~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/alternative.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 #define pr_fmt(fmt) "SMP alternatives: " fmt
  3 
  4 #include <linux/module.h>
  5 #include <linux/sched.h>
  6 #include <linux/perf_event.h>
  7 #include <linux/mutex.h>
  8 #include <linux/list.h>
  9 #include <linux/stringify.h>
 10 #include <linux/highmem.h>
 11 #include <linux/mm.h>
 12 #include <linux/vmalloc.h>
 13 #include <linux/memory.h>
 14 #include <linux/stop_machine.h>
 15 #include <linux/slab.h>
 16 #include <linux/kdebug.h>
 17 #include <linux/kprobes.h>
 18 #include <linux/mmu_context.h>
 19 #include <linux/bsearch.h>
 20 #include <linux/sync_core.h>
 21 #include <asm/text-patching.h>
 22 #include <asm/alternative.h>
 23 #include <asm/sections.h>
 24 #include <asm/mce.h>
 25 #include <asm/nmi.h>
 26 #include <asm/cacheflush.h>
 27 #include <asm/tlbflush.h>
 28 #include <asm/insn.h>
 29 #include <asm/io.h>
 30 #include <asm/fixmap.h>
 31 #include <asm/paravirt.h>
 32 #include <asm/asm-prototypes.h>
 33 #include <asm/cfi.h>
 34 
 35 int __read_mostly alternatives_patched;
 36 
 37 EXPORT_SYMBOL_GPL(alternatives_patched);
 38 
 39 #define MAX_PATCH_LEN (255-1)
 40 
 41 #define DA_ALL          (~0)
 42 #define DA_ALT          0x01
 43 #define DA_RET          0x02
 44 #define DA_RETPOLINE    0x04
 45 #define DA_ENDBR        0x08
 46 #define DA_SMP          0x10
 47 
 48 static unsigned int debug_alternative;
 49 
 50 static int __init debug_alt(char *str)
 51 {
 52         if (str && *str == '=')
 53                 str++;
 54 
 55         if (!str || kstrtouint(str, 0, &debug_alternative))
 56                 debug_alternative = DA_ALL;
 57 
 58         return 1;
 59 }
 60 __setup("debug-alternative", debug_alt);
 61 
 62 static int noreplace_smp;
 63 
 64 static int __init setup_noreplace_smp(char *str)
 65 {
 66         noreplace_smp = 1;
 67         return 1;
 68 }
 69 __setup("noreplace-smp", setup_noreplace_smp);
 70 
 71 #define DPRINTK(type, fmt, args...)                                     \
 72 do {                                                                    \
 73         if (debug_alternative & DA_##type)                              \
 74                 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);            \
 75 } while (0)
 76 
 77 #define DUMP_BYTES(type, buf, len, fmt, args...)                        \
 78 do {                                                                    \
 79         if (unlikely(debug_alternative & DA_##type)) {                  \
 80                 int j;                                                  \
 81                                                                         \
 82                 if (!(len))                                             \
 83                         break;                                          \
 84                                                                         \
 85                 printk(KERN_DEBUG pr_fmt(fmt), ##args);                 \
 86                 for (j = 0; j < (len) - 1; j++)                         \
 87                         printk(KERN_CONT "%02hhx ", buf[j]);            \
 88                 printk(KERN_CONT "%02hhx\n", buf[j]);                   \
 89         }                                                               \
 90 } while (0)
 91 
 92 static const unsigned char x86nops[] =
 93 {
 94         BYTES_NOP1,
 95         BYTES_NOP2,
 96         BYTES_NOP3,
 97         BYTES_NOP4,
 98         BYTES_NOP5,
 99         BYTES_NOP6,
100         BYTES_NOP7,
101         BYTES_NOP8,
102 #ifdef CONFIG_64BIT
103         BYTES_NOP9,
104         BYTES_NOP10,
105         BYTES_NOP11,
106 #endif
107 };
108 
109 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
110 {
111         NULL,
112         x86nops,
113         x86nops + 1,
114         x86nops + 1 + 2,
115         x86nops + 1 + 2 + 3,
116         x86nops + 1 + 2 + 3 + 4,
117         x86nops + 1 + 2 + 3 + 4 + 5,
118         x86nops + 1 + 2 + 3 + 4 + 5 + 6,
119         x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
120 #ifdef CONFIG_64BIT
121         x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
122         x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
123         x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
124 #endif
125 };
126 
127 /*
128  * Nomenclature for variable names to simplify and clarify this code and ease
129  * any potential staring at it:
130  *
131  * @instr: source address of the original instructions in the kernel text as
132  * generated by the compiler.
133  *
134  * @buf: temporary buffer on which the patching operates. This buffer is
135  * eventually text-poked into the kernel image.
136  *
137  * @replacement/@repl: pointer to the opcodes which are replacing @instr, located
138  * in the .altinstr_replacement section.
139  */
140 
141 /*
142  * Fill the buffer with a single effective instruction of size @len.
143  *
144  * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
145  * for every single-byte NOP, try to generate the maximally available NOP of
146  * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
147  * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
148  * *jump* over instead of executing long and daft NOPs.
149  */
150 static void add_nop(u8 *buf, unsigned int len)
151 {
152         u8 *target = buf + len;
153 
154         if (!len)
155                 return;
156 
157         if (len <= ASM_NOP_MAX) {
158                 memcpy(buf, x86_nops[len], len);
159                 return;
160         }
161 
162         if (len < 128) {
163                 __text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE);
164                 buf += JMP8_INSN_SIZE;
165         } else {
166                 __text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE);
167                 buf += JMP32_INSN_SIZE;
168         }
169 
170         for (;buf < target; buf++)
171                 *buf = INT3_INSN_OPCODE;
172 }
173 
174 extern s32 __retpoline_sites[], __retpoline_sites_end[];
175 extern s32 __return_sites[], __return_sites_end[];
176 extern s32 __cfi_sites[], __cfi_sites_end[];
177 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
178 extern s32 __smp_locks[], __smp_locks_end[];
179 void text_poke_early(void *addr, const void *opcode, size_t len);
180 
181 /*
182  * Matches NOP and NOPL, not any of the other possible NOPs.
183  */
184 static bool insn_is_nop(struct insn *insn)
185 {
186         /* Anything NOP, but no REP NOP */
187         if (insn->opcode.bytes[0] == 0x90 &&
188             (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
189                 return true;
190 
191         /* NOPL */
192         if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
193                 return true;
194 
195         /* TODO: more nops */
196 
197         return false;
198 }
199 
200 /*
201  * Find the offset of the first non-NOP instruction starting at @offset
202  * but no further than @len.
203  */
204 static int skip_nops(u8 *buf, int offset, int len)
205 {
206         struct insn insn;
207 
208         for (; offset < len; offset += insn.length) {
209                 if (insn_decode_kernel(&insn, &buf[offset]))
210                         break;
211 
212                 if (!insn_is_nop(&insn))
213                         break;
214         }
215 
216         return offset;
217 }
218 
219 /*
220  * "noinline" to cause control flow change and thus invalidate I$ and
221  * cause refetch after modification.
222  */
223 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len)
224 {
225         for (int next, i = 0; i < len; i = next) {
226                 struct insn insn;
227 
228                 if (insn_decode_kernel(&insn, &buf[i]))
229                         return;
230 
231                 next = i + insn.length;
232 
233                 if (insn_is_nop(&insn)) {
234                         int nop = i;
235 
236                         /* Has the NOP already been optimized? */
237                         if (i + insn.length == len)
238                                 return;
239 
240                         next = skip_nops(buf, next, len);
241 
242                         add_nop(buf + nop, next - nop);
243                         DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next);
244                 }
245         }
246 }
247 
248 /*
249  * In this context, "source" is where the instructions are placed in the
250  * section .altinstr_replacement, for example during kernel build by the
251  * toolchain.
252  * "Destination" is where the instructions are being patched in by this
253  * machinery.
254  *
255  * The source offset is:
256  *
257  *   src_imm = target - src_next_ip                  (1)
258  *
259  * and the target offset is:
260  *
261  *   dst_imm = target - dst_next_ip                  (2)
262  *
263  * so rework (1) as an expression for target like:
264  *
265  *   target = src_imm + src_next_ip                  (1a)
266  *
267  * and substitute in (2) to get:
268  *
269  *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
270  *
271  * Now, since the instruction stream is 'identical' at src and dst (it
272  * is being copied after all) it can be stated that:
273  *
274  *   src_next_ip = src + ip_offset
275  *   dst_next_ip = dst + ip_offset                   (4)
276  *
277  * Substitute (4) in (3) and observe ip_offset being cancelled out to
278  * obtain:
279  *
280  *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
281  *           = src_imm + src - dst + ip_offset - ip_offset
282  *           = src_imm + src - dst                   (5)
283  *
284  * IOW, only the relative displacement of the code block matters.
285  */
286 
287 #define apply_reloc_n(n_, p_, d_)                               \
288         do {                                                    \
289                 s32 v = *(s##n_ *)(p_);                         \
290                 v += (d_);                                      \
291                 BUG_ON((v >> 31) != (v >> (n_-1)));             \
292                 *(s##n_ *)(p_) = (s##n_)v;                      \
293         } while (0)
294 
295 
296 static __always_inline
297 void apply_reloc(int n, void *ptr, uintptr_t diff)
298 {
299         switch (n) {
300         case 1: apply_reloc_n(8, ptr, diff); break;
301         case 2: apply_reloc_n(16, ptr, diff); break;
302         case 4: apply_reloc_n(32, ptr, diff); break;
303         default: BUG();
304         }
305 }
306 
307 static __always_inline
308 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
309 {
310         u8 *target = src + offset;
311         /*
312          * If the target is inside the patched block, it's relative to the
313          * block itself and does not need relocation.
314          */
315         return (target < src || target > src + src_len);
316 }
317 
318 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
319 {
320         for (int next, i = 0; i < instrlen; i = next) {
321                 struct insn insn;
322 
323                 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
324                         return;
325 
326                 next = i + insn.length;
327 
328                 switch (insn.opcode.bytes[0]) {
329                 case 0x0f:
330                         if (insn.opcode.bytes[1] < 0x80 ||
331                             insn.opcode.bytes[1] > 0x8f)
332                                 break;
333 
334                         fallthrough;    /* Jcc.d32 */
335                 case 0x70 ... 0x7f:     /* Jcc.d8 */
336                 case JMP8_INSN_OPCODE:
337                 case JMP32_INSN_OPCODE:
338                 case CALL_INSN_OPCODE:
339                         if (need_reloc(next + insn.immediate.value, repl, repl_len)) {
340                                 apply_reloc(insn.immediate.nbytes,
341                                             buf + i + insn_offset_immediate(&insn),
342                                             repl - instr);
343                         }
344 
345                         /*
346                          * Where possible, convert JMP.d32 into JMP.d8.
347                          */
348                         if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
349                                 s32 imm = insn.immediate.value;
350                                 imm += repl - instr;
351                                 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
352                                 if ((imm >> 31) == (imm >> 7)) {
353                                         buf[i+0] = JMP8_INSN_OPCODE;
354                                         buf[i+1] = (s8)imm;
355 
356                                         memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
357                                 }
358                         }
359                         break;
360                 }
361 
362                 if (insn_rip_relative(&insn)) {
363                         if (need_reloc(next + insn.displacement.value, repl, repl_len)) {
364                                 apply_reloc(insn.displacement.nbytes,
365                                             buf + i + insn_offset_displacement(&insn),
366                                             repl - instr);
367                         }
368                 }
369         }
370 }
371 
372 void apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
373 {
374         __apply_relocation(buf, instr, instrlen, repl, repl_len);
375         optimize_nops(instr, buf, instrlen);
376 }
377 
378 /* Low-level backend functions usable from alternative code replacements. */
379 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
380 EXPORT_SYMBOL_GPL(nop_func);
381 
382 noinstr void BUG_func(void)
383 {
384         BUG();
385 }
386 EXPORT_SYMBOL(BUG_func);
387 
388 #define CALL_RIP_REL_OPCODE     0xff
389 #define CALL_RIP_REL_MODRM      0x15
390 
391 /*
392  * Rewrite the "call BUG_func" replacement to point to the target of the
393  * indirect pv_ops call "call *disp(%ip)".
394  */
395 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
396 {
397         void *target, *bug = &BUG_func;
398         s32 disp;
399 
400         if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
401                 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
402                 BUG();
403         }
404 
405         if (a->instrlen != 6 ||
406             instr[0] != CALL_RIP_REL_OPCODE ||
407             instr[1] != CALL_RIP_REL_MODRM) {
408                 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
409                 BUG();
410         }
411 
412         /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
413         disp = *(s32 *)(instr + 2);
414 #ifdef CONFIG_X86_64
415         /* ff 15 00 00 00 00   call   *0x0(%rip) */
416         /* target address is stored at "next instruction + disp". */
417         target = *(void **)(instr + a->instrlen + disp);
418 #else
419         /* ff 15 00 00 00 00   call   *0x0 */
420         /* target address is stored at disp. */
421         target = *(void **)disp;
422 #endif
423         if (!target)
424                 target = bug;
425 
426         /* (BUG_func - .) + (target - BUG_func) := target - . */
427         *(s32 *)(insn_buff + 1) += target - bug;
428 
429         if (target == &nop_func)
430                 return 0;
431 
432         return 5;
433 }
434 
435 static inline u8 * instr_va(struct alt_instr *i)
436 {
437         return (u8 *)&i->instr_offset + i->instr_offset;
438 }
439 
440 /*
441  * Replace instructions with better alternatives for this CPU type. This runs
442  * before SMP is initialized to avoid SMP problems with self modifying code.
443  * This implies that asymmetric systems where APs have less capabilities than
444  * the boot processor are not handled. Tough. Make sure you disable such
445  * features by hand.
446  *
447  * Marked "noinline" to cause control flow change and thus insn cache
448  * to refetch changed I$ lines.
449  */
450 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
451                                                   struct alt_instr *end)
452 {
453         u8 insn_buff[MAX_PATCH_LEN];
454         u8 *instr, *replacement;
455         struct alt_instr *a, *b;
456 
457         DPRINTK(ALT, "alt table %px, -> %px", start, end);
458 
459         /*
460          * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
461          * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
462          * During the process, KASAN becomes confused seeing partial LA57
463          * conversion and triggers a false-positive out-of-bound report.
464          *
465          * Disable KASAN until the patching is complete.
466          */
467         kasan_disable_current();
468 
469         /*
470          * The scan order should be from start to end. A later scanned
471          * alternative code can overwrite previously scanned alternative code.
472          * Some kernel functions (e.g. memcpy, memset, etc) use this order to
473          * patch code.
474          *
475          * So be careful if you want to change the scan order to any other
476          * order.
477          */
478         for (a = start; a < end; a++) {
479                 int insn_buff_sz = 0;
480 
481                 /*
482                  * In case of nested ALTERNATIVE()s the outer alternative might
483                  * add more padding. To ensure consistent patching find the max
484                  * padding for all alt_instr entries for this site (nested
485                  * alternatives result in consecutive entries).
486                  */
487                 for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) {
488                         u8 len = max(a->instrlen, b->instrlen);
489                         a->instrlen = b->instrlen = len;
490                 }
491 
492                 instr = instr_va(a);
493                 replacement = (u8 *)&a->repl_offset + a->repl_offset;
494                 BUG_ON(a->instrlen > sizeof(insn_buff));
495                 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
496 
497                 /*
498                  * Patch if either:
499                  * - feature is present
500                  * - feature not present but ALT_FLAG_NOT is set to mean,
501                  *   patch if feature is *NOT* present.
502                  */
503                 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
504                         memcpy(insn_buff, instr, a->instrlen);
505                         optimize_nops(instr, insn_buff, a->instrlen);
506                         text_poke_early(instr, insn_buff, a->instrlen);
507                         continue;
508                 }
509 
510                 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
511                         a->cpuid >> 5,
512                         a->cpuid & 0x1f,
513                         instr, instr, a->instrlen,
514                         replacement, a->replacementlen, a->flags);
515 
516                 memcpy(insn_buff, replacement, a->replacementlen);
517                 insn_buff_sz = a->replacementlen;
518 
519                 if (a->flags & ALT_FLAG_DIRECT_CALL) {
520                         insn_buff_sz = alt_replace_call(instr, insn_buff, a);
521                         if (insn_buff_sz < 0)
522                                 continue;
523                 }
524 
525                 for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
526                         insn_buff[insn_buff_sz] = 0x90;
527 
528                 apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen);
529 
530                 DUMP_BYTES(ALT, instr, a->instrlen, "%px:   old_insn: ", instr);
531                 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
532                 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
533 
534                 text_poke_early(instr, insn_buff, insn_buff_sz);
535         }
536 
537         kasan_enable_current();
538 }
539 
540 static inline bool is_jcc32(struct insn *insn)
541 {
542         /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
543         return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
544 }
545 
546 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
547 
548 /*
549  * CALL/JMP *%\reg
550  */
551 static int emit_indirect(int op, int reg, u8 *bytes)
552 {
553         int i = 0;
554         u8 modrm;
555 
556         switch (op) {
557         case CALL_INSN_OPCODE:
558                 modrm = 0x10; /* Reg = 2; CALL r/m */
559                 break;
560 
561         case JMP32_INSN_OPCODE:
562                 modrm = 0x20; /* Reg = 4; JMP r/m */
563                 break;
564 
565         default:
566                 WARN_ON_ONCE(1);
567                 return -1;
568         }
569 
570         if (reg >= 8) {
571                 bytes[i++] = 0x41; /* REX.B prefix */
572                 reg -= 8;
573         }
574 
575         modrm |= 0xc0; /* Mod = 3 */
576         modrm += reg;
577 
578         bytes[i++] = 0xff; /* opcode */
579         bytes[i++] = modrm;
580 
581         return i;
582 }
583 
584 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
585 {
586         u8 op = insn->opcode.bytes[0];
587         int i = 0;
588 
589         /*
590          * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
591          * tail-calls. Deal with them.
592          */
593         if (is_jcc32(insn)) {
594                 bytes[i++] = op;
595                 op = insn->opcode.bytes[1];
596                 goto clang_jcc;
597         }
598 
599         if (insn->length == 6)
600                 bytes[i++] = 0x2e; /* CS-prefix */
601 
602         switch (op) {
603         case CALL_INSN_OPCODE:
604                 __text_gen_insn(bytes+i, op, addr+i,
605                                 __x86_indirect_call_thunk_array[reg],
606                                 CALL_INSN_SIZE);
607                 i += CALL_INSN_SIZE;
608                 break;
609 
610         case JMP32_INSN_OPCODE:
611 clang_jcc:
612                 __text_gen_insn(bytes+i, op, addr+i,
613                                 __x86_indirect_jump_thunk_array[reg],
614                                 JMP32_INSN_SIZE);
615                 i += JMP32_INSN_SIZE;
616                 break;
617 
618         default:
619                 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
620                 return -1;
621         }
622 
623         WARN_ON_ONCE(i != insn->length);
624 
625         return i;
626 }
627 
628 /*
629  * Rewrite the compiler generated retpoline thunk calls.
630  *
631  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
632  * indirect instructions, avoiding the extra indirection.
633  *
634  * For example, convert:
635  *
636  *   CALL __x86_indirect_thunk_\reg
637  *
638  * into:
639  *
640  *   CALL *%\reg
641  *
642  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
643  */
644 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
645 {
646         retpoline_thunk_t *target;
647         int reg, ret, i = 0;
648         u8 op, cc;
649 
650         target = addr + insn->length + insn->immediate.value;
651         reg = target - __x86_indirect_thunk_array;
652 
653         if (WARN_ON_ONCE(reg & ~0xf))
654                 return -1;
655 
656         /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
657         BUG_ON(reg == 4);
658 
659         if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
660             !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
661                 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
662                         return emit_call_track_retpoline(addr, insn, reg, bytes);
663 
664                 return -1;
665         }
666 
667         op = insn->opcode.bytes[0];
668 
669         /*
670          * Convert:
671          *
672          *   Jcc.d32 __x86_indirect_thunk_\reg
673          *
674          * into:
675          *
676          *   Jncc.d8 1f
677          *   [ LFENCE ]
678          *   JMP *%\reg
679          *   [ NOP ]
680          * 1:
681          */
682         if (is_jcc32(insn)) {
683                 cc = insn->opcode.bytes[1] & 0xf;
684                 cc ^= 1; /* invert condition */
685 
686                 bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
687                 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
688 
689                 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
690                 op = JMP32_INSN_OPCODE;
691         }
692 
693         /*
694          * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
695          */
696         if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
697                 bytes[i++] = 0x0f;
698                 bytes[i++] = 0xae;
699                 bytes[i++] = 0xe8; /* LFENCE */
700         }
701 
702         ret = emit_indirect(op, reg, bytes + i);
703         if (ret < 0)
704                 return ret;
705         i += ret;
706 
707         /*
708          * The compiler is supposed to EMIT an INT3 after every unconditional
709          * JMP instruction due to AMD BTC. However, if the compiler is too old
710          * or MITIGATION_SLS isn't enabled, we still need an INT3 after
711          * indirect JMPs even on Intel.
712          */
713         if (op == JMP32_INSN_OPCODE && i < insn->length)
714                 bytes[i++] = INT3_INSN_OPCODE;
715 
716         for (; i < insn->length;)
717                 bytes[i++] = BYTES_NOP1;
718 
719         return i;
720 }
721 
722 /*
723  * Generated by 'objtool --retpoline'.
724  */
725 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
726 {
727         s32 *s;
728 
729         for (s = start; s < end; s++) {
730                 void *addr = (void *)s + *s;
731                 struct insn insn;
732                 int len, ret;
733                 u8 bytes[16];
734                 u8 op1, op2;
735 
736                 ret = insn_decode_kernel(&insn, addr);
737                 if (WARN_ON_ONCE(ret < 0))
738                         continue;
739 
740                 op1 = insn.opcode.bytes[0];
741                 op2 = insn.opcode.bytes[1];
742 
743                 switch (op1) {
744                 case CALL_INSN_OPCODE:
745                 case JMP32_INSN_OPCODE:
746                         break;
747 
748                 case 0x0f: /* escape */
749                         if (op2 >= 0x80 && op2 <= 0x8f)
750                                 break;
751                         fallthrough;
752                 default:
753                         WARN_ON_ONCE(1);
754                         continue;
755                 }
756 
757                 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
758                         addr, addr, insn.length,
759                         addr + insn.length + insn.immediate.value);
760 
761                 len = patch_retpoline(addr, &insn, bytes);
762                 if (len == insn.length) {
763                         optimize_nops(addr, bytes, len);
764                         DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
765                         DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
766                         text_poke_early(addr, bytes, len);
767                 }
768         }
769 }
770 
771 #ifdef CONFIG_MITIGATION_RETHUNK
772 
773 /*
774  * Rewrite the compiler generated return thunk tail-calls.
775  *
776  * For example, convert:
777  *
778  *   JMP __x86_return_thunk
779  *
780  * into:
781  *
782  *   RET
783  */
784 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
785 {
786         int i = 0;
787 
788         /* Patch the custom return thunks... */
789         if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
790                 i = JMP32_INSN_SIZE;
791                 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
792         } else {
793                 /* ... or patch them out if not needed. */
794                 bytes[i++] = RET_INSN_OPCODE;
795         }
796 
797         for (; i < insn->length;)
798                 bytes[i++] = INT3_INSN_OPCODE;
799         return i;
800 }
801 
802 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
803 {
804         s32 *s;
805 
806         if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
807                 static_call_force_reinit();
808 
809         for (s = start; s < end; s++) {
810                 void *dest = NULL, *addr = (void *)s + *s;
811                 struct insn insn;
812                 int len, ret;
813                 u8 bytes[16];
814                 u8 op;
815 
816                 ret = insn_decode_kernel(&insn, addr);
817                 if (WARN_ON_ONCE(ret < 0))
818                         continue;
819 
820                 op = insn.opcode.bytes[0];
821                 if (op == JMP32_INSN_OPCODE)
822                         dest = addr + insn.length + insn.immediate.value;
823 
824                 if (__static_call_fixup(addr, op, dest) ||
825                     WARN_ONCE(dest != &__x86_return_thunk,
826                               "missing return thunk: %pS-%pS: %*ph",
827                               addr, dest, 5, addr))
828                         continue;
829 
830                 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
831                         addr, addr, insn.length,
832                         addr + insn.length + insn.immediate.value);
833 
834                 len = patch_return(addr, &insn, bytes);
835                 if (len == insn.length) {
836                         DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
837                         DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
838                         text_poke_early(addr, bytes, len);
839                 }
840         }
841 }
842 #else
843 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
844 #endif /* CONFIG_MITIGATION_RETHUNK */
845 
846 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
847 
848 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
849 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
850 
851 #endif /* CONFIG_MITIGATION_RETPOLINE && CONFIG_OBJTOOL */
852 
853 #ifdef CONFIG_X86_KERNEL_IBT
854 
855 static void poison_cfi(void *addr);
856 
857 static void __init_or_module poison_endbr(void *addr, bool warn)
858 {
859         u32 endbr, poison = gen_endbr_poison();
860 
861         if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
862                 return;
863 
864         if (!is_endbr(endbr)) {
865                 WARN_ON_ONCE(warn);
866                 return;
867         }
868 
869         DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
870 
871         /*
872          * When we have IBT, the lack of ENDBR will trigger #CP
873          */
874         DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
875         DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
876         text_poke_early(addr, &poison, 4);
877 }
878 
879 /*
880  * Generated by: objtool --ibt
881  *
882  * Seal the functions for indirect calls by clobbering the ENDBR instructions
883  * and the kCFI hash value.
884  */
885 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
886 {
887         s32 *s;
888 
889         for (s = start; s < end; s++) {
890                 void *addr = (void *)s + *s;
891 
892                 poison_endbr(addr, true);
893                 if (IS_ENABLED(CONFIG_FINEIBT))
894                         poison_cfi(addr - 16);
895         }
896 }
897 
898 #else
899 
900 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
901 
902 #endif /* CONFIG_X86_KERNEL_IBT */
903 
904 #ifdef CONFIG_CFI_AUTO_DEFAULT
905 #define __CFI_DEFAULT   CFI_AUTO
906 #elif defined(CONFIG_CFI_CLANG)
907 #define __CFI_DEFAULT   CFI_KCFI
908 #else
909 #define __CFI_DEFAULT   CFI_OFF
910 #endif
911 
912 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
913 
914 #ifdef CONFIG_CFI_CLANG
915 struct bpf_insn;
916 
917 /* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */
918 extern unsigned int __bpf_prog_runX(const void *ctx,
919                                     const struct bpf_insn *insn);
920 
921 /*
922  * Force a reference to the external symbol so the compiler generates
923  * __kcfi_typid.
924  */
925 __ADDRESSABLE(__bpf_prog_runX);
926 
927 /* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */
928 asm (
929 "       .pushsection    .data..ro_after_init,\"aw\",@progbits   \n"
930 "       .type   cfi_bpf_hash,@object                            \n"
931 "       .globl  cfi_bpf_hash                                    \n"
932 "       .p2align        2, 0x0                                  \n"
933 "cfi_bpf_hash:                                                  \n"
934 "       .long   __kcfi_typeid___bpf_prog_runX                   \n"
935 "       .size   cfi_bpf_hash, 4                                 \n"
936 "       .popsection                                             \n"
937 );
938 
939 /* Must match bpf_callback_t */
940 extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64);
941 
942 __ADDRESSABLE(__bpf_callback_fn);
943 
944 /* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */
945 asm (
946 "       .pushsection    .data..ro_after_init,\"aw\",@progbits   \n"
947 "       .type   cfi_bpf_subprog_hash,@object                    \n"
948 "       .globl  cfi_bpf_subprog_hash                            \n"
949 "       .p2align        2, 0x0                                  \n"
950 "cfi_bpf_subprog_hash:                                          \n"
951 "       .long   __kcfi_typeid___bpf_callback_fn                 \n"
952 "       .size   cfi_bpf_subprog_hash, 4                         \n"
953 "       .popsection                                             \n"
954 );
955 
956 u32 cfi_get_func_hash(void *func)
957 {
958         u32 hash;
959 
960         func -= cfi_get_offset();
961         switch (cfi_mode) {
962         case CFI_FINEIBT:
963                 func += 7;
964                 break;
965         case CFI_KCFI:
966                 func += 1;
967                 break;
968         default:
969                 return 0;
970         }
971 
972         if (get_kernel_nofault(hash, func))
973                 return 0;
974 
975         return hash;
976 }
977 #endif
978 
979 #ifdef CONFIG_FINEIBT
980 
981 static bool cfi_rand __ro_after_init = true;
982 static u32  cfi_seed __ro_after_init;
983 
984 /*
985  * Re-hash the CFI hash with a boot-time seed while making sure the result is
986  * not a valid ENDBR instruction.
987  */
988 static u32 cfi_rehash(u32 hash)
989 {
990         hash ^= cfi_seed;
991         while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
992                 bool lsb = hash & 1;
993                 hash >>= 1;
994                 if (lsb)
995                         hash ^= 0x80200003;
996         }
997         return hash;
998 }
999 
1000 static __init int cfi_parse_cmdline(char *str)
1001 {
1002         if (!str)
1003                 return -EINVAL;
1004 
1005         while (str) {
1006                 char *next = strchr(str, ',');
1007                 if (next) {
1008                         *next = 0;
1009                         next++;
1010                 }
1011 
1012                 if (!strcmp(str, "auto")) {
1013                         cfi_mode = CFI_AUTO;
1014                 } else if (!strcmp(str, "off")) {
1015                         cfi_mode = CFI_OFF;
1016                         cfi_rand = false;
1017                 } else if (!strcmp(str, "kcfi")) {
1018                         cfi_mode = CFI_KCFI;
1019                 } else if (!strcmp(str, "fineibt")) {
1020                         cfi_mode = CFI_FINEIBT;
1021                 } else if (!strcmp(str, "norand")) {
1022                         cfi_rand = false;
1023                 } else {
1024                         pr_err("Ignoring unknown cfi option (%s).", str);
1025                 }
1026 
1027                 str = next;
1028         }
1029 
1030         return 0;
1031 }
1032 early_param("cfi", cfi_parse_cmdline);
1033 
1034 /*
1035  * kCFI                                         FineIBT
1036  *
1037  * __cfi_\func:                                 __cfi_\func:
1038  *      movl   $0x12345678,%eax         // 5         endbr64                    // 4
1039  *      nop                                          subl   $0x12345678,%r10d   // 7
1040  *      nop                                          jz     1f                  // 2
1041  *      nop                                          ud2                        // 2
1042  *      nop                                     1:   nop                        // 1
1043  *      nop
1044  *      nop
1045  *      nop
1046  *      nop
1047  *      nop
1048  *      nop
1049  *      nop
1050  *
1051  *
1052  * caller:                                      caller:
1053  *      movl    $(-0x12345678),%r10d     // 6        movl   $0x12345678,%r10d   // 6
1054  *      addl    $-15(%r11),%r10d         // 4        sub    $16,%r11            // 4
1055  *      je      1f                       // 2        nop4                       // 4
1056  *      ud2                              // 2
1057  * 1:   call    __x86_indirect_thunk_r11 // 5        call   *%r11; nop2;        // 5
1058  *
1059  */
1060 
1061 asm(    ".pushsection .rodata                   \n"
1062         "fineibt_preamble_start:                \n"
1063         "       endbr64                         \n"
1064         "       subl    $0x12345678, %r10d      \n"
1065         "       je      fineibt_preamble_end    \n"
1066         "       ud2                             \n"
1067         "       nop                             \n"
1068         "fineibt_preamble_end:                  \n"
1069         ".popsection\n"
1070 );
1071 
1072 extern u8 fineibt_preamble_start[];
1073 extern u8 fineibt_preamble_end[];
1074 
1075 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1076 #define fineibt_preamble_hash 7
1077 
1078 asm(    ".pushsection .rodata                   \n"
1079         "fineibt_caller_start:                  \n"
1080         "       movl    $0x12345678, %r10d      \n"
1081         "       sub     $16, %r11               \n"
1082         ASM_NOP4
1083         "fineibt_caller_end:                    \n"
1084         ".popsection                            \n"
1085 );
1086 
1087 extern u8 fineibt_caller_start[];
1088 extern u8 fineibt_caller_end[];
1089 
1090 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1091 #define fineibt_caller_hash 2
1092 
1093 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1094 
1095 static u32 decode_preamble_hash(void *addr)
1096 {
1097         u8 *p = addr;
1098 
1099         /* b8 78 56 34 12          mov    $0x12345678,%eax */
1100         if (p[0] == 0xb8)
1101                 return *(u32 *)(addr + 1);
1102 
1103         return 0; /* invalid hash value */
1104 }
1105 
1106 static u32 decode_caller_hash(void *addr)
1107 {
1108         u8 *p = addr;
1109 
1110         /* 41 ba 78 56 34 12       mov    $0x12345678,%r10d */
1111         if (p[0] == 0x41 && p[1] == 0xba)
1112                 return -*(u32 *)(addr + 2);
1113 
1114         /* e8 0c 78 56 34 12       jmp.d8  +12 */
1115         if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1116                 return -*(u32 *)(addr + 2);
1117 
1118         return 0; /* invalid hash value */
1119 }
1120 
1121 /* .retpoline_sites */
1122 static int cfi_disable_callers(s32 *start, s32 *end)
1123 {
1124         /*
1125          * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1126          * in tact for later usage. Also see decode_caller_hash() and
1127          * cfi_rewrite_callers().
1128          */
1129         const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1130         s32 *s;
1131 
1132         for (s = start; s < end; s++) {
1133                 void *addr = (void *)s + *s;
1134                 u32 hash;
1135 
1136                 addr -= fineibt_caller_size;
1137                 hash = decode_caller_hash(addr);
1138                 if (!hash) /* nocfi callers */
1139                         continue;
1140 
1141                 text_poke_early(addr, jmp, 2);
1142         }
1143 
1144         return 0;
1145 }
1146 
1147 static int cfi_enable_callers(s32 *start, s32 *end)
1148 {
1149         /*
1150          * Re-enable kCFI, undo what cfi_disable_callers() did.
1151          */
1152         const u8 mov[] = { 0x41, 0xba };
1153         s32 *s;
1154 
1155         for (s = start; s < end; s++) {
1156                 void *addr = (void *)s + *s;
1157                 u32 hash;
1158 
1159                 addr -= fineibt_caller_size;
1160                 hash = decode_caller_hash(addr);
1161                 if (!hash) /* nocfi callers */
1162                         continue;
1163 
1164                 text_poke_early(addr, mov, 2);
1165         }
1166 
1167         return 0;
1168 }
1169 
1170 /* .cfi_sites */
1171 static int cfi_rand_preamble(s32 *start, s32 *end)
1172 {
1173         s32 *s;
1174 
1175         for (s = start; s < end; s++) {
1176                 void *addr = (void *)s + *s;
1177                 u32 hash;
1178 
1179                 hash = decode_preamble_hash(addr);
1180                 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1181                          addr, addr, 5, addr))
1182                         return -EINVAL;
1183 
1184                 hash = cfi_rehash(hash);
1185                 text_poke_early(addr + 1, &hash, 4);
1186         }
1187 
1188         return 0;
1189 }
1190 
1191 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1192 {
1193         s32 *s;
1194 
1195         for (s = start; s < end; s++) {
1196                 void *addr = (void *)s + *s;
1197                 u32 hash;
1198 
1199                 hash = decode_preamble_hash(addr);
1200                 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1201                          addr, addr, 5, addr))
1202                         return -EINVAL;
1203 
1204                 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1205                 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1206                 text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1207         }
1208 
1209         return 0;
1210 }
1211 
1212 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1213 {
1214         s32 *s;
1215 
1216         for (s = start; s < end; s++) {
1217                 void *addr = (void *)s + *s;
1218 
1219                 poison_endbr(addr+16, false);
1220         }
1221 }
1222 
1223 /* .retpoline_sites */
1224 static int cfi_rand_callers(s32 *start, s32 *end)
1225 {
1226         s32 *s;
1227 
1228         for (s = start; s < end; s++) {
1229                 void *addr = (void *)s + *s;
1230                 u32 hash;
1231 
1232                 addr -= fineibt_caller_size;
1233                 hash = decode_caller_hash(addr);
1234                 if (hash) {
1235                         hash = -cfi_rehash(hash);
1236                         text_poke_early(addr + 2, &hash, 4);
1237                 }
1238         }
1239 
1240         return 0;
1241 }
1242 
1243 static int cfi_rewrite_callers(s32 *start, s32 *end)
1244 {
1245         s32 *s;
1246 
1247         for (s = start; s < end; s++) {
1248                 void *addr = (void *)s + *s;
1249                 u32 hash;
1250 
1251                 addr -= fineibt_caller_size;
1252                 hash = decode_caller_hash(addr);
1253                 if (hash) {
1254                         text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1255                         WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1256                         text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1257                 }
1258                 /* rely on apply_retpolines() */
1259         }
1260 
1261         return 0;
1262 }
1263 
1264 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1265                             s32 *start_cfi, s32 *end_cfi, bool builtin)
1266 {
1267         int ret;
1268 
1269         if (WARN_ONCE(fineibt_preamble_size != 16,
1270                       "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1271                 return;
1272 
1273         if (cfi_mode == CFI_AUTO) {
1274                 cfi_mode = CFI_KCFI;
1275                 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1276                         cfi_mode = CFI_FINEIBT;
1277         }
1278 
1279         /*
1280          * Rewrite the callers to not use the __cfi_ stubs, such that we might
1281          * rewrite them. This disables all CFI. If this succeeds but any of the
1282          * later stages fails, we're without CFI.
1283          */
1284         ret = cfi_disable_callers(start_retpoline, end_retpoline);
1285         if (ret)
1286                 goto err;
1287 
1288         if (cfi_rand) {
1289                 if (builtin) {
1290                         cfi_seed = get_random_u32();
1291                         cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1292                         cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1293                 }
1294 
1295                 ret = cfi_rand_preamble(start_cfi, end_cfi);
1296                 if (ret)
1297                         goto err;
1298 
1299                 ret = cfi_rand_callers(start_retpoline, end_retpoline);
1300                 if (ret)
1301                         goto err;
1302         }
1303 
1304         switch (cfi_mode) {
1305         case CFI_OFF:
1306                 if (builtin)
1307                         pr_info("Disabling CFI\n");
1308                 return;
1309 
1310         case CFI_KCFI:
1311                 ret = cfi_enable_callers(start_retpoline, end_retpoline);
1312                 if (ret)
1313                         goto err;
1314 
1315                 if (builtin)
1316                         pr_info("Using kCFI\n");
1317                 return;
1318 
1319         case CFI_FINEIBT:
1320                 /* place the FineIBT preamble at func()-16 */
1321                 ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1322                 if (ret)
1323                         goto err;
1324 
1325                 /* rewrite the callers to target func()-16 */
1326                 ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1327                 if (ret)
1328                         goto err;
1329 
1330                 /* now that nobody targets func()+0, remove ENDBR there */
1331                 cfi_rewrite_endbr(start_cfi, end_cfi);
1332 
1333                 if (builtin)
1334                         pr_info("Using FineIBT CFI\n");
1335                 return;
1336 
1337         default:
1338                 break;
1339         }
1340 
1341 err:
1342         pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1343 }
1344 
1345 static inline void poison_hash(void *addr)
1346 {
1347         *(u32 *)addr = 0;
1348 }
1349 
1350 static void poison_cfi(void *addr)
1351 {
1352         switch (cfi_mode) {
1353         case CFI_FINEIBT:
1354                 /*
1355                  * __cfi_\func:
1356                  *      osp nopl (%rax)
1357                  *      subl    $0, %r10d
1358                  *      jz      1f
1359                  *      ud2
1360                  * 1:   nop
1361                  */
1362                 poison_endbr(addr, false);
1363                 poison_hash(addr + fineibt_preamble_hash);
1364                 break;
1365 
1366         case CFI_KCFI:
1367                 /*
1368                  * __cfi_\func:
1369                  *      movl    $0, %eax
1370                  *      .skip   11, 0x90
1371                  */
1372                 poison_hash(addr + 1);
1373                 break;
1374 
1375         default:
1376                 break;
1377         }
1378 }
1379 
1380 #else
1381 
1382 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1383                             s32 *start_cfi, s32 *end_cfi, bool builtin)
1384 {
1385 }
1386 
1387 #ifdef CONFIG_X86_KERNEL_IBT
1388 static void poison_cfi(void *addr) { }
1389 #endif
1390 
1391 #endif
1392 
1393 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1394                    s32 *start_cfi, s32 *end_cfi)
1395 {
1396         return __apply_fineibt(start_retpoline, end_retpoline,
1397                                start_cfi, end_cfi,
1398                                /* .builtin = */ false);
1399 }
1400 
1401 #ifdef CONFIG_SMP
1402 static void alternatives_smp_lock(const s32 *start, const s32 *end,
1403                                   u8 *text, u8 *text_end)
1404 {
1405         const s32 *poff;
1406 
1407         for (poff = start; poff < end; poff++) {
1408                 u8 *ptr = (u8 *)poff + *poff;
1409 
1410                 if (!*poff || ptr < text || ptr >= text_end)
1411                         continue;
1412                 /* turn DS segment override prefix into lock prefix */
1413                 if (*ptr == 0x3e)
1414                         text_poke(ptr, ((unsigned char []){0xf0}), 1);
1415         }
1416 }
1417 
1418 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1419                                     u8 *text, u8 *text_end)
1420 {
1421         const s32 *poff;
1422 
1423         for (poff = start; poff < end; poff++) {
1424                 u8 *ptr = (u8 *)poff + *poff;
1425 
1426                 if (!*poff || ptr < text || ptr >= text_end)
1427                         continue;
1428                 /* turn lock prefix into DS segment override prefix */
1429                 if (*ptr == 0xf0)
1430                         text_poke(ptr, ((unsigned char []){0x3E}), 1);
1431         }
1432 }
1433 
1434 struct smp_alt_module {
1435         /* what is this ??? */
1436         struct module   *mod;
1437         char            *name;
1438 
1439         /* ptrs to lock prefixes */
1440         const s32       *locks;
1441         const s32       *locks_end;
1442 
1443         /* .text segment, needed to avoid patching init code ;) */
1444         u8              *text;
1445         u8              *text_end;
1446 
1447         struct list_head next;
1448 };
1449 static LIST_HEAD(smp_alt_modules);
1450 static bool uniproc_patched = false;    /* protected by text_mutex */
1451 
1452 void __init_or_module alternatives_smp_module_add(struct module *mod,
1453                                                   char *name,
1454                                                   void *locks, void *locks_end,
1455                                                   void *text,  void *text_end)
1456 {
1457         struct smp_alt_module *smp;
1458 
1459         mutex_lock(&text_mutex);
1460         if (!uniproc_patched)
1461                 goto unlock;
1462 
1463         if (num_possible_cpus() == 1)
1464                 /* Don't bother remembering, we'll never have to undo it. */
1465                 goto smp_unlock;
1466 
1467         smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1468         if (NULL == smp)
1469                 /* we'll run the (safe but slow) SMP code then ... */
1470                 goto unlock;
1471 
1472         smp->mod        = mod;
1473         smp->name       = name;
1474         smp->locks      = locks;
1475         smp->locks_end  = locks_end;
1476         smp->text       = text;
1477         smp->text_end   = text_end;
1478         DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
1479                 smp->locks, smp->locks_end,
1480                 smp->text, smp->text_end, smp->name);
1481 
1482         list_add_tail(&smp->next, &smp_alt_modules);
1483 smp_unlock:
1484         alternatives_smp_unlock(locks, locks_end, text, text_end);
1485 unlock:
1486         mutex_unlock(&text_mutex);
1487 }
1488 
1489 void __init_or_module alternatives_smp_module_del(struct module *mod)
1490 {
1491         struct smp_alt_module *item;
1492 
1493         mutex_lock(&text_mutex);
1494         list_for_each_entry(item, &smp_alt_modules, next) {
1495                 if (mod != item->mod)
1496                         continue;
1497                 list_del(&item->next);
1498                 kfree(item);
1499                 break;
1500         }
1501         mutex_unlock(&text_mutex);
1502 }
1503 
1504 void alternatives_enable_smp(void)
1505 {
1506         struct smp_alt_module *mod;
1507 
1508         /* Why bother if there are no other CPUs? */
1509         BUG_ON(num_possible_cpus() == 1);
1510 
1511         mutex_lock(&text_mutex);
1512 
1513         if (uniproc_patched) {
1514                 pr_info("switching to SMP code\n");
1515                 BUG_ON(num_online_cpus() != 1);
1516                 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1517                 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1518                 list_for_each_entry(mod, &smp_alt_modules, next)
1519                         alternatives_smp_lock(mod->locks, mod->locks_end,
1520                                               mod->text, mod->text_end);
1521                 uniproc_patched = false;
1522         }
1523         mutex_unlock(&text_mutex);
1524 }
1525 
1526 /*
1527  * Return 1 if the address range is reserved for SMP-alternatives.
1528  * Must hold text_mutex.
1529  */
1530 int alternatives_text_reserved(void *start, void *end)
1531 {
1532         struct smp_alt_module *mod;
1533         const s32 *poff;
1534         u8 *text_start = start;
1535         u8 *text_end = end;
1536 
1537         lockdep_assert_held(&text_mutex);
1538 
1539         list_for_each_entry(mod, &smp_alt_modules, next) {
1540                 if (mod->text > text_end || mod->text_end < text_start)
1541                         continue;
1542                 for (poff = mod->locks; poff < mod->locks_end; poff++) {
1543                         const u8 *ptr = (const u8 *)poff + *poff;
1544 
1545                         if (text_start <= ptr && text_end > ptr)
1546                                 return 1;
1547                 }
1548         }
1549 
1550         return 0;
1551 }
1552 #endif /* CONFIG_SMP */
1553 
1554 /*
1555  * Self-test for the INT3 based CALL emulation code.
1556  *
1557  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1558  * properly and that there is a stack gap between the INT3 frame and the
1559  * previous context. Without this gap doing a virtual PUSH on the interrupted
1560  * stack would corrupt the INT3 IRET frame.
1561  *
1562  * See entry_{32,64}.S for more details.
1563  */
1564 
1565 /*
1566  * We define the int3_magic() function in assembly to control the calling
1567  * convention such that we can 'call' it from assembly.
1568  */
1569 
1570 extern void int3_magic(unsigned int *ptr); /* defined in asm */
1571 
1572 asm (
1573 "       .pushsection    .init.text, \"ax\", @progbits\n"
1574 "       .type           int3_magic, @function\n"
1575 "int3_magic:\n"
1576         ANNOTATE_NOENDBR
1577 "       movl    $1, (%" _ASM_ARG1 ")\n"
1578         ASM_RET
1579 "       .size           int3_magic, .-int3_magic\n"
1580 "       .popsection\n"
1581 );
1582 
1583 extern void int3_selftest_ip(void); /* defined in asm below */
1584 
1585 static int __init
1586 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1587 {
1588         unsigned long selftest = (unsigned long)&int3_selftest_ip;
1589         struct die_args *args = data;
1590         struct pt_regs *regs = args->regs;
1591 
1592         OPTIMIZER_HIDE_VAR(selftest);
1593 
1594         if (!regs || user_mode(regs))
1595                 return NOTIFY_DONE;
1596 
1597         if (val != DIE_INT3)
1598                 return NOTIFY_DONE;
1599 
1600         if (regs->ip - INT3_INSN_SIZE != selftest)
1601                 return NOTIFY_DONE;
1602 
1603         int3_emulate_call(regs, (unsigned long)&int3_magic);
1604         return NOTIFY_STOP;
1605 }
1606 
1607 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1608 static noinline void __init int3_selftest(void)
1609 {
1610         static __initdata struct notifier_block int3_exception_nb = {
1611                 .notifier_call  = int3_exception_notify,
1612                 .priority       = INT_MAX-1, /* last */
1613         };
1614         unsigned int val = 0;
1615 
1616         BUG_ON(register_die_notifier(&int3_exception_nb));
1617 
1618         /*
1619          * Basically: int3_magic(&val); but really complicated :-)
1620          *
1621          * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1622          * notifier above will emulate CALL for us.
1623          */
1624         asm volatile ("int3_selftest_ip:\n\t"
1625                       ANNOTATE_NOENDBR
1626                       "    int3; nop; nop; nop; nop\n\t"
1627                       : ASM_CALL_CONSTRAINT
1628                       : __ASM_SEL_RAW(a, D) (&val)
1629                       : "memory");
1630 
1631         BUG_ON(val != 1);
1632 
1633         unregister_die_notifier(&int3_exception_nb);
1634 }
1635 
1636 static __initdata int __alt_reloc_selftest_addr;
1637 
1638 extern void __init __alt_reloc_selftest(void *arg);
1639 __visible noinline void __init __alt_reloc_selftest(void *arg)
1640 {
1641         WARN_ON(arg != &__alt_reloc_selftest_addr);
1642 }
1643 
1644 static noinline void __init alt_reloc_selftest(void)
1645 {
1646         /*
1647          * Tests apply_relocation().
1648          *
1649          * This has a relative immediate (CALL) in a place other than the first
1650          * instruction and additionally on x86_64 we get a RIP-relative LEA:
1651          *
1652          *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
1653          *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
1654          *
1655          * Getting this wrong will either crash and burn or tickle the WARN
1656          * above.
1657          */
1658         asm_inline volatile (
1659                 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
1660                 : ASM_CALL_CONSTRAINT
1661                 : [mem] "m" (__alt_reloc_selftest_addr)
1662                 : _ASM_ARG1
1663         );
1664 }
1665 
1666 void __init alternative_instructions(void)
1667 {
1668         int3_selftest();
1669 
1670         /*
1671          * The patching is not fully atomic, so try to avoid local
1672          * interruptions that might execute the to be patched code.
1673          * Other CPUs are not running.
1674          */
1675         stop_nmi();
1676 
1677         /*
1678          * Don't stop machine check exceptions while patching.
1679          * MCEs only happen when something got corrupted and in this
1680          * case we must do something about the corruption.
1681          * Ignoring it is worse than an unlikely patching race.
1682          * Also machine checks tend to be broadcast and if one CPU
1683          * goes into machine check the others follow quickly, so we don't
1684          * expect a machine check to cause undue problems during to code
1685          * patching.
1686          */
1687 
1688         /*
1689          * Make sure to set (artificial) features depending on used paravirt
1690          * functions which can later influence alternative patching.
1691          */
1692         paravirt_set_cap();
1693 
1694         __apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1695                         __cfi_sites, __cfi_sites_end, true);
1696 
1697         /*
1698          * Rewrite the retpolines, must be done before alternatives since
1699          * those can rewrite the retpoline thunks.
1700          */
1701         apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1702         apply_returns(__return_sites, __return_sites_end);
1703 
1704         apply_alternatives(__alt_instructions, __alt_instructions_end);
1705 
1706         /*
1707          * Now all calls are established. Apply the call thunks if
1708          * required.
1709          */
1710         callthunks_patch_builtin_calls();
1711 
1712         /*
1713          * Seal all functions that do not have their address taken.
1714          */
1715         apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
1716 
1717 #ifdef CONFIG_SMP
1718         /* Patch to UP if other cpus not imminent. */
1719         if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1720                 uniproc_patched = true;
1721                 alternatives_smp_module_add(NULL, "core kernel",
1722                                             __smp_locks, __smp_locks_end,
1723                                             _text, _etext);
1724         }
1725 
1726         if (!uniproc_patched || num_possible_cpus() == 1) {
1727                 free_init_pages("SMP alternatives",
1728                                 (unsigned long)__smp_locks,
1729                                 (unsigned long)__smp_locks_end);
1730         }
1731 #endif
1732 
1733         restart_nmi();
1734         alternatives_patched = 1;
1735 
1736         alt_reloc_selftest();
1737 }
1738 
1739 /**
1740  * text_poke_early - Update instructions on a live kernel at boot time
1741  * @addr: address to modify
1742  * @opcode: source of the copy
1743  * @len: length to copy
1744  *
1745  * When you use this code to patch more than one byte of an instruction
1746  * you need to make sure that other CPUs cannot execute this code in parallel.
1747  * Also no thread must be currently preempted in the middle of these
1748  * instructions. And on the local CPU you need to be protected against NMI or
1749  * MCE handlers seeing an inconsistent instruction while you patch.
1750  */
1751 void __init_or_module text_poke_early(void *addr, const void *opcode,
1752                                       size_t len)
1753 {
1754         unsigned long flags;
1755 
1756         if (boot_cpu_has(X86_FEATURE_NX) &&
1757             is_module_text_address((unsigned long)addr)) {
1758                 /*
1759                  * Modules text is marked initially as non-executable, so the
1760                  * code cannot be running and speculative code-fetches are
1761                  * prevented. Just change the code.
1762                  */
1763                 memcpy(addr, opcode, len);
1764         } else {
1765                 local_irq_save(flags);
1766                 memcpy(addr, opcode, len);
1767                 sync_core();
1768                 local_irq_restore(flags);
1769 
1770                 /*
1771                  * Could also do a CLFLUSH here to speed up CPU recovery; but
1772                  * that causes hangs on some VIA CPUs.
1773                  */
1774         }
1775 }
1776 
1777 typedef struct {
1778         struct mm_struct *mm;
1779 } temp_mm_state_t;
1780 
1781 /*
1782  * Using a temporary mm allows to set temporary mappings that are not accessible
1783  * by other CPUs. Such mappings are needed to perform sensitive memory writes
1784  * that override the kernel memory protections (e.g., W^X), without exposing the
1785  * temporary page-table mappings that are required for these write operations to
1786  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1787  * mapping is torn down.
1788  *
1789  * Context: The temporary mm needs to be used exclusively by a single core. To
1790  *          harden security IRQs must be disabled while the temporary mm is
1791  *          loaded, thereby preventing interrupt handler bugs from overriding
1792  *          the kernel memory protection.
1793  */
1794 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1795 {
1796         temp_mm_state_t temp_state;
1797 
1798         lockdep_assert_irqs_disabled();
1799 
1800         /*
1801          * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1802          * with a stale address space WITHOUT being in lazy mode after
1803          * restoring the previous mm.
1804          */
1805         if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1806                 leave_mm();
1807 
1808         temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1809         switch_mm_irqs_off(NULL, mm, current);
1810 
1811         /*
1812          * If breakpoints are enabled, disable them while the temporary mm is
1813          * used. Userspace might set up watchpoints on addresses that are used
1814          * in the temporary mm, which would lead to wrong signals being sent or
1815          * crashes.
1816          *
1817          * Note that breakpoints are not disabled selectively, which also causes
1818          * kernel breakpoints (e.g., perf's) to be disabled. This might be
1819          * undesirable, but still seems reasonable as the code that runs in the
1820          * temporary mm should be short.
1821          */
1822         if (hw_breakpoint_active())
1823                 hw_breakpoint_disable();
1824 
1825         return temp_state;
1826 }
1827 
1828 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1829 {
1830         lockdep_assert_irqs_disabled();
1831         switch_mm_irqs_off(NULL, prev_state.mm, current);
1832 
1833         /*
1834          * Restore the breakpoints if they were disabled before the temporary mm
1835          * was loaded.
1836          */
1837         if (hw_breakpoint_active())
1838                 hw_breakpoint_restore();
1839 }
1840 
1841 __ro_after_init struct mm_struct *poking_mm;
1842 __ro_after_init unsigned long poking_addr;
1843 
1844 static void text_poke_memcpy(void *dst, const void *src, size_t len)
1845 {
1846         memcpy(dst, src, len);
1847 }
1848 
1849 static void text_poke_memset(void *dst, const void *src, size_t len)
1850 {
1851         int c = *(const int *)src;
1852 
1853         memset(dst, c, len);
1854 }
1855 
1856 typedef void text_poke_f(void *dst, const void *src, size_t len);
1857 
1858 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1859 {
1860         bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1861         struct page *pages[2] = {NULL};
1862         temp_mm_state_t prev;
1863         unsigned long flags;
1864         pte_t pte, *ptep;
1865         spinlock_t *ptl;
1866         pgprot_t pgprot;
1867 
1868         /*
1869          * While boot memory allocator is running we cannot use struct pages as
1870          * they are not yet initialized. There is no way to recover.
1871          */
1872         BUG_ON(!after_bootmem);
1873 
1874         if (!core_kernel_text((unsigned long)addr)) {
1875                 pages[0] = vmalloc_to_page(addr);
1876                 if (cross_page_boundary)
1877                         pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1878         } else {
1879                 pages[0] = virt_to_page(addr);
1880                 WARN_ON(!PageReserved(pages[0]));
1881                 if (cross_page_boundary)
1882                         pages[1] = virt_to_page(addr + PAGE_SIZE);
1883         }
1884         /*
1885          * If something went wrong, crash and burn since recovery paths are not
1886          * implemented.
1887          */
1888         BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1889 
1890         /*
1891          * Map the page without the global bit, as TLB flushing is done with
1892          * flush_tlb_mm_range(), which is intended for non-global PTEs.
1893          */
1894         pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1895 
1896         /*
1897          * The lock is not really needed, but this allows to avoid open-coding.
1898          */
1899         ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1900 
1901         /*
1902          * This must not fail; preallocated in poking_init().
1903          */
1904         VM_BUG_ON(!ptep);
1905 
1906         local_irq_save(flags);
1907 
1908         pte = mk_pte(pages[0], pgprot);
1909         set_pte_at(poking_mm, poking_addr, ptep, pte);
1910 
1911         if (cross_page_boundary) {
1912                 pte = mk_pte(pages[1], pgprot);
1913                 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1914         }
1915 
1916         /*
1917          * Loading the temporary mm behaves as a compiler barrier, which
1918          * guarantees that the PTE will be set at the time memcpy() is done.
1919          */
1920         prev = use_temporary_mm(poking_mm);
1921 
1922         kasan_disable_current();
1923         func((u8 *)poking_addr + offset_in_page(addr), src, len);
1924         kasan_enable_current();
1925 
1926         /*
1927          * Ensure that the PTE is only cleared after the instructions of memcpy
1928          * were issued by using a compiler barrier.
1929          */
1930         barrier();
1931 
1932         pte_clear(poking_mm, poking_addr, ptep);
1933         if (cross_page_boundary)
1934                 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1935 
1936         /*
1937          * Loading the previous page-table hierarchy requires a serializing
1938          * instruction that already allows the core to see the updated version.
1939          * Xen-PV is assumed to serialize execution in a similar manner.
1940          */
1941         unuse_temporary_mm(prev);
1942 
1943         /*
1944          * Flushing the TLB might involve IPIs, which would require enabled
1945          * IRQs, but not if the mm is not used, as it is in this point.
1946          */
1947         flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1948                            (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1949                            PAGE_SHIFT, false);
1950 
1951         if (func == text_poke_memcpy) {
1952                 /*
1953                  * If the text does not match what we just wrote then something is
1954                  * fundamentally screwy; there's nothing we can really do about that.
1955                  */
1956                 BUG_ON(memcmp(addr, src, len));
1957         }
1958 
1959         local_irq_restore(flags);
1960         pte_unmap_unlock(ptep, ptl);
1961         return addr;
1962 }
1963 
1964 /**
1965  * text_poke - Update instructions on a live kernel
1966  * @addr: address to modify
1967  * @opcode: source of the copy
1968  * @len: length to copy
1969  *
1970  * Only atomic text poke/set should be allowed when not doing early patching.
1971  * It means the size must be writable atomically and the address must be aligned
1972  * in a way that permits an atomic write. It also makes sure we fit on a single
1973  * page.
1974  *
1975  * Note that the caller must ensure that if the modified code is part of a
1976  * module, the module would not be removed during poking. This can be achieved
1977  * by registering a module notifier, and ordering module removal and patching
1978  * through a mutex.
1979  */
1980 void *text_poke(void *addr, const void *opcode, size_t len)
1981 {
1982         lockdep_assert_held(&text_mutex);
1983 
1984         return __text_poke(text_poke_memcpy, addr, opcode, len);
1985 }
1986 
1987 /**
1988  * text_poke_kgdb - Update instructions on a live kernel by kgdb
1989  * @addr: address to modify
1990  * @opcode: source of the copy
1991  * @len: length to copy
1992  *
1993  * Only atomic text poke/set should be allowed when not doing early patching.
1994  * It means the size must be writable atomically and the address must be aligned
1995  * in a way that permits an atomic write. It also makes sure we fit on a single
1996  * page.
1997  *
1998  * Context: should only be used by kgdb, which ensures no other core is running,
1999  *          despite the fact it does not hold the text_mutex.
2000  */
2001 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2002 {
2003         return __text_poke(text_poke_memcpy, addr, opcode, len);
2004 }
2005 
2006 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2007                             bool core_ok)
2008 {
2009         unsigned long start = (unsigned long)addr;
2010         size_t patched = 0;
2011 
2012         if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2013                 return NULL;
2014 
2015         while (patched < len) {
2016                 unsigned long ptr = start + patched;
2017                 size_t s;
2018 
2019                 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2020 
2021                 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2022                 patched += s;
2023         }
2024         return addr;
2025 }
2026 
2027 /**
2028  * text_poke_copy - Copy instructions into (an unused part of) RX memory
2029  * @addr: address to modify
2030  * @opcode: source of the copy
2031  * @len: length to copy, could be more than 2x PAGE_SIZE
2032  *
2033  * Not safe against concurrent execution; useful for JITs to dump
2034  * new code blocks into unused regions of RX memory. Can be used in
2035  * conjunction with synchronize_rcu_tasks() to wait for existing
2036  * execution to quiesce after having made sure no existing functions
2037  * pointers are live.
2038  */
2039 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2040 {
2041         mutex_lock(&text_mutex);
2042         addr = text_poke_copy_locked(addr, opcode, len, false);
2043         mutex_unlock(&text_mutex);
2044         return addr;
2045 }
2046 
2047 /**
2048  * text_poke_set - memset into (an unused part of) RX memory
2049  * @addr: address to modify
2050  * @c: the byte to fill the area with
2051  * @len: length to copy, could be more than 2x PAGE_SIZE
2052  *
2053  * This is useful to overwrite unused regions of RX memory with illegal
2054  * instructions.
2055  */
2056 void *text_poke_set(void *addr, int c, size_t len)
2057 {
2058         unsigned long start = (unsigned long)addr;
2059         size_t patched = 0;
2060 
2061         if (WARN_ON_ONCE(core_kernel_text(start)))
2062                 return NULL;
2063 
2064         mutex_lock(&text_mutex);
2065         while (patched < len) {
2066                 unsigned long ptr = start + patched;
2067                 size_t s;
2068 
2069                 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2070 
2071                 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2072                 patched += s;
2073         }
2074         mutex_unlock(&text_mutex);
2075         return addr;
2076 }
2077 
2078 static void do_sync_core(void *info)
2079 {
2080         sync_core();
2081 }
2082 
2083 void text_poke_sync(void)
2084 {
2085         on_each_cpu(do_sync_core, NULL, 1);
2086 }
2087 
2088 /*
2089  * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2090  * this thing. When len == 6 everything is prefixed with 0x0f and we map
2091  * opcode to Jcc.d8, using len to distinguish.
2092  */
2093 struct text_poke_loc {
2094         /* addr := _stext + rel_addr */
2095         s32 rel_addr;
2096         s32 disp;
2097         u8 len;
2098         u8 opcode;
2099         const u8 text[POKE_MAX_OPCODE_SIZE];
2100         /* see text_poke_bp_batch() */
2101         u8 old;
2102 };
2103 
2104 struct bp_patching_desc {
2105         struct text_poke_loc *vec;
2106         int nr_entries;
2107         atomic_t refs;
2108 };
2109 
2110 static struct bp_patching_desc bp_desc;
2111 
2112 static __always_inline
2113 struct bp_patching_desc *try_get_desc(void)
2114 {
2115         struct bp_patching_desc *desc = &bp_desc;
2116 
2117         if (!raw_atomic_inc_not_zero(&desc->refs))
2118                 return NULL;
2119 
2120         return desc;
2121 }
2122 
2123 static __always_inline void put_desc(void)
2124 {
2125         struct bp_patching_desc *desc = &bp_desc;
2126 
2127         smp_mb__before_atomic();
2128         raw_atomic_dec(&desc->refs);
2129 }
2130 
2131 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
2132 {
2133         return _stext + tp->rel_addr;
2134 }
2135 
2136 static __always_inline int patch_cmp(const void *key, const void *elt)
2137 {
2138         struct text_poke_loc *tp = (struct text_poke_loc *) elt;
2139 
2140         if (key < text_poke_addr(tp))
2141                 return -1;
2142         if (key > text_poke_addr(tp))
2143                 return 1;
2144         return 0;
2145 }
2146 
2147 noinstr int poke_int3_handler(struct pt_regs *regs)
2148 {
2149         struct bp_patching_desc *desc;
2150         struct text_poke_loc *tp;
2151         int ret = 0;
2152         void *ip;
2153 
2154         if (user_mode(regs))
2155                 return 0;
2156 
2157         /*
2158          * Having observed our INT3 instruction, we now must observe
2159          * bp_desc with non-zero refcount:
2160          *
2161          *      bp_desc.refs = 1                INT3
2162          *      WMB                             RMB
2163          *      write INT3                      if (bp_desc.refs != 0)
2164          */
2165         smp_rmb();
2166 
2167         desc = try_get_desc();
2168         if (!desc)
2169                 return 0;
2170 
2171         /*
2172          * Discount the INT3. See text_poke_bp_batch().
2173          */
2174         ip = (void *) regs->ip - INT3_INSN_SIZE;
2175 
2176         /*
2177          * Skip the binary search if there is a single member in the vector.
2178          */
2179         if (unlikely(desc->nr_entries > 1)) {
2180                 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
2181                                       sizeof(struct text_poke_loc),
2182                                       patch_cmp);
2183                 if (!tp)
2184                         goto out_put;
2185         } else {
2186                 tp = desc->vec;
2187                 if (text_poke_addr(tp) != ip)
2188                         goto out_put;
2189         }
2190 
2191         ip += tp->len;
2192 
2193         switch (tp->opcode) {
2194         case INT3_INSN_OPCODE:
2195                 /*
2196                  * Someone poked an explicit INT3, they'll want to handle it,
2197                  * do not consume.
2198                  */
2199                 goto out_put;
2200 
2201         case RET_INSN_OPCODE:
2202                 int3_emulate_ret(regs);
2203                 break;
2204 
2205         case CALL_INSN_OPCODE:
2206                 int3_emulate_call(regs, (long)ip + tp->disp);
2207                 break;
2208 
2209         case JMP32_INSN_OPCODE:
2210         case JMP8_INSN_OPCODE:
2211                 int3_emulate_jmp(regs, (long)ip + tp->disp);
2212                 break;
2213 
2214         case 0x70 ... 0x7f: /* Jcc */
2215                 int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
2216                 break;
2217 
2218         default:
2219                 BUG();
2220         }
2221 
2222         ret = 1;
2223 
2224 out_put:
2225         put_desc();
2226         return ret;
2227 }
2228 
2229 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2230 static struct text_poke_loc tp_vec[TP_VEC_MAX];
2231 static int tp_vec_nr;
2232 
2233 /**
2234  * text_poke_bp_batch() -- update instructions on live kernel on SMP
2235  * @tp:                 vector of instructions to patch
2236  * @nr_entries:         number of entries in the vector
2237  *
2238  * Modify multi-byte instruction by using int3 breakpoint on SMP.
2239  * We completely avoid stop_machine() here, and achieve the
2240  * synchronization using int3 breakpoint.
2241  *
2242  * The way it is done:
2243  *      - For each entry in the vector:
2244  *              - add a int3 trap to the address that will be patched
2245  *      - sync cores
2246  *      - For each entry in the vector:
2247  *              - update all but the first byte of the patched range
2248  *      - sync cores
2249  *      - For each entry in the vector:
2250  *              - replace the first byte (int3) by the first byte of
2251  *                replacing opcode
2252  *      - sync cores
2253  */
2254 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
2255 {
2256         unsigned char int3 = INT3_INSN_OPCODE;
2257         unsigned int i;
2258         int do_sync;
2259 
2260         lockdep_assert_held(&text_mutex);
2261 
2262         bp_desc.vec = tp;
2263         bp_desc.nr_entries = nr_entries;
2264 
2265         /*
2266          * Corresponds to the implicit memory barrier in try_get_desc() to
2267          * ensure reading a non-zero refcount provides up to date bp_desc data.
2268          */
2269         atomic_set_release(&bp_desc.refs, 1);
2270 
2271         /*
2272          * Function tracing can enable thousands of places that need to be
2273          * updated. This can take quite some time, and with full kernel debugging
2274          * enabled, this could cause the softlockup watchdog to trigger.
2275          * This function gets called every 256 entries added to be patched.
2276          * Call cond_resched() here to make sure that other tasks can get scheduled
2277          * while processing all the functions being patched.
2278          */
2279         cond_resched();
2280 
2281         /*
2282          * Corresponding read barrier in int3 notifier for making sure the
2283          * nr_entries and handler are correctly ordered wrt. patching.
2284          */
2285         smp_wmb();
2286 
2287         /*
2288          * First step: add a int3 trap to the address that will be patched.
2289          */
2290         for (i = 0; i < nr_entries; i++) {
2291                 tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
2292                 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
2293         }
2294 
2295         text_poke_sync();
2296 
2297         /*
2298          * Second step: update all but the first byte of the patched range.
2299          */
2300         for (do_sync = 0, i = 0; i < nr_entries; i++) {
2301                 u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
2302                 u8 _new[POKE_MAX_OPCODE_SIZE+1];
2303                 const u8 *new = tp[i].text;
2304                 int len = tp[i].len;
2305 
2306                 if (len - INT3_INSN_SIZE > 0) {
2307                         memcpy(old + INT3_INSN_SIZE,
2308                                text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2309                                len - INT3_INSN_SIZE);
2310 
2311                         if (len == 6) {
2312                                 _new[0] = 0x0f;
2313                                 memcpy(_new + 1, new, 5);
2314                                 new = _new;
2315                         }
2316 
2317                         text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2318                                   new + INT3_INSN_SIZE,
2319                                   len - INT3_INSN_SIZE);
2320 
2321                         do_sync++;
2322                 }
2323 
2324                 /*
2325                  * Emit a perf event to record the text poke, primarily to
2326                  * support Intel PT decoding which must walk the executable code
2327                  * to reconstruct the trace. The flow up to here is:
2328                  *   - write INT3 byte
2329                  *   - IPI-SYNC
2330                  *   - write instruction tail
2331                  * At this point the actual control flow will be through the
2332                  * INT3 and handler and not hit the old or new instruction.
2333                  * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2334                  * can still be decoded. Subsequently:
2335                  *   - emit RECORD_TEXT_POKE with the new instruction
2336                  *   - IPI-SYNC
2337                  *   - write first byte
2338                  *   - IPI-SYNC
2339                  * So before the text poke event timestamp, the decoder will see
2340                  * either the old instruction flow or FUP/TIP of INT3. After the
2341                  * text poke event timestamp, the decoder will see either the
2342                  * new instruction flow or FUP/TIP of INT3. Thus decoders can
2343                  * use the timestamp as the point at which to modify the
2344                  * executable code.
2345                  * The old instruction is recorded so that the event can be
2346                  * processed forwards or backwards.
2347                  */
2348                 perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
2349         }
2350 
2351         if (do_sync) {
2352                 /*
2353                  * According to Intel, this core syncing is very likely
2354                  * not necessary and we'd be safe even without it. But
2355                  * better safe than sorry (plus there's not only Intel).
2356                  */
2357                 text_poke_sync();
2358         }
2359 
2360         /*
2361          * Third step: replace the first byte (int3) by the first byte of
2362          * replacing opcode.
2363          */
2364         for (do_sync = 0, i = 0; i < nr_entries; i++) {
2365                 u8 byte = tp[i].text[0];
2366 
2367                 if (tp[i].len == 6)
2368                         byte = 0x0f;
2369 
2370                 if (byte == INT3_INSN_OPCODE)
2371                         continue;
2372 
2373                 text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
2374                 do_sync++;
2375         }
2376 
2377         if (do_sync)
2378                 text_poke_sync();
2379 
2380         /*
2381          * Remove and wait for refs to be zero.
2382          */
2383         if (!atomic_dec_and_test(&bp_desc.refs))
2384                 atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2385 }
2386 
2387 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2388                                const void *opcode, size_t len, const void *emulate)
2389 {
2390         struct insn insn;
2391         int ret, i = 0;
2392 
2393         if (len == 6)
2394                 i = 1;
2395         memcpy((void *)tp->text, opcode+i, len-i);
2396         if (!emulate)
2397                 emulate = opcode;
2398 
2399         ret = insn_decode_kernel(&insn, emulate);
2400         BUG_ON(ret < 0);
2401 
2402         tp->rel_addr = addr - (void *)_stext;
2403         tp->len = len;
2404         tp->opcode = insn.opcode.bytes[0];
2405 
2406         if (is_jcc32(&insn)) {
2407                 /*
2408                  * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2409                  */
2410                 tp->opcode = insn.opcode.bytes[1] - 0x10;
2411         }
2412 
2413         switch (tp->opcode) {
2414         case RET_INSN_OPCODE:
2415         case JMP32_INSN_OPCODE:
2416         case JMP8_INSN_OPCODE:
2417                 /*
2418                  * Control flow instructions without implied execution of the
2419                  * next instruction can be padded with INT3.
2420                  */
2421                 for (i = insn.length; i < len; i++)
2422                         BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2423                 break;
2424 
2425         default:
2426                 BUG_ON(len != insn.length);
2427         }
2428 
2429         switch (tp->opcode) {
2430         case INT3_INSN_OPCODE:
2431         case RET_INSN_OPCODE:
2432                 break;
2433 
2434         case CALL_INSN_OPCODE:
2435         case JMP32_INSN_OPCODE:
2436         case JMP8_INSN_OPCODE:
2437         case 0x70 ... 0x7f: /* Jcc */
2438                 tp->disp = insn.immediate.value;
2439                 break;
2440 
2441         default: /* assume NOP */
2442                 switch (len) {
2443                 case 2: /* NOP2 -- emulate as JMP8+0 */
2444                         BUG_ON(memcmp(emulate, x86_nops[len], len));
2445                         tp->opcode = JMP8_INSN_OPCODE;
2446                         tp->disp = 0;
2447                         break;
2448 
2449                 case 5: /* NOP5 -- emulate as JMP32+0 */
2450                         BUG_ON(memcmp(emulate, x86_nops[len], len));
2451                         tp->opcode = JMP32_INSN_OPCODE;
2452                         tp->disp = 0;
2453                         break;
2454 
2455                 default: /* unknown instruction */
2456                         BUG();
2457                 }
2458                 break;
2459         }
2460 }
2461 
2462 /*
2463  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2464  * early if needed.
2465  */
2466 static bool tp_order_fail(void *addr)
2467 {
2468         struct text_poke_loc *tp;
2469 
2470         if (!tp_vec_nr)
2471                 return false;
2472 
2473         if (!addr) /* force */
2474                 return true;
2475 
2476         tp = &tp_vec[tp_vec_nr - 1];
2477         if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2478                 return true;
2479 
2480         return false;
2481 }
2482 
2483 static void text_poke_flush(void *addr)
2484 {
2485         if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2486                 text_poke_bp_batch(tp_vec, tp_vec_nr);
2487                 tp_vec_nr = 0;
2488         }
2489 }
2490 
2491 void text_poke_finish(void)
2492 {
2493         text_poke_flush(NULL);
2494 }
2495 
2496 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2497 {
2498         struct text_poke_loc *tp;
2499 
2500         text_poke_flush(addr);
2501 
2502         tp = &tp_vec[tp_vec_nr++];
2503         text_poke_loc_init(tp, addr, opcode, len, emulate);
2504 }
2505 
2506 /**
2507  * text_poke_bp() -- update instructions on live kernel on SMP
2508  * @addr:       address to patch
2509  * @opcode:     opcode of new instruction
2510  * @len:        length to copy
2511  * @emulate:    instruction to be emulated
2512  *
2513  * Update a single instruction with the vector in the stack, avoiding
2514  * dynamically allocated memory. This function should be used when it is
2515  * not possible to allocate memory.
2516  */
2517 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2518 {
2519         struct text_poke_loc tp;
2520 
2521         text_poke_loc_init(&tp, addr, opcode, len, emulate);
2522         text_poke_bp_batch(&tp, 1);
2523 }
2524 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php