~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/cpu/microcode/core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * CPU Microcode Update Driver for Linux
  4  *
  5  * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
  6  *            2006      Shaohua Li <shaohua.li@intel.com>
  7  *            2013-2016 Borislav Petkov <bp@alien8.de>
  8  *
  9  * X86 CPU microcode early update for Linux:
 10  *
 11  *      Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
 12  *                         H Peter Anvin" <hpa@zytor.com>
 13  *                (C) 2015 Borislav Petkov <bp@alien8.de>
 14  *
 15  * This driver allows to upgrade microcode on x86 processors.
 16  */
 17 
 18 #define pr_fmt(fmt) "microcode: " fmt
 19 
 20 #include <linux/platform_device.h>
 21 #include <linux/stop_machine.h>
 22 #include <linux/syscore_ops.h>
 23 #include <linux/miscdevice.h>
 24 #include <linux/capability.h>
 25 #include <linux/firmware.h>
 26 #include <linux/cpumask.h>
 27 #include <linux/kernel.h>
 28 #include <linux/delay.h>
 29 #include <linux/mutex.h>
 30 #include <linux/cpu.h>
 31 #include <linux/nmi.h>
 32 #include <linux/fs.h>
 33 #include <linux/mm.h>
 34 
 35 #include <asm/apic.h>
 36 #include <asm/cpu_device_id.h>
 37 #include <asm/perf_event.h>
 38 #include <asm/processor.h>
 39 #include <asm/cmdline.h>
 40 #include <asm/setup.h>
 41 
 42 #include "internal.h"
 43 
 44 static struct microcode_ops     *microcode_ops;
 45 bool dis_ucode_ldr = true;
 46 
 47 bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV);
 48 module_param(force_minrev, bool, S_IRUSR | S_IWUSR);
 49 
 50 /*
 51  * Synchronization.
 52  *
 53  * All non cpu-hotplug-callback call sites use:
 54  *
 55  * - cpus_read_lock/unlock() to synchronize with
 56  *   the cpu-hotplug-callback call sites.
 57  *
 58  * We guarantee that only a single cpu is being
 59  * updated at any particular moment of time.
 60  */
 61 struct ucode_cpu_info           ucode_cpu_info[NR_CPUS];
 62 
 63 /*
 64  * Those patch levels cannot be updated to newer ones and thus should be final.
 65  */
 66 static u32 final_levels[] = {
 67         0x01000098,
 68         0x0100009f,
 69         0x010000af,
 70         0, /* T-101 terminator */
 71 };
 72 
 73 struct early_load_data early_data;
 74 
 75 /*
 76  * Check the current patch level on this CPU.
 77  *
 78  * Returns:
 79  *  - true: if update should stop
 80  *  - false: otherwise
 81  */
 82 static bool amd_check_current_patch_level(void)
 83 {
 84         u32 lvl, dummy, i;
 85         u32 *levels;
 86 
 87         native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
 88 
 89         levels = final_levels;
 90 
 91         for (i = 0; levels[i]; i++) {
 92                 if (lvl == levels[i])
 93                         return true;
 94         }
 95         return false;
 96 }
 97 
 98 static bool __init check_loader_disabled_bsp(void)
 99 {
100         static const char *__dis_opt_str = "dis_ucode_ldr";
101         const char *cmdline = boot_command_line;
102         const char *option  = __dis_opt_str;
103 
104         /*
105          * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
106          * completely accurate as xen pv guests don't see that CPUID bit set but
107          * that's good enough as they don't land on the BSP path anyway.
108          */
109         if (native_cpuid_ecx(1) & BIT(31))
110                 return true;
111 
112         if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
113                 if (amd_check_current_patch_level())
114                         return true;
115         }
116 
117         if (cmdline_find_option_bool(cmdline, option) <= 0)
118                 dis_ucode_ldr = false;
119 
120         return dis_ucode_ldr;
121 }
122 
123 void __init load_ucode_bsp(void)
124 {
125         unsigned int cpuid_1_eax;
126         bool intel = true;
127 
128         if (!have_cpuid_p())
129                 return;
130 
131         cpuid_1_eax = native_cpuid_eax(1);
132 
133         switch (x86_cpuid_vendor()) {
134         case X86_VENDOR_INTEL:
135                 if (x86_family(cpuid_1_eax) < 6)
136                         return;
137                 break;
138 
139         case X86_VENDOR_AMD:
140                 if (x86_family(cpuid_1_eax) < 0x10)
141                         return;
142                 intel = false;
143                 break;
144 
145         default:
146                 return;
147         }
148 
149         if (check_loader_disabled_bsp())
150                 return;
151 
152         if (intel)
153                 load_ucode_intel_bsp(&early_data);
154         else
155                 load_ucode_amd_bsp(&early_data, cpuid_1_eax);
156 }
157 
158 void load_ucode_ap(void)
159 {
160         unsigned int cpuid_1_eax;
161 
162         if (dis_ucode_ldr)
163                 return;
164 
165         cpuid_1_eax = native_cpuid_eax(1);
166 
167         switch (x86_cpuid_vendor()) {
168         case X86_VENDOR_INTEL:
169                 if (x86_family(cpuid_1_eax) >= 6)
170                         load_ucode_intel_ap();
171                 break;
172         case X86_VENDOR_AMD:
173                 if (x86_family(cpuid_1_eax) >= 0x10)
174                         load_ucode_amd_ap(cpuid_1_eax);
175                 break;
176         default:
177                 break;
178         }
179 }
180 
181 struct cpio_data __init find_microcode_in_initrd(const char *path)
182 {
183 #ifdef CONFIG_BLK_DEV_INITRD
184         unsigned long start = 0;
185         size_t size;
186 
187 #ifdef CONFIG_X86_32
188         size = boot_params.hdr.ramdisk_size;
189         /* Early load on BSP has a temporary mapping. */
190         if (size)
191                 start = initrd_start_early;
192 
193 #else /* CONFIG_X86_64 */
194         size  = (unsigned long)boot_params.ext_ramdisk_size << 32;
195         size |= boot_params.hdr.ramdisk_size;
196 
197         if (size) {
198                 start  = (unsigned long)boot_params.ext_ramdisk_image << 32;
199                 start |= boot_params.hdr.ramdisk_image;
200                 start += PAGE_OFFSET;
201         }
202 #endif
203 
204         /*
205          * Fixup the start address: after reserve_initrd() runs, initrd_start
206          * has the virtual address of the beginning of the initrd. It also
207          * possibly relocates the ramdisk. In either case, initrd_start contains
208          * the updated address so use that instead.
209          */
210         if (initrd_start)
211                 start = initrd_start;
212 
213         return find_cpio_data(path, (void *)start, size, NULL);
214 #else /* !CONFIG_BLK_DEV_INITRD */
215         return (struct cpio_data){ NULL, 0, "" };
216 #endif
217 }
218 
219 static void reload_early_microcode(unsigned int cpu)
220 {
221         int vendor, family;
222 
223         vendor = x86_cpuid_vendor();
224         family = x86_cpuid_family();
225 
226         switch (vendor) {
227         case X86_VENDOR_INTEL:
228                 if (family >= 6)
229                         reload_ucode_intel();
230                 break;
231         case X86_VENDOR_AMD:
232                 if (family >= 0x10)
233                         reload_ucode_amd(cpu);
234                 break;
235         default:
236                 break;
237         }
238 }
239 
240 /* fake device for request_firmware */
241 static struct platform_device   *microcode_pdev;
242 
243 #ifdef CONFIG_MICROCODE_LATE_LOADING
244 /*
245  * Late loading dance. Why the heavy-handed stomp_machine effort?
246  *
247  * - HT siblings must be idle and not execute other code while the other sibling
248  *   is loading microcode in order to avoid any negative interactions caused by
249  *   the loading.
250  *
251  * - In addition, microcode update on the cores must be serialized until this
252  *   requirement can be relaxed in the future. Right now, this is conservative
253  *   and good.
254  */
255 enum sibling_ctrl {
256         /* Spinwait with timeout */
257         SCTRL_WAIT,
258         /* Invoke the microcode_apply() callback */
259         SCTRL_APPLY,
260         /* Proceed without invoking the microcode_apply() callback */
261         SCTRL_DONE,
262 };
263 
264 struct microcode_ctrl {
265         enum sibling_ctrl       ctrl;
266         enum ucode_state        result;
267         unsigned int            ctrl_cpu;
268         bool                    nmi_enabled;
269 };
270 
271 DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable);
272 static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl);
273 static atomic_t late_cpus_in, offline_in_nmi;
274 static unsigned int loops_per_usec;
275 static cpumask_t cpu_offline_mask;
276 
277 static noinstr bool wait_for_cpus(atomic_t *cnt)
278 {
279         unsigned int timeout, loops;
280 
281         WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0);
282 
283         for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
284                 if (!raw_atomic_read(cnt))
285                         return true;
286 
287                 for (loops = 0; loops < loops_per_usec; loops++)
288                         cpu_relax();
289 
290                 /* If invoked directly, tickle the NMI watchdog */
291                 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
292                         instrumentation_begin();
293                         touch_nmi_watchdog();
294                         instrumentation_end();
295                 }
296         }
297         /* Prevent the late comers from making progress and let them time out */
298         raw_atomic_inc(cnt);
299         return false;
300 }
301 
302 static noinstr bool wait_for_ctrl(void)
303 {
304         unsigned int timeout, loops;
305 
306         for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
307                 if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT)
308                         return true;
309 
310                 for (loops = 0; loops < loops_per_usec; loops++)
311                         cpu_relax();
312 
313                 /* If invoked directly, tickle the NMI watchdog */
314                 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
315                         instrumentation_begin();
316                         touch_nmi_watchdog();
317                         instrumentation_end();
318                 }
319         }
320         return false;
321 }
322 
323 /*
324  * Protected against instrumentation up to the point where the primary
325  * thread completed the update. See microcode_nmi_handler() for details.
326  */
327 static noinstr bool load_secondary_wait(unsigned int ctrl_cpu)
328 {
329         /* Initial rendezvous to ensure that all CPUs have arrived */
330         if (!wait_for_cpus(&late_cpus_in)) {
331                 raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
332                 return false;
333         }
334 
335         /*
336          * Wait for primary threads to complete. If one of them hangs due
337          * to the update, there is no way out. This is non-recoverable
338          * because the CPU might hold locks or resources and confuse the
339          * scheduler, watchdogs etc. There is no way to safely evacuate the
340          * machine.
341          */
342         if (wait_for_ctrl())
343                 return true;
344 
345         instrumentation_begin();
346         panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu);
347         instrumentation_end();
348 }
349 
350 /*
351  * Protected against instrumentation up to the point where the primary
352  * thread completed the update. See microcode_nmi_handler() for details.
353  */
354 static noinstr void load_secondary(unsigned int cpu)
355 {
356         unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu);
357         enum ucode_state ret;
358 
359         if (!load_secondary_wait(ctrl_cpu)) {
360                 instrumentation_begin();
361                 pr_err_once("load: %d CPUs timed out\n",
362                             atomic_read(&late_cpus_in) - 1);
363                 instrumentation_end();
364                 return;
365         }
366 
367         /* Primary thread completed. Allow to invoke instrumentable code */
368         instrumentation_begin();
369         /*
370          * If the primary succeeded then invoke the apply() callback,
371          * otherwise copy the state from the primary thread.
372          */
373         if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY)
374                 ret = microcode_ops->apply_microcode(cpu);
375         else
376                 ret = per_cpu(ucode_ctrl.result, ctrl_cpu);
377 
378         this_cpu_write(ucode_ctrl.result, ret);
379         this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
380         instrumentation_end();
381 }
382 
383 static void __load_primary(unsigned int cpu)
384 {
385         struct cpumask *secondaries = topology_sibling_cpumask(cpu);
386         enum sibling_ctrl ctrl;
387         enum ucode_state ret;
388         unsigned int sibling;
389 
390         /* Initial rendezvous to ensure that all CPUs have arrived */
391         if (!wait_for_cpus(&late_cpus_in)) {
392                 this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
393                 pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1);
394                 return;
395         }
396 
397         ret = microcode_ops->apply_microcode(cpu);
398         this_cpu_write(ucode_ctrl.result, ret);
399         this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
400 
401         /*
402          * If the update was successful, let the siblings run the apply()
403          * callback. If not, tell them it's done. This also covers the
404          * case where the CPU has uniform loading at package or system
405          * scope implemented but does not advertise it.
406          */
407         if (ret == UCODE_UPDATED || ret == UCODE_OK)
408                 ctrl = SCTRL_APPLY;
409         else
410                 ctrl = SCTRL_DONE;
411 
412         for_each_cpu(sibling, secondaries) {
413                 if (sibling != cpu)
414                         per_cpu(ucode_ctrl.ctrl, sibling) = ctrl;
415         }
416 }
417 
418 static bool kick_offline_cpus(unsigned int nr_offl)
419 {
420         unsigned int cpu, timeout;
421 
422         for_each_cpu(cpu, &cpu_offline_mask) {
423                 /* Enable the rendezvous handler and send NMI */
424                 per_cpu(ucode_ctrl.nmi_enabled, cpu) = true;
425                 apic_send_nmi_to_offline_cpu(cpu);
426         }
427 
428         /* Wait for them to arrive */
429         for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) {
430                 if (atomic_read(&offline_in_nmi) == nr_offl)
431                         return true;
432                 udelay(1);
433         }
434         /* Let the others time out */
435         return false;
436 }
437 
438 static void release_offline_cpus(void)
439 {
440         unsigned int cpu;
441 
442         for_each_cpu(cpu, &cpu_offline_mask)
443                 per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE;
444 }
445 
446 static void load_primary(unsigned int cpu)
447 {
448         unsigned int nr_offl = cpumask_weight(&cpu_offline_mask);
449         bool proceed = true;
450 
451         /* Kick soft-offlined SMT siblings if required */
452         if (!cpu && nr_offl)
453                 proceed = kick_offline_cpus(nr_offl);
454 
455         /* If the soft-offlined CPUs did not respond, abort */
456         if (proceed)
457                 __load_primary(cpu);
458 
459         /* Unconditionally release soft-offlined SMT siblings if required */
460         if (!cpu && nr_offl)
461                 release_offline_cpus();
462 }
463 
464 /*
465  * Minimal stub rendezvous handler for soft-offlined CPUs which participate
466  * in the NMI rendezvous to protect against a concurrent NMI on affected
467  * CPUs.
468  */
469 void noinstr microcode_offline_nmi_handler(void)
470 {
471         if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
472                 return;
473         raw_cpu_write(ucode_ctrl.nmi_enabled, false);
474         raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE);
475         raw_atomic_inc(&offline_in_nmi);
476         wait_for_ctrl();
477 }
478 
479 static noinstr bool microcode_update_handler(void)
480 {
481         unsigned int cpu = raw_smp_processor_id();
482 
483         if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) {
484                 instrumentation_begin();
485                 load_primary(cpu);
486                 instrumentation_end();
487         } else {
488                 load_secondary(cpu);
489         }
490 
491         instrumentation_begin();
492         touch_nmi_watchdog();
493         instrumentation_end();
494 
495         return true;
496 }
497 
498 /*
499  * Protection against instrumentation is required for CPUs which are not
500  * safe against an NMI which is delivered to the secondary SMT sibling
501  * while the primary thread updates the microcode. Instrumentation can end
502  * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI
503  * which is the opposite of what the NMI rendezvous is trying to achieve.
504  *
505  * The primary thread is safe versus instrumentation as the actual
506  * microcode update handles this correctly. It's only the sibling code
507  * path which must be NMI safe until the primary thread completed the
508  * update.
509  */
510 bool noinstr microcode_nmi_handler(void)
511 {
512         if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
513                 return false;
514 
515         raw_cpu_write(ucode_ctrl.nmi_enabled, false);
516         return microcode_update_handler();
517 }
518 
519 static int load_cpus_stopped(void *unused)
520 {
521         if (microcode_ops->use_nmi) {
522                 /* Enable the NMI handler and raise NMI */
523                 this_cpu_write(ucode_ctrl.nmi_enabled, true);
524                 apic->send_IPI(smp_processor_id(), NMI_VECTOR);
525         } else {
526                 /* Just invoke the handler directly */
527                 microcode_update_handler();
528         }
529         return 0;
530 }
531 
532 static int load_late_stop_cpus(bool is_safe)
533 {
534         unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0;
535         unsigned int nr_offl, offline = 0;
536         int old_rev = boot_cpu_data.microcode;
537         struct cpuinfo_x86 prev_info;
538 
539         if (!is_safe) {
540                 pr_err("Late microcode loading without minimal revision check.\n");
541                 pr_err("You should switch to early loading, if possible.\n");
542         }
543 
544         atomic_set(&late_cpus_in, num_online_cpus());
545         atomic_set(&offline_in_nmi, 0);
546         loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000);
547 
548         /*
549          * Take a snapshot before the microcode update in order to compare and
550          * check whether any bits changed after an update.
551          */
552         store_cpu_caps(&prev_info);
553 
554         if (microcode_ops->use_nmi)
555                 static_branch_enable_cpuslocked(&microcode_nmi_handler_enable);
556 
557         stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask);
558 
559         if (microcode_ops->use_nmi)
560                 static_branch_disable_cpuslocked(&microcode_nmi_handler_enable);
561 
562         /* Analyze the results */
563         for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
564                 switch (per_cpu(ucode_ctrl.result, cpu)) {
565                 case UCODE_UPDATED:     updated++; break;
566                 case UCODE_TIMEOUT:     timedout++; break;
567                 case UCODE_OK:          siblings++; break;
568                 case UCODE_OFFLINE:     offline++; break;
569                 default:                failed++; break;
570                 }
571         }
572 
573         if (microcode_ops->finalize_late_load)
574                 microcode_ops->finalize_late_load(!updated);
575 
576         if (!updated) {
577                 /* Nothing changed. */
578                 if (!failed && !timedout)
579                         return 0;
580 
581                 nr_offl = cpumask_weight(&cpu_offline_mask);
582                 if (offline < nr_offl) {
583                         pr_warn("%u offline siblings did not respond.\n",
584                                 nr_offl - atomic_read(&offline_in_nmi));
585                         return -EIO;
586                 }
587                 pr_err("update failed: %u CPUs failed %u CPUs timed out\n",
588                        failed, timedout);
589                 return -EIO;
590         }
591 
592         if (!is_safe || failed || timedout)
593                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
594 
595         pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings);
596         if (failed || timedout) {
597                 pr_err("load incomplete. %u CPUs timed out or failed\n",
598                        num_online_cpus() - (updated + siblings));
599         }
600         pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode);
601         microcode_check(&prev_info);
602 
603         return updated + siblings == num_online_cpus() ? 0 : -EIO;
604 }
605 
606 /*
607  * This function does two things:
608  *
609  * 1) Ensure that all required CPUs which are present and have been booted
610  *    once are online.
611  *
612  *    To pass this check, all primary threads must be online.
613  *
614  *    If the microcode load is not safe against NMI then all SMT threads
615  *    must be online as well because they still react to NMIs when they are
616  *    soft-offlined and parked in one of the play_dead() variants. So if a
617  *    NMI hits while the primary thread updates the microcode the resulting
618  *    behaviour is undefined. The default play_dead() implementation on
619  *    modern CPUs uses MWAIT, which is also not guaranteed to be safe
620  *    against a microcode update which affects MWAIT.
621  *
622  *    As soft-offlined CPUs still react on NMIs, the SMT sibling
623  *    restriction can be lifted when the vendor driver signals to use NMI
624  *    for rendezvous and the APIC provides a mechanism to send an NMI to a
625  *    soft-offlined CPU. The soft-offlined CPUs are then able to
626  *    participate in the rendezvous in a trivial stub handler.
627  *
628  * 2) Initialize the per CPU control structure and create a cpumask
629  *    which contains "offline"; secondary threads, so they can be handled
630  *    correctly by a control CPU.
631  */
632 static bool setup_cpus(void)
633 {
634         struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, };
635         bool allow_smt_offline;
636         unsigned int cpu;
637 
638         allow_smt_offline = microcode_ops->nmi_safe ||
639                 (microcode_ops->use_nmi && apic->nmi_to_offline_cpu);
640 
641         cpumask_clear(&cpu_offline_mask);
642 
643         for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
644                 /*
645                  * Offline CPUs sit in one of the play_dead() functions
646                  * with interrupts disabled, but they still react on NMIs
647                  * and execute arbitrary code. Also MWAIT being updated
648                  * while the offline CPU sits there is not necessarily safe
649                  * on all CPU variants.
650                  *
651                  * Mark them in the offline_cpus mask which will be handled
652                  * by CPU0 later in the update process.
653                  *
654                  * Ensure that the primary thread is online so that it is
655                  * guaranteed that all cores are updated.
656                  */
657                 if (!cpu_online(cpu)) {
658                         if (topology_is_primary_thread(cpu) || !allow_smt_offline) {
659                                 pr_err("CPU %u not online, loading aborted\n", cpu);
660                                 return false;
661                         }
662                         cpumask_set_cpu(cpu, &cpu_offline_mask);
663                         per_cpu(ucode_ctrl, cpu) = ctrl;
664                         continue;
665                 }
666 
667                 /*
668                  * Initialize the per CPU state. This is core scope for now,
669                  * but prepared to take package or system scope into account.
670                  */
671                 ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu));
672                 per_cpu(ucode_ctrl, cpu) = ctrl;
673         }
674         return true;
675 }
676 
677 static int load_late_locked(void)
678 {
679         if (!setup_cpus())
680                 return -EBUSY;
681 
682         switch (microcode_ops->request_microcode_fw(0, &microcode_pdev->dev)) {
683         case UCODE_NEW:
684                 return load_late_stop_cpus(false);
685         case UCODE_NEW_SAFE:
686                 return load_late_stop_cpus(true);
687         case UCODE_NFOUND:
688                 return -ENOENT;
689         default:
690                 return -EBADFD;
691         }
692 }
693 
694 static ssize_t reload_store(struct device *dev,
695                             struct device_attribute *attr,
696                             const char *buf, size_t size)
697 {
698         unsigned long val;
699         ssize_t ret;
700 
701         ret = kstrtoul(buf, 0, &val);
702         if (ret || val != 1)
703                 return -EINVAL;
704 
705         cpus_read_lock();
706         ret = load_late_locked();
707         cpus_read_unlock();
708 
709         return ret ? : size;
710 }
711 
712 static DEVICE_ATTR_WO(reload);
713 #endif
714 
715 static ssize_t version_show(struct device *dev,
716                         struct device_attribute *attr, char *buf)
717 {
718         struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
719 
720         return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
721 }
722 
723 static ssize_t processor_flags_show(struct device *dev,
724                         struct device_attribute *attr, char *buf)
725 {
726         struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
727 
728         return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
729 }
730 
731 static DEVICE_ATTR_RO(version);
732 static DEVICE_ATTR_RO(processor_flags);
733 
734 static struct attribute *mc_default_attrs[] = {
735         &dev_attr_version.attr,
736         &dev_attr_processor_flags.attr,
737         NULL
738 };
739 
740 static const struct attribute_group mc_attr_group = {
741         .attrs                  = mc_default_attrs,
742         .name                   = "microcode",
743 };
744 
745 static void microcode_fini_cpu(int cpu)
746 {
747         if (microcode_ops->microcode_fini_cpu)
748                 microcode_ops->microcode_fini_cpu(cpu);
749 }
750 
751 /**
752  * microcode_bsp_resume - Update boot CPU microcode during resume.
753  */
754 void microcode_bsp_resume(void)
755 {
756         int cpu = smp_processor_id();
757         struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
758 
759         if (uci->mc)
760                 microcode_ops->apply_microcode(cpu);
761         else
762                 reload_early_microcode(cpu);
763 }
764 
765 static struct syscore_ops mc_syscore_ops = {
766         .resume = microcode_bsp_resume,
767 };
768 
769 static int mc_cpu_online(unsigned int cpu)
770 {
771         struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
772         struct device *dev = get_cpu_device(cpu);
773 
774         memset(uci, 0, sizeof(*uci));
775 
776         microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig);
777         cpu_data(cpu).microcode = uci->cpu_sig.rev;
778         if (!cpu)
779                 boot_cpu_data.microcode = uci->cpu_sig.rev;
780 
781         if (sysfs_create_group(&dev->kobj, &mc_attr_group))
782                 pr_err("Failed to create group for CPU%d\n", cpu);
783         return 0;
784 }
785 
786 static int mc_cpu_down_prep(unsigned int cpu)
787 {
788         struct device *dev = get_cpu_device(cpu);
789 
790         microcode_fini_cpu(cpu);
791         sysfs_remove_group(&dev->kobj, &mc_attr_group);
792         return 0;
793 }
794 
795 static struct attribute *cpu_root_microcode_attrs[] = {
796 #ifdef CONFIG_MICROCODE_LATE_LOADING
797         &dev_attr_reload.attr,
798 #endif
799         NULL
800 };
801 
802 static const struct attribute_group cpu_root_microcode_group = {
803         .name  = "microcode",
804         .attrs = cpu_root_microcode_attrs,
805 };
806 
807 static int __init microcode_init(void)
808 {
809         struct device *dev_root;
810         struct cpuinfo_x86 *c = &boot_cpu_data;
811         int error;
812 
813         if (dis_ucode_ldr)
814                 return -EINVAL;
815 
816         if (c->x86_vendor == X86_VENDOR_INTEL)
817                 microcode_ops = init_intel_microcode();
818         else if (c->x86_vendor == X86_VENDOR_AMD)
819                 microcode_ops = init_amd_microcode();
820         else
821                 pr_err("no support for this CPU vendor\n");
822 
823         if (!microcode_ops)
824                 return -ENODEV;
825 
826         pr_info_once("Current revision: 0x%08x\n", (early_data.new_rev ?: early_data.old_rev));
827 
828         if (early_data.new_rev)
829                 pr_info_once("Updated early from: 0x%08x\n", early_data.old_rev);
830 
831         microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0);
832         if (IS_ERR(microcode_pdev))
833                 return PTR_ERR(microcode_pdev);
834 
835         dev_root = bus_get_dev_root(&cpu_subsys);
836         if (dev_root) {
837                 error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group);
838                 put_device(dev_root);
839                 if (error) {
840                         pr_err("Error creating microcode group!\n");
841                         goto out_pdev;
842                 }
843         }
844 
845         register_syscore_ops(&mc_syscore_ops);
846         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
847                           mc_cpu_online, mc_cpu_down_prep);
848 
849         return 0;
850 
851  out_pdev:
852         platform_device_unregister(microcode_pdev);
853         return error;
854 
855 }
856 late_initcall(microcode_init);
857 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php