~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/cpu/common.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /* cpu_feature_enabled() cannot be used this early */
  3 #define USE_EARLY_PGTABLE_L5
  4 
  5 #include <linux/memblock.h>
  6 #include <linux/linkage.h>
  7 #include <linux/bitops.h>
  8 #include <linux/kernel.h>
  9 #include <linux/export.h>
 10 #include <linux/percpu.h>
 11 #include <linux/string.h>
 12 #include <linux/ctype.h>
 13 #include <linux/delay.h>
 14 #include <linux/sched/mm.h>
 15 #include <linux/sched/clock.h>
 16 #include <linux/sched/task.h>
 17 #include <linux/sched/smt.h>
 18 #include <linux/init.h>
 19 #include <linux/kprobes.h>
 20 #include <linux/kgdb.h>
 21 #include <linux/mem_encrypt.h>
 22 #include <linux/smp.h>
 23 #include <linux/cpu.h>
 24 #include <linux/io.h>
 25 #include <linux/syscore_ops.h>
 26 #include <linux/pgtable.h>
 27 #include <linux/stackprotector.h>
 28 #include <linux/utsname.h>
 29 
 30 #include <asm/alternative.h>
 31 #include <asm/cmdline.h>
 32 #include <asm/perf_event.h>
 33 #include <asm/mmu_context.h>
 34 #include <asm/doublefault.h>
 35 #include <asm/archrandom.h>
 36 #include <asm/hypervisor.h>
 37 #include <asm/processor.h>
 38 #include <asm/tlbflush.h>
 39 #include <asm/debugreg.h>
 40 #include <asm/sections.h>
 41 #include <asm/vsyscall.h>
 42 #include <linux/topology.h>
 43 #include <linux/cpumask.h>
 44 #include <linux/atomic.h>
 45 #include <asm/proto.h>
 46 #include <asm/setup.h>
 47 #include <asm/apic.h>
 48 #include <asm/desc.h>
 49 #include <asm/fpu/api.h>
 50 #include <asm/mtrr.h>
 51 #include <asm/hwcap2.h>
 52 #include <linux/numa.h>
 53 #include <asm/numa.h>
 54 #include <asm/asm.h>
 55 #include <asm/bugs.h>
 56 #include <asm/cpu.h>
 57 #include <asm/mce.h>
 58 #include <asm/msr.h>
 59 #include <asm/cacheinfo.h>
 60 #include <asm/memtype.h>
 61 #include <asm/microcode.h>
 62 #include <asm/intel-family.h>
 63 #include <asm/cpu_device_id.h>
 64 #include <asm/fred.h>
 65 #include <asm/uv/uv.h>
 66 #include <asm/ia32.h>
 67 #include <asm/set_memory.h>
 68 #include <asm/traps.h>
 69 #include <asm/sev.h>
 70 #include <asm/tdx.h>
 71 #include <asm/posted_intr.h>
 72 
 73 #include "cpu.h"
 74 
 75 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 76 EXPORT_PER_CPU_SYMBOL(cpu_info);
 77 
 78 u32 elf_hwcap2 __read_mostly;
 79 
 80 /* Number of siblings per CPU package */
 81 unsigned int __max_threads_per_core __ro_after_init = 1;
 82 EXPORT_SYMBOL(__max_threads_per_core);
 83 
 84 unsigned int __max_dies_per_package __ro_after_init = 1;
 85 EXPORT_SYMBOL(__max_dies_per_package);
 86 
 87 unsigned int __max_logical_packages __ro_after_init = 1;
 88 EXPORT_SYMBOL(__max_logical_packages);
 89 
 90 unsigned int __num_cores_per_package __ro_after_init = 1;
 91 EXPORT_SYMBOL(__num_cores_per_package);
 92 
 93 unsigned int __num_threads_per_package __ro_after_init = 1;
 94 EXPORT_SYMBOL(__num_threads_per_package);
 95 
 96 static struct ppin_info {
 97         int     feature;
 98         int     msr_ppin_ctl;
 99         int     msr_ppin;
100 } ppin_info[] = {
101         [X86_VENDOR_INTEL] = {
102                 .feature = X86_FEATURE_INTEL_PPIN,
103                 .msr_ppin_ctl = MSR_PPIN_CTL,
104                 .msr_ppin = MSR_PPIN
105         },
106         [X86_VENDOR_AMD] = {
107                 .feature = X86_FEATURE_AMD_PPIN,
108                 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
109                 .msr_ppin = MSR_AMD_PPIN
110         },
111 };
112 
113 static const struct x86_cpu_id ppin_cpuids[] = {
114         X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
115         X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
116 
117         /* Legacy models without CPUID enumeration */
118         X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
119         X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
120         X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
121         X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
122         X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
123         X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
124         X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
125         X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
126         X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
127         X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
128         X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
129 
130         {}
131 };
132 
133 static void ppin_init(struct cpuinfo_x86 *c)
134 {
135         const struct x86_cpu_id *id;
136         unsigned long long val;
137         struct ppin_info *info;
138 
139         id = x86_match_cpu(ppin_cpuids);
140         if (!id)
141                 return;
142 
143         /*
144          * Testing the presence of the MSR is not enough. Need to check
145          * that the PPIN_CTL allows reading of the PPIN.
146          */
147         info = (struct ppin_info *)id->driver_data;
148 
149         if (rdmsrl_safe(info->msr_ppin_ctl, &val))
150                 goto clear_ppin;
151 
152         if ((val & 3UL) == 1UL) {
153                 /* PPIN locked in disabled mode */
154                 goto clear_ppin;
155         }
156 
157         /* If PPIN is disabled, try to enable */
158         if (!(val & 2UL)) {
159                 wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
160                 rdmsrl_safe(info->msr_ppin_ctl, &val);
161         }
162 
163         /* Is the enable bit set? */
164         if (val & 2UL) {
165                 c->ppin = __rdmsr(info->msr_ppin);
166                 set_cpu_cap(c, info->feature);
167                 return;
168         }
169 
170 clear_ppin:
171         clear_cpu_cap(c, info->feature);
172 }
173 
174 static void default_init(struct cpuinfo_x86 *c)
175 {
176 #ifdef CONFIG_X86_64
177         cpu_detect_cache_sizes(c);
178 #else
179         /* Not much we can do here... */
180         /* Check if at least it has cpuid */
181         if (c->cpuid_level == -1) {
182                 /* No cpuid. It must be an ancient CPU */
183                 if (c->x86 == 4)
184                         strcpy(c->x86_model_id, "486");
185                 else if (c->x86 == 3)
186                         strcpy(c->x86_model_id, "386");
187         }
188 #endif
189 }
190 
191 static const struct cpu_dev default_cpu = {
192         .c_init         = default_init,
193         .c_vendor       = "Unknown",
194         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
195 };
196 
197 static const struct cpu_dev *this_cpu = &default_cpu;
198 
199 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
200 #ifdef CONFIG_X86_64
201         /*
202          * We need valid kernel segments for data and code in long mode too
203          * IRET will check the segment types  kkeil 2000/10/28
204          * Also sysret mandates a special GDT layout
205          *
206          * TLS descriptors are currently at a different place compared to i386.
207          * Hopefully nobody expects them at a fixed place (Wine?)
208          */
209         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
210         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
211         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
212         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
213         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
214         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
215 #else
216         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
217         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
218         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
219         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
220         /*
221          * Segments used for calling PnP BIOS have byte granularity.
222          * They code segments and data segments have fixed 64k limits,
223          * the transfer segment sizes are set at run time.
224          */
225         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
226         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
227         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
228         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
229         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
230         /*
231          * The APM segments have byte granularity and their bases
232          * are set at run time.  All have 64k limits.
233          */
234         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
235         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
236         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
237 
238         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
239         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
240 #endif
241 } };
242 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
243 
244 #ifdef CONFIG_X86_64
245 static int __init x86_nopcid_setup(char *s)
246 {
247         /* nopcid doesn't accept parameters */
248         if (s)
249                 return -EINVAL;
250 
251         /* do not emit a message if the feature is not present */
252         if (!boot_cpu_has(X86_FEATURE_PCID))
253                 return 0;
254 
255         setup_clear_cpu_cap(X86_FEATURE_PCID);
256         pr_info("nopcid: PCID feature disabled\n");
257         return 0;
258 }
259 early_param("nopcid", x86_nopcid_setup);
260 #endif
261 
262 static int __init x86_noinvpcid_setup(char *s)
263 {
264         /* noinvpcid doesn't accept parameters */
265         if (s)
266                 return -EINVAL;
267 
268         /* do not emit a message if the feature is not present */
269         if (!boot_cpu_has(X86_FEATURE_INVPCID))
270                 return 0;
271 
272         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
273         pr_info("noinvpcid: INVPCID feature disabled\n");
274         return 0;
275 }
276 early_param("noinvpcid", x86_noinvpcid_setup);
277 
278 #ifdef CONFIG_X86_32
279 static int cachesize_override = -1;
280 static int disable_x86_serial_nr = 1;
281 
282 static int __init cachesize_setup(char *str)
283 {
284         get_option(&str, &cachesize_override);
285         return 1;
286 }
287 __setup("cachesize=", cachesize_setup);
288 
289 /* Standard macro to see if a specific flag is changeable */
290 static inline int flag_is_changeable_p(u32 flag)
291 {
292         u32 f1, f2;
293 
294         /*
295          * Cyrix and IDT cpus allow disabling of CPUID
296          * so the code below may return different results
297          * when it is executed before and after enabling
298          * the CPUID. Add "volatile" to not allow gcc to
299          * optimize the subsequent calls to this function.
300          */
301         asm volatile ("pushfl           \n\t"
302                       "pushfl           \n\t"
303                       "popl %0          \n\t"
304                       "movl %0, %1      \n\t"
305                       "xorl %2, %0      \n\t"
306                       "pushl %0         \n\t"
307                       "popfl            \n\t"
308                       "pushfl           \n\t"
309                       "popl %0          \n\t"
310                       "popfl            \n\t"
311 
312                       : "=&r" (f1), "=&r" (f2)
313                       : "ir" (flag));
314 
315         return ((f1^f2) & flag) != 0;
316 }
317 
318 /* Probe for the CPUID instruction */
319 int have_cpuid_p(void)
320 {
321         return flag_is_changeable_p(X86_EFLAGS_ID);
322 }
323 
324 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
325 {
326         unsigned long lo, hi;
327 
328         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
329                 return;
330 
331         /* Disable processor serial number: */
332 
333         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
334         lo |= 0x200000;
335         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
336 
337         pr_notice("CPU serial number disabled.\n");
338         clear_cpu_cap(c, X86_FEATURE_PN);
339 
340         /* Disabling the serial number may affect the cpuid level */
341         c->cpuid_level = cpuid_eax(0);
342 }
343 
344 static int __init x86_serial_nr_setup(char *s)
345 {
346         disable_x86_serial_nr = 0;
347         return 1;
348 }
349 __setup("serialnumber", x86_serial_nr_setup);
350 #else
351 static inline int flag_is_changeable_p(u32 flag)
352 {
353         return 1;
354 }
355 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
356 {
357 }
358 #endif
359 
360 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
361 {
362         if (cpu_has(c, X86_FEATURE_SMEP))
363                 cr4_set_bits(X86_CR4_SMEP);
364 }
365 
366 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
367 {
368         unsigned long eflags = native_save_fl();
369 
370         /* This should have been cleared long ago */
371         BUG_ON(eflags & X86_EFLAGS_AC);
372 
373         if (cpu_has(c, X86_FEATURE_SMAP))
374                 cr4_set_bits(X86_CR4_SMAP);
375 }
376 
377 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
378 {
379         /* Check the boot processor, plus build option for UMIP. */
380         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
381                 goto out;
382 
383         /* Check the current processor's cpuid bits. */
384         if (!cpu_has(c, X86_FEATURE_UMIP))
385                 goto out;
386 
387         cr4_set_bits(X86_CR4_UMIP);
388 
389         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
390 
391         return;
392 
393 out:
394         /*
395          * Make sure UMIP is disabled in case it was enabled in a
396          * previous boot (e.g., via kexec).
397          */
398         cr4_clear_bits(X86_CR4_UMIP);
399 }
400 
401 /* These bits should not change their value after CPU init is finished. */
402 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
403                                              X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
404 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
405 static unsigned long cr4_pinned_bits __ro_after_init;
406 
407 void native_write_cr0(unsigned long val)
408 {
409         unsigned long bits_missing = 0;
410 
411 set_register:
412         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
413 
414         if (static_branch_likely(&cr_pinning)) {
415                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
416                         bits_missing = X86_CR0_WP;
417                         val |= bits_missing;
418                         goto set_register;
419                 }
420                 /* Warn after we've set the missing bits. */
421                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
422         }
423 }
424 EXPORT_SYMBOL(native_write_cr0);
425 
426 void __no_profile native_write_cr4(unsigned long val)
427 {
428         unsigned long bits_changed = 0;
429 
430 set_register:
431         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
432 
433         if (static_branch_likely(&cr_pinning)) {
434                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
435                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
436                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
437                         goto set_register;
438                 }
439                 /* Warn after we've corrected the changed bits. */
440                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
441                           bits_changed);
442         }
443 }
444 #if IS_MODULE(CONFIG_LKDTM)
445 EXPORT_SYMBOL_GPL(native_write_cr4);
446 #endif
447 
448 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
449 {
450         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
451 
452         lockdep_assert_irqs_disabled();
453 
454         newval = (cr4 & ~clear) | set;
455         if (newval != cr4) {
456                 this_cpu_write(cpu_tlbstate.cr4, newval);
457                 __write_cr4(newval);
458         }
459 }
460 EXPORT_SYMBOL(cr4_update_irqsoff);
461 
462 /* Read the CR4 shadow. */
463 unsigned long cr4_read_shadow(void)
464 {
465         return this_cpu_read(cpu_tlbstate.cr4);
466 }
467 EXPORT_SYMBOL_GPL(cr4_read_shadow);
468 
469 void cr4_init(void)
470 {
471         unsigned long cr4 = __read_cr4();
472 
473         if (boot_cpu_has(X86_FEATURE_PCID))
474                 cr4 |= X86_CR4_PCIDE;
475         if (static_branch_likely(&cr_pinning))
476                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
477 
478         __write_cr4(cr4);
479 
480         /* Initialize cr4 shadow for this CPU. */
481         this_cpu_write(cpu_tlbstate.cr4, cr4);
482 }
483 
484 /*
485  * Once CPU feature detection is finished (and boot params have been
486  * parsed), record any of the sensitive CR bits that are set, and
487  * enable CR pinning.
488  */
489 static void __init setup_cr_pinning(void)
490 {
491         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
492         static_key_enable(&cr_pinning.key);
493 }
494 
495 static __init int x86_nofsgsbase_setup(char *arg)
496 {
497         /* Require an exact match without trailing characters. */
498         if (strlen(arg))
499                 return 0;
500 
501         /* Do not emit a message if the feature is not present. */
502         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
503                 return 1;
504 
505         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
506         pr_info("FSGSBASE disabled via kernel command line\n");
507         return 1;
508 }
509 __setup("nofsgsbase", x86_nofsgsbase_setup);
510 
511 /*
512  * Protection Keys are not available in 32-bit mode.
513  */
514 static bool pku_disabled;
515 
516 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
517 {
518         if (c == &boot_cpu_data) {
519                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
520                         return;
521                 /*
522                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
523                  * bit to be set.  Enforce it.
524                  */
525                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
526 
527         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
528                 return;
529         }
530 
531         cr4_set_bits(X86_CR4_PKE);
532         /* Load the default PKRU value */
533         pkru_write_default();
534 }
535 
536 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
537 static __init int setup_disable_pku(char *arg)
538 {
539         /*
540          * Do not clear the X86_FEATURE_PKU bit.  All of the
541          * runtime checks are against OSPKE so clearing the
542          * bit does nothing.
543          *
544          * This way, we will see "pku" in cpuinfo, but not
545          * "ospke", which is exactly what we want.  It shows
546          * that the CPU has PKU, but the OS has not enabled it.
547          * This happens to be exactly how a system would look
548          * if we disabled the config option.
549          */
550         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
551         pku_disabled = true;
552         return 1;
553 }
554 __setup("nopku", setup_disable_pku);
555 #endif
556 
557 #ifdef CONFIG_X86_KERNEL_IBT
558 
559 __noendbr u64 ibt_save(bool disable)
560 {
561         u64 msr = 0;
562 
563         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
564                 rdmsrl(MSR_IA32_S_CET, msr);
565                 if (disable)
566                         wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
567         }
568 
569         return msr;
570 }
571 
572 __noendbr void ibt_restore(u64 save)
573 {
574         u64 msr;
575 
576         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
577                 rdmsrl(MSR_IA32_S_CET, msr);
578                 msr &= ~CET_ENDBR_EN;
579                 msr |= (save & CET_ENDBR_EN);
580                 wrmsrl(MSR_IA32_S_CET, msr);
581         }
582 }
583 
584 #endif
585 
586 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
587 {
588         bool user_shstk, kernel_ibt;
589 
590         if (!IS_ENABLED(CONFIG_X86_CET))
591                 return;
592 
593         kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
594         user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
595                      IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
596 
597         if (!kernel_ibt && !user_shstk)
598                 return;
599 
600         if (user_shstk)
601                 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
602 
603         if (kernel_ibt)
604                 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
605         else
606                 wrmsrl(MSR_IA32_S_CET, 0);
607 
608         cr4_set_bits(X86_CR4_CET);
609 
610         if (kernel_ibt && ibt_selftest()) {
611                 pr_err("IBT selftest: Failed!\n");
612                 wrmsrl(MSR_IA32_S_CET, 0);
613                 setup_clear_cpu_cap(X86_FEATURE_IBT);
614         }
615 }
616 
617 __noendbr void cet_disable(void)
618 {
619         if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
620               cpu_feature_enabled(X86_FEATURE_SHSTK)))
621                 return;
622 
623         wrmsrl(MSR_IA32_S_CET, 0);
624         wrmsrl(MSR_IA32_U_CET, 0);
625 }
626 
627 /*
628  * Some CPU features depend on higher CPUID levels, which may not always
629  * be available due to CPUID level capping or broken virtualization
630  * software.  Add those features to this table to auto-disable them.
631  */
632 struct cpuid_dependent_feature {
633         u32 feature;
634         u32 level;
635 };
636 
637 static const struct cpuid_dependent_feature
638 cpuid_dependent_features[] = {
639         { X86_FEATURE_MWAIT,            0x00000005 },
640         { X86_FEATURE_DCA,              0x00000009 },
641         { X86_FEATURE_XSAVE,            0x0000000d },
642         { 0, 0 }
643 };
644 
645 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
646 {
647         const struct cpuid_dependent_feature *df;
648 
649         for (df = cpuid_dependent_features; df->feature; df++) {
650 
651                 if (!cpu_has(c, df->feature))
652                         continue;
653                 /*
654                  * Note: cpuid_level is set to -1 if unavailable, but
655                  * extended_extended_level is set to 0 if unavailable
656                  * and the legitimate extended levels are all negative
657                  * when signed; hence the weird messing around with
658                  * signs here...
659                  */
660                 if (!((s32)df->level < 0 ?
661                      (u32)df->level > (u32)c->extended_cpuid_level :
662                      (s32)df->level > (s32)c->cpuid_level))
663                         continue;
664 
665                 clear_cpu_cap(c, df->feature);
666                 if (!warn)
667                         continue;
668 
669                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
670                         x86_cap_flag(df->feature), df->level);
671         }
672 }
673 
674 /*
675  * Naming convention should be: <Name> [(<Codename>)]
676  * This table only is used unless init_<vendor>() below doesn't set it;
677  * in particular, if CPUID levels 0x80000002..4 are supported, this
678  * isn't used
679  */
680 
681 /* Look up CPU names by table lookup. */
682 static const char *table_lookup_model(struct cpuinfo_x86 *c)
683 {
684 #ifdef CONFIG_X86_32
685         const struct legacy_cpu_model_info *info;
686 
687         if (c->x86_model >= 16)
688                 return NULL;    /* Range check */
689 
690         if (!this_cpu)
691                 return NULL;
692 
693         info = this_cpu->legacy_models;
694 
695         while (info->family) {
696                 if (info->family == c->x86)
697                         return info->model_names[c->x86_model];
698                 info++;
699         }
700 #endif
701         return NULL;            /* Not found */
702 }
703 
704 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
705 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
706 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
707 
708 #ifdef CONFIG_X86_32
709 /* The 32-bit entry code needs to find cpu_entry_area. */
710 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
711 #endif
712 
713 /* Load the original GDT from the per-cpu structure */
714 void load_direct_gdt(int cpu)
715 {
716         struct desc_ptr gdt_descr;
717 
718         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
719         gdt_descr.size = GDT_SIZE - 1;
720         load_gdt(&gdt_descr);
721 }
722 EXPORT_SYMBOL_GPL(load_direct_gdt);
723 
724 /* Load a fixmap remapping of the per-cpu GDT */
725 void load_fixmap_gdt(int cpu)
726 {
727         struct desc_ptr gdt_descr;
728 
729         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
730         gdt_descr.size = GDT_SIZE - 1;
731         load_gdt(&gdt_descr);
732 }
733 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
734 
735 /**
736  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
737  * @cpu:        The CPU number for which this is invoked
738  *
739  * Invoked during early boot to switch from early GDT and early per CPU to
740  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
741  * switch is implicit by loading the direct GDT. On 64bit this requires
742  * to update GSBASE.
743  */
744 void __init switch_gdt_and_percpu_base(int cpu)
745 {
746         load_direct_gdt(cpu);
747 
748 #ifdef CONFIG_X86_64
749         /*
750          * No need to load %gs. It is already correct.
751          *
752          * Writing %gs on 64bit would zero GSBASE which would make any per
753          * CPU operation up to the point of the wrmsrl() fault.
754          *
755          * Set GSBASE to the new offset. Until the wrmsrl() happens the
756          * early mapping is still valid. That means the GSBASE update will
757          * lose any prior per CPU data which was not copied over in
758          * setup_per_cpu_areas().
759          *
760          * This works even with stackprotector enabled because the
761          * per CPU stack canary is 0 in both per CPU areas.
762          */
763         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
764 #else
765         /*
766          * %fs is already set to __KERNEL_PERCPU, but after switching GDT
767          * it is required to load FS again so that the 'hidden' part is
768          * updated from the new GDT. Up to this point the early per CPU
769          * translation is active. Any content of the early per CPU data
770          * which was not copied over in setup_per_cpu_areas() is lost.
771          */
772         loadsegment(fs, __KERNEL_PERCPU);
773 #endif
774 }
775 
776 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
777 
778 static void get_model_name(struct cpuinfo_x86 *c)
779 {
780         unsigned int *v;
781         char *p, *q, *s;
782 
783         if (c->extended_cpuid_level < 0x80000004)
784                 return;
785 
786         v = (unsigned int *)c->x86_model_id;
787         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
788         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
789         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
790         c->x86_model_id[48] = 0;
791 
792         /* Trim whitespace */
793         p = q = s = &c->x86_model_id[0];
794 
795         while (*p == ' ')
796                 p++;
797 
798         while (*p) {
799                 /* Note the last non-whitespace index */
800                 if (!isspace(*p))
801                         s = q;
802 
803                 *q++ = *p++;
804         }
805 
806         *(s + 1) = '\0';
807 }
808 
809 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
810 {
811         unsigned int n, dummy, ebx, ecx, edx, l2size;
812 
813         n = c->extended_cpuid_level;
814 
815         if (n >= 0x80000005) {
816                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
817                 c->x86_cache_size = (ecx>>24) + (edx>>24);
818 #ifdef CONFIG_X86_64
819                 /* On K8 L1 TLB is inclusive, so don't count it */
820                 c->x86_tlbsize = 0;
821 #endif
822         }
823 
824         if (n < 0x80000006)     /* Some chips just has a large L1. */
825                 return;
826 
827         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
828         l2size = ecx >> 16;
829 
830 #ifdef CONFIG_X86_64
831         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
832 #else
833         /* do processor-specific cache resizing */
834         if (this_cpu->legacy_cache_size)
835                 l2size = this_cpu->legacy_cache_size(c, l2size);
836 
837         /* Allow user to override all this if necessary. */
838         if (cachesize_override != -1)
839                 l2size = cachesize_override;
840 
841         if (l2size == 0)
842                 return;         /* Again, no L2 cache is possible */
843 #endif
844 
845         c->x86_cache_size = l2size;
846 }
847 
848 u16 __read_mostly tlb_lli_4k[NR_INFO];
849 u16 __read_mostly tlb_lli_2m[NR_INFO];
850 u16 __read_mostly tlb_lli_4m[NR_INFO];
851 u16 __read_mostly tlb_lld_4k[NR_INFO];
852 u16 __read_mostly tlb_lld_2m[NR_INFO];
853 u16 __read_mostly tlb_lld_4m[NR_INFO];
854 u16 __read_mostly tlb_lld_1g[NR_INFO];
855 
856 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
857 {
858         if (this_cpu->c_detect_tlb)
859                 this_cpu->c_detect_tlb(c);
860 
861         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
862                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
863                 tlb_lli_4m[ENTRIES]);
864 
865         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
866                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
867                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
868 }
869 
870 static void get_cpu_vendor(struct cpuinfo_x86 *c)
871 {
872         char *v = c->x86_vendor_id;
873         int i;
874 
875         for (i = 0; i < X86_VENDOR_NUM; i++) {
876                 if (!cpu_devs[i])
877                         break;
878 
879                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
880                     (cpu_devs[i]->c_ident[1] &&
881                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
882 
883                         this_cpu = cpu_devs[i];
884                         c->x86_vendor = this_cpu->c_x86_vendor;
885                         return;
886                 }
887         }
888 
889         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
890                     "CPU: Your system may be unstable.\n", v);
891 
892         c->x86_vendor = X86_VENDOR_UNKNOWN;
893         this_cpu = &default_cpu;
894 }
895 
896 void cpu_detect(struct cpuinfo_x86 *c)
897 {
898         /* Get vendor name */
899         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
900               (unsigned int *)&c->x86_vendor_id[0],
901               (unsigned int *)&c->x86_vendor_id[8],
902               (unsigned int *)&c->x86_vendor_id[4]);
903 
904         c->x86 = 4;
905         /* Intel-defined flags: level 0x00000001 */
906         if (c->cpuid_level >= 0x00000001) {
907                 u32 junk, tfms, cap0, misc;
908 
909                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
910                 c->x86          = x86_family(tfms);
911                 c->x86_model    = x86_model(tfms);
912                 c->x86_stepping = x86_stepping(tfms);
913 
914                 if (cap0 & (1<<19)) {
915                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
916                         c->x86_cache_alignment = c->x86_clflush_size;
917                 }
918         }
919 }
920 
921 static void apply_forced_caps(struct cpuinfo_x86 *c)
922 {
923         int i;
924 
925         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
926                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
927                 c->x86_capability[i] |= cpu_caps_set[i];
928         }
929 }
930 
931 static void init_speculation_control(struct cpuinfo_x86 *c)
932 {
933         /*
934          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
935          * and they also have a different bit for STIBP support. Also,
936          * a hypervisor might have set the individual AMD bits even on
937          * Intel CPUs, for finer-grained selection of what's available.
938          */
939         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
940                 set_cpu_cap(c, X86_FEATURE_IBRS);
941                 set_cpu_cap(c, X86_FEATURE_IBPB);
942                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
943         }
944 
945         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
946                 set_cpu_cap(c, X86_FEATURE_STIBP);
947 
948         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
949             cpu_has(c, X86_FEATURE_VIRT_SSBD))
950                 set_cpu_cap(c, X86_FEATURE_SSBD);
951 
952         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
953                 set_cpu_cap(c, X86_FEATURE_IBRS);
954                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
955         }
956 
957         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
958                 set_cpu_cap(c, X86_FEATURE_IBPB);
959 
960         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
961                 set_cpu_cap(c, X86_FEATURE_STIBP);
962                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
963         }
964 
965         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
966                 set_cpu_cap(c, X86_FEATURE_SSBD);
967                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
968                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
969         }
970 }
971 
972 void get_cpu_cap(struct cpuinfo_x86 *c)
973 {
974         u32 eax, ebx, ecx, edx;
975 
976         /* Intel-defined flags: level 0x00000001 */
977         if (c->cpuid_level >= 0x00000001) {
978                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
979 
980                 c->x86_capability[CPUID_1_ECX] = ecx;
981                 c->x86_capability[CPUID_1_EDX] = edx;
982         }
983 
984         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
985         if (c->cpuid_level >= 0x00000006)
986                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
987 
988         /* Additional Intel-defined flags: level 0x00000007 */
989         if (c->cpuid_level >= 0x00000007) {
990                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
991                 c->x86_capability[CPUID_7_0_EBX] = ebx;
992                 c->x86_capability[CPUID_7_ECX] = ecx;
993                 c->x86_capability[CPUID_7_EDX] = edx;
994 
995                 /* Check valid sub-leaf index before accessing it */
996                 if (eax >= 1) {
997                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
998                         c->x86_capability[CPUID_7_1_EAX] = eax;
999                 }
1000         }
1001 
1002         /* Extended state features: level 0x0000000d */
1003         if (c->cpuid_level >= 0x0000000d) {
1004                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1005 
1006                 c->x86_capability[CPUID_D_1_EAX] = eax;
1007         }
1008 
1009         /* AMD-defined flags: level 0x80000001 */
1010         eax = cpuid_eax(0x80000000);
1011         c->extended_cpuid_level = eax;
1012 
1013         if ((eax & 0xffff0000) == 0x80000000) {
1014                 if (eax >= 0x80000001) {
1015                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1016 
1017                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1018                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
1019                 }
1020         }
1021 
1022         if (c->extended_cpuid_level >= 0x80000007) {
1023                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1024 
1025                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1026                 c->x86_power = edx;
1027         }
1028 
1029         if (c->extended_cpuid_level >= 0x80000008) {
1030                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1031                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1032         }
1033 
1034         if (c->extended_cpuid_level >= 0x8000000a)
1035                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1036 
1037         if (c->extended_cpuid_level >= 0x8000001f)
1038                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1039 
1040         if (c->extended_cpuid_level >= 0x80000021)
1041                 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1042 
1043         init_scattered_cpuid_features(c);
1044         init_speculation_control(c);
1045 
1046         /*
1047          * Clear/Set all flags overridden by options, after probe.
1048          * This needs to happen each time we re-probe, which may happen
1049          * several times during CPU initialization.
1050          */
1051         apply_forced_caps(c);
1052 }
1053 
1054 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1055 {
1056         u32 eax, ebx, ecx, edx;
1057 
1058         if (!cpu_has(c, X86_FEATURE_CPUID) ||
1059             (c->extended_cpuid_level < 0x80000008)) {
1060                 if (IS_ENABLED(CONFIG_X86_64)) {
1061                         c->x86_clflush_size = 64;
1062                         c->x86_phys_bits = 36;
1063                         c->x86_virt_bits = 48;
1064                 } else {
1065                         c->x86_clflush_size = 32;
1066                         c->x86_virt_bits = 32;
1067                         c->x86_phys_bits = 32;
1068 
1069                         if (cpu_has(c, X86_FEATURE_PAE) ||
1070                             cpu_has(c, X86_FEATURE_PSE36))
1071                                 c->x86_phys_bits = 36;
1072                 }
1073         } else {
1074                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1075 
1076                 c->x86_virt_bits = (eax >> 8) & 0xff;
1077                 c->x86_phys_bits = eax & 0xff;
1078 
1079                 /* Provide a sane default if not enumerated: */
1080                 if (!c->x86_clflush_size)
1081                         c->x86_clflush_size = 32;
1082         }
1083 
1084         c->x86_cache_bits = c->x86_phys_bits;
1085         c->x86_cache_alignment = c->x86_clflush_size;
1086 }
1087 
1088 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1089 {
1090 #ifdef CONFIG_X86_32
1091         int i;
1092 
1093         /*
1094          * First of all, decide if this is a 486 or higher
1095          * It's a 486 if we can modify the AC flag
1096          */
1097         if (flag_is_changeable_p(X86_EFLAGS_AC))
1098                 c->x86 = 4;
1099         else
1100                 c->x86 = 3;
1101 
1102         for (i = 0; i < X86_VENDOR_NUM; i++)
1103                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1104                         c->x86_vendor_id[0] = 0;
1105                         cpu_devs[i]->c_identify(c);
1106                         if (c->x86_vendor_id[0]) {
1107                                 get_cpu_vendor(c);
1108                                 break;
1109                         }
1110                 }
1111 #endif
1112 }
1113 
1114 #define NO_SPECULATION          BIT(0)
1115 #define NO_MELTDOWN             BIT(1)
1116 #define NO_SSB                  BIT(2)
1117 #define NO_L1TF                 BIT(3)
1118 #define NO_MDS                  BIT(4)
1119 #define MSBDS_ONLY              BIT(5)
1120 #define NO_SWAPGS               BIT(6)
1121 #define NO_ITLB_MULTIHIT        BIT(7)
1122 #define NO_SPECTRE_V2           BIT(8)
1123 #define NO_MMIO                 BIT(9)
1124 #define NO_EIBRS_PBRSB          BIT(10)
1125 #define NO_BHI                  BIT(11)
1126 
1127 #define VULNWL(vendor, family, model, whitelist)        \
1128         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1129 
1130 #define VULNWL_INTEL(vfm, whitelist)            \
1131         X86_MATCH_VFM(vfm, whitelist)
1132 
1133 #define VULNWL_AMD(family, whitelist)           \
1134         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1135 
1136 #define VULNWL_HYGON(family, whitelist)         \
1137         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1138 
1139 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1140         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1141         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1142         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1143         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1144         VULNWL(VORTEX,  5, X86_MODEL_ANY,       NO_SPECULATION),
1145         VULNWL(VORTEX,  6, X86_MODEL_ANY,       NO_SPECULATION),
1146 
1147         /* Intel Family 6 */
1148         VULNWL_INTEL(INTEL_TIGERLAKE,           NO_MMIO),
1149         VULNWL_INTEL(INTEL_TIGERLAKE_L,         NO_MMIO),
1150         VULNWL_INTEL(INTEL_ALDERLAKE,           NO_MMIO),
1151         VULNWL_INTEL(INTEL_ALDERLAKE_L,         NO_MMIO),
1152 
1153         VULNWL_INTEL(INTEL_ATOM_SALTWELL,       NO_SPECULATION | NO_ITLB_MULTIHIT),
1154         VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1155         VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID,   NO_SPECULATION | NO_ITLB_MULTIHIT),
1156         VULNWL_INTEL(INTEL_ATOM_BONNELL,        NO_SPECULATION | NO_ITLB_MULTIHIT),
1157         VULNWL_INTEL(INTEL_ATOM_BONNELL_MID,    NO_SPECULATION | NO_ITLB_MULTIHIT),
1158 
1159         VULNWL_INTEL(INTEL_ATOM_SILVERMONT,     NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160         VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D,   NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161         VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162         VULNWL_INTEL(INTEL_ATOM_AIRMONT,        NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163         VULNWL_INTEL(INTEL_XEON_PHI_KNL,        NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1164         VULNWL_INTEL(INTEL_XEON_PHI_KNM,        NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1165 
1166         VULNWL_INTEL(INTEL_CORE_YONAH,          NO_SSB),
1167 
1168         VULNWL_INTEL(INTEL_ATOM_AIRMONT_MID,    NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
1169         VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP,     NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1170 
1171         VULNWL_INTEL(INTEL_ATOM_GOLDMONT,       NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1172         VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D,     NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1173         VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS,  NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1174 
1175         /*
1176          * Technically, swapgs isn't serializing on AMD (despite it previously
1177          * being documented as such in the APM).  But according to AMD, %gs is
1178          * updated non-speculatively, and the issuing of %gs-relative memory
1179          * operands will be blocked until the %gs update completes, which is
1180          * good enough for our purposes.
1181          */
1182 
1183         VULNWL_INTEL(INTEL_ATOM_TREMONT,        NO_EIBRS_PBRSB),
1184         VULNWL_INTEL(INTEL_ATOM_TREMONT_L,      NO_EIBRS_PBRSB),
1185         VULNWL_INTEL(INTEL_ATOM_TREMONT_D,      NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1186 
1187         /* AMD Family 0xf - 0x12 */
1188         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1191         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1192 
1193         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1194         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1195         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1196 
1197         /* Zhaoxin Family 7 */
1198         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1199         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1200         {}
1201 };
1202 
1203 #define VULNBL(vendor, family, model, blacklist)        \
1204         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1205 
1206 #define VULNBL_INTEL_STEPPINGS(vfm, steppings, issues)             \
1207         X86_MATCH_VFM_STEPPINGS(vfm, steppings, issues)
1208 
1209 #define VULNBL_AMD(family, blacklist)           \
1210         VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1211 
1212 #define VULNBL_HYGON(family, blacklist)         \
1213         VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1214 
1215 #define SRBDS           BIT(0)
1216 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1217 #define MMIO            BIT(1)
1218 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1219 #define MMIO_SBDS       BIT(2)
1220 /* CPU is affected by RETbleed, speculating where you would not expect it */
1221 #define RETBLEED        BIT(3)
1222 /* CPU is affected by SMT (cross-thread) return predictions */
1223 #define SMT_RSB         BIT(4)
1224 /* CPU is affected by SRSO */
1225 #define SRSO            BIT(5)
1226 /* CPU is affected by GDS */
1227 #define GDS             BIT(6)
1228 /* CPU is affected by Register File Data Sampling */
1229 #define RFDS            BIT(7)
1230 
1231 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1232         VULNBL_INTEL_STEPPINGS(INTEL_IVYBRIDGE,         X86_STEPPING_ANY,               SRBDS),
1233         VULNBL_INTEL_STEPPINGS(INTEL_HASWELL,           X86_STEPPING_ANY,               SRBDS),
1234         VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_L,         X86_STEPPING_ANY,               SRBDS),
1235         VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_G,         X86_STEPPING_ANY,               SRBDS),
1236         VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_X,         X86_STEPPING_ANY,               MMIO),
1237         VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_D,       X86_STEPPING_ANY,               MMIO),
1238         VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_G,       X86_STEPPING_ANY,               SRBDS),
1239         VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_X,       X86_STEPPING_ANY,               MMIO),
1240         VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL,         X86_STEPPING_ANY,               SRBDS),
1241         VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_X,         X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1242         VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_L,         X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1243         VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE,           X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1244         VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE_L,        X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1245         VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE,          X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1246         VULNBL_INTEL_STEPPINGS(INTEL_CANNONLAKE_L,      X86_STEPPING_ANY,               RETBLEED),
1247         VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_L,         X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1248         VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_D,         X86_STEPPING_ANY,               MMIO | GDS),
1249         VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_X,         X86_STEPPING_ANY,               MMIO | GDS),
1250         VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE,         X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1251         VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L,       X86_STEPPINGS(0x0, 0x0),        MMIO | RETBLEED),
1252         VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1253         VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE_L,       X86_STEPPING_ANY,               GDS),
1254         VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE,         X86_STEPPING_ANY,               GDS),
1255         VULNBL_INTEL_STEPPINGS(INTEL_LAKEFIELD,         X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1256         VULNBL_INTEL_STEPPINGS(INTEL_ROCKETLAKE,        X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1257         VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE,         X86_STEPPING_ANY,               RFDS),
1258         VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE_L,       X86_STEPPING_ANY,               RFDS),
1259         VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE,        X86_STEPPING_ANY,               RFDS),
1260         VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_P,      X86_STEPPING_ANY,               RFDS),
1261         VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_S,      X86_STEPPING_ANY,               RFDS),
1262         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GRACEMONT,    X86_STEPPING_ANY,               RFDS),
1263         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT,      X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RFDS),
1264         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_D,    X86_STEPPING_ANY,               MMIO | RFDS),
1265         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_L,    X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RFDS),
1266         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT,     X86_STEPPING_ANY,               RFDS),
1267         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_D,   X86_STEPPING_ANY,               RFDS),
1268         VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY,              RFDS),
1269 
1270         VULNBL_AMD(0x15, RETBLEED),
1271         VULNBL_AMD(0x16, RETBLEED),
1272         VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1273         VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1274         VULNBL_AMD(0x19, SRSO),
1275         {}
1276 };
1277 
1278 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1279 {
1280         const struct x86_cpu_id *m = x86_match_cpu(table);
1281 
1282         return m && !!(m->driver_data & which);
1283 }
1284 
1285 u64 x86_read_arch_cap_msr(void)
1286 {
1287         u64 x86_arch_cap_msr = 0;
1288 
1289         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1290                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1291 
1292         return x86_arch_cap_msr;
1293 }
1294 
1295 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1296 {
1297         return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1298                 x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1299                 x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1300 }
1301 
1302 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1303 {
1304         /* The "immunity" bit trumps everything else: */
1305         if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1306                 return false;
1307 
1308         /*
1309          * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1310          * indicate that mitigation is needed because guest is running on a
1311          * vulnerable hardware or may migrate to such hardware:
1312          */
1313         if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1314                 return true;
1315 
1316         /* Only consult the blacklist when there is no enumeration: */
1317         return cpu_matches(cpu_vuln_blacklist, RFDS);
1318 }
1319 
1320 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1321 {
1322         u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1323 
1324         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1325         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1326             !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1327                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1328 
1329         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1330                 return;
1331 
1332         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1333 
1334         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1335                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1336 
1337         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1338             !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1339            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1340                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1341 
1342         /*
1343          * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1344          * flag and protect from vendor-specific bugs via the whitelist.
1345          *
1346          * Don't use AutoIBRS when SNP is enabled because it degrades host
1347          * userspace indirect branch performance.
1348          */
1349         if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1350             (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1351              !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1352                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1353                 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1354                     !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1355                         setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1356         }
1357 
1358         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1359             !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1360                 setup_force_cpu_bug(X86_BUG_MDS);
1361                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1362                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1363         }
1364 
1365         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1366                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1367 
1368         /*
1369          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1370          *      - TSX is supported or
1371          *      - TSX_CTRL is present
1372          *
1373          * TSX_CTRL check is needed for cases when TSX could be disabled before
1374          * the kernel boot e.g. kexec.
1375          * TSX_CTRL check alone is not sufficient for cases when the microcode
1376          * update is not present or running as guest that don't get TSX_CTRL.
1377          */
1378         if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1379             (cpu_has(c, X86_FEATURE_RTM) ||
1380              (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1381                 setup_force_cpu_bug(X86_BUG_TAA);
1382 
1383         /*
1384          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1385          * in the vulnerability blacklist.
1386          *
1387          * Some of the implications and mitigation of Shared Buffers Data
1388          * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1389          * SRBDS.
1390          */
1391         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1392              cpu_has(c, X86_FEATURE_RDSEED)) &&
1393             cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1394                     setup_force_cpu_bug(X86_BUG_SRBDS);
1395 
1396         /*
1397          * Processor MMIO Stale Data bug enumeration
1398          *
1399          * Affected CPU list is generally enough to enumerate the vulnerability,
1400          * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1401          * not want the guest to enumerate the bug.
1402          *
1403          * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1404          * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1405          */
1406         if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1407                 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1408                         setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1409                 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1410                         setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1411         }
1412 
1413         if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1414                 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1415                         setup_force_cpu_bug(X86_BUG_RETBLEED);
1416         }
1417 
1418         if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1419                 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1420 
1421         if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1422                 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1423                         setup_force_cpu_bug(X86_BUG_SRSO);
1424         }
1425 
1426         /*
1427          * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1428          * an affected processor, the VMM may have disabled the use of GATHER by
1429          * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1430          * which means that AVX will be disabled.
1431          */
1432         if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1433             boot_cpu_has(X86_FEATURE_AVX))
1434                 setup_force_cpu_bug(X86_BUG_GDS);
1435 
1436         if (vulnerable_to_rfds(x86_arch_cap_msr))
1437                 setup_force_cpu_bug(X86_BUG_RFDS);
1438 
1439         /* When virtualized, eIBRS could be hidden, assume vulnerable */
1440         if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) &&
1441             !cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1442             (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1443              boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1444                 setup_force_cpu_bug(X86_BUG_BHI);
1445 
1446         if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
1447                 setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
1448 
1449         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1450                 return;
1451 
1452         /* Rogue Data Cache Load? No! */
1453         if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1454                 return;
1455 
1456         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1457 
1458         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1459                 return;
1460 
1461         setup_force_cpu_bug(X86_BUG_L1TF);
1462 }
1463 
1464 /*
1465  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1466  * unfortunately, that's not true in practice because of early VIA
1467  * chips and (more importantly) broken virtualizers that are not easy
1468  * to detect. In the latter case it doesn't even *fail* reliably, so
1469  * probing for it doesn't even work. Disable it completely on 32-bit
1470  * unless we can find a reliable way to detect all the broken cases.
1471  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1472  */
1473 static void detect_nopl(void)
1474 {
1475 #ifdef CONFIG_X86_32
1476         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1477 #else
1478         setup_force_cpu_cap(X86_FEATURE_NOPL);
1479 #endif
1480 }
1481 
1482 /*
1483  * We parse cpu parameters early because fpu__init_system() is executed
1484  * before parse_early_param().
1485  */
1486 static void __init cpu_parse_early_param(void)
1487 {
1488         char arg[128];
1489         char *argptr = arg, *opt;
1490         int arglen, taint = 0;
1491 
1492 #ifdef CONFIG_X86_32
1493         if (cmdline_find_option_bool(boot_command_line, "no387"))
1494 #ifdef CONFIG_MATH_EMULATION
1495                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1496 #else
1497                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1498 #endif
1499 
1500         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1501                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1502 #endif
1503 
1504         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1505                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1506 
1507         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1508                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1509 
1510         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1511                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1512 
1513         if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1514                 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1515 
1516         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1517         if (arglen <= 0)
1518                 return;
1519 
1520         pr_info("Clearing CPUID bits:");
1521 
1522         while (argptr) {
1523                 bool found __maybe_unused = false;
1524                 unsigned int bit;
1525 
1526                 opt = strsep(&argptr, ",");
1527 
1528                 /*
1529                  * Handle naked numbers first for feature flags which don't
1530                  * have names.
1531                  */
1532                 if (!kstrtouint(opt, 10, &bit)) {
1533                         if (bit < NCAPINTS * 32) {
1534 
1535                                 /* empty-string, i.e., ""-defined feature flags */
1536                                 if (!x86_cap_flags[bit])
1537                                         pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1538                                 else
1539                                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1540 
1541                                 setup_clear_cpu_cap(bit);
1542                                 taint++;
1543                         }
1544                         /*
1545                          * The assumption is that there are no feature names with only
1546                          * numbers in the name thus go to the next argument.
1547                          */
1548                         continue;
1549                 }
1550 
1551                 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1552                         if (!x86_cap_flag(bit))
1553                                 continue;
1554 
1555                         if (strcmp(x86_cap_flag(bit), opt))
1556                                 continue;
1557 
1558                         pr_cont(" %s", opt);
1559                         setup_clear_cpu_cap(bit);
1560                         taint++;
1561                         found = true;
1562                         break;
1563                 }
1564 
1565                 if (!found)
1566                         pr_cont(" (unknown: %s)", opt);
1567         }
1568         pr_cont("\n");
1569 
1570         if (taint)
1571                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1572 }
1573 
1574 /*
1575  * Do minimum CPU detection early.
1576  * Fields really needed: vendor, cpuid_level, family, model, mask,
1577  * cache alignment.
1578  * The others are not touched to avoid unwanted side effects.
1579  *
1580  * WARNING: this function is only called on the boot CPU.  Don't add code
1581  * here that is supposed to run on all CPUs.
1582  */
1583 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1584 {
1585         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1586         c->extended_cpuid_level = 0;
1587 
1588         if (!have_cpuid_p())
1589                 identify_cpu_without_cpuid(c);
1590 
1591         /* cyrix could have cpuid enabled via c_identify()*/
1592         if (have_cpuid_p()) {
1593                 cpu_detect(c);
1594                 get_cpu_vendor(c);
1595                 intel_unlock_cpuid_leafs(c);
1596                 get_cpu_cap(c);
1597                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1598                 get_cpu_address_sizes(c);
1599                 cpu_parse_early_param();
1600 
1601                 cpu_init_topology(c);
1602 
1603                 if (this_cpu->c_early_init)
1604                         this_cpu->c_early_init(c);
1605 
1606                 c->cpu_index = 0;
1607                 filter_cpuid_features(c, false);
1608 
1609                 if (this_cpu->c_bsp_init)
1610                         this_cpu->c_bsp_init(c);
1611         } else {
1612                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1613                 get_cpu_address_sizes(c);
1614                 cpu_init_topology(c);
1615         }
1616 
1617         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1618 
1619         cpu_set_bug_bits(c);
1620 
1621         sld_setup(c);
1622 
1623 #ifdef CONFIG_X86_32
1624         /*
1625          * Regardless of whether PCID is enumerated, the SDM says
1626          * that it can't be enabled in 32-bit mode.
1627          */
1628         setup_clear_cpu_cap(X86_FEATURE_PCID);
1629 #endif
1630 
1631         /*
1632          * Later in the boot process pgtable_l5_enabled() relies on
1633          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1634          * enabled by this point we need to clear the feature bit to avoid
1635          * false-positives at the later stage.
1636          *
1637          * pgtable_l5_enabled() can be false here for several reasons:
1638          *  - 5-level paging is disabled compile-time;
1639          *  - it's 32-bit kernel;
1640          *  - machine doesn't support 5-level paging;
1641          *  - user specified 'no5lvl' in kernel command line.
1642          */
1643         if (!pgtable_l5_enabled())
1644                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1645 
1646         detect_nopl();
1647 }
1648 
1649 void __init early_cpu_init(void)
1650 {
1651         const struct cpu_dev *const *cdev;
1652         int count = 0;
1653 
1654 #ifdef CONFIG_PROCESSOR_SELECT
1655         pr_info("KERNEL supported cpus:\n");
1656 #endif
1657 
1658         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1659                 const struct cpu_dev *cpudev = *cdev;
1660 
1661                 if (count >= X86_VENDOR_NUM)
1662                         break;
1663                 cpu_devs[count] = cpudev;
1664                 count++;
1665 
1666 #ifdef CONFIG_PROCESSOR_SELECT
1667                 {
1668                         unsigned int j;
1669 
1670                         for (j = 0; j < 2; j++) {
1671                                 if (!cpudev->c_ident[j])
1672                                         continue;
1673                                 pr_info("  %s %s\n", cpudev->c_vendor,
1674                                         cpudev->c_ident[j]);
1675                         }
1676                 }
1677 #endif
1678         }
1679         early_identify_cpu(&boot_cpu_data);
1680 }
1681 
1682 static bool detect_null_seg_behavior(void)
1683 {
1684         /*
1685          * Empirically, writing zero to a segment selector on AMD does
1686          * not clear the base, whereas writing zero to a segment
1687          * selector on Intel does clear the base.  Intel's behavior
1688          * allows slightly faster context switches in the common case
1689          * where GS is unused by the prev and next threads.
1690          *
1691          * Since neither vendor documents this anywhere that I can see,
1692          * detect it directly instead of hard-coding the choice by
1693          * vendor.
1694          *
1695          * I've designated AMD's behavior as the "bug" because it's
1696          * counterintuitive and less friendly.
1697          */
1698 
1699         unsigned long old_base, tmp;
1700         rdmsrl(MSR_FS_BASE, old_base);
1701         wrmsrl(MSR_FS_BASE, 1);
1702         loadsegment(fs, 0);
1703         rdmsrl(MSR_FS_BASE, tmp);
1704         wrmsrl(MSR_FS_BASE, old_base);
1705         return tmp == 0;
1706 }
1707 
1708 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1709 {
1710         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1711         if (!IS_ENABLED(CONFIG_X86_64))
1712                 return;
1713 
1714         if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1715                 return;
1716 
1717         /*
1718          * CPUID bit above wasn't set. If this kernel is still running
1719          * as a HV guest, then the HV has decided not to advertize
1720          * that CPUID bit for whatever reason.  For example, one
1721          * member of the migration pool might be vulnerable.  Which
1722          * means, the bug is present: set the BUG flag and return.
1723          */
1724         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1725                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1726                 return;
1727         }
1728 
1729         /*
1730          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1731          * 0x18 is the respective family for Hygon.
1732          */
1733         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1734             detect_null_seg_behavior())
1735                 return;
1736 
1737         /* All the remaining ones are affected */
1738         set_cpu_bug(c, X86_BUG_NULL_SEG);
1739 }
1740 
1741 static void generic_identify(struct cpuinfo_x86 *c)
1742 {
1743         c->extended_cpuid_level = 0;
1744 
1745         if (!have_cpuid_p())
1746                 identify_cpu_without_cpuid(c);
1747 
1748         /* cyrix could have cpuid enabled via c_identify()*/
1749         if (!have_cpuid_p())
1750                 return;
1751 
1752         cpu_detect(c);
1753 
1754         get_cpu_vendor(c);
1755         intel_unlock_cpuid_leafs(c);
1756         get_cpu_cap(c);
1757 
1758         get_cpu_address_sizes(c);
1759 
1760         get_model_name(c); /* Default name */
1761 
1762         /*
1763          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1764          * systems that run Linux at CPL > 0 may or may not have the
1765          * issue, but, even if they have the issue, there's absolutely
1766          * nothing we can do about it because we can't use the real IRET
1767          * instruction.
1768          *
1769          * NB: For the time being, only 32-bit kernels support
1770          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1771          * whether to apply espfix using paravirt hooks.  If any
1772          * non-paravirt system ever shows up that does *not* have the
1773          * ESPFIX issue, we can change this.
1774          */
1775 #ifdef CONFIG_X86_32
1776         set_cpu_bug(c, X86_BUG_ESPFIX);
1777 #endif
1778 }
1779 
1780 /*
1781  * This does the hard work of actually picking apart the CPU stuff...
1782  */
1783 static void identify_cpu(struct cpuinfo_x86 *c)
1784 {
1785         int i;
1786 
1787         c->loops_per_jiffy = loops_per_jiffy;
1788         c->x86_cache_size = 0;
1789         c->x86_vendor = X86_VENDOR_UNKNOWN;
1790         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1791         c->x86_vendor_id[0] = '\0'; /* Unset */
1792         c->x86_model_id[0] = '\0';  /* Unset */
1793 #ifdef CONFIG_X86_64
1794         c->x86_clflush_size = 64;
1795         c->x86_phys_bits = 36;
1796         c->x86_virt_bits = 48;
1797 #else
1798         c->cpuid_level = -1;    /* CPUID not detected */
1799         c->x86_clflush_size = 32;
1800         c->x86_phys_bits = 32;
1801         c->x86_virt_bits = 32;
1802 #endif
1803         c->x86_cache_alignment = c->x86_clflush_size;
1804         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1805 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1806         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1807 #endif
1808 
1809         generic_identify(c);
1810 
1811         cpu_parse_topology(c);
1812 
1813         if (this_cpu->c_identify)
1814                 this_cpu->c_identify(c);
1815 
1816         /* Clear/Set all flags overridden by options, after probe */
1817         apply_forced_caps(c);
1818 
1819         /*
1820          * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1821          * Hygon will clear it in ->c_init() below.
1822          */
1823         set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1824 
1825         /*
1826          * Vendor-specific initialization.  In this section we
1827          * canonicalize the feature flags, meaning if there are
1828          * features a certain CPU supports which CPUID doesn't
1829          * tell us, CPUID claiming incorrect flags, or other bugs,
1830          * we handle them here.
1831          *
1832          * At the end of this section, c->x86_capability better
1833          * indicate the features this CPU genuinely supports!
1834          */
1835         if (this_cpu->c_init)
1836                 this_cpu->c_init(c);
1837 
1838         /* Disable the PN if appropriate */
1839         squash_the_stupid_serial_number(c);
1840 
1841         /* Set up SMEP/SMAP/UMIP */
1842         setup_smep(c);
1843         setup_smap(c);
1844         setup_umip(c);
1845 
1846         /* Enable FSGSBASE instructions if available. */
1847         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1848                 cr4_set_bits(X86_CR4_FSGSBASE);
1849                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1850         }
1851 
1852         /*
1853          * The vendor-specific functions might have changed features.
1854          * Now we do "generic changes."
1855          */
1856 
1857         /* Filter out anything that depends on CPUID levels we don't have */
1858         filter_cpuid_features(c, true);
1859 
1860         /* If the model name is still unset, do table lookup. */
1861         if (!c->x86_model_id[0]) {
1862                 const char *p;
1863                 p = table_lookup_model(c);
1864                 if (p)
1865                         strcpy(c->x86_model_id, p);
1866                 else
1867                         /* Last resort... */
1868                         sprintf(c->x86_model_id, "%02x/%02x",
1869                                 c->x86, c->x86_model);
1870         }
1871 
1872         x86_init_rdrand(c);
1873         setup_pku(c);
1874         setup_cet(c);
1875 
1876         /*
1877          * Clear/Set all flags overridden by options, need do it
1878          * before following smp all cpus cap AND.
1879          */
1880         apply_forced_caps(c);
1881 
1882         /*
1883          * On SMP, boot_cpu_data holds the common feature set between
1884          * all CPUs; so make sure that we indicate which features are
1885          * common between the CPUs.  The first time this routine gets
1886          * executed, c == &boot_cpu_data.
1887          */
1888         if (c != &boot_cpu_data) {
1889                 /* AND the already accumulated flags with these */
1890                 for (i = 0; i < NCAPINTS; i++)
1891                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1892 
1893                 /* OR, i.e. replicate the bug flags */
1894                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1895                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1896         }
1897 
1898         ppin_init(c);
1899 
1900         /* Init Machine Check Exception if available. */
1901         mcheck_cpu_init(c);
1902 
1903 #ifdef CONFIG_NUMA
1904         numa_add_cpu(smp_processor_id());
1905 #endif
1906 }
1907 
1908 /*
1909  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1910  * on 32-bit kernels:
1911  */
1912 #ifdef CONFIG_X86_32
1913 void enable_sep_cpu(void)
1914 {
1915         struct tss_struct *tss;
1916         int cpu;
1917 
1918         if (!boot_cpu_has(X86_FEATURE_SEP))
1919                 return;
1920 
1921         cpu = get_cpu();
1922         tss = &per_cpu(cpu_tss_rw, cpu);
1923 
1924         /*
1925          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1926          * see the big comment in struct x86_hw_tss's definition.
1927          */
1928 
1929         tss->x86_tss.ss1 = __KERNEL_CS;
1930         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1931         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1932         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1933 
1934         put_cpu();
1935 }
1936 #endif
1937 
1938 static __init void identify_boot_cpu(void)
1939 {
1940         identify_cpu(&boot_cpu_data);
1941         if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1942                 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1943 #ifdef CONFIG_X86_32
1944         enable_sep_cpu();
1945 #endif
1946         cpu_detect_tlb(&boot_cpu_data);
1947         setup_cr_pinning();
1948 
1949         tsx_init();
1950         tdx_init();
1951         lkgs_init();
1952 }
1953 
1954 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1955 {
1956         BUG_ON(c == &boot_cpu_data);
1957         identify_cpu(c);
1958 #ifdef CONFIG_X86_32
1959         enable_sep_cpu();
1960 #endif
1961         x86_spec_ctrl_setup_ap();
1962         update_srbds_msr();
1963         if (boot_cpu_has_bug(X86_BUG_GDS))
1964                 update_gds_msr();
1965 
1966         tsx_ap_init();
1967 }
1968 
1969 void print_cpu_info(struct cpuinfo_x86 *c)
1970 {
1971         const char *vendor = NULL;
1972 
1973         if (c->x86_vendor < X86_VENDOR_NUM) {
1974                 vendor = this_cpu->c_vendor;
1975         } else {
1976                 if (c->cpuid_level >= 0)
1977                         vendor = c->x86_vendor_id;
1978         }
1979 
1980         if (vendor && !strstr(c->x86_model_id, vendor))
1981                 pr_cont("%s ", vendor);
1982 
1983         if (c->x86_model_id[0])
1984                 pr_cont("%s", c->x86_model_id);
1985         else
1986                 pr_cont("%d86", c->x86);
1987 
1988         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1989 
1990         if (c->x86_stepping || c->cpuid_level >= 0)
1991                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1992         else
1993                 pr_cont(")\n");
1994 }
1995 
1996 /*
1997  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1998  * function prevents it from becoming an environment variable for init.
1999  */
2000 static __init int setup_clearcpuid(char *arg)
2001 {
2002         return 1;
2003 }
2004 __setup("clearcpuid=", setup_clearcpuid);
2005 
2006 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2007         .current_task   = &init_task,
2008         .preempt_count  = INIT_PREEMPT_COUNT,
2009         .top_of_stack   = TOP_OF_INIT_STACK,
2010 };
2011 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2012 EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
2013 
2014 #ifdef CONFIG_X86_64
2015 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2016                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2017 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2018 
2019 static void wrmsrl_cstar(unsigned long val)
2020 {
2021         /*
2022          * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2023          * is so far ignored by the CPU, but raises a #VE trap in a TDX
2024          * guest. Avoid the pointless write on all Intel CPUs.
2025          */
2026         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2027                 wrmsrl(MSR_CSTAR, val);
2028 }
2029 
2030 static inline void idt_syscall_init(void)
2031 {
2032         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2033 
2034         if (ia32_enabled()) {
2035                 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2036                 /*
2037                  * This only works on Intel CPUs.
2038                  * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2039                  * This does not cause SYSENTER to jump to the wrong location, because
2040                  * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2041                  */
2042                 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2043                 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2044                             (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2045                 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2046         } else {
2047                 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2048                 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2049                 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2050                 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2051         }
2052 
2053         /*
2054          * Flags to clear on syscall; clear as much as possible
2055          * to minimize user space-kernel interference.
2056          */
2057         wrmsrl(MSR_SYSCALL_MASK,
2058                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2059                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2060                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2061                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2062                X86_EFLAGS_AC|X86_EFLAGS_ID);
2063 }
2064 
2065 /* May not be marked __init: used by software suspend */
2066 void syscall_init(void)
2067 {
2068         /* The default user and kernel segments */
2069         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2070 
2071         /*
2072          * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2073          * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2074          * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2075          * instruction to return to ring 3 (both sysexit and sysret cause
2076          * #UD when FRED is enabled).
2077          */
2078         if (!cpu_feature_enabled(X86_FEATURE_FRED))
2079                 idt_syscall_init();
2080 }
2081 
2082 #else   /* CONFIG_X86_64 */
2083 
2084 #ifdef CONFIG_STACKPROTECTOR
2085 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2086 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2087 #endif
2088 
2089 #endif  /* CONFIG_X86_64 */
2090 
2091 /*
2092  * Clear all 6 debug registers:
2093  */
2094 static void clear_all_debug_regs(void)
2095 {
2096         int i;
2097 
2098         for (i = 0; i < 8; i++) {
2099                 /* Ignore db4, db5 */
2100                 if ((i == 4) || (i == 5))
2101                         continue;
2102 
2103                 set_debugreg(0, i);
2104         }
2105 }
2106 
2107 #ifdef CONFIG_KGDB
2108 /*
2109  * Restore debug regs if using kgdbwait and you have a kernel debugger
2110  * connection established.
2111  */
2112 static void dbg_restore_debug_regs(void)
2113 {
2114         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2115                 arch_kgdb_ops.correct_hw_break();
2116 }
2117 #else /* ! CONFIG_KGDB */
2118 #define dbg_restore_debug_regs()
2119 #endif /* ! CONFIG_KGDB */
2120 
2121 static inline void setup_getcpu(int cpu)
2122 {
2123         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2124         struct desc_struct d = { };
2125 
2126         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2127                 wrmsr(MSR_TSC_AUX, cpudata, 0);
2128 
2129         /* Store CPU and node number in limit. */
2130         d.limit0 = cpudata;
2131         d.limit1 = cpudata >> 16;
2132 
2133         d.type = 5;             /* RO data, expand down, accessed */
2134         d.dpl = 3;              /* Visible to user code */
2135         d.s = 1;                /* Not a system segment */
2136         d.p = 1;                /* Present */
2137         d.d = 1;                /* 32-bit */
2138 
2139         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2140 }
2141 
2142 #ifdef CONFIG_X86_64
2143 static inline void tss_setup_ist(struct tss_struct *tss)
2144 {
2145         /* Set up the per-CPU TSS IST stacks */
2146         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2147         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2148         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2149         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2150         /* Only mapped when SEV-ES is active */
2151         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2152 }
2153 #else /* CONFIG_X86_64 */
2154 static inline void tss_setup_ist(struct tss_struct *tss) { }
2155 #endif /* !CONFIG_X86_64 */
2156 
2157 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2158 {
2159         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2160 
2161 #ifdef CONFIG_X86_IOPL_IOPERM
2162         tss->io_bitmap.prev_max = 0;
2163         tss->io_bitmap.prev_sequence = 0;
2164         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2165         /*
2166          * Invalidate the extra array entry past the end of the all
2167          * permission bitmap as required by the hardware.
2168          */
2169         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2170 #endif
2171 }
2172 
2173 /*
2174  * Setup everything needed to handle exceptions from the IDT, including the IST
2175  * exceptions which use paranoid_entry().
2176  */
2177 void cpu_init_exception_handling(void)
2178 {
2179         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2180         int cpu = raw_smp_processor_id();
2181 
2182         /* paranoid_entry() gets the CPU number from the GDT */
2183         setup_getcpu(cpu);
2184 
2185         /* For IDT mode, IST vectors need to be set in TSS. */
2186         if (!cpu_feature_enabled(X86_FEATURE_FRED))
2187                 tss_setup_ist(tss);
2188         tss_setup_io_bitmap(tss);
2189         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2190 
2191         load_TR_desc();
2192 
2193         /* GHCB needs to be setup to handle #VC. */
2194         setup_ghcb();
2195 
2196         if (cpu_feature_enabled(X86_FEATURE_FRED))
2197                 cpu_init_fred_exceptions();
2198         else
2199                 load_current_idt();
2200 }
2201 
2202 /*
2203  * cpu_init() initializes state that is per-CPU. Some data is already
2204  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2205  * reload it nevertheless, this function acts as a 'CPU state barrier',
2206  * nothing should get across.
2207  */
2208 void cpu_init(void)
2209 {
2210         struct task_struct *cur = current;
2211         int cpu = raw_smp_processor_id();
2212 
2213 #ifdef CONFIG_NUMA
2214         if (this_cpu_read(numa_node) == 0 &&
2215             early_cpu_to_node(cpu) != NUMA_NO_NODE)
2216                 set_numa_node(early_cpu_to_node(cpu));
2217 #endif
2218         pr_debug("Initializing CPU#%d\n", cpu);
2219 
2220         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2221             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2222                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2223 
2224         if (IS_ENABLED(CONFIG_X86_64)) {
2225                 loadsegment(fs, 0);
2226                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2227                 syscall_init();
2228 
2229                 wrmsrl(MSR_FS_BASE, 0);
2230                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2231                 barrier();
2232 
2233                 x2apic_setup();
2234 
2235                 intel_posted_msi_init();
2236         }
2237 
2238         mmgrab(&init_mm);
2239         cur->active_mm = &init_mm;
2240         BUG_ON(cur->mm);
2241         initialize_tlbstate_and_flush();
2242         enter_lazy_tlb(&init_mm, cur);
2243 
2244         /*
2245          * sp0 points to the entry trampoline stack regardless of what task
2246          * is running.
2247          */
2248         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2249 
2250         load_mm_ldt(&init_mm);
2251 
2252         clear_all_debug_regs();
2253         dbg_restore_debug_regs();
2254 
2255         doublefault_init_cpu_tss();
2256 
2257         if (is_uv_system())
2258                 uv_cpu_init();
2259 
2260         load_fixmap_gdt(cpu);
2261 }
2262 
2263 #ifdef CONFIG_MICROCODE_LATE_LOADING
2264 /**
2265  * store_cpu_caps() - Store a snapshot of CPU capabilities
2266  * @curr_info: Pointer where to store it
2267  *
2268  * Returns: None
2269  */
2270 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2271 {
2272         /* Reload CPUID max function as it might've changed. */
2273         curr_info->cpuid_level = cpuid_eax(0);
2274 
2275         /* Copy all capability leafs and pick up the synthetic ones. */
2276         memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2277                sizeof(curr_info->x86_capability));
2278 
2279         /* Get the hardware CPUID leafs */
2280         get_cpu_cap(curr_info);
2281 }
2282 
2283 /**
2284  * microcode_check() - Check if any CPU capabilities changed after an update.
2285  * @prev_info:  CPU capabilities stored before an update.
2286  *
2287  * The microcode loader calls this upon late microcode load to recheck features,
2288  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2289  *
2290  * Return: None
2291  */
2292 void microcode_check(struct cpuinfo_x86 *prev_info)
2293 {
2294         struct cpuinfo_x86 curr_info;
2295 
2296         perf_check_microcode();
2297 
2298         amd_check_microcode();
2299 
2300         store_cpu_caps(&curr_info);
2301 
2302         if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2303                     sizeof(prev_info->x86_capability)))
2304                 return;
2305 
2306         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2307         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2308 }
2309 #endif
2310 
2311 /*
2312  * Invoked from core CPU hotplug code after hotplug operations
2313  */
2314 void arch_smt_update(void)
2315 {
2316         /* Handle the speculative execution misfeatures */
2317         cpu_bugs_smt_update();
2318         /* Check whether IPI broadcasting can be enabled */
2319         apic_smt_update();
2320 }
2321 
2322 void __init arch_cpu_finalize_init(void)
2323 {
2324         struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2325 
2326         identify_boot_cpu();
2327 
2328         select_idle_routine();
2329 
2330         /*
2331          * identify_boot_cpu() initialized SMT support information, let the
2332          * core code know.
2333          */
2334         cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2335 
2336         if (!IS_ENABLED(CONFIG_SMP)) {
2337                 pr_info("CPU: ");
2338                 print_cpu_info(&boot_cpu_data);
2339         }
2340 
2341         cpu_select_mitigations();
2342 
2343         arch_smt_update();
2344 
2345         if (IS_ENABLED(CONFIG_X86_32)) {
2346                 /*
2347                  * Check whether this is a real i386 which is not longer
2348                  * supported and fixup the utsname.
2349                  */
2350                 if (boot_cpu_data.x86 < 4)
2351                         panic("Kernel requires i486+ for 'invlpg' and other features");
2352 
2353                 init_utsname()->machine[1] =
2354                         '' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2355         }
2356 
2357         /*
2358          * Must be before alternatives because it might set or clear
2359          * feature bits.
2360          */
2361         fpu__init_system();
2362         fpu__init_cpu();
2363 
2364         /*
2365          * Ensure that access to the per CPU representation has the initial
2366          * boot CPU configuration.
2367          */
2368         *c = boot_cpu_data;
2369         c->initialized = true;
2370 
2371         alternative_instructions();
2372 
2373         if (IS_ENABLED(CONFIG_X86_64)) {
2374                 /*
2375                  * Make sure the first 2MB area is not mapped by huge pages
2376                  * There are typically fixed size MTRRs in there and overlapping
2377                  * MTRRs into large pages causes slow downs.
2378                  *
2379                  * Right now we don't do that with gbpages because there seems
2380                  * very little benefit for that case.
2381                  */
2382                 if (!direct_gbpages)
2383                         set_memory_4k((unsigned long)__va(0), 1);
2384         } else {
2385                 fpu__init_check_bugs();
2386         }
2387 
2388         /*
2389          * This needs to be called before any devices perform DMA
2390          * operations that might use the SWIOTLB bounce buffers. It will
2391          * mark the bounce buffers as decrypted so that their usage will
2392          * not cause "plain-text" data to be decrypted when accessed. It
2393          * must be called after late_time_init() so that Hyper-V x86/x64
2394          * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2395          */
2396         mem_encrypt_init();
2397 }
2398 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php