1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Support of MSI, HPET and DMAR interrupts. 4 * 5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo 6 * Moved from arch/x86/kernel/apic/io_apic.c. 7 * Jiang Liu <jiang.liu@linux.intel.com> 8 * Convert to hierarchical irqdomain 9 */ 10 #include <linux/mm.h> 11 #include <linux/interrupt.h> 12 #include <linux/irq.h> 13 #include <linux/pci.h> 14 #include <linux/dmar.h> 15 #include <linux/hpet.h> 16 #include <linux/msi.h> 17 #include <asm/irqdomain.h> 18 #include <asm/hpet.h> 19 #include <asm/hw_irq.h> 20 #include <asm/apic.h> 21 #include <asm/irq_remapping.h> 22 #include <asm/xen/hypervisor.h> 23 24 struct irq_domain *x86_pci_msi_default_domain __ro_after_init; 25 26 static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg) 27 { 28 struct msi_msg msg[2] = { [1] = { }, }; 29 30 __irq_msi_compose_msg(cfg, msg, false); 31 irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg); 32 } 33 34 static int 35 msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force) 36 { 37 struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd); 38 struct irq_data *parent = irqd->parent_data; 39 unsigned int cpu; 40 int ret; 41 42 /* Save the current configuration */ 43 cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd)); 44 old_cfg = *cfg; 45 46 /* Allocate a new target vector */ 47 ret = parent->chip->irq_set_affinity(parent, mask, force); 48 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 49 return ret; 50 51 /* 52 * For non-maskable and non-remapped MSI interrupts the migration 53 * to a different destination CPU and a different vector has to be 54 * done careful to handle the possible stray interrupt which can be 55 * caused by the non-atomic update of the address/data pair. 56 * 57 * Direct update is possible when: 58 * - The MSI is maskable (remapped MSI does not use this code path). 59 * The reservation mode bit is set in this case. 60 * - The new vector is the same as the old vector 61 * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up) 62 * - The interrupt is not yet started up 63 * - The new destination CPU is the same as the old destination CPU 64 */ 65 if (!irqd_can_reserve(irqd) || 66 cfg->vector == old_cfg.vector || 67 old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR || 68 !irqd_is_started(irqd) || 69 cfg->dest_apicid == old_cfg.dest_apicid) { 70 irq_msi_update_msg(irqd, cfg); 71 return ret; 72 } 73 74 /* 75 * Paranoia: Validate that the interrupt target is the local 76 * CPU. 77 */ 78 if (WARN_ON_ONCE(cpu != smp_processor_id())) { 79 irq_msi_update_msg(irqd, cfg); 80 return ret; 81 } 82 83 /* 84 * Redirect the interrupt to the new vector on the current CPU 85 * first. This might cause a spurious interrupt on this vector if 86 * the device raises an interrupt right between this update and the 87 * update to the final destination CPU. 88 * 89 * If the vector is in use then the installed device handler will 90 * denote it as spurious which is no harm as this is a rare event 91 * and interrupt handlers have to cope with spurious interrupts 92 * anyway. If the vector is unused, then it is marked so it won't 93 * trigger the 'No irq handler for vector' warning in 94 * common_interrupt(). 95 * 96 * This requires to hold vector lock to prevent concurrent updates to 97 * the affected vector. 98 */ 99 lock_vector_lock(); 100 101 /* 102 * Mark the new target vector on the local CPU if it is currently 103 * unused. Reuse the VECTOR_RETRIGGERED state which is also used in 104 * the CPU hotplug path for a similar purpose. This cannot be 105 * undone here as the current CPU has interrupts disabled and 106 * cannot handle the interrupt before the whole set_affinity() 107 * section is done. In the CPU unplug case, the current CPU is 108 * about to vanish and will not handle any interrupts anymore. The 109 * vector is cleaned up when the CPU comes online again. 110 */ 111 if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector]))) 112 this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED); 113 114 /* Redirect it to the new vector on the local CPU temporarily */ 115 old_cfg.vector = cfg->vector; 116 irq_msi_update_msg(irqd, &old_cfg); 117 118 /* Now transition it to the target CPU */ 119 irq_msi_update_msg(irqd, cfg); 120 121 /* 122 * All interrupts after this point are now targeted at the new 123 * vector/CPU. 124 * 125 * Drop vector lock before testing whether the temporary assignment 126 * to the local CPU was hit by an interrupt raised in the device, 127 * because the retrigger function acquires vector lock again. 128 */ 129 unlock_vector_lock(); 130 131 /* 132 * Check whether the transition raced with a device interrupt and 133 * is pending in the local APICs IRR. It is safe to do this outside 134 * of vector lock as the irq_desc::lock of this interrupt is still 135 * held and interrupts are disabled: The check is not accessing the 136 * underlying vector store. It's just checking the local APIC's 137 * IRR. 138 */ 139 if (lapic_vector_set_in_irr(cfg->vector)) 140 irq_data_get_irq_chip(irqd)->irq_retrigger(irqd); 141 142 return ret; 143 } 144 145 /** 146 * pci_dev_has_default_msi_parent_domain - Check whether the device has the default 147 * MSI parent domain associated 148 * @dev: Pointer to the PCI device 149 */ 150 bool pci_dev_has_default_msi_parent_domain(struct pci_dev *dev) 151 { 152 struct irq_domain *domain = dev_get_msi_domain(&dev->dev); 153 154 if (!domain) 155 domain = dev_get_msi_domain(&dev->bus->dev); 156 if (!domain) 157 return false; 158 159 return domain == x86_vector_domain; 160 } 161 162 /** 163 * x86_msi_prepare - Setup of msi_alloc_info_t for allocations 164 * @domain: The domain for which this setup happens 165 * @dev: The device for which interrupts are allocated 166 * @nvec: The number of vectors to allocate 167 * @alloc: The allocation info structure to initialize 168 * 169 * This function is to be used for all types of MSI domains above the x86 170 * vector domain and any intermediates. It is always invoked from the 171 * top level interrupt domain. The domain specific allocation 172 * functionality is determined via the @domain's bus token which allows to 173 * map the X86 specific allocation type. 174 */ 175 static int x86_msi_prepare(struct irq_domain *domain, struct device *dev, 176 int nvec, msi_alloc_info_t *alloc) 177 { 178 struct msi_domain_info *info = domain->host_data; 179 180 init_irq_alloc_info(alloc, NULL); 181 182 switch (info->bus_token) { 183 case DOMAIN_BUS_PCI_DEVICE_MSI: 184 alloc->type = X86_IRQ_ALLOC_TYPE_PCI_MSI; 185 return 0; 186 case DOMAIN_BUS_PCI_DEVICE_MSIX: 187 alloc->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX; 188 return 0; 189 default: 190 return -EINVAL; 191 } 192 } 193 194 /** 195 * x86_init_dev_msi_info - Domain info setup for MSI domains 196 * @dev: The device for which the domain should be created 197 * @domain: The (root) domain providing this callback 198 * @real_parent: The real parent domain of the to initialize domain 199 * @info: The domain info for the to initialize domain 200 * 201 * This function is to be used for all types of MSI domains above the x86 202 * vector domain and any intermediates. The domain specific functionality 203 * is determined via the @real_parent. 204 */ 205 static bool x86_init_dev_msi_info(struct device *dev, struct irq_domain *domain, 206 struct irq_domain *real_parent, struct msi_domain_info *info) 207 { 208 const struct msi_parent_ops *pops = real_parent->msi_parent_ops; 209 210 /* MSI parent domain specific settings */ 211 switch (real_parent->bus_token) { 212 case DOMAIN_BUS_ANY: 213 /* Only the vector domain can have the ANY token */ 214 if (WARN_ON_ONCE(domain != real_parent)) 215 return false; 216 info->chip->irq_set_affinity = msi_set_affinity; 217 break; 218 case DOMAIN_BUS_DMAR: 219 case DOMAIN_BUS_AMDVI: 220 break; 221 default: 222 WARN_ON_ONCE(1); 223 return false; 224 } 225 226 /* Is the target supported? */ 227 switch(info->bus_token) { 228 case DOMAIN_BUS_PCI_DEVICE_MSI: 229 case DOMAIN_BUS_PCI_DEVICE_MSIX: 230 break; 231 default: 232 WARN_ON_ONCE(1); 233 return false; 234 } 235 236 /* 237 * Mask out the domain specific MSI feature flags which are not 238 * supported by the real parent. 239 */ 240 info->flags &= pops->supported_flags; 241 /* Enforce the required flags */ 242 info->flags |= X86_VECTOR_MSI_FLAGS_REQUIRED; 243 244 /* This is always invoked from the top level MSI domain! */ 245 info->ops->msi_prepare = x86_msi_prepare; 246 247 info->chip->irq_ack = irq_chip_ack_parent; 248 info->chip->irq_retrigger = irq_chip_retrigger_hierarchy; 249 info->chip->flags |= IRQCHIP_SKIP_SET_WAKE | 250 IRQCHIP_AFFINITY_PRE_STARTUP; 251 252 info->handler = handle_edge_irq; 253 info->handler_name = "edge"; 254 255 return true; 256 } 257 258 static const struct msi_parent_ops x86_vector_msi_parent_ops = { 259 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED, 260 .init_dev_msi_info = x86_init_dev_msi_info, 261 }; 262 263 struct irq_domain * __init native_create_pci_msi_domain(void) 264 { 265 if (apic_is_disabled) 266 return NULL; 267 268 x86_vector_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT; 269 x86_vector_domain->msi_parent_ops = &x86_vector_msi_parent_ops; 270 return x86_vector_domain; 271 } 272 273 void __init x86_create_pci_msi_domain(void) 274 { 275 x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain(); 276 } 277 278 /* Keep around for hyperV */ 279 int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec, 280 msi_alloc_info_t *arg) 281 { 282 init_irq_alloc_info(arg, NULL); 283 284 if (to_pci_dev(dev)->msix_enabled) 285 arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX; 286 else 287 arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI; 288 return 0; 289 } 290 EXPORT_SYMBOL_GPL(pci_msi_prepare); 291 292 #ifdef CONFIG_DMAR_TABLE 293 /* 294 * The Intel IOMMU (ab)uses the high bits of the MSI address to contain the 295 * high bits of the destination APIC ID. This can't be done in the general 296 * case for MSIs as it would be targeting real memory above 4GiB not the 297 * APIC. 298 */ 299 static void dmar_msi_compose_msg(struct irq_data *data, struct msi_msg *msg) 300 { 301 __irq_msi_compose_msg(irqd_cfg(data), msg, true); 302 } 303 304 static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg) 305 { 306 dmar_msi_write(data->irq, msg); 307 } 308 309 static struct irq_chip dmar_msi_controller = { 310 .name = "DMAR-MSI", 311 .irq_unmask = dmar_msi_unmask, 312 .irq_mask = dmar_msi_mask, 313 .irq_ack = irq_chip_ack_parent, 314 .irq_set_affinity = msi_domain_set_affinity, 315 .irq_retrigger = irq_chip_retrigger_hierarchy, 316 .irq_compose_msi_msg = dmar_msi_compose_msg, 317 .irq_write_msi_msg = dmar_msi_write_msg, 318 .flags = IRQCHIP_SKIP_SET_WAKE | 319 IRQCHIP_AFFINITY_PRE_STARTUP, 320 }; 321 322 static int dmar_msi_init(struct irq_domain *domain, 323 struct msi_domain_info *info, unsigned int virq, 324 irq_hw_number_t hwirq, msi_alloc_info_t *arg) 325 { 326 irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL, 327 handle_edge_irq, arg->data, "edge"); 328 329 return 0; 330 } 331 332 static struct msi_domain_ops dmar_msi_domain_ops = { 333 .msi_init = dmar_msi_init, 334 }; 335 336 static struct msi_domain_info dmar_msi_domain_info = { 337 .ops = &dmar_msi_domain_ops, 338 .chip = &dmar_msi_controller, 339 .flags = MSI_FLAG_USE_DEF_DOM_OPS, 340 }; 341 342 static struct irq_domain *dmar_get_irq_domain(void) 343 { 344 static struct irq_domain *dmar_domain; 345 static DEFINE_MUTEX(dmar_lock); 346 struct fwnode_handle *fn; 347 348 mutex_lock(&dmar_lock); 349 if (dmar_domain) 350 goto out; 351 352 fn = irq_domain_alloc_named_fwnode("DMAR-MSI"); 353 if (fn) { 354 dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info, 355 x86_vector_domain); 356 if (!dmar_domain) 357 irq_domain_free_fwnode(fn); 358 } 359 out: 360 mutex_unlock(&dmar_lock); 361 return dmar_domain; 362 } 363 364 int dmar_alloc_hwirq(int id, int node, void *arg) 365 { 366 struct irq_domain *domain = dmar_get_irq_domain(); 367 struct irq_alloc_info info; 368 369 if (!domain) 370 return -1; 371 372 init_irq_alloc_info(&info, NULL); 373 info.type = X86_IRQ_ALLOC_TYPE_DMAR; 374 info.devid = id; 375 info.hwirq = id; 376 info.data = arg; 377 378 return irq_domain_alloc_irqs(domain, 1, node, &info); 379 } 380 381 void dmar_free_hwirq(int irq) 382 { 383 irq_domain_free_irqs(irq, 1); 384 } 385 #endif 386 387 bool arch_restore_msi_irqs(struct pci_dev *dev) 388 { 389 return xen_initdom_restore_msi(dev); 390 } 391
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.