~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/cpu/resctrl/pseudo_lock.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Resource Director Technology (RDT)
  4  *
  5  * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
  6  *
  7  * Copyright (C) 2018 Intel Corporation
  8  *
  9  * Author: Reinette Chatre <reinette.chatre@intel.com>
 10  */
 11 
 12 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
 13 
 14 #include <linux/cpu.h>
 15 #include <linux/cpumask.h>
 16 #include <linux/debugfs.h>
 17 #include <linux/kthread.h>
 18 #include <linux/mman.h>
 19 #include <linux/perf_event.h>
 20 #include <linux/pm_qos.h>
 21 #include <linux/slab.h>
 22 #include <linux/uaccess.h>
 23 
 24 #include <asm/cacheflush.h>
 25 #include <asm/cpu_device_id.h>
 26 #include <asm/resctrl.h>
 27 #include <asm/perf_event.h>
 28 
 29 #include "../../events/perf_event.h" /* For X86_CONFIG() */
 30 #include "internal.h"
 31 
 32 #define CREATE_TRACE_POINTS
 33 #include "trace.h"
 34 
 35 /*
 36  * The bits needed to disable hardware prefetching varies based on the
 37  * platform. During initialization we will discover which bits to use.
 38  */
 39 static u64 prefetch_disable_bits;
 40 
 41 /*
 42  * Major number assigned to and shared by all devices exposing
 43  * pseudo-locked regions.
 44  */
 45 static unsigned int pseudo_lock_major;
 46 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
 47 
 48 static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode)
 49 {
 50         const struct rdtgroup *rdtgrp;
 51 
 52         rdtgrp = dev_get_drvdata(dev);
 53         if (mode)
 54                 *mode = 0600;
 55         return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
 56 }
 57 
 58 static const struct class pseudo_lock_class = {
 59         .name = "pseudo_lock",
 60         .devnode = pseudo_lock_devnode,
 61 };
 62 
 63 /**
 64  * get_prefetch_disable_bits - prefetch disable bits of supported platforms
 65  * @void: It takes no parameters.
 66  *
 67  * Capture the list of platforms that have been validated to support
 68  * pseudo-locking. This includes testing to ensure pseudo-locked regions
 69  * with low cache miss rates can be created under variety of load conditions
 70  * as well as that these pseudo-locked regions can maintain their low cache
 71  * miss rates under variety of load conditions for significant lengths of time.
 72  *
 73  * After a platform has been validated to support pseudo-locking its
 74  * hardware prefetch disable bits are included here as they are documented
 75  * in the SDM.
 76  *
 77  * When adding a platform here also add support for its cache events to
 78  * measure_cycles_perf_fn()
 79  *
 80  * Return:
 81  * If platform is supported, the bits to disable hardware prefetchers, 0
 82  * if platform is not supported.
 83  */
 84 static u64 get_prefetch_disable_bits(void)
 85 {
 86         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
 87             boot_cpu_data.x86 != 6)
 88                 return 0;
 89 
 90         switch (boot_cpu_data.x86_vfm) {
 91         case INTEL_BROADWELL_X:
 92                 /*
 93                  * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
 94                  * as:
 95                  * 0    L2 Hardware Prefetcher Disable (R/W)
 96                  * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
 97                  * 2    DCU Hardware Prefetcher Disable (R/W)
 98                  * 3    DCU IP Prefetcher Disable (R/W)
 99                  * 63:4 Reserved
100                  */
101                 return 0xF;
102         case INTEL_ATOM_GOLDMONT:
103         case INTEL_ATOM_GOLDMONT_PLUS:
104                 /*
105                  * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
106                  * as:
107                  * 0     L2 Hardware Prefetcher Disable (R/W)
108                  * 1     Reserved
109                  * 2     DCU Hardware Prefetcher Disable (R/W)
110                  * 63:3  Reserved
111                  */
112                 return 0x5;
113         }
114 
115         return 0;
116 }
117 
118 /**
119  * pseudo_lock_minor_get - Obtain available minor number
120  * @minor: Pointer to where new minor number will be stored
121  *
122  * A bitmask is used to track available minor numbers. Here the next free
123  * minor number is marked as unavailable and returned.
124  *
125  * Return: 0 on success, <0 on failure.
126  */
127 static int pseudo_lock_minor_get(unsigned int *minor)
128 {
129         unsigned long first_bit;
130 
131         first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
132 
133         if (first_bit == MINORBITS)
134                 return -ENOSPC;
135 
136         __clear_bit(first_bit, &pseudo_lock_minor_avail);
137         *minor = first_bit;
138 
139         return 0;
140 }
141 
142 /**
143  * pseudo_lock_minor_release - Return minor number to available
144  * @minor: The minor number made available
145  */
146 static void pseudo_lock_minor_release(unsigned int minor)
147 {
148         __set_bit(minor, &pseudo_lock_minor_avail);
149 }
150 
151 /**
152  * region_find_by_minor - Locate a pseudo-lock region by inode minor number
153  * @minor: The minor number of the device representing pseudo-locked region
154  *
155  * When the character device is accessed we need to determine which
156  * pseudo-locked region it belongs to. This is done by matching the minor
157  * number of the device to the pseudo-locked region it belongs.
158  *
159  * Minor numbers are assigned at the time a pseudo-locked region is associated
160  * with a cache instance.
161  *
162  * Return: On success return pointer to resource group owning the pseudo-locked
163  *         region, NULL on failure.
164  */
165 static struct rdtgroup *region_find_by_minor(unsigned int minor)
166 {
167         struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
168 
169         list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
170                 if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
171                         rdtgrp_match = rdtgrp;
172                         break;
173                 }
174         }
175         return rdtgrp_match;
176 }
177 
178 /**
179  * struct pseudo_lock_pm_req - A power management QoS request list entry
180  * @list:       Entry within the @pm_reqs list for a pseudo-locked region
181  * @req:        PM QoS request
182  */
183 struct pseudo_lock_pm_req {
184         struct list_head list;
185         struct dev_pm_qos_request req;
186 };
187 
188 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
189 {
190         struct pseudo_lock_pm_req *pm_req, *next;
191 
192         list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
193                 dev_pm_qos_remove_request(&pm_req->req);
194                 list_del(&pm_req->list);
195                 kfree(pm_req);
196         }
197 }
198 
199 /**
200  * pseudo_lock_cstates_constrain - Restrict cores from entering C6
201  * @plr: Pseudo-locked region
202  *
203  * To prevent the cache from being affected by power management entering
204  * C6 has to be avoided. This is accomplished by requesting a latency
205  * requirement lower than lowest C6 exit latency of all supported
206  * platforms as found in the cpuidle state tables in the intel_idle driver.
207  * At this time it is possible to do so with a single latency requirement
208  * for all supported platforms.
209  *
210  * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
211  * the ACPI latencies need to be considered while keeping in mind that C2
212  * may be set to map to deeper sleep states. In this case the latency
213  * requirement needs to prevent entering C2 also.
214  *
215  * Return: 0 on success, <0 on failure
216  */
217 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
218 {
219         struct pseudo_lock_pm_req *pm_req;
220         int cpu;
221         int ret;
222 
223         for_each_cpu(cpu, &plr->d->hdr.cpu_mask) {
224                 pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
225                 if (!pm_req) {
226                         rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
227                         ret = -ENOMEM;
228                         goto out_err;
229                 }
230                 ret = dev_pm_qos_add_request(get_cpu_device(cpu),
231                                              &pm_req->req,
232                                              DEV_PM_QOS_RESUME_LATENCY,
233                                              30);
234                 if (ret < 0) {
235                         rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
236                                             cpu);
237                         kfree(pm_req);
238                         ret = -1;
239                         goto out_err;
240                 }
241                 list_add(&pm_req->list, &plr->pm_reqs);
242         }
243 
244         return 0;
245 
246 out_err:
247         pseudo_lock_cstates_relax(plr);
248         return ret;
249 }
250 
251 /**
252  * pseudo_lock_region_clear - Reset pseudo-lock region data
253  * @plr: pseudo-lock region
254  *
255  * All content of the pseudo-locked region is reset - any memory allocated
256  * freed.
257  *
258  * Return: void
259  */
260 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
261 {
262         plr->size = 0;
263         plr->line_size = 0;
264         kfree(plr->kmem);
265         plr->kmem = NULL;
266         plr->s = NULL;
267         if (plr->d)
268                 plr->d->plr = NULL;
269         plr->d = NULL;
270         plr->cbm = 0;
271         plr->debugfs_dir = NULL;
272 }
273 
274 /**
275  * pseudo_lock_region_init - Initialize pseudo-lock region information
276  * @plr: pseudo-lock region
277  *
278  * Called after user provided a schemata to be pseudo-locked. From the
279  * schemata the &struct pseudo_lock_region is on entry already initialized
280  * with the resource, domain, and capacity bitmask. Here the information
281  * required for pseudo-locking is deduced from this data and &struct
282  * pseudo_lock_region initialized further. This information includes:
283  * - size in bytes of the region to be pseudo-locked
284  * - cache line size to know the stride with which data needs to be accessed
285  *   to be pseudo-locked
286  * - a cpu associated with the cache instance on which the pseudo-locking
287  *   flow can be executed
288  *
289  * Return: 0 on success, <0 on failure. Descriptive error will be written
290  * to last_cmd_status buffer.
291  */
292 static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
293 {
294         enum resctrl_scope scope = plr->s->res->ctrl_scope;
295         struct cacheinfo *ci;
296         int ret;
297 
298         if (WARN_ON_ONCE(scope != RESCTRL_L2_CACHE && scope != RESCTRL_L3_CACHE))
299                 return -ENODEV;
300 
301         /* Pick the first cpu we find that is associated with the cache. */
302         plr->cpu = cpumask_first(&plr->d->hdr.cpu_mask);
303 
304         if (!cpu_online(plr->cpu)) {
305                 rdt_last_cmd_printf("CPU %u associated with cache not online\n",
306                                     plr->cpu);
307                 ret = -ENODEV;
308                 goto out_region;
309         }
310 
311         ci = get_cpu_cacheinfo_level(plr->cpu, scope);
312         if (ci) {
313                 plr->line_size = ci->coherency_line_size;
314                 plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm);
315                 return 0;
316         }
317 
318         ret = -1;
319         rdt_last_cmd_puts("Unable to determine cache line size\n");
320 out_region:
321         pseudo_lock_region_clear(plr);
322         return ret;
323 }
324 
325 /**
326  * pseudo_lock_init - Initialize a pseudo-lock region
327  * @rdtgrp: resource group to which new pseudo-locked region will belong
328  *
329  * A pseudo-locked region is associated with a resource group. When this
330  * association is created the pseudo-locked region is initialized. The
331  * details of the pseudo-locked region are not known at this time so only
332  * allocation is done and association established.
333  *
334  * Return: 0 on success, <0 on failure
335  */
336 static int pseudo_lock_init(struct rdtgroup *rdtgrp)
337 {
338         struct pseudo_lock_region *plr;
339 
340         plr = kzalloc(sizeof(*plr), GFP_KERNEL);
341         if (!plr)
342                 return -ENOMEM;
343 
344         init_waitqueue_head(&plr->lock_thread_wq);
345         INIT_LIST_HEAD(&plr->pm_reqs);
346         rdtgrp->plr = plr;
347         return 0;
348 }
349 
350 /**
351  * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
352  * @plr: pseudo-lock region
353  *
354  * Initialize the details required to set up the pseudo-locked region and
355  * allocate the contiguous memory that will be pseudo-locked to the cache.
356  *
357  * Return: 0 on success, <0 on failure.  Descriptive error will be written
358  * to last_cmd_status buffer.
359  */
360 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
361 {
362         int ret;
363 
364         ret = pseudo_lock_region_init(plr);
365         if (ret < 0)
366                 return ret;
367 
368         /*
369          * We do not yet support contiguous regions larger than
370          * KMALLOC_MAX_SIZE.
371          */
372         if (plr->size > KMALLOC_MAX_SIZE) {
373                 rdt_last_cmd_puts("Requested region exceeds maximum size\n");
374                 ret = -E2BIG;
375                 goto out_region;
376         }
377 
378         plr->kmem = kzalloc(plr->size, GFP_KERNEL);
379         if (!plr->kmem) {
380                 rdt_last_cmd_puts("Unable to allocate memory\n");
381                 ret = -ENOMEM;
382                 goto out_region;
383         }
384 
385         ret = 0;
386         goto out;
387 out_region:
388         pseudo_lock_region_clear(plr);
389 out:
390         return ret;
391 }
392 
393 /**
394  * pseudo_lock_free - Free a pseudo-locked region
395  * @rdtgrp: resource group to which pseudo-locked region belonged
396  *
397  * The pseudo-locked region's resources have already been released, or not
398  * yet created at this point. Now it can be freed and disassociated from the
399  * resource group.
400  *
401  * Return: void
402  */
403 static void pseudo_lock_free(struct rdtgroup *rdtgrp)
404 {
405         pseudo_lock_region_clear(rdtgrp->plr);
406         kfree(rdtgrp->plr);
407         rdtgrp->plr = NULL;
408 }
409 
410 /**
411  * pseudo_lock_fn - Load kernel memory into cache
412  * @_rdtgrp: resource group to which pseudo-lock region belongs
413  *
414  * This is the core pseudo-locking flow.
415  *
416  * First we ensure that the kernel memory cannot be found in the cache.
417  * Then, while taking care that there will be as little interference as
418  * possible, the memory to be loaded is accessed while core is running
419  * with class of service set to the bitmask of the pseudo-locked region.
420  * After this is complete no future CAT allocations will be allowed to
421  * overlap with this bitmask.
422  *
423  * Local register variables are utilized to ensure that the memory region
424  * to be locked is the only memory access made during the critical locking
425  * loop.
426  *
427  * Return: 0. Waiter on waitqueue will be woken on completion.
428  */
429 static int pseudo_lock_fn(void *_rdtgrp)
430 {
431         struct rdtgroup *rdtgrp = _rdtgrp;
432         struct pseudo_lock_region *plr = rdtgrp->plr;
433         u32 rmid_p, closid_p;
434         unsigned long i;
435         u64 saved_msr;
436 #ifdef CONFIG_KASAN
437         /*
438          * The registers used for local register variables are also used
439          * when KASAN is active. When KASAN is active we use a regular
440          * variable to ensure we always use a valid pointer, but the cost
441          * is that this variable will enter the cache through evicting the
442          * memory we are trying to lock into the cache. Thus expect lower
443          * pseudo-locking success rate when KASAN is active.
444          */
445         unsigned int line_size;
446         unsigned int size;
447         void *mem_r;
448 #else
449         register unsigned int line_size asm("esi");
450         register unsigned int size asm("edi");
451         register void *mem_r asm(_ASM_BX);
452 #endif /* CONFIG_KASAN */
453 
454         /*
455          * Make sure none of the allocated memory is cached. If it is we
456          * will get a cache hit in below loop from outside of pseudo-locked
457          * region.
458          * wbinvd (as opposed to clflush/clflushopt) is required to
459          * increase likelihood that allocated cache portion will be filled
460          * with associated memory.
461          */
462         native_wbinvd();
463 
464         /*
465          * Always called with interrupts enabled. By disabling interrupts
466          * ensure that we will not be preempted during this critical section.
467          */
468         local_irq_disable();
469 
470         /*
471          * Call wrmsr and rdmsr as directly as possible to avoid tracing
472          * clobbering local register variables or affecting cache accesses.
473          *
474          * Disable the hardware prefetcher so that when the end of the memory
475          * being pseudo-locked is reached the hardware will not read beyond
476          * the buffer and evict pseudo-locked memory read earlier from the
477          * cache.
478          */
479         saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL);
480         __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
481         closid_p = this_cpu_read(pqr_state.cur_closid);
482         rmid_p = this_cpu_read(pqr_state.cur_rmid);
483         mem_r = plr->kmem;
484         size = plr->size;
485         line_size = plr->line_size;
486         /*
487          * Critical section begin: start by writing the closid associated
488          * with the capacity bitmask of the cache region being
489          * pseudo-locked followed by reading of kernel memory to load it
490          * into the cache.
491          */
492         __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
493         /*
494          * Cache was flushed earlier. Now access kernel memory to read it
495          * into cache region associated with just activated plr->closid.
496          * Loop over data twice:
497          * - In first loop the cache region is shared with the page walker
498          *   as it populates the paging structure caches (including TLB).
499          * - In the second loop the paging structure caches are used and
500          *   cache region is populated with the memory being referenced.
501          */
502         for (i = 0; i < size; i += PAGE_SIZE) {
503                 /*
504                  * Add a barrier to prevent speculative execution of this
505                  * loop reading beyond the end of the buffer.
506                  */
507                 rmb();
508                 asm volatile("mov (%0,%1,1), %%eax\n\t"
509                         :
510                         : "r" (mem_r), "r" (i)
511                         : "%eax", "memory");
512         }
513         for (i = 0; i < size; i += line_size) {
514                 /*
515                  * Add a barrier to prevent speculative execution of this
516                  * loop reading beyond the end of the buffer.
517                  */
518                 rmb();
519                 asm volatile("mov (%0,%1,1), %%eax\n\t"
520                         :
521                         : "r" (mem_r), "r" (i)
522                         : "%eax", "memory");
523         }
524         /*
525          * Critical section end: restore closid with capacity bitmask that
526          * does not overlap with pseudo-locked region.
527          */
528         __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p);
529 
530         /* Re-enable the hardware prefetcher(s) */
531         wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr);
532         local_irq_enable();
533 
534         plr->thread_done = 1;
535         wake_up_interruptible(&plr->lock_thread_wq);
536         return 0;
537 }
538 
539 /**
540  * rdtgroup_monitor_in_progress - Test if monitoring in progress
541  * @rdtgrp: resource group being queried
542  *
543  * Return: 1 if monitor groups have been created for this resource
544  * group, 0 otherwise.
545  */
546 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
547 {
548         return !list_empty(&rdtgrp->mon.crdtgrp_list);
549 }
550 
551 /**
552  * rdtgroup_locksetup_user_restrict - Restrict user access to group
553  * @rdtgrp: resource group needing access restricted
554  *
555  * A resource group used for cache pseudo-locking cannot have cpus or tasks
556  * assigned to it. This is communicated to the user by restricting access
557  * to all the files that can be used to make such changes.
558  *
559  * Permissions restored with rdtgroup_locksetup_user_restore()
560  *
561  * Return: 0 on success, <0 on failure. If a failure occurs during the
562  * restriction of access an attempt will be made to restore permissions but
563  * the state of the mode of these files will be uncertain when a failure
564  * occurs.
565  */
566 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
567 {
568         int ret;
569 
570         ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
571         if (ret)
572                 return ret;
573 
574         ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
575         if (ret)
576                 goto err_tasks;
577 
578         ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
579         if (ret)
580                 goto err_cpus;
581 
582         if (resctrl_arch_mon_capable()) {
583                 ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
584                 if (ret)
585                         goto err_cpus_list;
586         }
587 
588         ret = 0;
589         goto out;
590 
591 err_cpus_list:
592         rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
593 err_cpus:
594         rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
595 err_tasks:
596         rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
597 out:
598         return ret;
599 }
600 
601 /**
602  * rdtgroup_locksetup_user_restore - Restore user access to group
603  * @rdtgrp: resource group needing access restored
604  *
605  * Restore all file access previously removed using
606  * rdtgroup_locksetup_user_restrict()
607  *
608  * Return: 0 on success, <0 on failure.  If a failure occurs during the
609  * restoration of access an attempt will be made to restrict permissions
610  * again but the state of the mode of these files will be uncertain when
611  * a failure occurs.
612  */
613 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
614 {
615         int ret;
616 
617         ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
618         if (ret)
619                 return ret;
620 
621         ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
622         if (ret)
623                 goto err_tasks;
624 
625         ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
626         if (ret)
627                 goto err_cpus;
628 
629         if (resctrl_arch_mon_capable()) {
630                 ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
631                 if (ret)
632                         goto err_cpus_list;
633         }
634 
635         ret = 0;
636         goto out;
637 
638 err_cpus_list:
639         rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
640 err_cpus:
641         rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
642 err_tasks:
643         rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
644 out:
645         return ret;
646 }
647 
648 /**
649  * rdtgroup_locksetup_enter - Resource group enters locksetup mode
650  * @rdtgrp: resource group requested to enter locksetup mode
651  *
652  * A resource group enters locksetup mode to reflect that it would be used
653  * to represent a pseudo-locked region and is in the process of being set
654  * up to do so. A resource group used for a pseudo-locked region would
655  * lose the closid associated with it so we cannot allow it to have any
656  * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
657  * future. Monitoring of a pseudo-locked region is not allowed either.
658  *
659  * The above and more restrictions on a pseudo-locked region are checked
660  * for and enforced before the resource group enters the locksetup mode.
661  *
662  * Returns: 0 if the resource group successfully entered locksetup mode, <0
663  * on failure. On failure the last_cmd_status buffer is updated with text to
664  * communicate details of failure to the user.
665  */
666 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
667 {
668         int ret;
669 
670         /*
671          * The default resource group can neither be removed nor lose the
672          * default closid associated with it.
673          */
674         if (rdtgrp == &rdtgroup_default) {
675                 rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
676                 return -EINVAL;
677         }
678 
679         /*
680          * Cache Pseudo-locking not supported when CDP is enabled.
681          *
682          * Some things to consider if you would like to enable this
683          * support (using L3 CDP as example):
684          * - When CDP is enabled two separate resources are exposed,
685          *   L3DATA and L3CODE, but they are actually on the same cache.
686          *   The implication for pseudo-locking is that if a
687          *   pseudo-locked region is created on a domain of one
688          *   resource (eg. L3CODE), then a pseudo-locked region cannot
689          *   be created on that same domain of the other resource
690          *   (eg. L3DATA). This is because the creation of a
691          *   pseudo-locked region involves a call to wbinvd that will
692          *   affect all cache allocations on particular domain.
693          * - Considering the previous, it may be possible to only
694          *   expose one of the CDP resources to pseudo-locking and
695          *   hide the other. For example, we could consider to only
696          *   expose L3DATA and since the L3 cache is unified it is
697          *   still possible to place instructions there are execute it.
698          * - If only one region is exposed to pseudo-locking we should
699          *   still keep in mind that availability of a portion of cache
700          *   for pseudo-locking should take into account both resources.
701          *   Similarly, if a pseudo-locked region is created in one
702          *   resource, the portion of cache used by it should be made
703          *   unavailable to all future allocations from both resources.
704          */
705         if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) ||
706             resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) {
707                 rdt_last_cmd_puts("CDP enabled\n");
708                 return -EINVAL;
709         }
710 
711         /*
712          * Not knowing the bits to disable prefetching implies that this
713          * platform does not support Cache Pseudo-Locking.
714          */
715         prefetch_disable_bits = get_prefetch_disable_bits();
716         if (prefetch_disable_bits == 0) {
717                 rdt_last_cmd_puts("Pseudo-locking not supported\n");
718                 return -EINVAL;
719         }
720 
721         if (rdtgroup_monitor_in_progress(rdtgrp)) {
722                 rdt_last_cmd_puts("Monitoring in progress\n");
723                 return -EINVAL;
724         }
725 
726         if (rdtgroup_tasks_assigned(rdtgrp)) {
727                 rdt_last_cmd_puts("Tasks assigned to resource group\n");
728                 return -EINVAL;
729         }
730 
731         if (!cpumask_empty(&rdtgrp->cpu_mask)) {
732                 rdt_last_cmd_puts("CPUs assigned to resource group\n");
733                 return -EINVAL;
734         }
735 
736         if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
737                 rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
738                 return -EIO;
739         }
740 
741         ret = pseudo_lock_init(rdtgrp);
742         if (ret) {
743                 rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
744                 goto out_release;
745         }
746 
747         /*
748          * If this system is capable of monitoring a rmid would have been
749          * allocated when the control group was created. This is not needed
750          * anymore when this group would be used for pseudo-locking. This
751          * is safe to call on platforms not capable of monitoring.
752          */
753         free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
754 
755         ret = 0;
756         goto out;
757 
758 out_release:
759         rdtgroup_locksetup_user_restore(rdtgrp);
760 out:
761         return ret;
762 }
763 
764 /**
765  * rdtgroup_locksetup_exit - resource group exist locksetup mode
766  * @rdtgrp: resource group
767  *
768  * When a resource group exits locksetup mode the earlier restrictions are
769  * lifted.
770  *
771  * Return: 0 on success, <0 on failure
772  */
773 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
774 {
775         int ret;
776 
777         if (resctrl_arch_mon_capable()) {
778                 ret = alloc_rmid(rdtgrp->closid);
779                 if (ret < 0) {
780                         rdt_last_cmd_puts("Out of RMIDs\n");
781                         return ret;
782                 }
783                 rdtgrp->mon.rmid = ret;
784         }
785 
786         ret = rdtgroup_locksetup_user_restore(rdtgrp);
787         if (ret) {
788                 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
789                 return ret;
790         }
791 
792         pseudo_lock_free(rdtgrp);
793         return 0;
794 }
795 
796 /**
797  * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
798  * @d: RDT domain
799  * @cbm: CBM to test
800  *
801  * @d represents a cache instance and @cbm a capacity bitmask that is
802  * considered for it. Determine if @cbm overlaps with any existing
803  * pseudo-locked region on @d.
804  *
805  * @cbm is unsigned long, even if only 32 bits are used, to make the
806  * bitmap functions work correctly.
807  *
808  * Return: true if @cbm overlaps with pseudo-locked region on @d, false
809  * otherwise.
810  */
811 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm)
812 {
813         unsigned int cbm_len;
814         unsigned long cbm_b;
815 
816         if (d->plr) {
817                 cbm_len = d->plr->s->res->cache.cbm_len;
818                 cbm_b = d->plr->cbm;
819                 if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
820                         return true;
821         }
822         return false;
823 }
824 
825 /**
826  * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
827  * @d: RDT domain under test
828  *
829  * The setup of a pseudo-locked region affects all cache instances within
830  * the hierarchy of the region. It is thus essential to know if any
831  * pseudo-locked regions exist within a cache hierarchy to prevent any
832  * attempts to create new pseudo-locked regions in the same hierarchy.
833  *
834  * Return: true if a pseudo-locked region exists in the hierarchy of @d or
835  *         if it is not possible to test due to memory allocation issue,
836  *         false otherwise.
837  */
838 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d)
839 {
840         struct rdt_ctrl_domain *d_i;
841         cpumask_var_t cpu_with_psl;
842         struct rdt_resource *r;
843         bool ret = false;
844 
845         /* Walking r->domains, ensure it can't race with cpuhp */
846         lockdep_assert_cpus_held();
847 
848         if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
849                 return true;
850 
851         /*
852          * First determine which cpus have pseudo-locked regions
853          * associated with them.
854          */
855         for_each_alloc_capable_rdt_resource(r) {
856                 list_for_each_entry(d_i, &r->ctrl_domains, hdr.list) {
857                         if (d_i->plr)
858                                 cpumask_or(cpu_with_psl, cpu_with_psl,
859                                            &d_i->hdr.cpu_mask);
860                 }
861         }
862 
863         /*
864          * Next test if new pseudo-locked region would intersect with
865          * existing region.
866          */
867         if (cpumask_intersects(&d->hdr.cpu_mask, cpu_with_psl))
868                 ret = true;
869 
870         free_cpumask_var(cpu_with_psl);
871         return ret;
872 }
873 
874 /**
875  * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
876  * @_plr: pseudo-lock region to measure
877  *
878  * There is no deterministic way to test if a memory region is cached. One
879  * way is to measure how long it takes to read the memory, the speed of
880  * access is a good way to learn how close to the cpu the data was. Even
881  * more, if the prefetcher is disabled and the memory is read at a stride
882  * of half the cache line, then a cache miss will be easy to spot since the
883  * read of the first half would be significantly slower than the read of
884  * the second half.
885  *
886  * Return: 0. Waiter on waitqueue will be woken on completion.
887  */
888 static int measure_cycles_lat_fn(void *_plr)
889 {
890         struct pseudo_lock_region *plr = _plr;
891         u32 saved_low, saved_high;
892         unsigned long i;
893         u64 start, end;
894         void *mem_r;
895 
896         local_irq_disable();
897         /*
898          * Disable hardware prefetchers.
899          */
900         rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
901         wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
902         mem_r = READ_ONCE(plr->kmem);
903         /*
904          * Dummy execute of the time measurement to load the needed
905          * instructions into the L1 instruction cache.
906          */
907         start = rdtsc_ordered();
908         for (i = 0; i < plr->size; i += 32) {
909                 start = rdtsc_ordered();
910                 asm volatile("mov (%0,%1,1), %%eax\n\t"
911                              :
912                              : "r" (mem_r), "r" (i)
913                              : "%eax", "memory");
914                 end = rdtsc_ordered();
915                 trace_pseudo_lock_mem_latency((u32)(end - start));
916         }
917         wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
918         local_irq_enable();
919         plr->thread_done = 1;
920         wake_up_interruptible(&plr->lock_thread_wq);
921         return 0;
922 }
923 
924 /*
925  * Create a perf_event_attr for the hit and miss perf events that will
926  * be used during the performance measurement. A perf_event maintains
927  * a pointer to its perf_event_attr so a unique attribute structure is
928  * created for each perf_event.
929  *
930  * The actual configuration of the event is set right before use in order
931  * to use the X86_CONFIG macro.
932  */
933 static struct perf_event_attr perf_miss_attr = {
934         .type           = PERF_TYPE_RAW,
935         .size           = sizeof(struct perf_event_attr),
936         .pinned         = 1,
937         .disabled       = 0,
938         .exclude_user   = 1,
939 };
940 
941 static struct perf_event_attr perf_hit_attr = {
942         .type           = PERF_TYPE_RAW,
943         .size           = sizeof(struct perf_event_attr),
944         .pinned         = 1,
945         .disabled       = 0,
946         .exclude_user   = 1,
947 };
948 
949 struct residency_counts {
950         u64 miss_before, hits_before;
951         u64 miss_after,  hits_after;
952 };
953 
954 static int measure_residency_fn(struct perf_event_attr *miss_attr,
955                                 struct perf_event_attr *hit_attr,
956                                 struct pseudo_lock_region *plr,
957                                 struct residency_counts *counts)
958 {
959         u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
960         struct perf_event *miss_event, *hit_event;
961         int hit_pmcnum, miss_pmcnum;
962         u32 saved_low, saved_high;
963         unsigned int line_size;
964         unsigned int size;
965         unsigned long i;
966         void *mem_r;
967         u64 tmp;
968 
969         miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
970                                                       NULL, NULL, NULL);
971         if (IS_ERR(miss_event))
972                 goto out;
973 
974         hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
975                                                      NULL, NULL, NULL);
976         if (IS_ERR(hit_event))
977                 goto out_miss;
978 
979         local_irq_disable();
980         /*
981          * Check any possible error state of events used by performing
982          * one local read.
983          */
984         if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
985                 local_irq_enable();
986                 goto out_hit;
987         }
988         if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
989                 local_irq_enable();
990                 goto out_hit;
991         }
992 
993         /*
994          * Disable hardware prefetchers.
995          */
996         rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
997         wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
998 
999         /* Initialize rest of local variables */
1000         /*
1001          * Performance event has been validated right before this with
1002          * interrupts disabled - it is thus safe to read the counter index.
1003          */
1004         miss_pmcnum = x86_perf_rdpmc_index(miss_event);
1005         hit_pmcnum = x86_perf_rdpmc_index(hit_event);
1006         line_size = READ_ONCE(plr->line_size);
1007         mem_r = READ_ONCE(plr->kmem);
1008         size = READ_ONCE(plr->size);
1009 
1010         /*
1011          * Read counter variables twice - first to load the instructions
1012          * used in L1 cache, second to capture accurate value that does not
1013          * include cache misses incurred because of instruction loads.
1014          */
1015         rdpmcl(hit_pmcnum, hits_before);
1016         rdpmcl(miss_pmcnum, miss_before);
1017         /*
1018          * From SDM: Performing back-to-back fast reads are not guaranteed
1019          * to be monotonic.
1020          * Use LFENCE to ensure all previous instructions are retired
1021          * before proceeding.
1022          */
1023         rmb();
1024         rdpmcl(hit_pmcnum, hits_before);
1025         rdpmcl(miss_pmcnum, miss_before);
1026         /*
1027          * Use LFENCE to ensure all previous instructions are retired
1028          * before proceeding.
1029          */
1030         rmb();
1031         for (i = 0; i < size; i += line_size) {
1032                 /*
1033                  * Add a barrier to prevent speculative execution of this
1034                  * loop reading beyond the end of the buffer.
1035                  */
1036                 rmb();
1037                 asm volatile("mov (%0,%1,1), %%eax\n\t"
1038                              :
1039                              : "r" (mem_r), "r" (i)
1040                              : "%eax", "memory");
1041         }
1042         /*
1043          * Use LFENCE to ensure all previous instructions are retired
1044          * before proceeding.
1045          */
1046         rmb();
1047         rdpmcl(hit_pmcnum, hits_after);
1048         rdpmcl(miss_pmcnum, miss_after);
1049         /*
1050          * Use LFENCE to ensure all previous instructions are retired
1051          * before proceeding.
1052          */
1053         rmb();
1054         /* Re-enable hardware prefetchers */
1055         wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1056         local_irq_enable();
1057 out_hit:
1058         perf_event_release_kernel(hit_event);
1059 out_miss:
1060         perf_event_release_kernel(miss_event);
1061 out:
1062         /*
1063          * All counts will be zero on failure.
1064          */
1065         counts->miss_before = miss_before;
1066         counts->hits_before = hits_before;
1067         counts->miss_after  = miss_after;
1068         counts->hits_after  = hits_after;
1069         return 0;
1070 }
1071 
1072 static int measure_l2_residency(void *_plr)
1073 {
1074         struct pseudo_lock_region *plr = _plr;
1075         struct residency_counts counts = {0};
1076 
1077         /*
1078          * Non-architectural event for the Goldmont Microarchitecture
1079          * from Intel x86 Architecture Software Developer Manual (SDM):
1080          * MEM_LOAD_UOPS_RETIRED D1H (event number)
1081          * Umask values:
1082          *     L2_HIT   02H
1083          *     L2_MISS  10H
1084          */
1085         switch (boot_cpu_data.x86_vfm) {
1086         case INTEL_ATOM_GOLDMONT:
1087         case INTEL_ATOM_GOLDMONT_PLUS:
1088                 perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1089                                                    .umask = 0x10);
1090                 perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1091                                                   .umask = 0x2);
1092                 break;
1093         default:
1094                 goto out;
1095         }
1096 
1097         measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1098         /*
1099          * If a failure prevented the measurements from succeeding
1100          * tracepoints will still be written and all counts will be zero.
1101          */
1102         trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1103                              counts.miss_after - counts.miss_before);
1104 out:
1105         plr->thread_done = 1;
1106         wake_up_interruptible(&plr->lock_thread_wq);
1107         return 0;
1108 }
1109 
1110 static int measure_l3_residency(void *_plr)
1111 {
1112         struct pseudo_lock_region *plr = _plr;
1113         struct residency_counts counts = {0};
1114 
1115         /*
1116          * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1117          * has two "no fix" errata associated with it: BDM35 and BDM100. On
1118          * this platform the following events are used instead:
1119          * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1120          *       REFERENCE 4FH
1121          *       MISS      41H
1122          */
1123 
1124         switch (boot_cpu_data.x86_vfm) {
1125         case INTEL_BROADWELL_X:
1126                 /* On BDW the hit event counts references, not hits */
1127                 perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1128                                                   .umask = 0x4f);
1129                 perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1130                                                    .umask = 0x41);
1131                 break;
1132         default:
1133                 goto out;
1134         }
1135 
1136         measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1137         /*
1138          * If a failure prevented the measurements from succeeding
1139          * tracepoints will still be written and all counts will be zero.
1140          */
1141 
1142         counts.miss_after -= counts.miss_before;
1143         if (boot_cpu_data.x86_vfm == INTEL_BROADWELL_X) {
1144                 /*
1145                  * On BDW references and misses are counted, need to adjust.
1146                  * Sometimes the "hits" counter is a bit more than the
1147                  * references, for example, x references but x + 1 hits.
1148                  * To not report invalid hit values in this case we treat
1149                  * that as misses equal to references.
1150                  */
1151                 /* First compute the number of cache references measured */
1152                 counts.hits_after -= counts.hits_before;
1153                 /* Next convert references to cache hits */
1154                 counts.hits_after -= min(counts.miss_after, counts.hits_after);
1155         } else {
1156                 counts.hits_after -= counts.hits_before;
1157         }
1158 
1159         trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1160 out:
1161         plr->thread_done = 1;
1162         wake_up_interruptible(&plr->lock_thread_wq);
1163         return 0;
1164 }
1165 
1166 /**
1167  * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1168  * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1169  * @sel: Selector of which measurement to perform on a pseudo-locked region.
1170  *
1171  * The measurement of latency to access a pseudo-locked region should be
1172  * done from a cpu that is associated with that pseudo-locked region.
1173  * Determine which cpu is associated with this region and start a thread on
1174  * that cpu to perform the measurement, wait for that thread to complete.
1175  *
1176  * Return: 0 on success, <0 on failure
1177  */
1178 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1179 {
1180         struct pseudo_lock_region *plr = rdtgrp->plr;
1181         struct task_struct *thread;
1182         unsigned int cpu;
1183         int ret = -1;
1184 
1185         cpus_read_lock();
1186         mutex_lock(&rdtgroup_mutex);
1187 
1188         if (rdtgrp->flags & RDT_DELETED) {
1189                 ret = -ENODEV;
1190                 goto out;
1191         }
1192 
1193         if (!plr->d) {
1194                 ret = -ENODEV;
1195                 goto out;
1196         }
1197 
1198         plr->thread_done = 0;
1199         cpu = cpumask_first(&plr->d->hdr.cpu_mask);
1200         if (!cpu_online(cpu)) {
1201                 ret = -ENODEV;
1202                 goto out;
1203         }
1204 
1205         plr->cpu = cpu;
1206 
1207         if (sel == 1)
1208                 thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1209                                                 cpu_to_node(cpu),
1210                                                 "pseudo_lock_measure/%u",
1211                                                 cpu);
1212         else if (sel == 2)
1213                 thread = kthread_create_on_node(measure_l2_residency, plr,
1214                                                 cpu_to_node(cpu),
1215                                                 "pseudo_lock_measure/%u",
1216                                                 cpu);
1217         else if (sel == 3)
1218                 thread = kthread_create_on_node(measure_l3_residency, plr,
1219                                                 cpu_to_node(cpu),
1220                                                 "pseudo_lock_measure/%u",
1221                                                 cpu);
1222         else
1223                 goto out;
1224 
1225         if (IS_ERR(thread)) {
1226                 ret = PTR_ERR(thread);
1227                 goto out;
1228         }
1229         kthread_bind(thread, cpu);
1230         wake_up_process(thread);
1231 
1232         ret = wait_event_interruptible(plr->lock_thread_wq,
1233                                        plr->thread_done == 1);
1234         if (ret < 0)
1235                 goto out;
1236 
1237         ret = 0;
1238 
1239 out:
1240         mutex_unlock(&rdtgroup_mutex);
1241         cpus_read_unlock();
1242         return ret;
1243 }
1244 
1245 static ssize_t pseudo_lock_measure_trigger(struct file *file,
1246                                            const char __user *user_buf,
1247                                            size_t count, loff_t *ppos)
1248 {
1249         struct rdtgroup *rdtgrp = file->private_data;
1250         size_t buf_size;
1251         char buf[32];
1252         int ret;
1253         int sel;
1254 
1255         buf_size = min(count, (sizeof(buf) - 1));
1256         if (copy_from_user(buf, user_buf, buf_size))
1257                 return -EFAULT;
1258 
1259         buf[buf_size] = '\0';
1260         ret = kstrtoint(buf, 10, &sel);
1261         if (ret == 0) {
1262                 if (sel != 1 && sel != 2 && sel != 3)
1263                         return -EINVAL;
1264                 ret = debugfs_file_get(file->f_path.dentry);
1265                 if (ret)
1266                         return ret;
1267                 ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1268                 if (ret == 0)
1269                         ret = count;
1270                 debugfs_file_put(file->f_path.dentry);
1271         }
1272 
1273         return ret;
1274 }
1275 
1276 static const struct file_operations pseudo_measure_fops = {
1277         .write = pseudo_lock_measure_trigger,
1278         .open = simple_open,
1279         .llseek = default_llseek,
1280 };
1281 
1282 /**
1283  * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1284  * @rdtgrp: resource group to which pseudo-lock region belongs
1285  *
1286  * Called when a resource group in the pseudo-locksetup mode receives a
1287  * valid schemata that should be pseudo-locked. Since the resource group is
1288  * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1289  * allocated and initialized with the essential information. If a failure
1290  * occurs the resource group remains in the pseudo-locksetup mode with the
1291  * &struct pseudo_lock_region associated with it, but cleared from all
1292  * information and ready for the user to re-attempt pseudo-locking by
1293  * writing the schemata again.
1294  *
1295  * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1296  * on failure. Descriptive error will be written to last_cmd_status buffer.
1297  */
1298 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1299 {
1300         struct pseudo_lock_region *plr = rdtgrp->plr;
1301         struct task_struct *thread;
1302         unsigned int new_minor;
1303         struct device *dev;
1304         int ret;
1305 
1306         ret = pseudo_lock_region_alloc(plr);
1307         if (ret < 0)
1308                 return ret;
1309 
1310         ret = pseudo_lock_cstates_constrain(plr);
1311         if (ret < 0) {
1312                 ret = -EINVAL;
1313                 goto out_region;
1314         }
1315 
1316         plr->thread_done = 0;
1317 
1318         thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1319                                         cpu_to_node(plr->cpu),
1320                                         "pseudo_lock/%u", plr->cpu);
1321         if (IS_ERR(thread)) {
1322                 ret = PTR_ERR(thread);
1323                 rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1324                 goto out_cstates;
1325         }
1326 
1327         kthread_bind(thread, plr->cpu);
1328         wake_up_process(thread);
1329 
1330         ret = wait_event_interruptible(plr->lock_thread_wq,
1331                                        plr->thread_done == 1);
1332         if (ret < 0) {
1333                 /*
1334                  * If the thread does not get on the CPU for whatever
1335                  * reason and the process which sets up the region is
1336                  * interrupted then this will leave the thread in runnable
1337                  * state and once it gets on the CPU it will dereference
1338                  * the cleared, but not freed, plr struct resulting in an
1339                  * empty pseudo-locking loop.
1340                  */
1341                 rdt_last_cmd_puts("Locking thread interrupted\n");
1342                 goto out_cstates;
1343         }
1344 
1345         ret = pseudo_lock_minor_get(&new_minor);
1346         if (ret < 0) {
1347                 rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1348                 goto out_cstates;
1349         }
1350 
1351         /*
1352          * Unlock access but do not release the reference. The
1353          * pseudo-locked region will still be here on return.
1354          *
1355          * The mutex has to be released temporarily to avoid a potential
1356          * deadlock with the mm->mmap_lock which is obtained in the
1357          * device_create() and debugfs_create_dir() callpath below as well as
1358          * before the mmap() callback is called.
1359          */
1360         mutex_unlock(&rdtgroup_mutex);
1361 
1362         if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1363                 plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1364                                                       debugfs_resctrl);
1365                 if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1366                         debugfs_create_file("pseudo_lock_measure", 0200,
1367                                             plr->debugfs_dir, rdtgrp,
1368                                             &pseudo_measure_fops);
1369         }
1370 
1371         dev = device_create(&pseudo_lock_class, NULL,
1372                             MKDEV(pseudo_lock_major, new_minor),
1373                             rdtgrp, "%s", rdtgrp->kn->name);
1374 
1375         mutex_lock(&rdtgroup_mutex);
1376 
1377         if (IS_ERR(dev)) {
1378                 ret = PTR_ERR(dev);
1379                 rdt_last_cmd_printf("Failed to create character device: %d\n",
1380                                     ret);
1381                 goto out_debugfs;
1382         }
1383 
1384         /* We released the mutex - check if group was removed while we did so */
1385         if (rdtgrp->flags & RDT_DELETED) {
1386                 ret = -ENODEV;
1387                 goto out_device;
1388         }
1389 
1390         plr->minor = new_minor;
1391 
1392         rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1393         closid_free(rdtgrp->closid);
1394         rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1395         rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1396 
1397         ret = 0;
1398         goto out;
1399 
1400 out_device:
1401         device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1402 out_debugfs:
1403         debugfs_remove_recursive(plr->debugfs_dir);
1404         pseudo_lock_minor_release(new_minor);
1405 out_cstates:
1406         pseudo_lock_cstates_relax(plr);
1407 out_region:
1408         pseudo_lock_region_clear(plr);
1409 out:
1410         return ret;
1411 }
1412 
1413 /**
1414  * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1415  * @rdtgrp: resource group to which the pseudo-locked region belongs
1416  *
1417  * The removal of a pseudo-locked region can be initiated when the resource
1418  * group is removed from user space via a "rmdir" from userspace or the
1419  * unmount of the resctrl filesystem. On removal the resource group does
1420  * not go back to pseudo-locksetup mode before it is removed, instead it is
1421  * removed directly. There is thus asymmetry with the creation where the
1422  * &struct pseudo_lock_region is removed here while it was not created in
1423  * rdtgroup_pseudo_lock_create().
1424  *
1425  * Return: void
1426  */
1427 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1428 {
1429         struct pseudo_lock_region *plr = rdtgrp->plr;
1430 
1431         if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1432                 /*
1433                  * Default group cannot be a pseudo-locked region so we can
1434                  * free closid here.
1435                  */
1436                 closid_free(rdtgrp->closid);
1437                 goto free;
1438         }
1439 
1440         pseudo_lock_cstates_relax(plr);
1441         debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1442         device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1443         pseudo_lock_minor_release(plr->minor);
1444 
1445 free:
1446         pseudo_lock_free(rdtgrp);
1447 }
1448 
1449 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1450 {
1451         struct rdtgroup *rdtgrp;
1452 
1453         mutex_lock(&rdtgroup_mutex);
1454 
1455         rdtgrp = region_find_by_minor(iminor(inode));
1456         if (!rdtgrp) {
1457                 mutex_unlock(&rdtgroup_mutex);
1458                 return -ENODEV;
1459         }
1460 
1461         filp->private_data = rdtgrp;
1462         atomic_inc(&rdtgrp->waitcount);
1463         /* Perform a non-seekable open - llseek is not supported */
1464         filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1465 
1466         mutex_unlock(&rdtgroup_mutex);
1467 
1468         return 0;
1469 }
1470 
1471 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1472 {
1473         struct rdtgroup *rdtgrp;
1474 
1475         mutex_lock(&rdtgroup_mutex);
1476         rdtgrp = filp->private_data;
1477         WARN_ON(!rdtgrp);
1478         if (!rdtgrp) {
1479                 mutex_unlock(&rdtgroup_mutex);
1480                 return -ENODEV;
1481         }
1482         filp->private_data = NULL;
1483         atomic_dec(&rdtgrp->waitcount);
1484         mutex_unlock(&rdtgroup_mutex);
1485         return 0;
1486 }
1487 
1488 static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1489 {
1490         /* Not supported */
1491         return -EINVAL;
1492 }
1493 
1494 static const struct vm_operations_struct pseudo_mmap_ops = {
1495         .mremap = pseudo_lock_dev_mremap,
1496 };
1497 
1498 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1499 {
1500         unsigned long vsize = vma->vm_end - vma->vm_start;
1501         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1502         struct pseudo_lock_region *plr;
1503         struct rdtgroup *rdtgrp;
1504         unsigned long physical;
1505         unsigned long psize;
1506 
1507         mutex_lock(&rdtgroup_mutex);
1508 
1509         rdtgrp = filp->private_data;
1510         WARN_ON(!rdtgrp);
1511         if (!rdtgrp) {
1512                 mutex_unlock(&rdtgroup_mutex);
1513                 return -ENODEV;
1514         }
1515 
1516         plr = rdtgrp->plr;
1517 
1518         if (!plr->d) {
1519                 mutex_unlock(&rdtgroup_mutex);
1520                 return -ENODEV;
1521         }
1522 
1523         /*
1524          * Task is required to run with affinity to the cpus associated
1525          * with the pseudo-locked region. If this is not the case the task
1526          * may be scheduled elsewhere and invalidate entries in the
1527          * pseudo-locked region.
1528          */
1529         if (!cpumask_subset(current->cpus_ptr, &plr->d->hdr.cpu_mask)) {
1530                 mutex_unlock(&rdtgroup_mutex);
1531                 return -EINVAL;
1532         }
1533 
1534         physical = __pa(plr->kmem) >> PAGE_SHIFT;
1535         psize = plr->size - off;
1536 
1537         if (off > plr->size) {
1538                 mutex_unlock(&rdtgroup_mutex);
1539                 return -ENOSPC;
1540         }
1541 
1542         /*
1543          * Ensure changes are carried directly to the memory being mapped,
1544          * do not allow copy-on-write mapping.
1545          */
1546         if (!(vma->vm_flags & VM_SHARED)) {
1547                 mutex_unlock(&rdtgroup_mutex);
1548                 return -EINVAL;
1549         }
1550 
1551         if (vsize > psize) {
1552                 mutex_unlock(&rdtgroup_mutex);
1553                 return -ENOSPC;
1554         }
1555 
1556         memset(plr->kmem + off, 0, vsize);
1557 
1558         if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1559                             vsize, vma->vm_page_prot)) {
1560                 mutex_unlock(&rdtgroup_mutex);
1561                 return -EAGAIN;
1562         }
1563         vma->vm_ops = &pseudo_mmap_ops;
1564         mutex_unlock(&rdtgroup_mutex);
1565         return 0;
1566 }
1567 
1568 static const struct file_operations pseudo_lock_dev_fops = {
1569         .owner =        THIS_MODULE,
1570         .llseek =       no_llseek,
1571         .read =         NULL,
1572         .write =        NULL,
1573         .open =         pseudo_lock_dev_open,
1574         .release =      pseudo_lock_dev_release,
1575         .mmap =         pseudo_lock_dev_mmap,
1576 };
1577 
1578 int rdt_pseudo_lock_init(void)
1579 {
1580         int ret;
1581 
1582         ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1583         if (ret < 0)
1584                 return ret;
1585 
1586         pseudo_lock_major = ret;
1587 
1588         ret = class_register(&pseudo_lock_class);
1589         if (ret) {
1590                 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1591                 return ret;
1592         }
1593 
1594         return 0;
1595 }
1596 
1597 void rdt_pseudo_lock_release(void)
1598 {
1599         class_unregister(&pseudo_lock_class);
1600         unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1601         pseudo_lock_major = 0;
1602 }
1603 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php