~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/cpu/resctrl/monitor.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Resource Director Technology(RDT)
  4  * - Monitoring code
  5  *
  6  * Copyright (C) 2017 Intel Corporation
  7  *
  8  * Author:
  9  *    Vikas Shivappa <vikas.shivappa@intel.com>
 10  *
 11  * This replaces the cqm.c based on perf but we reuse a lot of
 12  * code and datastructures originally from Peter Zijlstra and Matt Fleming.
 13  *
 14  * More information about RDT be found in the Intel (R) x86 Architecture
 15  * Software Developer Manual June 2016, volume 3, section 17.17.
 16  */
 17 
 18 #define pr_fmt(fmt)     "resctrl: " fmt
 19 
 20 #include <linux/cpu.h>
 21 #include <linux/module.h>
 22 #include <linux/sizes.h>
 23 #include <linux/slab.h>
 24 
 25 #include <asm/cpu_device_id.h>
 26 #include <asm/resctrl.h>
 27 
 28 #include "internal.h"
 29 #include "trace.h"
 30 
 31 /**
 32  * struct rmid_entry - dirty tracking for all RMID.
 33  * @closid:     The CLOSID for this entry.
 34  * @rmid:       The RMID for this entry.
 35  * @busy:       The number of domains with cached data using this RMID.
 36  * @list:       Member of the rmid_free_lru list when busy == 0.
 37  *
 38  * Depending on the architecture the correct monitor is accessed using
 39  * both @closid and @rmid, or @rmid only.
 40  *
 41  * Take the rdtgroup_mutex when accessing.
 42  */
 43 struct rmid_entry {
 44         u32                             closid;
 45         u32                             rmid;
 46         int                             busy;
 47         struct list_head                list;
 48 };
 49 
 50 /*
 51  * @rmid_free_lru - A least recently used list of free RMIDs
 52  *     These RMIDs are guaranteed to have an occupancy less than the
 53  *     threshold occupancy
 54  */
 55 static LIST_HEAD(rmid_free_lru);
 56 
 57 /*
 58  * @closid_num_dirty_rmid    The number of dirty RMID each CLOSID has.
 59  *     Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
 60  *     Indexed by CLOSID. Protected by rdtgroup_mutex.
 61  */
 62 static u32 *closid_num_dirty_rmid;
 63 
 64 /*
 65  * @rmid_limbo_count - count of currently unused but (potentially)
 66  *     dirty RMIDs.
 67  *     This counts RMIDs that no one is currently using but that
 68  *     may have a occupancy value > resctrl_rmid_realloc_threshold. User can
 69  *     change the threshold occupancy value.
 70  */
 71 static unsigned int rmid_limbo_count;
 72 
 73 /*
 74  * @rmid_entry - The entry in the limbo and free lists.
 75  */
 76 static struct rmid_entry        *rmid_ptrs;
 77 
 78 /*
 79  * Global boolean for rdt_monitor which is true if any
 80  * resource monitoring is enabled.
 81  */
 82 bool rdt_mon_capable;
 83 
 84 /*
 85  * Global to indicate which monitoring events are enabled.
 86  */
 87 unsigned int rdt_mon_features;
 88 
 89 /*
 90  * This is the threshold cache occupancy in bytes at which we will consider an
 91  * RMID available for re-allocation.
 92  */
 93 unsigned int resctrl_rmid_realloc_threshold;
 94 
 95 /*
 96  * This is the maximum value for the reallocation threshold, in bytes.
 97  */
 98 unsigned int resctrl_rmid_realloc_limit;
 99 
100 #define CF(cf)  ((unsigned long)(1048576 * (cf) + 0.5))
101 
102 static int snc_nodes_per_l3_cache = 1;
103 
104 /*
105  * The correction factor table is documented in Documentation/arch/x86/resctrl.rst.
106  * If rmid > rmid threshold, MBM total and local values should be multiplied
107  * by the correction factor.
108  *
109  * The original table is modified for better code:
110  *
111  * 1. The threshold 0 is changed to rmid count - 1 so don't do correction
112  *    for the case.
113  * 2. MBM total and local correction table indexed by core counter which is
114  *    equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
115  * 3. The correction factor is normalized to 2^20 (1048576) so it's faster
116  *    to calculate corrected value by shifting:
117  *    corrected_value = (original_value * correction_factor) >> 20
118  */
119 static const struct mbm_correction_factor_table {
120         u32 rmidthreshold;
121         u64 cf;
122 } mbm_cf_table[] __initconst = {
123         {7,     CF(1.000000)},
124         {15,    CF(1.000000)},
125         {15,    CF(0.969650)},
126         {31,    CF(1.000000)},
127         {31,    CF(1.066667)},
128         {31,    CF(0.969650)},
129         {47,    CF(1.142857)},
130         {63,    CF(1.000000)},
131         {63,    CF(1.185115)},
132         {63,    CF(1.066553)},
133         {79,    CF(1.454545)},
134         {95,    CF(1.000000)},
135         {95,    CF(1.230769)},
136         {95,    CF(1.142857)},
137         {95,    CF(1.066667)},
138         {127,   CF(1.000000)},
139         {127,   CF(1.254863)},
140         {127,   CF(1.185255)},
141         {151,   CF(1.000000)},
142         {127,   CF(1.066667)},
143         {167,   CF(1.000000)},
144         {159,   CF(1.454334)},
145         {183,   CF(1.000000)},
146         {127,   CF(0.969744)},
147         {191,   CF(1.280246)},
148         {191,   CF(1.230921)},
149         {215,   CF(1.000000)},
150         {191,   CF(1.143118)},
151 };
152 
153 static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
154 static u64 mbm_cf __read_mostly;
155 
156 static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
157 {
158         /* Correct MBM value. */
159         if (rmid > mbm_cf_rmidthreshold)
160                 val = (val * mbm_cf) >> 20;
161 
162         return val;
163 }
164 
165 /*
166  * x86 and arm64 differ in their handling of monitoring.
167  * x86's RMID are independent numbers, there is only one source of traffic
168  * with an RMID value of '1'.
169  * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
170  * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
171  * value is no longer unique.
172  * To account for this, resctrl uses an index. On x86 this is just the RMID,
173  * on arm64 it encodes the CLOSID and RMID. This gives a unique number.
174  *
175  * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
176  * must accept an attempt to read every index.
177  */
178 static inline struct rmid_entry *__rmid_entry(u32 idx)
179 {
180         struct rmid_entry *entry;
181         u32 closid, rmid;
182 
183         entry = &rmid_ptrs[idx];
184         resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);
185 
186         WARN_ON_ONCE(entry->closid != closid);
187         WARN_ON_ONCE(entry->rmid != rmid);
188 
189         return entry;
190 }
191 
192 /*
193  * When Sub-NUMA Cluster (SNC) mode is not enabled (as indicated by
194  * "snc_nodes_per_l3_cache == 1") no translation of the RMID value is
195  * needed. The physical RMID is the same as the logical RMID.
196  *
197  * On a platform with SNC mode enabled, Linux enables RMID sharing mode
198  * via MSR 0xCA0 (see the "RMID Sharing Mode" section in the "Intel
199  * Resource Director Technology Architecture Specification" for a full
200  * description of RMID sharing mode).
201  *
202  * In RMID sharing mode there are fewer "logical RMID" values available
203  * to accumulate data ("physical RMIDs" are divided evenly between SNC
204  * nodes that share an L3 cache). Linux creates an rdt_mon_domain for
205  * each SNC node.
206  *
207  * The value loaded into IA32_PQR_ASSOC is the "logical RMID".
208  *
209  * Data is collected independently on each SNC node and can be retrieved
210  * using the "physical RMID" value computed by this function and loaded
211  * into IA32_QM_EVTSEL. @cpu can be any CPU in the SNC node.
212  *
213  * The scope of the IA32_QM_EVTSEL and IA32_QM_CTR MSRs is at the L3
214  * cache.  So a "physical RMID" may be read from any CPU that shares
215  * the L3 cache with the desired SNC node, not just from a CPU in
216  * the specific SNC node.
217  */
218 static int logical_rmid_to_physical_rmid(int cpu, int lrmid)
219 {
220         struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
221 
222         if (snc_nodes_per_l3_cache == 1)
223                 return lrmid;
224 
225         return lrmid + (cpu_to_node(cpu) % snc_nodes_per_l3_cache) * r->num_rmid;
226 }
227 
228 static int __rmid_read_phys(u32 prmid, enum resctrl_event_id eventid, u64 *val)
229 {
230         u64 msr_val;
231 
232         /*
233          * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
234          * with a valid event code for supported resource type and the bits
235          * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
236          * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
237          * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
238          * are error bits.
239          */
240         wrmsr(MSR_IA32_QM_EVTSEL, eventid, prmid);
241         rdmsrl(MSR_IA32_QM_CTR, msr_val);
242 
243         if (msr_val & RMID_VAL_ERROR)
244                 return -EIO;
245         if (msr_val & RMID_VAL_UNAVAIL)
246                 return -EINVAL;
247 
248         *val = msr_val;
249         return 0;
250 }
251 
252 static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_mon_domain *hw_dom,
253                                                  u32 rmid,
254                                                  enum resctrl_event_id eventid)
255 {
256         switch (eventid) {
257         case QOS_L3_OCCUP_EVENT_ID:
258                 return NULL;
259         case QOS_L3_MBM_TOTAL_EVENT_ID:
260                 return &hw_dom->arch_mbm_total[rmid];
261         case QOS_L3_MBM_LOCAL_EVENT_ID:
262                 return &hw_dom->arch_mbm_local[rmid];
263         }
264 
265         /* Never expect to get here */
266         WARN_ON_ONCE(1);
267 
268         return NULL;
269 }
270 
271 void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_mon_domain *d,
272                              u32 unused, u32 rmid,
273                              enum resctrl_event_id eventid)
274 {
275         struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
276         int cpu = cpumask_any(&d->hdr.cpu_mask);
277         struct arch_mbm_state *am;
278         u32 prmid;
279 
280         am = get_arch_mbm_state(hw_dom, rmid, eventid);
281         if (am) {
282                 memset(am, 0, sizeof(*am));
283 
284                 prmid = logical_rmid_to_physical_rmid(cpu, rmid);
285                 /* Record any initial, non-zero count value. */
286                 __rmid_read_phys(prmid, eventid, &am->prev_msr);
287         }
288 }
289 
290 /*
291  * Assumes that hardware counters are also reset and thus that there is
292  * no need to record initial non-zero counts.
293  */
294 void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d)
295 {
296         struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
297 
298         if (is_mbm_total_enabled())
299                 memset(hw_dom->arch_mbm_total, 0,
300                        sizeof(*hw_dom->arch_mbm_total) * r->num_rmid);
301 
302         if (is_mbm_local_enabled())
303                 memset(hw_dom->arch_mbm_local, 0,
304                        sizeof(*hw_dom->arch_mbm_local) * r->num_rmid);
305 }
306 
307 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
308 {
309         u64 shift = 64 - width, chunks;
310 
311         chunks = (cur_msr << shift) - (prev_msr << shift);
312         return chunks >> shift;
313 }
314 
315 int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_mon_domain *d,
316                            u32 unused, u32 rmid, enum resctrl_event_id eventid,
317                            u64 *val, void *ignored)
318 {
319         struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
320         struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
321         int cpu = cpumask_any(&d->hdr.cpu_mask);
322         struct arch_mbm_state *am;
323         u64 msr_val, chunks;
324         u32 prmid;
325         int ret;
326 
327         resctrl_arch_rmid_read_context_check();
328 
329         prmid = logical_rmid_to_physical_rmid(cpu, rmid);
330         ret = __rmid_read_phys(prmid, eventid, &msr_val);
331         if (ret)
332                 return ret;
333 
334         am = get_arch_mbm_state(hw_dom, rmid, eventid);
335         if (am) {
336                 am->chunks += mbm_overflow_count(am->prev_msr, msr_val,
337                                                  hw_res->mbm_width);
338                 chunks = get_corrected_mbm_count(rmid, am->chunks);
339                 am->prev_msr = msr_val;
340         } else {
341                 chunks = msr_val;
342         }
343 
344         *val = chunks * hw_res->mon_scale;
345 
346         return 0;
347 }
348 
349 static void limbo_release_entry(struct rmid_entry *entry)
350 {
351         lockdep_assert_held(&rdtgroup_mutex);
352 
353         rmid_limbo_count--;
354         list_add_tail(&entry->list, &rmid_free_lru);
355 
356         if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
357                 closid_num_dirty_rmid[entry->closid]--;
358 }
359 
360 /*
361  * Check the RMIDs that are marked as busy for this domain. If the
362  * reported LLC occupancy is below the threshold clear the busy bit and
363  * decrement the count. If the busy count gets to zero on an RMID, we
364  * free the RMID
365  */
366 void __check_limbo(struct rdt_mon_domain *d, bool force_free)
367 {
368         struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
369         u32 idx_limit = resctrl_arch_system_num_rmid_idx();
370         struct rmid_entry *entry;
371         u32 idx, cur_idx = 1;
372         void *arch_mon_ctx;
373         bool rmid_dirty;
374         u64 val = 0;
375 
376         arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
377         if (IS_ERR(arch_mon_ctx)) {
378                 pr_warn_ratelimited("Failed to allocate monitor context: %ld",
379                                     PTR_ERR(arch_mon_ctx));
380                 return;
381         }
382 
383         /*
384          * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
385          * are marked as busy for occupancy < threshold. If the occupancy
386          * is less than the threshold decrement the busy counter of the
387          * RMID and move it to the free list when the counter reaches 0.
388          */
389         for (;;) {
390                 idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
391                 if (idx >= idx_limit)
392                         break;
393 
394                 entry = __rmid_entry(idx);
395                 if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
396                                            QOS_L3_OCCUP_EVENT_ID, &val,
397                                            arch_mon_ctx)) {
398                         rmid_dirty = true;
399                 } else {
400                         rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
401 
402                         /*
403                          * x86's CLOSID and RMID are independent numbers, so the entry's
404                          * CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the
405                          * RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't
406                          * used to select the configuration. It is thus necessary to track both
407                          * CLOSID and RMID because there may be dependencies between them
408                          * on some architectures.
409                          */
410                         trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val);
411                 }
412 
413                 if (force_free || !rmid_dirty) {
414                         clear_bit(idx, d->rmid_busy_llc);
415                         if (!--entry->busy)
416                                 limbo_release_entry(entry);
417                 }
418                 cur_idx = idx + 1;
419         }
420 
421         resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
422 }
423 
424 bool has_busy_rmid(struct rdt_mon_domain *d)
425 {
426         u32 idx_limit = resctrl_arch_system_num_rmid_idx();
427 
428         return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
429 }
430 
431 static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
432 {
433         struct rmid_entry *itr;
434         u32 itr_idx, cmp_idx;
435 
436         if (list_empty(&rmid_free_lru))
437                 return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);
438 
439         list_for_each_entry(itr, &rmid_free_lru, list) {
440                 /*
441                  * Get the index of this free RMID, and the index it would need
442                  * to be if it were used with this CLOSID.
443                  * If the CLOSID is irrelevant on this architecture, the two
444                  * index values are always the same on every entry and thus the
445                  * very first entry will be returned.
446                  */
447                 itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
448                 cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);
449 
450                 if (itr_idx == cmp_idx)
451                         return itr;
452         }
453 
454         return ERR_PTR(-ENOSPC);
455 }
456 
457 /**
458  * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
459  *                                  RMID are clean, or the CLOSID that has
460  *                                  the most clean RMID.
461  *
462  * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
463  * may not be able to allocate clean RMID. To avoid this the allocator will
464  * choose the CLOSID with the most clean RMID.
465  *
466  * When the CLOSID and RMID are independent numbers, the first free CLOSID will
467  * be returned.
468  */
469 int resctrl_find_cleanest_closid(void)
470 {
471         u32 cleanest_closid = ~0;
472         int i = 0;
473 
474         lockdep_assert_held(&rdtgroup_mutex);
475 
476         if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
477                 return -EIO;
478 
479         for (i = 0; i < closids_supported(); i++) {
480                 int num_dirty;
481 
482                 if (closid_allocated(i))
483                         continue;
484 
485                 num_dirty = closid_num_dirty_rmid[i];
486                 if (num_dirty == 0)
487                         return i;
488 
489                 if (cleanest_closid == ~0)
490                         cleanest_closid = i;
491 
492                 if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
493                         cleanest_closid = i;
494         }
495 
496         if (cleanest_closid == ~0)
497                 return -ENOSPC;
498 
499         return cleanest_closid;
500 }
501 
502 /*
503  * For MPAM the RMID value is not unique, and has to be considered with
504  * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
505  * allows all domains to be managed by a single free list.
506  * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
507  */
508 int alloc_rmid(u32 closid)
509 {
510         struct rmid_entry *entry;
511 
512         lockdep_assert_held(&rdtgroup_mutex);
513 
514         entry = resctrl_find_free_rmid(closid);
515         if (IS_ERR(entry))
516                 return PTR_ERR(entry);
517 
518         list_del(&entry->list);
519         return entry->rmid;
520 }
521 
522 static void add_rmid_to_limbo(struct rmid_entry *entry)
523 {
524         struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
525         struct rdt_mon_domain *d;
526         u32 idx;
527 
528         lockdep_assert_held(&rdtgroup_mutex);
529 
530         /* Walking r->domains, ensure it can't race with cpuhp */
531         lockdep_assert_cpus_held();
532 
533         idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);
534 
535         entry->busy = 0;
536         list_for_each_entry(d, &r->mon_domains, hdr.list) {
537                 /*
538                  * For the first limbo RMID in the domain,
539                  * setup up the limbo worker.
540                  */
541                 if (!has_busy_rmid(d))
542                         cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
543                                                 RESCTRL_PICK_ANY_CPU);
544                 set_bit(idx, d->rmid_busy_llc);
545                 entry->busy++;
546         }
547 
548         rmid_limbo_count++;
549         if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
550                 closid_num_dirty_rmid[entry->closid]++;
551 }
552 
553 void free_rmid(u32 closid, u32 rmid)
554 {
555         u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
556         struct rmid_entry *entry;
557 
558         lockdep_assert_held(&rdtgroup_mutex);
559 
560         /*
561          * Do not allow the default rmid to be free'd. Comparing by index
562          * allows architectures that ignore the closid parameter to avoid an
563          * unnecessary check.
564          */
565         if (!resctrl_arch_mon_capable() ||
566             idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
567                                                 RESCTRL_RESERVED_RMID))
568                 return;
569 
570         entry = __rmid_entry(idx);
571 
572         if (is_llc_occupancy_enabled())
573                 add_rmid_to_limbo(entry);
574         else
575                 list_add_tail(&entry->list, &rmid_free_lru);
576 }
577 
578 static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid,
579                                        u32 rmid, enum resctrl_event_id evtid)
580 {
581         u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
582 
583         switch (evtid) {
584         case QOS_L3_MBM_TOTAL_EVENT_ID:
585                 return &d->mbm_total[idx];
586         case QOS_L3_MBM_LOCAL_EVENT_ID:
587                 return &d->mbm_local[idx];
588         default:
589                 return NULL;
590         }
591 }
592 
593 static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr)
594 {
595         int cpu = smp_processor_id();
596         struct rdt_mon_domain *d;
597         struct mbm_state *m;
598         int err, ret;
599         u64 tval = 0;
600 
601         if (rr->first) {
602                 resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
603                 m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
604                 if (m)
605                         memset(m, 0, sizeof(struct mbm_state));
606                 return 0;
607         }
608 
609         if (rr->d) {
610                 /* Reading a single domain, must be on a CPU in that domain. */
611                 if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask))
612                         return -EINVAL;
613                 rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid,
614                                                  rr->evtid, &tval, rr->arch_mon_ctx);
615                 if (rr->err)
616                         return rr->err;
617 
618                 rr->val += tval;
619 
620                 return 0;
621         }
622 
623         /* Summing domains that share a cache, must be on a CPU for that cache. */
624         if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map))
625                 return -EINVAL;
626 
627         /*
628          * Legacy files must report the sum of an event across all
629          * domains that share the same L3 cache instance.
630          * Report success if a read from any domain succeeds, -EINVAL
631          * (translated to "Unavailable" for user space) if reading from
632          * all domains fail for any reason.
633          */
634         ret = -EINVAL;
635         list_for_each_entry(d, &rr->r->mon_domains, hdr.list) {
636                 if (d->ci->id != rr->ci->id)
637                         continue;
638                 err = resctrl_arch_rmid_read(rr->r, d, closid, rmid,
639                                              rr->evtid, &tval, rr->arch_mon_ctx);
640                 if (!err) {
641                         rr->val += tval;
642                         ret = 0;
643                 }
644         }
645 
646         if (ret)
647                 rr->err = ret;
648 
649         return ret;
650 }
651 
652 /*
653  * mbm_bw_count() - Update bw count from values previously read by
654  *                  __mon_event_count().
655  * @closid:     The closid used to identify the cached mbm_state.
656  * @rmid:       The rmid used to identify the cached mbm_state.
657  * @rr:         The struct rmid_read populated by __mon_event_count().
658  *
659  * Supporting function to calculate the memory bandwidth
660  * and delta bandwidth in MBps. The chunks value previously read by
661  * __mon_event_count() is compared with the chunks value from the previous
662  * invocation. This must be called once per second to maintain values in MBps.
663  */
664 static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr)
665 {
666         u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
667         struct mbm_state *m = &rr->d->mbm_local[idx];
668         u64 cur_bw, bytes, cur_bytes;
669 
670         cur_bytes = rr->val;
671         bytes = cur_bytes - m->prev_bw_bytes;
672         m->prev_bw_bytes = cur_bytes;
673 
674         cur_bw = bytes / SZ_1M;
675 
676         m->prev_bw = cur_bw;
677 }
678 
679 /*
680  * This is scheduled by mon_event_read() to read the CQM/MBM counters
681  * on a domain.
682  */
683 void mon_event_count(void *info)
684 {
685         struct rdtgroup *rdtgrp, *entry;
686         struct rmid_read *rr = info;
687         struct list_head *head;
688         int ret;
689 
690         rdtgrp = rr->rgrp;
691 
692         ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr);
693 
694         /*
695          * For Ctrl groups read data from child monitor groups and
696          * add them together. Count events which are read successfully.
697          * Discard the rmid_read's reporting errors.
698          */
699         head = &rdtgrp->mon.crdtgrp_list;
700 
701         if (rdtgrp->type == RDTCTRL_GROUP) {
702                 list_for_each_entry(entry, head, mon.crdtgrp_list) {
703                         if (__mon_event_count(entry->closid, entry->mon.rmid,
704                                               rr) == 0)
705                                 ret = 0;
706                 }
707         }
708 
709         /*
710          * __mon_event_count() calls for newly created monitor groups may
711          * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
712          * Discard error if any of the monitor event reads succeeded.
713          */
714         if (ret == 0)
715                 rr->err = 0;
716 }
717 
718 /*
719  * Feedback loop for MBA software controller (mba_sc)
720  *
721  * mba_sc is a feedback loop where we periodically read MBM counters and
722  * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
723  * that:
724  *
725  *   current bandwidth(cur_bw) < user specified bandwidth(user_bw)
726  *
727  * This uses the MBM counters to measure the bandwidth and MBA throttle
728  * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
729  * fact that resctrl rdtgroups have both monitoring and control.
730  *
731  * The frequency of the checks is 1s and we just tag along the MBM overflow
732  * timer. Having 1s interval makes the calculation of bandwidth simpler.
733  *
734  * Although MBA's goal is to restrict the bandwidth to a maximum, there may
735  * be a need to increase the bandwidth to avoid unnecessarily restricting
736  * the L2 <-> L3 traffic.
737  *
738  * Since MBA controls the L2 external bandwidth where as MBM measures the
739  * L3 external bandwidth the following sequence could lead to such a
740  * situation.
741  *
742  * Consider an rdtgroup which had high L3 <-> memory traffic in initial
743  * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
744  * after some time rdtgroup has mostly L2 <-> L3 traffic.
745  *
746  * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
747  * throttle MSRs already have low percentage values.  To avoid
748  * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
749  */
750 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm)
751 {
752         u32 closid, rmid, cur_msr_val, new_msr_val;
753         struct mbm_state *pmbm_data, *cmbm_data;
754         struct rdt_ctrl_domain *dom_mba;
755         struct rdt_resource *r_mba;
756         u32 cur_bw, user_bw, idx;
757         struct list_head *head;
758         struct rdtgroup *entry;
759 
760         if (!is_mbm_local_enabled())
761                 return;
762 
763         r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
764 
765         closid = rgrp->closid;
766         rmid = rgrp->mon.rmid;
767         idx = resctrl_arch_rmid_idx_encode(closid, rmid);
768         pmbm_data = &dom_mbm->mbm_local[idx];
769 
770         dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba);
771         if (!dom_mba) {
772                 pr_warn_once("Failure to get domain for MBA update\n");
773                 return;
774         }
775 
776         cur_bw = pmbm_data->prev_bw;
777         user_bw = dom_mba->mbps_val[closid];
778 
779         /* MBA resource doesn't support CDP */
780         cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
781 
782         /*
783          * For Ctrl groups read data from child monitor groups.
784          */
785         head = &rgrp->mon.crdtgrp_list;
786         list_for_each_entry(entry, head, mon.crdtgrp_list) {
787                 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
788                 cur_bw += cmbm_data->prev_bw;
789         }
790 
791         /*
792          * Scale up/down the bandwidth linearly for the ctrl group.  The
793          * bandwidth step is the bandwidth granularity specified by the
794          * hardware.
795          * Always increase throttling if current bandwidth is above the
796          * target set by user.
797          * But avoid thrashing up and down on every poll by checking
798          * whether a decrease in throttling is likely to push the group
799          * back over target. E.g. if currently throttling to 30% of bandwidth
800          * on a system with 10% granularity steps, check whether moving to
801          * 40% would go past the limit by multiplying current bandwidth by
802          * "(30 + 10) / 30".
803          */
804         if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
805                 new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
806         } else if (cur_msr_val < MAX_MBA_BW &&
807                    (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
808                 new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
809         } else {
810                 return;
811         }
812 
813         resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
814 }
815 
816 static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d,
817                        u32 closid, u32 rmid)
818 {
819         struct rmid_read rr = {0};
820 
821         rr.r = r;
822         rr.d = d;
823 
824         /*
825          * This is protected from concurrent reads from user
826          * as both the user and we hold the global mutex.
827          */
828         if (is_mbm_total_enabled()) {
829                 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
830                 rr.val = 0;
831                 rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
832                 if (IS_ERR(rr.arch_mon_ctx)) {
833                         pr_warn_ratelimited("Failed to allocate monitor context: %ld",
834                                             PTR_ERR(rr.arch_mon_ctx));
835                         return;
836                 }
837 
838                 __mon_event_count(closid, rmid, &rr);
839 
840                 resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
841         }
842         if (is_mbm_local_enabled()) {
843                 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
844                 rr.val = 0;
845                 rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
846                 if (IS_ERR(rr.arch_mon_ctx)) {
847                         pr_warn_ratelimited("Failed to allocate monitor context: %ld",
848                                             PTR_ERR(rr.arch_mon_ctx));
849                         return;
850                 }
851 
852                 __mon_event_count(closid, rmid, &rr);
853 
854                 /*
855                  * Call the MBA software controller only for the
856                  * control groups and when user has enabled
857                  * the software controller explicitly.
858                  */
859                 if (is_mba_sc(NULL))
860                         mbm_bw_count(closid, rmid, &rr);
861 
862                 resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
863         }
864 }
865 
866 /*
867  * Handler to scan the limbo list and move the RMIDs
868  * to free list whose occupancy < threshold_occupancy.
869  */
870 void cqm_handle_limbo(struct work_struct *work)
871 {
872         unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
873         struct rdt_mon_domain *d;
874 
875         cpus_read_lock();
876         mutex_lock(&rdtgroup_mutex);
877 
878         d = container_of(work, struct rdt_mon_domain, cqm_limbo.work);
879 
880         __check_limbo(d, false);
881 
882         if (has_busy_rmid(d)) {
883                 d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
884                                                            RESCTRL_PICK_ANY_CPU);
885                 schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
886                                          delay);
887         }
888 
889         mutex_unlock(&rdtgroup_mutex);
890         cpus_read_unlock();
891 }
892 
893 /**
894  * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
895  *                             domain.
896  * @dom:           The domain the limbo handler should run for.
897  * @delay_ms:      How far in the future the handler should run.
898  * @exclude_cpu:   Which CPU the handler should not run on,
899  *                 RESCTRL_PICK_ANY_CPU to pick any CPU.
900  */
901 void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
902                              int exclude_cpu)
903 {
904         unsigned long delay = msecs_to_jiffies(delay_ms);
905         int cpu;
906 
907         cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
908         dom->cqm_work_cpu = cpu;
909 
910         if (cpu < nr_cpu_ids)
911                 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
912 }
913 
914 void mbm_handle_overflow(struct work_struct *work)
915 {
916         unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
917         struct rdtgroup *prgrp, *crgrp;
918         struct rdt_mon_domain *d;
919         struct list_head *head;
920         struct rdt_resource *r;
921 
922         cpus_read_lock();
923         mutex_lock(&rdtgroup_mutex);
924 
925         /*
926          * If the filesystem has been unmounted this work no longer needs to
927          * run.
928          */
929         if (!resctrl_mounted || !resctrl_arch_mon_capable())
930                 goto out_unlock;
931 
932         r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
933         d = container_of(work, struct rdt_mon_domain, mbm_over.work);
934 
935         list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
936                 mbm_update(r, d, prgrp->closid, prgrp->mon.rmid);
937 
938                 head = &prgrp->mon.crdtgrp_list;
939                 list_for_each_entry(crgrp, head, mon.crdtgrp_list)
940                         mbm_update(r, d, crgrp->closid, crgrp->mon.rmid);
941 
942                 if (is_mba_sc(NULL))
943                         update_mba_bw(prgrp, d);
944         }
945 
946         /*
947          * Re-check for housekeeping CPUs. This allows the overflow handler to
948          * move off a nohz_full CPU quickly.
949          */
950         d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
951                                                    RESCTRL_PICK_ANY_CPU);
952         schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);
953 
954 out_unlock:
955         mutex_unlock(&rdtgroup_mutex);
956         cpus_read_unlock();
957 }
958 
959 /**
960  * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
961  *                                domain.
962  * @dom:           The domain the overflow handler should run for.
963  * @delay_ms:      How far in the future the handler should run.
964  * @exclude_cpu:   Which CPU the handler should not run on,
965  *                 RESCTRL_PICK_ANY_CPU to pick any CPU.
966  */
967 void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
968                                 int exclude_cpu)
969 {
970         unsigned long delay = msecs_to_jiffies(delay_ms);
971         int cpu;
972 
973         /*
974          * When a domain comes online there is no guarantee the filesystem is
975          * mounted. If not, there is no need to catch counter overflow.
976          */
977         if (!resctrl_mounted || !resctrl_arch_mon_capable())
978                 return;
979         cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
980         dom->mbm_work_cpu = cpu;
981 
982         if (cpu < nr_cpu_ids)
983                 schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
984 }
985 
986 static int dom_data_init(struct rdt_resource *r)
987 {
988         u32 idx_limit = resctrl_arch_system_num_rmid_idx();
989         u32 num_closid = resctrl_arch_get_num_closid(r);
990         struct rmid_entry *entry = NULL;
991         int err = 0, i;
992         u32 idx;
993 
994         mutex_lock(&rdtgroup_mutex);
995         if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
996                 u32 *tmp;
997 
998                 /*
999                  * If the architecture hasn't provided a sanitised value here,
1000                  * this may result in larger arrays than necessary. Resctrl will
1001                  * use a smaller system wide value based on the resources in
1002                  * use.
1003                  */
1004                 tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
1005                 if (!tmp) {
1006                         err = -ENOMEM;
1007                         goto out_unlock;
1008                 }
1009 
1010                 closid_num_dirty_rmid = tmp;
1011         }
1012 
1013         rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
1014         if (!rmid_ptrs) {
1015                 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
1016                         kfree(closid_num_dirty_rmid);
1017                         closid_num_dirty_rmid = NULL;
1018                 }
1019                 err = -ENOMEM;
1020                 goto out_unlock;
1021         }
1022 
1023         for (i = 0; i < idx_limit; i++) {
1024                 entry = &rmid_ptrs[i];
1025                 INIT_LIST_HEAD(&entry->list);
1026 
1027                 resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
1028                 list_add_tail(&entry->list, &rmid_free_lru);
1029         }
1030 
1031         /*
1032          * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
1033          * are always allocated. These are used for the rdtgroup_default
1034          * control group, which will be setup later in rdtgroup_init().
1035          */
1036         idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
1037                                            RESCTRL_RESERVED_RMID);
1038         entry = __rmid_entry(idx);
1039         list_del(&entry->list);
1040 
1041 out_unlock:
1042         mutex_unlock(&rdtgroup_mutex);
1043 
1044         return err;
1045 }
1046 
1047 static void __exit dom_data_exit(void)
1048 {
1049         mutex_lock(&rdtgroup_mutex);
1050 
1051         if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
1052                 kfree(closid_num_dirty_rmid);
1053                 closid_num_dirty_rmid = NULL;
1054         }
1055 
1056         kfree(rmid_ptrs);
1057         rmid_ptrs = NULL;
1058 
1059         mutex_unlock(&rdtgroup_mutex);
1060 }
1061 
1062 static struct mon_evt llc_occupancy_event = {
1063         .name           = "llc_occupancy",
1064         .evtid          = QOS_L3_OCCUP_EVENT_ID,
1065 };
1066 
1067 static struct mon_evt mbm_total_event = {
1068         .name           = "mbm_total_bytes",
1069         .evtid          = QOS_L3_MBM_TOTAL_EVENT_ID,
1070 };
1071 
1072 static struct mon_evt mbm_local_event = {
1073         .name           = "mbm_local_bytes",
1074         .evtid          = QOS_L3_MBM_LOCAL_EVENT_ID,
1075 };
1076 
1077 /*
1078  * Initialize the event list for the resource.
1079  *
1080  * Note that MBM events are also part of RDT_RESOURCE_L3 resource
1081  * because as per the SDM the total and local memory bandwidth
1082  * are enumerated as part of L3 monitoring.
1083  */
1084 static void l3_mon_evt_init(struct rdt_resource *r)
1085 {
1086         INIT_LIST_HEAD(&r->evt_list);
1087 
1088         if (is_llc_occupancy_enabled())
1089                 list_add_tail(&llc_occupancy_event.list, &r->evt_list);
1090         if (is_mbm_total_enabled())
1091                 list_add_tail(&mbm_total_event.list, &r->evt_list);
1092         if (is_mbm_local_enabled())
1093                 list_add_tail(&mbm_local_event.list, &r->evt_list);
1094 }
1095 
1096 /*
1097  * The power-on reset value of MSR_RMID_SNC_CONFIG is 0x1
1098  * which indicates that RMIDs are configured in legacy mode.
1099  * This mode is incompatible with Linux resctrl semantics
1100  * as RMIDs are partitioned between SNC nodes, which requires
1101  * a user to know which RMID is allocated to a task.
1102  * Clearing bit 0 reconfigures the RMID counters for use
1103  * in RMID sharing mode. This mode is better for Linux.
1104  * The RMID space is divided between all SNC nodes with the
1105  * RMIDs renumbered to start from zero in each node when
1106  * counting operations from tasks. Code to read the counters
1107  * must adjust RMID counter numbers based on SNC node. See
1108  * logical_rmid_to_physical_rmid() for code that does this.
1109  */
1110 void arch_mon_domain_online(struct rdt_resource *r, struct rdt_mon_domain *d)
1111 {
1112         if (snc_nodes_per_l3_cache > 1)
1113                 msr_clear_bit(MSR_RMID_SNC_CONFIG, 0);
1114 }
1115 
1116 /* CPU models that support MSR_RMID_SNC_CONFIG */
1117 static const struct x86_cpu_id snc_cpu_ids[] __initconst = {
1118         X86_MATCH_VFM(INTEL_ICELAKE_X, 0),
1119         X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, 0),
1120         X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, 0),
1121         X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, 0),
1122         X86_MATCH_VFM(INTEL_ATOM_CRESTMONT_X, 0),
1123         {}
1124 };
1125 
1126 /*
1127  * There isn't a simple hardware bit that indicates whether a CPU is running
1128  * in Sub-NUMA Cluster (SNC) mode. Infer the state by comparing the
1129  * number of CPUs sharing the L3 cache with CPU0 to the number of CPUs in
1130  * the same NUMA node as CPU0.
1131  * It is not possible to accurately determine SNC state if the system is
1132  * booted with a maxcpus=N parameter. That distorts the ratio of SNC nodes
1133  * to L3 caches. It will be OK if system is booted with hyperthreading
1134  * disabled (since this doesn't affect the ratio).
1135  */
1136 static __init int snc_get_config(void)
1137 {
1138         struct cacheinfo *ci = get_cpu_cacheinfo_level(0, RESCTRL_L3_CACHE);
1139         const cpumask_t *node0_cpumask;
1140         int cpus_per_node, cpus_per_l3;
1141         int ret;
1142 
1143         if (!x86_match_cpu(snc_cpu_ids) || !ci)
1144                 return 1;
1145 
1146         cpus_read_lock();
1147         if (num_online_cpus() != num_present_cpus())
1148                 pr_warn("Some CPUs offline, SNC detection may be incorrect\n");
1149         cpus_read_unlock();
1150 
1151         node0_cpumask = cpumask_of_node(cpu_to_node(0));
1152 
1153         cpus_per_node = cpumask_weight(node0_cpumask);
1154         cpus_per_l3 = cpumask_weight(&ci->shared_cpu_map);
1155 
1156         if (!cpus_per_node || !cpus_per_l3)
1157                 return 1;
1158 
1159         ret = cpus_per_l3 / cpus_per_node;
1160 
1161         /* sanity check: Only valid results are 1, 2, 3, 4 */
1162         switch (ret) {
1163         case 1:
1164                 break;
1165         case 2 ... 4:
1166                 pr_info("Sub-NUMA Cluster mode detected with %d nodes per L3 cache\n", ret);
1167                 rdt_resources_all[RDT_RESOURCE_L3].r_resctrl.mon_scope = RESCTRL_L3_NODE;
1168                 break;
1169         default:
1170                 pr_warn("Ignore improbable SNC node count %d\n", ret);
1171                 ret = 1;
1172                 break;
1173         }
1174 
1175         return ret;
1176 }
1177 
1178 int __init rdt_get_mon_l3_config(struct rdt_resource *r)
1179 {
1180         unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
1181         struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1182         unsigned int threshold;
1183         int ret;
1184 
1185         snc_nodes_per_l3_cache = snc_get_config();
1186 
1187         resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
1188         hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale / snc_nodes_per_l3_cache;
1189         r->num_rmid = (boot_cpu_data.x86_cache_max_rmid + 1) / snc_nodes_per_l3_cache;
1190         hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
1191 
1192         if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
1193                 hw_res->mbm_width += mbm_offset;
1194         else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
1195                 pr_warn("Ignoring impossible MBM counter offset\n");
1196 
1197         /*
1198          * A reasonable upper limit on the max threshold is the number
1199          * of lines tagged per RMID if all RMIDs have the same number of
1200          * lines tagged in the LLC.
1201          *
1202          * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1203          */
1204         threshold = resctrl_rmid_realloc_limit / r->num_rmid;
1205 
1206         /*
1207          * Because num_rmid may not be a power of two, round the value
1208          * to the nearest multiple of hw_res->mon_scale so it matches a
1209          * value the hardware will measure. mon_scale may not be a power of 2.
1210          */
1211         resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold);
1212 
1213         ret = dom_data_init(r);
1214         if (ret)
1215                 return ret;
1216 
1217         if (rdt_cpu_has(X86_FEATURE_BMEC)) {
1218                 u32 eax, ebx, ecx, edx;
1219 
1220                 /* Detect list of bandwidth sources that can be tracked */
1221                 cpuid_count(0x80000020, 3, &eax, &ebx, &ecx, &edx);
1222                 hw_res->mbm_cfg_mask = ecx & MAX_EVT_CONFIG_BITS;
1223 
1224                 if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) {
1225                         mbm_total_event.configurable = true;
1226                         mbm_config_rftype_init("mbm_total_bytes_config");
1227                 }
1228                 if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) {
1229                         mbm_local_event.configurable = true;
1230                         mbm_config_rftype_init("mbm_local_bytes_config");
1231                 }
1232         }
1233 
1234         l3_mon_evt_init(r);
1235 
1236         r->mon_capable = true;
1237 
1238         return 0;
1239 }
1240 
1241 void __exit rdt_put_mon_l3_config(void)
1242 {
1243         dom_data_exit();
1244 }
1245 
1246 void __init intel_rdt_mbm_apply_quirk(void)
1247 {
1248         int cf_index;
1249 
1250         cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
1251         if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
1252                 pr_info("No MBM correction factor available\n");
1253                 return;
1254         }
1255 
1256         mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
1257         mbm_cf = mbm_cf_table[cf_index].cf;
1258 }
1259 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php