1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * SGI UV APIC functions (note: not an Intel compatible APIC) 7 * 8 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP 9 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved. 10 */ 11 #include <linux/crash_dump.h> 12 #include <linux/cpuhotplug.h> 13 #include <linux/cpumask.h> 14 #include <linux/proc_fs.h> 15 #include <linux/memory.h> 16 #include <linux/export.h> 17 #include <linux/pci.h> 18 #include <linux/acpi.h> 19 #include <linux/efi.h> 20 21 #include <asm/e820/api.h> 22 #include <asm/uv/uv_mmrs.h> 23 #include <asm/uv/uv_hub.h> 24 #include <asm/uv/bios.h> 25 #include <asm/uv/uv.h> 26 #include <asm/apic.h> 27 28 #include "local.h" 29 30 static enum uv_system_type uv_system_type; 31 static int uv_hubbed_system; 32 static int uv_hubless_system; 33 static u64 gru_start_paddr, gru_end_paddr; 34 static union uvh_apicid uvh_apicid; 35 static int uv_node_id; 36 37 /* Unpack AT/OEM/TABLE ID's to be NULL terminated strings */ 38 static u8 uv_archtype[UV_AT_SIZE + 1]; 39 static u8 oem_id[ACPI_OEM_ID_SIZE + 1]; 40 static u8 oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 41 42 /* Information derived from CPUID and some UV MMRs */ 43 static struct { 44 unsigned int apicid_shift; 45 unsigned int apicid_mask; 46 unsigned int socketid_shift; /* aka pnode_shift for UV2/3 */ 47 unsigned int pnode_mask; 48 unsigned int nasid_shift; 49 unsigned int gpa_shift; 50 unsigned int gnode_shift; 51 unsigned int m_skt; 52 unsigned int n_skt; 53 } uv_cpuid; 54 55 static int uv_min_hub_revision_id; 56 57 static struct apic apic_x2apic_uv_x; 58 static struct uv_hub_info_s uv_hub_info_node0; 59 60 /* Set this to use hardware error handler instead of kernel panic: */ 61 static int disable_uv_undefined_panic = 1; 62 63 unsigned long uv_undefined(char *str) 64 { 65 if (likely(!disable_uv_undefined_panic)) 66 panic("UV: error: undefined MMR: %s\n", str); 67 else 68 pr_crit("UV: error: undefined MMR: %s\n", str); 69 70 /* Cause a machine fault: */ 71 return ~0ul; 72 } 73 EXPORT_SYMBOL(uv_undefined); 74 75 static unsigned long __init uv_early_read_mmr(unsigned long addr) 76 { 77 unsigned long val, *mmr; 78 79 mmr = early_ioremap(UV_LOCAL_MMR_BASE | addr, sizeof(*mmr)); 80 val = *mmr; 81 early_iounmap(mmr, sizeof(*mmr)); 82 83 return val; 84 } 85 86 static inline bool is_GRU_range(u64 start, u64 end) 87 { 88 if (!gru_start_paddr) 89 return false; 90 91 return start >= gru_start_paddr && end <= gru_end_paddr; 92 } 93 94 static bool uv_is_untracked_pat_range(u64 start, u64 end) 95 { 96 return is_ISA_range(start, end) || is_GRU_range(start, end); 97 } 98 99 static void __init early_get_pnodeid(void) 100 { 101 int pnode; 102 103 uv_cpuid.m_skt = 0; 104 if (UVH_RH10_GAM_ADDR_MAP_CONFIG) { 105 union uvh_rh10_gam_addr_map_config_u m_n_config; 106 107 m_n_config.v = uv_early_read_mmr(UVH_RH10_GAM_ADDR_MAP_CONFIG); 108 uv_cpuid.n_skt = m_n_config.s.n_skt; 109 uv_cpuid.nasid_shift = 0; 110 } else if (UVH_RH_GAM_ADDR_MAP_CONFIG) { 111 union uvh_rh_gam_addr_map_config_u m_n_config; 112 113 m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_ADDR_MAP_CONFIG); 114 uv_cpuid.n_skt = m_n_config.s.n_skt; 115 if (is_uv(UV3)) 116 uv_cpuid.m_skt = m_n_config.s3.m_skt; 117 if (is_uv(UV2)) 118 uv_cpuid.m_skt = m_n_config.s2.m_skt; 119 uv_cpuid.nasid_shift = 1; 120 } else { 121 unsigned long GAM_ADDR_MAP_CONFIG = 0; 122 123 WARN(GAM_ADDR_MAP_CONFIG == 0, 124 "UV: WARN: GAM_ADDR_MAP_CONFIG is not available\n"); 125 uv_cpuid.n_skt = 0; 126 uv_cpuid.nasid_shift = 0; 127 } 128 129 if (is_uv(UV4|UVY)) 130 uv_cpuid.gnode_shift = 2; /* min partition is 4 sockets */ 131 132 uv_cpuid.pnode_mask = (1 << uv_cpuid.n_skt) - 1; 133 pnode = (uv_node_id >> uv_cpuid.nasid_shift) & uv_cpuid.pnode_mask; 134 uv_cpuid.gpa_shift = 46; /* Default unless changed */ 135 136 pr_info("UV: n_skt:%d pnmsk:%x pn:%x\n", 137 uv_cpuid.n_skt, uv_cpuid.pnode_mask, pnode); 138 } 139 140 /* Running on a UV Hubbed system, determine which UV Hub Type it is */ 141 static int __init early_set_hub_type(void) 142 { 143 union uvh_node_id_u node_id; 144 145 /* 146 * The NODE_ID MMR is always at offset 0. 147 * Contains the chip part # + revision. 148 * Node_id field started with 15 bits, 149 * ... now 7 but upper 8 are masked to 0. 150 * All blades/nodes have the same part # and hub revision. 151 */ 152 node_id.v = uv_early_read_mmr(UVH_NODE_ID); 153 uv_node_id = node_id.sx.node_id; 154 155 switch (node_id.s.part_number) { 156 157 case UV5_HUB_PART_NUMBER: 158 uv_min_hub_revision_id = node_id.s.revision 159 + UV5_HUB_REVISION_BASE; 160 uv_hub_type_set(UV5); 161 break; 162 163 /* UV4/4A only have a revision difference */ 164 case UV4_HUB_PART_NUMBER: 165 uv_min_hub_revision_id = node_id.s.revision 166 + UV4_HUB_REVISION_BASE - 1; 167 uv_hub_type_set(UV4); 168 if (uv_min_hub_revision_id == UV4A_HUB_REVISION_BASE) 169 uv_hub_type_set(UV4|UV4A); 170 break; 171 172 case UV3_HUB_PART_NUMBER: 173 case UV3_HUB_PART_NUMBER_X: 174 uv_min_hub_revision_id = node_id.s.revision 175 + UV3_HUB_REVISION_BASE; 176 uv_hub_type_set(UV3); 177 break; 178 179 case UV2_HUB_PART_NUMBER: 180 case UV2_HUB_PART_NUMBER_X: 181 uv_min_hub_revision_id = node_id.s.revision 182 + UV2_HUB_REVISION_BASE - 1; 183 uv_hub_type_set(UV2); 184 break; 185 186 default: 187 return 0; 188 } 189 190 pr_info("UV: part#:%x rev:%d rev_id:%d UVtype:0x%x\n", 191 node_id.s.part_number, node_id.s.revision, 192 uv_min_hub_revision_id, is_uv(~0)); 193 194 return 1; 195 } 196 197 static void __init uv_tsc_check_sync(void) 198 { 199 u64 mmr; 200 int sync_state; 201 int mmr_shift; 202 char *state; 203 204 /* UV5 guarantees synced TSCs; do not zero TSC_ADJUST */ 205 if (!is_uv(UV2|UV3|UV4)) { 206 mark_tsc_async_resets("UV5+"); 207 return; 208 } 209 210 /* UV2,3,4, UV BIOS TSC sync state available */ 211 mmr = uv_early_read_mmr(UVH_TSC_SYNC_MMR); 212 mmr_shift = 213 is_uv2_hub() ? UVH_TSC_SYNC_SHIFT_UV2K : UVH_TSC_SYNC_SHIFT; 214 sync_state = (mmr >> mmr_shift) & UVH_TSC_SYNC_MASK; 215 216 /* Check if TSC is valid for all sockets */ 217 switch (sync_state) { 218 case UVH_TSC_SYNC_VALID: 219 state = "in sync"; 220 mark_tsc_async_resets("UV BIOS"); 221 break; 222 223 /* If BIOS state unknown, don't do anything */ 224 case UVH_TSC_SYNC_UNKNOWN: 225 state = "unknown"; 226 break; 227 228 /* Otherwise, BIOS indicates problem with TSC */ 229 default: 230 state = "unstable"; 231 mark_tsc_unstable("UV BIOS"); 232 break; 233 } 234 pr_info("UV: TSC sync state from BIOS:0%d(%s)\n", sync_state, state); 235 } 236 237 /* Selector for (4|4A|5) structs */ 238 #define uvxy_field(sname, field, undef) ( \ 239 is_uv(UV4A) ? sname.s4a.field : \ 240 is_uv(UV4) ? sname.s4.field : \ 241 is_uv(UV3) ? sname.s3.field : \ 242 undef) 243 244 static void __init early_get_apic_socketid_shift(void) 245 { 246 unsigned int sid_shift = topology_get_domain_shift(TOPO_PKG_DOMAIN); 247 248 if (is_uv2_hub() || is_uv3_hub()) 249 uvh_apicid.v = uv_early_read_mmr(UVH_APICID); 250 251 if (sid_shift) { 252 uv_cpuid.apicid_shift = 0; 253 uv_cpuid.apicid_mask = (~(-1 << sid_shift)); 254 uv_cpuid.socketid_shift = sid_shift; 255 } else { 256 pr_info("UV: CPU does not have valid CPUID.11\n"); 257 } 258 259 pr_info("UV: apicid_shift:%d apicid_mask:0x%x\n", uv_cpuid.apicid_shift, uv_cpuid.apicid_mask); 260 pr_info("UV: socketid_shift:%d pnode_mask:0x%x\n", uv_cpuid.socketid_shift, uv_cpuid.pnode_mask); 261 } 262 263 static void __init uv_stringify(int len, char *to, char *from) 264 { 265 strscpy(to, from, len); 266 267 /* Trim trailing spaces */ 268 (void)strim(to); 269 } 270 271 /* Find UV arch type entry in UVsystab */ 272 static unsigned long __init early_find_archtype(struct uv_systab *st) 273 { 274 int i; 275 276 for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) { 277 unsigned long ptr = st->entry[i].offset; 278 279 if (!ptr) 280 continue; 281 ptr += (unsigned long)st; 282 if (st->entry[i].type == UV_SYSTAB_TYPE_ARCH_TYPE) 283 return ptr; 284 } 285 return 0; 286 } 287 288 /* Validate UV arch type field in UVsystab */ 289 static int __init decode_arch_type(unsigned long ptr) 290 { 291 struct uv_arch_type_entry *uv_ate = (struct uv_arch_type_entry *)ptr; 292 int n = strlen(uv_ate->archtype); 293 294 if (n > 0 && n < sizeof(uv_ate->archtype)) { 295 pr_info("UV: UVarchtype received from BIOS\n"); 296 uv_stringify(sizeof(uv_archtype), uv_archtype, uv_ate->archtype); 297 return 1; 298 } 299 return 0; 300 } 301 302 /* Determine if UV arch type entry might exist in UVsystab */ 303 static int __init early_get_arch_type(void) 304 { 305 unsigned long uvst_physaddr, uvst_size, ptr; 306 struct uv_systab *st; 307 u32 rev; 308 int ret; 309 310 uvst_physaddr = get_uv_systab_phys(0); 311 if (!uvst_physaddr) 312 return 0; 313 314 st = early_memremap_ro(uvst_physaddr, sizeof(struct uv_systab)); 315 if (!st) { 316 pr_err("UV: Cannot access UVsystab, remap failed\n"); 317 return 0; 318 } 319 320 rev = st->revision; 321 if (rev < UV_SYSTAB_VERSION_UV5) { 322 early_memunmap(st, sizeof(struct uv_systab)); 323 return 0; 324 } 325 326 uvst_size = st->size; 327 early_memunmap(st, sizeof(struct uv_systab)); 328 st = early_memremap_ro(uvst_physaddr, uvst_size); 329 if (!st) { 330 pr_err("UV: Cannot access UVarchtype, remap failed\n"); 331 return 0; 332 } 333 334 ptr = early_find_archtype(st); 335 if (!ptr) { 336 early_memunmap(st, uvst_size); 337 return 0; 338 } 339 340 ret = decode_arch_type(ptr); 341 early_memunmap(st, uvst_size); 342 return ret; 343 } 344 345 /* UV system found, check which APIC MODE BIOS already selected */ 346 static void __init early_set_apic_mode(void) 347 { 348 if (x2apic_enabled()) 349 uv_system_type = UV_X2APIC; 350 else 351 uv_system_type = UV_LEGACY_APIC; 352 } 353 354 static int __init uv_set_system_type(char *_oem_id, char *_oem_table_id) 355 { 356 /* Save OEM_ID passed from ACPI MADT */ 357 uv_stringify(sizeof(oem_id), oem_id, _oem_id); 358 359 /* Check if BIOS sent us a UVarchtype */ 360 if (!early_get_arch_type()) 361 362 /* If not use OEM ID for UVarchtype */ 363 uv_stringify(sizeof(uv_archtype), uv_archtype, oem_id); 364 365 /* Check if not hubbed */ 366 if (strncmp(uv_archtype, "SGI", 3) != 0) { 367 368 /* (Not hubbed), check if not hubless */ 369 if (strncmp(uv_archtype, "NSGI", 4) != 0) 370 371 /* (Not hubless), not a UV */ 372 return 0; 373 374 /* Is UV hubless system */ 375 uv_hubless_system = 0x01; 376 377 /* UV5 Hubless */ 378 if (strncmp(uv_archtype, "NSGI5", 5) == 0) 379 uv_hubless_system |= 0x20; 380 381 /* UV4 Hubless: CH */ 382 else if (strncmp(uv_archtype, "NSGI4", 5) == 0) 383 uv_hubless_system |= 0x10; 384 385 /* UV3 Hubless: UV300/MC990X w/o hub */ 386 else 387 uv_hubless_system |= 0x8; 388 389 /* Copy OEM Table ID */ 390 uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id); 391 392 pr_info("UV: OEM IDs %s/%s, SystemType %d, HUBLESS ID %x\n", 393 oem_id, oem_table_id, uv_system_type, uv_hubless_system); 394 395 return 0; 396 } 397 398 if (numa_off) { 399 pr_err("UV: NUMA is off, disabling UV support\n"); 400 return 0; 401 } 402 403 /* Set hubbed type if true */ 404 uv_hub_info->hub_revision = 405 !strncmp(uv_archtype, "SGI5", 4) ? UV5_HUB_REVISION_BASE : 406 !strncmp(uv_archtype, "SGI4", 4) ? UV4_HUB_REVISION_BASE : 407 !strncmp(uv_archtype, "SGI3", 4) ? UV3_HUB_REVISION_BASE : 408 !strcmp(uv_archtype, "SGI2") ? UV2_HUB_REVISION_BASE : 0; 409 410 switch (uv_hub_info->hub_revision) { 411 case UV5_HUB_REVISION_BASE: 412 uv_hubbed_system = 0x21; 413 uv_hub_type_set(UV5); 414 break; 415 416 case UV4_HUB_REVISION_BASE: 417 uv_hubbed_system = 0x11; 418 uv_hub_type_set(UV4); 419 break; 420 421 case UV3_HUB_REVISION_BASE: 422 uv_hubbed_system = 0x9; 423 uv_hub_type_set(UV3); 424 break; 425 426 case UV2_HUB_REVISION_BASE: 427 uv_hubbed_system = 0x5; 428 uv_hub_type_set(UV2); 429 break; 430 431 default: 432 return 0; 433 } 434 435 /* Get UV hub chip part number & revision */ 436 early_set_hub_type(); 437 438 /* Other UV setup functions */ 439 early_set_apic_mode(); 440 early_get_pnodeid(); 441 early_get_apic_socketid_shift(); 442 x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range; 443 x86_platform.nmi_init = uv_nmi_init; 444 uv_tsc_check_sync(); 445 446 return 1; 447 } 448 449 /* Called early to probe for the correct APIC driver */ 450 static int __init uv_acpi_madt_oem_check(char *_oem_id, char *_oem_table_id) 451 { 452 /* Set up early hub info fields for Node 0 */ 453 uv_cpu_info->p_uv_hub_info = &uv_hub_info_node0; 454 455 /* If not UV, return. */ 456 if (uv_set_system_type(_oem_id, _oem_table_id) == 0) 457 return 0; 458 459 /* Save for display of the OEM Table ID */ 460 uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id); 461 462 pr_info("UV: OEM IDs %s/%s, System/UVType %d/0x%x, HUB RevID %d\n", 463 oem_id, oem_table_id, uv_system_type, is_uv(UV_ANY), 464 uv_min_hub_revision_id); 465 466 return 0; 467 } 468 469 enum uv_system_type get_uv_system_type(void) 470 { 471 return uv_system_type; 472 } 473 474 int uv_get_hubless_system(void) 475 { 476 return uv_hubless_system; 477 } 478 EXPORT_SYMBOL_GPL(uv_get_hubless_system); 479 480 ssize_t uv_get_archtype(char *buf, int len) 481 { 482 return scnprintf(buf, len, "%s/%s", uv_archtype, oem_table_id); 483 } 484 EXPORT_SYMBOL_GPL(uv_get_archtype); 485 486 int is_uv_system(void) 487 { 488 return uv_system_type != UV_NONE; 489 } 490 EXPORT_SYMBOL_GPL(is_uv_system); 491 492 int is_uv_hubbed(int uvtype) 493 { 494 return (uv_hubbed_system & uvtype); 495 } 496 EXPORT_SYMBOL_GPL(is_uv_hubbed); 497 498 static int is_uv_hubless(int uvtype) 499 { 500 return (uv_hubless_system & uvtype); 501 } 502 503 void **__uv_hub_info_list; 504 EXPORT_SYMBOL_GPL(__uv_hub_info_list); 505 506 DEFINE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info); 507 EXPORT_PER_CPU_SYMBOL_GPL(__uv_cpu_info); 508 509 short uv_possible_blades; 510 EXPORT_SYMBOL_GPL(uv_possible_blades); 511 512 unsigned long sn_rtc_cycles_per_second; 513 EXPORT_SYMBOL(sn_rtc_cycles_per_second); 514 515 /* The following values are used for the per node hub info struct */ 516 static __initdata unsigned short _min_socket, _max_socket; 517 static __initdata unsigned short _min_pnode, _max_pnode, _gr_table_len; 518 static __initdata struct uv_gam_range_entry *uv_gre_table; 519 static __initdata struct uv_gam_parameters *uv_gp_table; 520 static __initdata unsigned short *_socket_to_node; 521 static __initdata unsigned short *_socket_to_pnode; 522 static __initdata unsigned short *_pnode_to_socket; 523 static __initdata unsigned short *_node_to_socket; 524 525 static __initdata struct uv_gam_range_s *_gr_table; 526 527 #define SOCK_EMPTY ((unsigned short)~0) 528 529 /* Default UV memory block size is 2GB */ 530 static unsigned long mem_block_size __initdata = (2UL << 30); 531 532 /* Kernel parameter to specify UV mem block size */ 533 static int __init parse_mem_block_size(char *ptr) 534 { 535 unsigned long size = memparse(ptr, NULL); 536 537 /* Size will be rounded down by set_block_size() below */ 538 mem_block_size = size; 539 return 0; 540 } 541 early_param("uv_memblksize", parse_mem_block_size); 542 543 static __init int adj_blksize(u32 lgre) 544 { 545 unsigned long base = (unsigned long)lgre << UV_GAM_RANGE_SHFT; 546 unsigned long size; 547 548 for (size = mem_block_size; size > MIN_MEMORY_BLOCK_SIZE; size >>= 1) 549 if (IS_ALIGNED(base, size)) 550 break; 551 552 if (size >= mem_block_size) 553 return 0; 554 555 mem_block_size = size; 556 return 1; 557 } 558 559 static __init void set_block_size(void) 560 { 561 unsigned int order = ffs(mem_block_size); 562 563 if (order) { 564 /* adjust for ffs return of 1..64 */ 565 set_memory_block_size_order(order - 1); 566 pr_info("UV: mem_block_size set to 0x%lx\n", mem_block_size); 567 } else { 568 /* bad or zero value, default to 1UL << 31 (2GB) */ 569 pr_err("UV: mem_block_size error with 0x%lx\n", mem_block_size); 570 set_memory_block_size_order(31); 571 } 572 } 573 574 /* Build GAM range lookup table: */ 575 static __init void build_uv_gr_table(void) 576 { 577 struct uv_gam_range_entry *gre = uv_gre_table; 578 struct uv_gam_range_s *grt; 579 unsigned long last_limit = 0, ram_limit = 0; 580 int bytes, i, sid, lsid = -1, indx = 0, lindx = -1; 581 582 if (!gre) 583 return; 584 585 bytes = _gr_table_len * sizeof(struct uv_gam_range_s); 586 grt = kzalloc(bytes, GFP_KERNEL); 587 if (WARN_ON_ONCE(!grt)) 588 return; 589 _gr_table = grt; 590 591 for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) { 592 if (gre->type == UV_GAM_RANGE_TYPE_HOLE) { 593 if (!ram_limit) { 594 /* Mark hole between RAM/non-RAM: */ 595 ram_limit = last_limit; 596 last_limit = gre->limit; 597 lsid++; 598 continue; 599 } 600 last_limit = gre->limit; 601 pr_info("UV: extra hole in GAM RE table @%d\n", (int)(gre - uv_gre_table)); 602 continue; 603 } 604 if (_max_socket < gre->sockid) { 605 pr_err("UV: GAM table sockid(%d) too large(>%d) @%d\n", gre->sockid, _max_socket, (int)(gre - uv_gre_table)); 606 continue; 607 } 608 sid = gre->sockid - _min_socket; 609 if (lsid < sid) { 610 /* New range: */ 611 grt = &_gr_table[indx]; 612 grt->base = lindx; 613 grt->nasid = gre->nasid; 614 grt->limit = last_limit = gre->limit; 615 lsid = sid; 616 lindx = indx++; 617 continue; 618 } 619 /* Update range: */ 620 if (lsid == sid && !ram_limit) { 621 /* .. if contiguous: */ 622 if (grt->limit == last_limit) { 623 grt->limit = last_limit = gre->limit; 624 continue; 625 } 626 } 627 /* Non-contiguous RAM range: */ 628 if (!ram_limit) { 629 grt++; 630 grt->base = lindx; 631 grt->nasid = gre->nasid; 632 grt->limit = last_limit = gre->limit; 633 continue; 634 } 635 /* Non-contiguous/non-RAM: */ 636 grt++; 637 /* base is this entry */ 638 grt->base = grt - _gr_table; 639 grt->nasid = gre->nasid; 640 grt->limit = last_limit = gre->limit; 641 lsid++; 642 } 643 644 /* Shorten table if possible */ 645 grt++; 646 i = grt - _gr_table; 647 if (i < _gr_table_len) { 648 void *ret; 649 650 bytes = i * sizeof(struct uv_gam_range_s); 651 ret = krealloc(_gr_table, bytes, GFP_KERNEL); 652 if (ret) { 653 _gr_table = ret; 654 _gr_table_len = i; 655 } 656 } 657 658 /* Display resultant GAM range table: */ 659 for (i = 0, grt = _gr_table; i < _gr_table_len; i++, grt++) { 660 unsigned long start, end; 661 int gb = grt->base; 662 663 start = gb < 0 ? 0 : (unsigned long)_gr_table[gb].limit << UV_GAM_RANGE_SHFT; 664 end = (unsigned long)grt->limit << UV_GAM_RANGE_SHFT; 665 666 pr_info("UV: GAM Range %2d %04x 0x%013lx-0x%013lx (%d)\n", i, grt->nasid, start, end, gb); 667 } 668 } 669 670 static int uv_wakeup_secondary(u32 phys_apicid, unsigned long start_rip) 671 { 672 unsigned long val; 673 int pnode; 674 675 pnode = uv_apicid_to_pnode(phys_apicid); 676 677 val = (1UL << UVH_IPI_INT_SEND_SHFT) | 678 (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | 679 ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | 680 APIC_DM_INIT; 681 682 uv_write_global_mmr64(pnode, UVH_IPI_INT, val); 683 684 val = (1UL << UVH_IPI_INT_SEND_SHFT) | 685 (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | 686 ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | 687 APIC_DM_STARTUP; 688 689 uv_write_global_mmr64(pnode, UVH_IPI_INT, val); 690 691 return 0; 692 } 693 694 static void uv_send_IPI_one(int cpu, int vector) 695 { 696 unsigned long apicid = per_cpu(x86_cpu_to_apicid, cpu); 697 int pnode = uv_apicid_to_pnode(apicid); 698 unsigned long dmode, val; 699 700 if (vector == NMI_VECTOR) 701 dmode = APIC_DELIVERY_MODE_NMI; 702 else 703 dmode = APIC_DELIVERY_MODE_FIXED; 704 705 val = (1UL << UVH_IPI_INT_SEND_SHFT) | 706 (apicid << UVH_IPI_INT_APIC_ID_SHFT) | 707 (dmode << UVH_IPI_INT_DELIVERY_MODE_SHFT) | 708 (vector << UVH_IPI_INT_VECTOR_SHFT); 709 710 uv_write_global_mmr64(pnode, UVH_IPI_INT, val); 711 } 712 713 static void uv_send_IPI_mask(const struct cpumask *mask, int vector) 714 { 715 unsigned int cpu; 716 717 for_each_cpu(cpu, mask) 718 uv_send_IPI_one(cpu, vector); 719 } 720 721 static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector) 722 { 723 unsigned int this_cpu = smp_processor_id(); 724 unsigned int cpu; 725 726 for_each_cpu(cpu, mask) { 727 if (cpu != this_cpu) 728 uv_send_IPI_one(cpu, vector); 729 } 730 } 731 732 static void uv_send_IPI_allbutself(int vector) 733 { 734 unsigned int this_cpu = smp_processor_id(); 735 unsigned int cpu; 736 737 for_each_online_cpu(cpu) { 738 if (cpu != this_cpu) 739 uv_send_IPI_one(cpu, vector); 740 } 741 } 742 743 static void uv_send_IPI_all(int vector) 744 { 745 uv_send_IPI_mask(cpu_online_mask, vector); 746 } 747 748 static int uv_probe(void) 749 { 750 return apic == &apic_x2apic_uv_x; 751 } 752 753 static struct apic apic_x2apic_uv_x __ro_after_init = { 754 755 .name = "UV large system", 756 .probe = uv_probe, 757 .acpi_madt_oem_check = uv_acpi_madt_oem_check, 758 759 .dest_mode_logical = false, 760 761 .disable_esr = 0, 762 763 .cpu_present_to_apicid = default_cpu_present_to_apicid, 764 765 .max_apic_id = UINT_MAX, 766 .get_apic_id = x2apic_get_apic_id, 767 768 .calc_dest_apicid = apic_default_calc_apicid, 769 770 .send_IPI = uv_send_IPI_one, 771 .send_IPI_mask = uv_send_IPI_mask, 772 .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself, 773 .send_IPI_allbutself = uv_send_IPI_allbutself, 774 .send_IPI_all = uv_send_IPI_all, 775 .send_IPI_self = x2apic_send_IPI_self, 776 777 .wakeup_secondary_cpu = uv_wakeup_secondary, 778 779 .read = native_apic_msr_read, 780 .write = native_apic_msr_write, 781 .eoi = native_apic_msr_eoi, 782 .icr_read = native_x2apic_icr_read, 783 .icr_write = native_x2apic_icr_write, 784 }; 785 786 #define UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH 3 787 #define DEST_SHIFT UVXH_RH_GAM_ALIAS_0_REDIRECT_CONFIG_DEST_BASE_SHFT 788 789 static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size) 790 { 791 union uvh_rh_gam_alias_2_overlay_config_u alias; 792 union uvh_rh_gam_alias_2_redirect_config_u redirect; 793 unsigned long m_redirect; 794 unsigned long m_overlay; 795 int i; 796 797 for (i = 0; i < UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH; i++) { 798 switch (i) { 799 case 0: 800 m_redirect = UVH_RH_GAM_ALIAS_0_REDIRECT_CONFIG; 801 m_overlay = UVH_RH_GAM_ALIAS_0_OVERLAY_CONFIG; 802 break; 803 case 1: 804 m_redirect = UVH_RH_GAM_ALIAS_1_REDIRECT_CONFIG; 805 m_overlay = UVH_RH_GAM_ALIAS_1_OVERLAY_CONFIG; 806 break; 807 case 2: 808 m_redirect = UVH_RH_GAM_ALIAS_2_REDIRECT_CONFIG; 809 m_overlay = UVH_RH_GAM_ALIAS_2_OVERLAY_CONFIG; 810 break; 811 } 812 alias.v = uv_read_local_mmr(m_overlay); 813 if (alias.s.enable && alias.s.base == 0) { 814 *size = (1UL << alias.s.m_alias); 815 redirect.v = uv_read_local_mmr(m_redirect); 816 *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT; 817 return; 818 } 819 } 820 *base = *size = 0; 821 } 822 823 enum map_type {map_wb, map_uc}; 824 static const char * const mt[] = { "WB", "UC" }; 825 826 static __init void map_high(char *id, unsigned long base, int pshift, int bshift, int max_pnode, enum map_type map_type) 827 { 828 unsigned long bytes, paddr; 829 830 paddr = base << pshift; 831 bytes = (1UL << bshift) * (max_pnode + 1); 832 if (!paddr) { 833 pr_info("UV: Map %s_HI base address NULL\n", id); 834 return; 835 } 836 if (map_type == map_uc) 837 init_extra_mapping_uc(paddr, bytes); 838 else 839 init_extra_mapping_wb(paddr, bytes); 840 841 pr_info("UV: Map %s_HI 0x%lx - 0x%lx %s (%d segments)\n", 842 id, paddr, paddr + bytes, mt[map_type], max_pnode + 1); 843 } 844 845 static __init void map_gru_high(int max_pnode) 846 { 847 union uvh_rh_gam_gru_overlay_config_u gru; 848 unsigned long mask, base; 849 int shift; 850 851 if (UVH_RH_GAM_GRU_OVERLAY_CONFIG) { 852 gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG); 853 shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT; 854 mask = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_MASK; 855 } else if (UVH_RH10_GAM_GRU_OVERLAY_CONFIG) { 856 gru.v = uv_read_local_mmr(UVH_RH10_GAM_GRU_OVERLAY_CONFIG); 857 shift = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT; 858 mask = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_MASK; 859 } else { 860 pr_err("UV: GRU unavailable (no MMR)\n"); 861 return; 862 } 863 864 if (!gru.s.enable) { 865 pr_info("UV: GRU disabled (by BIOS)\n"); 866 return; 867 } 868 869 base = (gru.v & mask) >> shift; 870 map_high("GRU", base, shift, shift, max_pnode, map_wb); 871 gru_start_paddr = ((u64)base << shift); 872 gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1); 873 } 874 875 static __init void map_mmr_high(int max_pnode) 876 { 877 unsigned long base; 878 int shift; 879 bool enable; 880 881 if (UVH_RH10_GAM_MMR_OVERLAY_CONFIG) { 882 union uvh_rh10_gam_mmr_overlay_config_u mmr; 883 884 mmr.v = uv_read_local_mmr(UVH_RH10_GAM_MMR_OVERLAY_CONFIG); 885 enable = mmr.s.enable; 886 base = mmr.s.base; 887 shift = UVH_RH10_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT; 888 } else if (UVH_RH_GAM_MMR_OVERLAY_CONFIG) { 889 union uvh_rh_gam_mmr_overlay_config_u mmr; 890 891 mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG); 892 enable = mmr.s.enable; 893 base = mmr.s.base; 894 shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT; 895 } else { 896 pr_err("UV:%s:RH_GAM_MMR_OVERLAY_CONFIG MMR undefined?\n", 897 __func__); 898 return; 899 } 900 901 if (enable) 902 map_high("MMR", base, shift, shift, max_pnode, map_uc); 903 else 904 pr_info("UV: MMR disabled\n"); 905 } 906 907 /* Arch specific ENUM cases */ 908 enum mmioh_arch { 909 UV2_MMIOH = -1, 910 UVY_MMIOH0, UVY_MMIOH1, 911 UVX_MMIOH0, UVX_MMIOH1, 912 }; 913 914 /* Calculate and Map MMIOH Regions */ 915 static void __init calc_mmioh_map(enum mmioh_arch index, 916 int min_pnode, int max_pnode, 917 int shift, unsigned long base, int m_io, int n_io) 918 { 919 unsigned long mmr, nasid_mask; 920 int nasid, min_nasid, max_nasid, lnasid, mapped; 921 int i, fi, li, n, max_io; 922 char id[8]; 923 924 /* One (UV2) mapping */ 925 if (index == UV2_MMIOH) { 926 strscpy(id, "MMIOH", sizeof(id)); 927 max_io = max_pnode; 928 mapped = 0; 929 goto map_exit; 930 } 931 932 /* small and large MMIOH mappings */ 933 switch (index) { 934 case UVY_MMIOH0: 935 mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0; 936 nasid_mask = UVYH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_NASID_MASK; 937 n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH; 938 min_nasid = min_pnode; 939 max_nasid = max_pnode; 940 mapped = 1; 941 break; 942 case UVY_MMIOH1: 943 mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1; 944 nasid_mask = UVYH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_NASID_MASK; 945 n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH; 946 min_nasid = min_pnode; 947 max_nasid = max_pnode; 948 mapped = 1; 949 break; 950 case UVX_MMIOH0: 951 mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0; 952 nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_NASID_MASK; 953 n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH; 954 min_nasid = min_pnode * 2; 955 max_nasid = max_pnode * 2; 956 mapped = 1; 957 break; 958 case UVX_MMIOH1: 959 mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1; 960 nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_NASID_MASK; 961 n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH; 962 min_nasid = min_pnode * 2; 963 max_nasid = max_pnode * 2; 964 mapped = 1; 965 break; 966 default: 967 pr_err("UV:%s:Invalid mapping type:%d\n", __func__, index); 968 return; 969 } 970 971 /* enum values chosen so (index mod 2) is MMIOH 0/1 (low/high) */ 972 snprintf(id, sizeof(id), "MMIOH%d", index%2); 973 974 max_io = lnasid = fi = li = -1; 975 for (i = 0; i < n; i++) { 976 unsigned long m_redirect = mmr + i * 8; 977 unsigned long redirect = uv_read_local_mmr(m_redirect); 978 979 nasid = redirect & nasid_mask; 980 if (i == 0) 981 pr_info("UV: %s redirect base 0x%lx(@0x%lx) 0x%04x\n", 982 id, redirect, m_redirect, nasid); 983 984 /* Invalid NASID check */ 985 if (nasid < min_nasid || max_nasid < nasid) { 986 /* Not an error: unused table entries get "poison" values */ 987 pr_debug("UV:%s:Invalid NASID(%x):%x (range:%x..%x)\n", 988 __func__, index, nasid, min_nasid, max_nasid); 989 nasid = -1; 990 } 991 992 if (nasid == lnasid) { 993 li = i; 994 /* Last entry check: */ 995 if (i != n-1) 996 continue; 997 } 998 999 /* Check if we have a cached (or last) redirect to print: */ 1000 if (lnasid != -1 || (i == n-1 && nasid != -1)) { 1001 unsigned long addr1, addr2; 1002 int f, l; 1003 1004 if (lnasid == -1) { 1005 f = l = i; 1006 lnasid = nasid; 1007 } else { 1008 f = fi; 1009 l = li; 1010 } 1011 addr1 = (base << shift) + f * (1ULL << m_io); 1012 addr2 = (base << shift) + (l + 1) * (1ULL << m_io); 1013 pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n", 1014 id, fi, li, lnasid, addr1, addr2); 1015 if (max_io < l) 1016 max_io = l; 1017 } 1018 fi = li = i; 1019 lnasid = nasid; 1020 } 1021 1022 map_exit: 1023 pr_info("UV: %s base:0x%lx shift:%d m_io:%d max_io:%d max_pnode:0x%x\n", 1024 id, base, shift, m_io, max_io, max_pnode); 1025 1026 if (max_io >= 0 && !mapped) 1027 map_high(id, base, shift, m_io, max_io, map_uc); 1028 } 1029 1030 static __init void map_mmioh_high(int min_pnode, int max_pnode) 1031 { 1032 /* UVY flavor */ 1033 if (UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0) { 1034 union uvh_rh10_gam_mmioh_overlay_config0_u mmioh0; 1035 union uvh_rh10_gam_mmioh_overlay_config1_u mmioh1; 1036 1037 mmioh0.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0); 1038 if (unlikely(mmioh0.s.enable == 0)) 1039 pr_info("UV: MMIOH0 disabled\n"); 1040 else 1041 calc_mmioh_map(UVY_MMIOH0, min_pnode, max_pnode, 1042 UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT, 1043 mmioh0.s.base, mmioh0.s.m_io, mmioh0.s.n_io); 1044 1045 mmioh1.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1); 1046 if (unlikely(mmioh1.s.enable == 0)) 1047 pr_info("UV: MMIOH1 disabled\n"); 1048 else 1049 calc_mmioh_map(UVY_MMIOH1, min_pnode, max_pnode, 1050 UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT, 1051 mmioh1.s.base, mmioh1.s.m_io, mmioh1.s.n_io); 1052 return; 1053 } 1054 /* UVX flavor */ 1055 if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0) { 1056 union uvh_rh_gam_mmioh_overlay_config0_u mmioh0; 1057 union uvh_rh_gam_mmioh_overlay_config1_u mmioh1; 1058 1059 mmioh0.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0); 1060 if (unlikely(mmioh0.s.enable == 0)) 1061 pr_info("UV: MMIOH0 disabled\n"); 1062 else { 1063 unsigned long base = uvxy_field(mmioh0, base, 0); 1064 int m_io = uvxy_field(mmioh0, m_io, 0); 1065 int n_io = uvxy_field(mmioh0, n_io, 0); 1066 1067 calc_mmioh_map(UVX_MMIOH0, min_pnode, max_pnode, 1068 UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT, 1069 base, m_io, n_io); 1070 } 1071 1072 mmioh1.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1); 1073 if (unlikely(mmioh1.s.enable == 0)) 1074 pr_info("UV: MMIOH1 disabled\n"); 1075 else { 1076 unsigned long base = uvxy_field(mmioh1, base, 0); 1077 int m_io = uvxy_field(mmioh1, m_io, 0); 1078 int n_io = uvxy_field(mmioh1, n_io, 0); 1079 1080 calc_mmioh_map(UVX_MMIOH1, min_pnode, max_pnode, 1081 UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT, 1082 base, m_io, n_io); 1083 } 1084 return; 1085 } 1086 1087 /* UV2 flavor */ 1088 if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG) { 1089 union uvh_rh_gam_mmioh_overlay_config_u mmioh; 1090 1091 mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG); 1092 if (unlikely(mmioh.s2.enable == 0)) 1093 pr_info("UV: MMIOH disabled\n"); 1094 else 1095 calc_mmioh_map(UV2_MMIOH, min_pnode, max_pnode, 1096 UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_BASE_SHFT, 1097 mmioh.s2.base, mmioh.s2.m_io, mmioh.s2.n_io); 1098 return; 1099 } 1100 } 1101 1102 static __init void map_low_mmrs(void) 1103 { 1104 if (UV_GLOBAL_MMR32_BASE) 1105 init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE); 1106 1107 if (UV_LOCAL_MMR_BASE) 1108 init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE); 1109 } 1110 1111 static __init void uv_rtc_init(void) 1112 { 1113 long status; 1114 u64 ticks_per_sec; 1115 1116 status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec); 1117 1118 if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) { 1119 pr_warn("UV: unable to determine platform RTC clock frequency, guessing.\n"); 1120 1121 /* BIOS gives wrong value for clock frequency, so guess: */ 1122 sn_rtc_cycles_per_second = 1000000000000UL / 30000UL; 1123 } else { 1124 sn_rtc_cycles_per_second = ticks_per_sec; 1125 } 1126 } 1127 1128 /* Direct Legacy VGA I/O traffic to designated IOH */ 1129 static int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags) 1130 { 1131 int domain, bus, rc; 1132 1133 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 1134 return 0; 1135 1136 if ((command_bits & PCI_COMMAND_IO) == 0) 1137 return 0; 1138 1139 domain = pci_domain_nr(pdev->bus); 1140 bus = pdev->bus->number; 1141 1142 rc = uv_bios_set_legacy_vga_target(decode, domain, bus); 1143 1144 return rc; 1145 } 1146 1147 /* 1148 * Called on each CPU to initialize the per_cpu UV data area. 1149 * FIXME: hotplug not supported yet 1150 */ 1151 void uv_cpu_init(void) 1152 { 1153 /* CPU 0 initialization will be done via uv_system_init. */ 1154 if (smp_processor_id() == 0) 1155 return; 1156 1157 uv_hub_info->nr_online_cpus++; 1158 } 1159 1160 struct mn { 1161 unsigned char m_val; 1162 unsigned char n_val; 1163 unsigned char m_shift; 1164 unsigned char n_lshift; 1165 }; 1166 1167 /* Initialize caller's MN struct and fill in values */ 1168 static void get_mn(struct mn *mnp) 1169 { 1170 memset(mnp, 0, sizeof(*mnp)); 1171 mnp->n_val = uv_cpuid.n_skt; 1172 if (is_uv(UV4|UVY)) { 1173 mnp->m_val = 0; 1174 mnp->n_lshift = 0; 1175 } else if (is_uv3_hub()) { 1176 union uvyh_gr0_gam_gr_config_u m_gr_config; 1177 1178 mnp->m_val = uv_cpuid.m_skt; 1179 m_gr_config.v = uv_read_local_mmr(UVH_GR0_GAM_GR_CONFIG); 1180 mnp->n_lshift = m_gr_config.s3.m_skt; 1181 } else if (is_uv2_hub()) { 1182 mnp->m_val = uv_cpuid.m_skt; 1183 mnp->n_lshift = mnp->m_val == 40 ? 40 : 39; 1184 } 1185 mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0; 1186 } 1187 1188 static void __init uv_init_hub_info(struct uv_hub_info_s *hi) 1189 { 1190 struct mn mn; 1191 1192 get_mn(&mn); 1193 hi->gpa_mask = mn.m_val ? 1194 (1UL << (mn.m_val + mn.n_val)) - 1 : 1195 (1UL << uv_cpuid.gpa_shift) - 1; 1196 1197 hi->m_val = mn.m_val; 1198 hi->n_val = mn.n_val; 1199 hi->m_shift = mn.m_shift; 1200 hi->n_lshift = mn.n_lshift ? mn.n_lshift : 0; 1201 hi->hub_revision = uv_hub_info->hub_revision; 1202 hi->hub_type = uv_hub_info->hub_type; 1203 hi->pnode_mask = uv_cpuid.pnode_mask; 1204 hi->nasid_shift = uv_cpuid.nasid_shift; 1205 hi->min_pnode = _min_pnode; 1206 hi->min_socket = _min_socket; 1207 hi->node_to_socket = _node_to_socket; 1208 hi->pnode_to_socket = _pnode_to_socket; 1209 hi->socket_to_node = _socket_to_node; 1210 hi->socket_to_pnode = _socket_to_pnode; 1211 hi->gr_table_len = _gr_table_len; 1212 hi->gr_table = _gr_table; 1213 1214 uv_cpuid.gnode_shift = max_t(unsigned int, uv_cpuid.gnode_shift, mn.n_val); 1215 hi->gnode_extra = (uv_node_id & ~((1 << uv_cpuid.gnode_shift) - 1)) >> 1; 1216 if (mn.m_val) 1217 hi->gnode_upper = (u64)hi->gnode_extra << mn.m_val; 1218 1219 if (uv_gp_table) { 1220 hi->global_mmr_base = uv_gp_table->mmr_base; 1221 hi->global_mmr_shift = uv_gp_table->mmr_shift; 1222 hi->global_gru_base = uv_gp_table->gru_base; 1223 hi->global_gru_shift = uv_gp_table->gru_shift; 1224 hi->gpa_shift = uv_gp_table->gpa_shift; 1225 hi->gpa_mask = (1UL << hi->gpa_shift) - 1; 1226 } else { 1227 hi->global_mmr_base = 1228 uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG) & 1229 ~UV_MMR_ENABLE; 1230 hi->global_mmr_shift = _UV_GLOBAL_MMR64_PNODE_SHIFT; 1231 } 1232 1233 get_lowmem_redirect(&hi->lowmem_remap_base, &hi->lowmem_remap_top); 1234 1235 hi->apic_pnode_shift = uv_cpuid.socketid_shift; 1236 1237 /* Show system specific info: */ 1238 pr_info("UV: N:%d M:%d m_shift:%d n_lshift:%d\n", hi->n_val, hi->m_val, hi->m_shift, hi->n_lshift); 1239 pr_info("UV: gpa_mask/shift:0x%lx/%d pnode_mask:0x%x apic_pns:%d\n", hi->gpa_mask, hi->gpa_shift, hi->pnode_mask, hi->apic_pnode_shift); 1240 pr_info("UV: mmr_base/shift:0x%lx/%ld\n", hi->global_mmr_base, hi->global_mmr_shift); 1241 if (hi->global_gru_base) 1242 pr_info("UV: gru_base/shift:0x%lx/%ld\n", 1243 hi->global_gru_base, hi->global_gru_shift); 1244 1245 pr_info("UV: gnode_upper:0x%lx gnode_extra:0x%x\n", hi->gnode_upper, hi->gnode_extra); 1246 } 1247 1248 static void __init decode_gam_params(unsigned long ptr) 1249 { 1250 uv_gp_table = (struct uv_gam_parameters *)ptr; 1251 1252 pr_info("UV: GAM Params...\n"); 1253 pr_info("UV: mmr_base/shift:0x%llx/%d gru_base/shift:0x%llx/%d gpa_shift:%d\n", 1254 uv_gp_table->mmr_base, uv_gp_table->mmr_shift, 1255 uv_gp_table->gru_base, uv_gp_table->gru_shift, 1256 uv_gp_table->gpa_shift); 1257 } 1258 1259 static void __init decode_gam_rng_tbl(unsigned long ptr) 1260 { 1261 struct uv_gam_range_entry *gre = (struct uv_gam_range_entry *)ptr; 1262 unsigned long lgre = 0, gend = 0; 1263 int index = 0; 1264 int sock_min = INT_MAX, pnode_min = INT_MAX; 1265 int sock_max = -1, pnode_max = -1; 1266 1267 uv_gre_table = gre; 1268 for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) { 1269 unsigned long size = ((unsigned long)(gre->limit - lgre) 1270 << UV_GAM_RANGE_SHFT); 1271 int order = 0; 1272 char suffix[] = " KMGTPE"; 1273 int flag = ' '; 1274 1275 while (size > 9999 && order < sizeof(suffix)) { 1276 size /= 1024; 1277 order++; 1278 } 1279 1280 /* adjust max block size to current range start */ 1281 if (gre->type == 1 || gre->type == 2) 1282 if (adj_blksize(lgre)) 1283 flag = '*'; 1284 1285 if (!index) { 1286 pr_info("UV: GAM Range Table...\n"); 1287 pr_info("UV: # %20s %14s %6s %4s %5s %3s %2s\n", "Range", "", "Size", "Type", "NASID", "SID", "PN"); 1288 } 1289 pr_info("UV: %2d: 0x%014lx-0x%014lx%c %5lu%c %3d %04x %02x %02x\n", 1290 index++, 1291 (unsigned long)lgre << UV_GAM_RANGE_SHFT, 1292 (unsigned long)gre->limit << UV_GAM_RANGE_SHFT, 1293 flag, size, suffix[order], 1294 gre->type, gre->nasid, gre->sockid, gre->pnode); 1295 1296 if (gre->type == UV_GAM_RANGE_TYPE_HOLE) 1297 gend = (unsigned long)gre->limit << UV_GAM_RANGE_SHFT; 1298 1299 /* update to next range start */ 1300 lgre = gre->limit; 1301 if (sock_min > gre->sockid) 1302 sock_min = gre->sockid; 1303 if (sock_max < gre->sockid) 1304 sock_max = gre->sockid; 1305 if (pnode_min > gre->pnode) 1306 pnode_min = gre->pnode; 1307 if (pnode_max < gre->pnode) 1308 pnode_max = gre->pnode; 1309 } 1310 _min_socket = sock_min; 1311 _max_socket = sock_max; 1312 _min_pnode = pnode_min; 1313 _max_pnode = pnode_max; 1314 _gr_table_len = index; 1315 1316 pr_info("UV: GRT: %d entries, sockets(min:%x,max:%x), pnodes(min:%x,max:%x), gap_end(%d)\n", 1317 index, _min_socket, _max_socket, _min_pnode, _max_pnode, fls64(gend)); 1318 } 1319 1320 /* Walk through UVsystab decoding the fields */ 1321 static int __init decode_uv_systab(void) 1322 { 1323 struct uv_systab *st; 1324 int i; 1325 1326 /* Get mapped UVsystab pointer */ 1327 st = uv_systab; 1328 1329 /* If UVsystab is version 1, there is no extended UVsystab */ 1330 if (st && st->revision == UV_SYSTAB_VERSION_1) 1331 return 0; 1332 1333 if ((!st) || (st->revision < UV_SYSTAB_VERSION_UV4_LATEST)) { 1334 int rev = st ? st->revision : 0; 1335 1336 pr_err("UV: BIOS UVsystab mismatch, (%x < %x)\n", 1337 rev, UV_SYSTAB_VERSION_UV4_LATEST); 1338 pr_err("UV: Does not support UV, switch to non-UV x86_64\n"); 1339 uv_system_type = UV_NONE; 1340 1341 return -EINVAL; 1342 } 1343 1344 for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) { 1345 unsigned long ptr = st->entry[i].offset; 1346 1347 if (!ptr) 1348 continue; 1349 1350 /* point to payload */ 1351 ptr += (unsigned long)st; 1352 1353 switch (st->entry[i].type) { 1354 case UV_SYSTAB_TYPE_GAM_PARAMS: 1355 decode_gam_params(ptr); 1356 break; 1357 1358 case UV_SYSTAB_TYPE_GAM_RNG_TBL: 1359 decode_gam_rng_tbl(ptr); 1360 break; 1361 1362 case UV_SYSTAB_TYPE_ARCH_TYPE: 1363 /* already processed in early startup */ 1364 break; 1365 1366 default: 1367 pr_err("UV:%s:Unrecognized UV_SYSTAB_TYPE:%d, skipped\n", 1368 __func__, st->entry[i].type); 1369 break; 1370 } 1371 } 1372 return 0; 1373 } 1374 1375 /* 1376 * Given a bitmask 'bits' representing presnt blades, numbered 1377 * starting at 'base', masking off unused high bits of blade number 1378 * with 'mask', update the minimum and maximum blade numbers that we 1379 * have found. (Masking with 'mask' necessary because of BIOS 1380 * treatment of system partitioning when creating this table we are 1381 * interpreting.) 1382 */ 1383 static inline void blade_update_min_max(unsigned long bits, int base, int mask, int *min, int *max) 1384 { 1385 int first, last; 1386 1387 if (!bits) 1388 return; 1389 first = (base + __ffs(bits)) & mask; 1390 last = (base + __fls(bits)) & mask; 1391 1392 if (*min > first) 1393 *min = first; 1394 if (*max < last) 1395 *max = last; 1396 } 1397 1398 /* Set up physical blade translations from UVH_NODE_PRESENT_TABLE */ 1399 static __init void boot_init_possible_blades(struct uv_hub_info_s *hub_info) 1400 { 1401 unsigned long np; 1402 int i, uv_pb = 0; 1403 int sock_min = INT_MAX, sock_max = -1, s_mask; 1404 1405 s_mask = (1 << uv_cpuid.n_skt) - 1; 1406 1407 if (UVH_NODE_PRESENT_TABLE) { 1408 pr_info("UV: NODE_PRESENT_DEPTH = %d\n", 1409 UVH_NODE_PRESENT_TABLE_DEPTH); 1410 for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) { 1411 np = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8); 1412 pr_info("UV: NODE_PRESENT(%d) = 0x%016lx\n", i, np); 1413 blade_update_min_max(np, i * 64, s_mask, &sock_min, &sock_max); 1414 } 1415 } 1416 if (UVH_NODE_PRESENT_0) { 1417 np = uv_read_local_mmr(UVH_NODE_PRESENT_0); 1418 pr_info("UV: NODE_PRESENT_0 = 0x%016lx\n", np); 1419 blade_update_min_max(np, 0, s_mask, &sock_min, &sock_max); 1420 } 1421 if (UVH_NODE_PRESENT_1) { 1422 np = uv_read_local_mmr(UVH_NODE_PRESENT_1); 1423 pr_info("UV: NODE_PRESENT_1 = 0x%016lx\n", np); 1424 blade_update_min_max(np, 64, s_mask, &sock_min, &sock_max); 1425 } 1426 1427 /* Only update if we actually found some bits indicating blades present */ 1428 if (sock_max >= sock_min) { 1429 _min_socket = sock_min; 1430 _max_socket = sock_max; 1431 uv_pb = sock_max - sock_min + 1; 1432 } 1433 if (uv_possible_blades != uv_pb) 1434 uv_possible_blades = uv_pb; 1435 1436 pr_info("UV: number nodes/possible blades %d (%d - %d)\n", 1437 uv_pb, sock_min, sock_max); 1438 } 1439 1440 static int __init alloc_conv_table(int num_elem, unsigned short **table) 1441 { 1442 int i; 1443 size_t bytes; 1444 1445 bytes = num_elem * sizeof(*table[0]); 1446 *table = kmalloc(bytes, GFP_KERNEL); 1447 if (WARN_ON_ONCE(!*table)) 1448 return -ENOMEM; 1449 for (i = 0; i < num_elem; i++) 1450 ((unsigned short *)*table)[i] = SOCK_EMPTY; 1451 return 0; 1452 } 1453 1454 /* Remove conversion table if it's 1:1 */ 1455 #define FREE_1_TO_1_TABLE(tbl, min, max, max2) free_1_to_1_table(&tbl, #tbl, min, max, max2) 1456 1457 static void __init free_1_to_1_table(unsigned short **tp, char *tname, int min, int max, int max2) 1458 { 1459 int i; 1460 unsigned short *table = *tp; 1461 1462 if (table == NULL) 1463 return; 1464 if (max != max2) 1465 return; 1466 for (i = 0; i < max; i++) { 1467 if (i != table[i]) 1468 return; 1469 } 1470 kfree(table); 1471 *tp = NULL; 1472 pr_info("UV: %s is 1:1, conversion table removed\n", tname); 1473 } 1474 1475 /* 1476 * Build Socket Tables 1477 * If the number of nodes is >1 per socket, socket to node table will 1478 * contain lowest node number on that socket. 1479 */ 1480 static void __init build_socket_tables(void) 1481 { 1482 struct uv_gam_range_entry *gre = uv_gre_table; 1483 int nums, numn, nump; 1484 int i, lnid, apicid; 1485 int minsock = _min_socket; 1486 int maxsock = _max_socket; 1487 int minpnode = _min_pnode; 1488 int maxpnode = _max_pnode; 1489 1490 if (!gre) { 1491 if (is_uv2_hub() || is_uv3_hub()) { 1492 pr_info("UV: No UVsystab socket table, ignoring\n"); 1493 return; 1494 } 1495 pr_err("UV: Error: UVsystab address translations not available!\n"); 1496 WARN_ON_ONCE(!gre); 1497 return; 1498 } 1499 1500 numn = num_possible_nodes(); 1501 nump = maxpnode - minpnode + 1; 1502 nums = maxsock - minsock + 1; 1503 1504 /* Allocate and clear tables */ 1505 if ((alloc_conv_table(nump, &_pnode_to_socket) < 0) 1506 || (alloc_conv_table(nums, &_socket_to_pnode) < 0) 1507 || (alloc_conv_table(numn, &_node_to_socket) < 0) 1508 || (alloc_conv_table(nums, &_socket_to_node) < 0)) { 1509 kfree(_pnode_to_socket); 1510 kfree(_socket_to_pnode); 1511 kfree(_node_to_socket); 1512 return; 1513 } 1514 1515 /* Fill in pnode/node/addr conversion list values: */ 1516 for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) { 1517 if (gre->type == UV_GAM_RANGE_TYPE_HOLE) 1518 continue; 1519 i = gre->sockid - minsock; 1520 if (_socket_to_pnode[i] == SOCK_EMPTY) 1521 _socket_to_pnode[i] = gre->pnode; 1522 1523 i = gre->pnode - minpnode; 1524 if (_pnode_to_socket[i] == SOCK_EMPTY) 1525 _pnode_to_socket[i] = gre->sockid; 1526 1527 pr_info("UV: sid:%02x type:%d nasid:%04x pn:%02x pn2s:%2x\n", 1528 gre->sockid, gre->type, gre->nasid, 1529 _socket_to_pnode[gre->sockid - minsock], 1530 _pnode_to_socket[gre->pnode - minpnode]); 1531 } 1532 1533 /* Set socket -> node values: */ 1534 lnid = NUMA_NO_NODE; 1535 for (apicid = 0; apicid < ARRAY_SIZE(__apicid_to_node); apicid++) { 1536 int nid = __apicid_to_node[apicid]; 1537 int sockid; 1538 1539 if ((nid == NUMA_NO_NODE) || (lnid == nid)) 1540 continue; 1541 lnid = nid; 1542 1543 sockid = apicid >> uv_cpuid.socketid_shift; 1544 1545 if (_socket_to_node[sockid - minsock] == SOCK_EMPTY) 1546 _socket_to_node[sockid - minsock] = nid; 1547 1548 if (_node_to_socket[nid] == SOCK_EMPTY) 1549 _node_to_socket[nid] = sockid; 1550 1551 pr_info("UV: sid:%02x: apicid:%04x socket:%02d node:%03x s2n:%03x\n", 1552 sockid, 1553 apicid, 1554 _node_to_socket[nid], 1555 nid, 1556 _socket_to_node[sockid - minsock]); 1557 } 1558 1559 /* 1560 * If e.g. socket id == pnode for all pnodes, 1561 * system runs faster by removing corresponding conversion table. 1562 */ 1563 FREE_1_TO_1_TABLE(_socket_to_node, _min_socket, nums, numn); 1564 FREE_1_TO_1_TABLE(_node_to_socket, _min_socket, nums, numn); 1565 FREE_1_TO_1_TABLE(_socket_to_pnode, _min_pnode, nums, nump); 1566 FREE_1_TO_1_TABLE(_pnode_to_socket, _min_pnode, nums, nump); 1567 } 1568 1569 /* Check which reboot to use */ 1570 static void check_efi_reboot(void) 1571 { 1572 /* If EFI reboot not available, use ACPI reboot */ 1573 if (!efi_enabled(EFI_BOOT)) 1574 reboot_type = BOOT_ACPI; 1575 } 1576 1577 /* 1578 * User proc fs file handling now deprecated. 1579 * Recommend using /sys/firmware/sgi_uv/... instead. 1580 */ 1581 static int __maybe_unused proc_hubbed_show(struct seq_file *file, void *data) 1582 { 1583 pr_notice_once("%s: using deprecated /proc/sgi_uv/hubbed, use /sys/firmware/sgi_uv/hub_type\n", 1584 current->comm); 1585 seq_printf(file, "0x%x\n", uv_hubbed_system); 1586 return 0; 1587 } 1588 1589 static int __maybe_unused proc_hubless_show(struct seq_file *file, void *data) 1590 { 1591 pr_notice_once("%s: using deprecated /proc/sgi_uv/hubless, use /sys/firmware/sgi_uv/hubless\n", 1592 current->comm); 1593 seq_printf(file, "0x%x\n", uv_hubless_system); 1594 return 0; 1595 } 1596 1597 static int __maybe_unused proc_archtype_show(struct seq_file *file, void *data) 1598 { 1599 pr_notice_once("%s: using deprecated /proc/sgi_uv/archtype, use /sys/firmware/sgi_uv/archtype\n", 1600 current->comm); 1601 seq_printf(file, "%s/%s\n", uv_archtype, oem_table_id); 1602 return 0; 1603 } 1604 1605 static __init void uv_setup_proc_files(int hubless) 1606 { 1607 struct proc_dir_entry *pde; 1608 1609 pde = proc_mkdir(UV_PROC_NODE, NULL); 1610 proc_create_single("archtype", 0, pde, proc_archtype_show); 1611 if (hubless) 1612 proc_create_single("hubless", 0, pde, proc_hubless_show); 1613 else 1614 proc_create_single("hubbed", 0, pde, proc_hubbed_show); 1615 } 1616 1617 /* Initialize UV hubless systems */ 1618 static __init int uv_system_init_hubless(void) 1619 { 1620 int rc; 1621 1622 /* Setup PCH NMI handler */ 1623 uv_nmi_setup_hubless(); 1624 1625 /* Init kernel/BIOS interface */ 1626 rc = uv_bios_init(); 1627 if (rc < 0) 1628 return rc; 1629 1630 /* Process UVsystab */ 1631 rc = decode_uv_systab(); 1632 if (rc < 0) 1633 return rc; 1634 1635 /* Set section block size for current node memory */ 1636 set_block_size(); 1637 1638 /* Create user access node */ 1639 if (rc >= 0) 1640 uv_setup_proc_files(1); 1641 1642 check_efi_reboot(); 1643 1644 return rc; 1645 } 1646 1647 static void __init uv_system_init_hub(void) 1648 { 1649 struct uv_hub_info_s hub_info = {0}; 1650 int bytes, cpu, nodeid, bid; 1651 unsigned short min_pnode = USHRT_MAX, max_pnode = 0; 1652 char *hub = is_uv5_hub() ? "UV500" : 1653 is_uv4_hub() ? "UV400" : 1654 is_uv3_hub() ? "UV300" : 1655 is_uv2_hub() ? "UV2000/3000" : NULL; 1656 struct uv_hub_info_s **uv_hub_info_list_blade; 1657 1658 if (!hub) { 1659 pr_err("UV: Unknown/unsupported UV hub\n"); 1660 return; 1661 } 1662 pr_info("UV: Found %s hub\n", hub); 1663 1664 map_low_mmrs(); 1665 1666 /* Get uv_systab for decoding, setup UV BIOS calls */ 1667 uv_bios_init(); 1668 1669 /* If there's an UVsystab problem then abort UV init: */ 1670 if (decode_uv_systab() < 0) { 1671 pr_err("UV: Mangled UVsystab format\n"); 1672 return; 1673 } 1674 1675 build_socket_tables(); 1676 build_uv_gr_table(); 1677 set_block_size(); 1678 uv_init_hub_info(&hub_info); 1679 /* If UV2 or UV3 may need to get # blades from HW */ 1680 if (is_uv(UV2|UV3) && !uv_gre_table) 1681 boot_init_possible_blades(&hub_info); 1682 else 1683 /* min/max sockets set in decode_gam_rng_tbl */ 1684 uv_possible_blades = (_max_socket - _min_socket) + 1; 1685 1686 /* uv_num_possible_blades() is really the hub count: */ 1687 pr_info("UV: Found %d hubs, %d nodes, %d CPUs\n", uv_num_possible_blades(), num_possible_nodes(), num_possible_cpus()); 1688 1689 uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id, &sn_region_size, &system_serial_number); 1690 hub_info.coherency_domain_number = sn_coherency_id; 1691 uv_rtc_init(); 1692 1693 /* 1694 * __uv_hub_info_list[] is indexed by node, but there is only 1695 * one hub_info structure per blade. First, allocate one 1696 * structure per blade. Further down we create a per-node 1697 * table (__uv_hub_info_list[]) pointing to hub_info 1698 * structures for the correct blade. 1699 */ 1700 1701 bytes = sizeof(void *) * uv_num_possible_blades(); 1702 uv_hub_info_list_blade = kzalloc(bytes, GFP_KERNEL); 1703 if (WARN_ON_ONCE(!uv_hub_info_list_blade)) 1704 return; 1705 1706 bytes = sizeof(struct uv_hub_info_s); 1707 for_each_possible_blade(bid) { 1708 struct uv_hub_info_s *new_hub; 1709 1710 /* Allocate & fill new per hub info list */ 1711 new_hub = (bid == 0) ? &uv_hub_info_node0 1712 : kzalloc_node(bytes, GFP_KERNEL, uv_blade_to_node(bid)); 1713 if (WARN_ON_ONCE(!new_hub)) { 1714 /* do not kfree() bid 0, which is statically allocated */ 1715 while (--bid > 0) 1716 kfree(uv_hub_info_list_blade[bid]); 1717 kfree(uv_hub_info_list_blade); 1718 return; 1719 } 1720 1721 uv_hub_info_list_blade[bid] = new_hub; 1722 *new_hub = hub_info; 1723 1724 /* Use information from GAM table if available: */ 1725 if (uv_gre_table) 1726 new_hub->pnode = uv_blade_to_pnode(bid); 1727 else /* Or fill in during CPU loop: */ 1728 new_hub->pnode = 0xffff; 1729 1730 new_hub->numa_blade_id = bid; 1731 new_hub->memory_nid = NUMA_NO_NODE; 1732 new_hub->nr_possible_cpus = 0; 1733 new_hub->nr_online_cpus = 0; 1734 } 1735 1736 /* 1737 * Now populate __uv_hub_info_list[] for each node with the 1738 * pointer to the struct for the blade it resides on. 1739 */ 1740 1741 bytes = sizeof(void *) * num_possible_nodes(); 1742 __uv_hub_info_list = kzalloc(bytes, GFP_KERNEL); 1743 if (WARN_ON_ONCE(!__uv_hub_info_list)) { 1744 for_each_possible_blade(bid) 1745 /* bid 0 is statically allocated */ 1746 if (bid != 0) 1747 kfree(uv_hub_info_list_blade[bid]); 1748 kfree(uv_hub_info_list_blade); 1749 return; 1750 } 1751 1752 for_each_node(nodeid) 1753 __uv_hub_info_list[nodeid] = uv_hub_info_list_blade[uv_node_to_blade_id(nodeid)]; 1754 1755 /* Initialize per CPU info: */ 1756 for_each_possible_cpu(cpu) { 1757 int apicid = per_cpu(x86_cpu_to_apicid, cpu); 1758 unsigned short bid; 1759 unsigned short pnode; 1760 1761 pnode = uv_apicid_to_pnode(apicid); 1762 bid = uv_pnode_to_socket(pnode) - _min_socket; 1763 1764 uv_cpu_info_per(cpu)->p_uv_hub_info = uv_hub_info_list_blade[bid]; 1765 uv_cpu_info_per(cpu)->blade_cpu_id = uv_cpu_hub_info(cpu)->nr_possible_cpus++; 1766 if (uv_cpu_hub_info(cpu)->memory_nid == NUMA_NO_NODE) 1767 uv_cpu_hub_info(cpu)->memory_nid = cpu_to_node(cpu); 1768 1769 if (uv_cpu_hub_info(cpu)->pnode == 0xffff) 1770 uv_cpu_hub_info(cpu)->pnode = pnode; 1771 } 1772 1773 for_each_possible_blade(bid) { 1774 unsigned short pnode = uv_hub_info_list_blade[bid]->pnode; 1775 1776 if (pnode == 0xffff) 1777 continue; 1778 1779 min_pnode = min(pnode, min_pnode); 1780 max_pnode = max(pnode, max_pnode); 1781 pr_info("UV: HUB:%2d pn:%02x nrcpus:%d\n", 1782 bid, 1783 uv_hub_info_list_blade[bid]->pnode, 1784 uv_hub_info_list_blade[bid]->nr_possible_cpus); 1785 } 1786 1787 pr_info("UV: min_pnode:%02x max_pnode:%02x\n", min_pnode, max_pnode); 1788 map_gru_high(max_pnode); 1789 map_mmr_high(max_pnode); 1790 map_mmioh_high(min_pnode, max_pnode); 1791 1792 kfree(uv_hub_info_list_blade); 1793 uv_hub_info_list_blade = NULL; 1794 1795 uv_nmi_setup(); 1796 uv_cpu_init(); 1797 uv_setup_proc_files(0); 1798 1799 /* Register Legacy VGA I/O redirection handler: */ 1800 pci_register_set_vga_state(uv_set_vga_state); 1801 1802 check_efi_reboot(); 1803 } 1804 1805 /* 1806 * There is a different code path needed to initialize a UV system that does 1807 * not have a "UV HUB" (referred to as "hubless"). 1808 */ 1809 void __init uv_system_init(void) 1810 { 1811 if (likely(!is_uv_system() && !is_uv_hubless(1))) 1812 return; 1813 1814 if (is_uv_system()) 1815 uv_system_init_hub(); 1816 else 1817 uv_system_init_hubless(); 1818 } 1819 1820 apic_driver(apic_x2apic_uv_x); 1821
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.