098 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2099 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2100 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2101 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2102 
2103 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2104 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2105 
2106 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2107 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2108 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2109 
2110 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2111 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2112 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2113 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2114 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2115 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2116 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2117                                     struct x86_exception *fault);
2118 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2119 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2120 
2121 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2122                                        int irq_source_id, int level)
2123 {
2124         /* Logical OR for level trig interrupt */
2125         if (level)
2126                 __set_bit(irq_source_id, irq_state);
2127         else
2128                 __clear_bit(irq_source_id, irq_state);
2129 
2130         return !!(*irq_state);
2131 }
2132 
2133 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2134 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2135 
2136 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2137 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2138 
2139 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2140 
2141 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
2142 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2143                         ulong roots_to_free);
2144 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2145 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2146                               struct x86_exception *exception);
2147 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2148                                struct x86_exception *exception);
2149 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2150                                 struct x86_exception *exception);
2151 
2152 bool kvm_apicv_activated(struct kvm *kvm);
2153 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2154 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2155 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2156                                       enum kvm_apicv_inhibit reason, bool set);
2157 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2158                                     enum kvm_apicv_inhibit reason, bool set);
2159 
2160 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2161                                          enum kvm_apicv_inhibit reason)
2162 {
2163         kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2164 }
2165 
2166 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2167                                            enum kvm_apicv_inhibit reason)
2168 {
2169         kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2170 }
2171 
2172 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
2173                                       unsigned long a0, unsigned long a1,
2174                                       unsigned long a2, unsigned long a3,
2175                                       int op_64_bit, int cpl);
2176 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2177 
2178 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2179                        void *insn, int insn_len);
2180 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2181 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2182 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2183                              u64 addr, unsigned long roots);
2184 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2185 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2186 
2187 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2188                        int tdp_max_root_level, int tdp_huge_page_level);
2189 
2190 
2191 #ifdef CONFIG_KVM_PRIVATE_MEM
2192 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2193 #else
2194 #define kvm_arch_has_private_mem(kvm) false
2195 #endif
2196 
2197 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2198 
2199 static inline u16 kvm_read_ldt(void)
2200 {
2201         u16 ldt;
2202         asm("sldt %0" : "=g"(ldt));
2203         return ldt;
2204 }
2205 
2206 static inline void kvm_load_ldt(u16 sel)
2207 {
2208         asm("lldt %0" : : "rm"(sel));
2209 }
2210 
2211 #ifdef CONFIG_X86_64
2212 static inline unsigned long read_msr(unsigned long msr)
2213 {
2214         u64 value;
2215 
2216         rdmsrl(msr, value);
2217         return value;
2218 }
2219 #endif
2220 
2221 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2222 {
2223         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2224 }
2225 
2226 #define TSS_IOPB_BASE_OFFSET 0x66
2227 #define TSS_BASE_SIZE 0x68
2228 #define TSS_IOPB_SIZE (65536 / 8)
2229 #define TSS_REDIRECTION_SIZE (256 / 8)
2230 #define RMODE_TSS_SIZE                                                  \
2231         (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2232 
2233 enum {
2234         TASK_SWITCH_CALL = 0,
2235         TASK_SWITCH_IRET = 1,
2236         TASK_SWITCH_JMP = 2,
2237         TASK_SWITCH_GATE = 3,
2238 };
2239 
2240 #define HF_GUEST_MASK           (1 << 0) /* VCPU is in guest-mode */
2241 
2242 #ifdef CONFIG_KVM_SMM
2243 #define HF_SMM_MASK             (1 << 1)
2244 #define HF_SMM_INSIDE_NMI_MASK  (1 << 2)
2245 
2246 # define KVM_MAX_NR_ADDRESS_SPACES      2
2247 /* SMM is currently unsupported for guests with private memory. */
2248 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2249 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2250 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2251 #else
2252 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2253 #endif
2254 
2255 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2256 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2257 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2258 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2259 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2260 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2261 
2262 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2263                     unsigned long ipi_bitmap_high, u32 min,
2264                     unsigned long icr, int op_64_bit);
2265 
2266 int kvm_add_user_return_msr(u32 msr);
2267 int kvm_find_user_return_msr(u32 msr);
2268 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2269 
2270 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2271 {
2272         return kvm_find_user_return_msr(msr) >= 0;
2273 }
2274 
2275 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2276 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2277 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2278 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2279 
2280 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2281 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2282 
2283 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2284 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2285                                        unsigned long *vcpu_bitmap);
2286 
2287 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2288                                      struct kvm_async_pf *work);
2289 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2290                                  struct kvm_async_pf *work);
2291 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2292                                struct kvm_async_pf *work);
2293 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2294 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2295 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2296 
2297 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2298 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2299 
2300 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2301                                      u32 size);
2302 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2303 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2304 
2305 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2306                              struct kvm_vcpu **dest_vcpu);
2307 
2308 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2309                      struct kvm_lapic_irq *irq);
2310 
2311 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2312 {
2313         /* We can only post Fixed and LowPrio IRQs */
2314         return (irq->delivery_mode == APIC_DM_FIXED ||
2315                 irq->delivery_mode == APIC_DM_LOWEST);
2316 }
2317 
2318 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2319 {
2320         kvm_x86_call(vcpu_blocking)(vcpu);
2321 }
2322 
2323 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2324 {
2325         kvm_x86_call(vcpu_unblocking)(vcpu);
2326 }
2327 
2328 static inline int kvm_cpu_get_apicid(int mps_cpu)
2329 {
2330 #ifdef CONFIG_X86_LOCAL_APIC
2331         return default_cpu_present_to_apicid(mps_cpu);
2332 #else
2333         WARN_ON_ONCE(1);
2334         return BAD_APICID;
2335 #endif
2336 }
2337 
2338 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2339 
2340 #define KVM_CLOCK_VALID_FLAGS                                           \
2341         (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2342 
2343 #define KVM_X86_VALID_QUIRKS                    \
2344         (KVM_X86_QUIRK_LINT0_REENABLED |        \
2345          KVM_X86_QUIRK_CD_NW_CLEARED |          \
2346          KVM_X86_QUIRK_LAPIC_MMIO_HOLE |        \
2347          KVM_X86_QUIRK_OUT_7E_INC_RIP |         \
2348          KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |   \
2349          KVM_X86_QUIRK_FIX_HYPERCALL_INSN |     \
2350          KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2351 
2352 /*
2353  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2354  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2355  * remaining 31 lower bits must be 0 to preserve ABI.
2356  */
2357 #define KVM_EXIT_HYPERCALL_MBZ          GENMASK_ULL(31, 1)
2358 
2359 #endif /* _ASM_X86_KVM_HOST_H */
2360 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php