~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/include/asm/vdso/gettimeofday.h

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  * Fast user context implementation of clock_gettime, gettimeofday, and time.
  4  *
  5  * Copyright (C) 2019 ARM Limited.
  6  * Copyright 2006 Andi Kleen, SUSE Labs.
  7  * 32 Bit compat layer by Stefani Seibold <stefani@seibold.net>
  8  *  sponsored by Rohde & Schwarz GmbH & Co. KG Munich/Germany
  9  */
 10 #ifndef __ASM_VDSO_GETTIMEOFDAY_H
 11 #define __ASM_VDSO_GETTIMEOFDAY_H
 12 
 13 #ifndef __ASSEMBLY__
 14 
 15 #include <uapi/linux/time.h>
 16 #include <asm/vgtod.h>
 17 #include <asm/vvar.h>
 18 #include <asm/unistd.h>
 19 #include <asm/msr.h>
 20 #include <asm/pvclock.h>
 21 #include <clocksource/hyperv_timer.h>
 22 
 23 #define __vdso_data (VVAR(_vdso_data))
 24 #define __timens_vdso_data (TIMENS(_vdso_data))
 25 
 26 #define VDSO_HAS_TIME 1
 27 
 28 #define VDSO_HAS_CLOCK_GETRES 1
 29 
 30 /*
 31  * Declare the memory-mapped vclock data pages.  These come from hypervisors.
 32  * If we ever reintroduce something like direct access to an MMIO clock like
 33  * the HPET again, it will go here as well.
 34  *
 35  * A load from any of these pages will segfault if the clock in question is
 36  * disabled, so appropriate compiler barriers and checks need to be used
 37  * to prevent stray loads.
 38  *
 39  * These declarations MUST NOT be const.  The compiler will assume that
 40  * an extern const variable has genuinely constant contents, and the
 41  * resulting code won't work, since the whole point is that these pages
 42  * change over time, possibly while we're accessing them.
 43  */
 44 
 45 #ifdef CONFIG_PARAVIRT_CLOCK
 46 /*
 47  * This is the vCPU 0 pvclock page.  We only use pvclock from the vDSO
 48  * if the hypervisor tells us that all vCPUs can get valid data from the
 49  * vCPU 0 page.
 50  */
 51 extern struct pvclock_vsyscall_time_info pvclock_page
 52         __attribute__((visibility("hidden")));
 53 #endif
 54 
 55 #ifdef CONFIG_HYPERV_TIMER
 56 extern struct ms_hyperv_tsc_page hvclock_page
 57         __attribute__((visibility("hidden")));
 58 #endif
 59 
 60 #ifdef CONFIG_TIME_NS
 61 static __always_inline
 62 const struct vdso_data *__arch_get_timens_vdso_data(const struct vdso_data *vd)
 63 {
 64         return __timens_vdso_data;
 65 }
 66 #endif
 67 
 68 #ifndef BUILD_VDSO32
 69 
 70 static __always_inline
 71 long clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
 72 {
 73         long ret;
 74 
 75         asm ("syscall" : "=a" (ret), "=m" (*_ts) :
 76              "" (__NR_clock_gettime), "D" (_clkid), "S" (_ts) :
 77              "rcx", "r11");
 78 
 79         return ret;
 80 }
 81 
 82 static __always_inline
 83 long gettimeofday_fallback(struct __kernel_old_timeval *_tv,
 84                            struct timezone *_tz)
 85 {
 86         long ret;
 87 
 88         asm("syscall" : "=a" (ret) :
 89             "" (__NR_gettimeofday), "D" (_tv), "S" (_tz) : "memory");
 90 
 91         return ret;
 92 }
 93 
 94 static __always_inline
 95 long clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
 96 {
 97         long ret;
 98 
 99         asm ("syscall" : "=a" (ret), "=m" (*_ts) :
100              "" (__NR_clock_getres), "D" (_clkid), "S" (_ts) :
101              "rcx", "r11");
102 
103         return ret;
104 }
105 
106 #else
107 
108 static __always_inline
109 long clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
110 {
111         long ret;
112 
113         asm (
114                 "mov %%ebx, %%edx \n"
115                 "mov %[clock], %%ebx \n"
116                 "call __kernel_vsyscall \n"
117                 "mov %%edx, %%ebx \n"
118                 : "=a" (ret), "=m" (*_ts)
119                 : "" (__NR_clock_gettime64), [clock] "g" (_clkid), "c" (_ts)
120                 : "edx");
121 
122         return ret;
123 }
124 
125 static __always_inline
126 long clock_gettime32_fallback(clockid_t _clkid, struct old_timespec32 *_ts)
127 {
128         long ret;
129 
130         asm (
131                 "mov %%ebx, %%edx \n"
132                 "mov %[clock], %%ebx \n"
133                 "call __kernel_vsyscall \n"
134                 "mov %%edx, %%ebx \n"
135                 : "=a" (ret), "=m" (*_ts)
136                 : "" (__NR_clock_gettime), [clock] "g" (_clkid), "c" (_ts)
137                 : "edx");
138 
139         return ret;
140 }
141 
142 static __always_inline
143 long gettimeofday_fallback(struct __kernel_old_timeval *_tv,
144                            struct timezone *_tz)
145 {
146         long ret;
147 
148         asm(
149                 "mov %%ebx, %%edx \n"
150                 "mov %2, %%ebx \n"
151                 "call __kernel_vsyscall \n"
152                 "mov %%edx, %%ebx \n"
153                 : "=a" (ret)
154                 : "" (__NR_gettimeofday), "g" (_tv), "c" (_tz)
155                 : "memory", "edx");
156 
157         return ret;
158 }
159 
160 static __always_inline long
161 clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
162 {
163         long ret;
164 
165         asm (
166                 "mov %%ebx, %%edx \n"
167                 "mov %[clock], %%ebx \n"
168                 "call __kernel_vsyscall \n"
169                 "mov %%edx, %%ebx \n"
170                 : "=a" (ret), "=m" (*_ts)
171                 : "" (__NR_clock_getres_time64), [clock] "g" (_clkid), "c" (_ts)
172                 : "edx");
173 
174         return ret;
175 }
176 
177 static __always_inline
178 long clock_getres32_fallback(clockid_t _clkid, struct old_timespec32 *_ts)
179 {
180         long ret;
181 
182         asm (
183                 "mov %%ebx, %%edx \n"
184                 "mov %[clock], %%ebx \n"
185                 "call __kernel_vsyscall \n"
186                 "mov %%edx, %%ebx \n"
187                 : "=a" (ret), "=m" (*_ts)
188                 : "" (__NR_clock_getres), [clock] "g" (_clkid), "c" (_ts)
189                 : "edx");
190 
191         return ret;
192 }
193 
194 #endif
195 
196 #ifdef CONFIG_PARAVIRT_CLOCK
197 static u64 vread_pvclock(void)
198 {
199         const struct pvclock_vcpu_time_info *pvti = &pvclock_page.pvti;
200         u32 version;
201         u64 ret;
202 
203         /*
204          * Note: The kernel and hypervisor must guarantee that cpu ID
205          * number maps 1:1 to per-CPU pvclock time info.
206          *
207          * Because the hypervisor is entirely unaware of guest userspace
208          * preemption, it cannot guarantee that per-CPU pvclock time
209          * info is updated if the underlying CPU changes or that that
210          * version is increased whenever underlying CPU changes.
211          *
212          * On KVM, we are guaranteed that pvti updates for any vCPU are
213          * atomic as seen by *all* vCPUs.  This is an even stronger
214          * guarantee than we get with a normal seqlock.
215          *
216          * On Xen, we don't appear to have that guarantee, but Xen still
217          * supplies a valid seqlock using the version field.
218          *
219          * We only do pvclock vdso timing at all if
220          * PVCLOCK_TSC_STABLE_BIT is set, and we interpret that bit to
221          * mean that all vCPUs have matching pvti and that the TSC is
222          * synced, so we can just look at vCPU 0's pvti.
223          */
224 
225         do {
226                 version = pvclock_read_begin(pvti);
227 
228                 if (unlikely(!(pvti->flags & PVCLOCK_TSC_STABLE_BIT)))
229                         return U64_MAX;
230 
231                 ret = __pvclock_read_cycles(pvti, rdtsc_ordered());
232         } while (pvclock_read_retry(pvti, version));
233 
234         return ret & S64_MAX;
235 }
236 #endif
237 
238 #ifdef CONFIG_HYPERV_TIMER
239 static u64 vread_hvclock(void)
240 {
241         u64 tsc, time;
242 
243         if (hv_read_tsc_page_tsc(&hvclock_page, &tsc, &time))
244                 return time & S64_MAX;
245 
246         return U64_MAX;
247 }
248 #endif
249 
250 static inline u64 __arch_get_hw_counter(s32 clock_mode,
251                                         const struct vdso_data *vd)
252 {
253         if (likely(clock_mode == VDSO_CLOCKMODE_TSC))
254                 return (u64)rdtsc_ordered() & S64_MAX;
255         /*
256          * For any memory-mapped vclock type, we need to make sure that gcc
257          * doesn't cleverly hoist a load before the mode check.  Otherwise we
258          * might end up touching the memory-mapped page even if the vclock in
259          * question isn't enabled, which will segfault.  Hence the barriers.
260          */
261 #ifdef CONFIG_PARAVIRT_CLOCK
262         if (clock_mode == VDSO_CLOCKMODE_PVCLOCK) {
263                 barrier();
264                 return vread_pvclock();
265         }
266 #endif
267 #ifdef CONFIG_HYPERV_TIMER
268         if (clock_mode == VDSO_CLOCKMODE_HVCLOCK) {
269                 barrier();
270                 return vread_hvclock();
271         }
272 #endif
273         return U64_MAX;
274 }
275 
276 static __always_inline const struct vdso_data *__arch_get_vdso_data(void)
277 {
278         return __vdso_data;
279 }
280 
281 static inline bool arch_vdso_clocksource_ok(const struct vdso_data *vd)
282 {
283         return true;
284 }
285 #define vdso_clocksource_ok arch_vdso_clocksource_ok
286 
287 /*
288  * Clocksource read value validation to handle PV and HyperV clocksources
289  * which can be invalidated asynchronously and indicate invalidation by
290  * returning U64_MAX, which can be effectively tested by checking for a
291  * negative value after casting it to s64.
292  *
293  * This effectively forces a S64_MAX mask on the calculations, unlike the
294  * U64_MAX mask normally used by x86 clocksources.
295  */
296 static inline bool arch_vdso_cycles_ok(u64 cycles)
297 {
298         return (s64)cycles >= 0;
299 }
300 #define vdso_cycles_ok arch_vdso_cycles_ok
301 
302 /*
303  * x86 specific calculation of nanoseconds for the current cycle count
304  *
305  * The regular implementation assumes that clocksource reads are globally
306  * monotonic. The TSC can be slightly off across sockets which can cause
307  * the regular delta calculation (@cycles - @last) to return a huge time
308  * jump.
309  *
310  * Therefore it needs to be verified that @cycles are greater than
311  * @vd->cycles_last. If not then use @vd->cycles_last, which is the base
312  * time of the current conversion period.
313  *
314  * This variant also uses a custom mask because while the clocksource mask of
315  * all the VDSO capable clocksources on x86 is U64_MAX, the above code uses
316  * U64_MASK as an exception value, additionally arch_vdso_cycles_ok() above
317  * declares everything with the MSB/Sign-bit set as invalid. Therefore the
318  * effective mask is S64_MAX.
319  */
320 static __always_inline u64 vdso_calc_ns(const struct vdso_data *vd, u64 cycles, u64 base)
321 {
322         u64 delta = cycles - vd->cycle_last;
323 
324         /*
325          * Negative motion and deltas which can cause multiplication
326          * overflow require special treatment. This check covers both as
327          * negative motion is guaranteed to be greater than @vd::max_cycles
328          * due to unsigned comparison.
329          *
330          * Due to the MSB/Sign-bit being used as invalid marker (see
331          * arch_vdso_cycles_ok() above), the effective mask is S64_MAX, but that
332          * case is also unlikely and will also take the unlikely path here.
333          */
334         if (unlikely(delta > vd->max_cycles)) {
335                 /*
336                  * Due to the above mentioned TSC wobbles, filter out
337                  * negative motion.  Per the above masking, the effective
338                  * sign bit is now bit 62.
339                  */
340                 if (delta & (1ULL << 62))
341                         return base >> vd->shift;
342 
343                 /* Handle multiplication overflow gracefully */
344                 return mul_u64_u32_add_u64_shr(delta & S64_MAX, vd->mult, base, vd->shift);
345         }
346 
347         return ((delta * vd->mult) + base) >> vd->shift;
348 }
349 #define vdso_calc_ns vdso_calc_ns
350 
351 #endif /* !__ASSEMBLY__ */
352 
353 #endif /* __ASM_VDSO_GETTIMEOFDAY_H */
354 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php