1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Resource Director Technology (RDT) 4 * 5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT) 6 * 7 * Copyright (C) 2018 Intel Corporation 8 * 9 * Author: Reinette Chatre <reinette.chatre@intel.com> 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/cpu.h> 15 #include <linux/cpumask.h> 16 #include <linux/debugfs.h> 17 #include <linux/kthread.h> 18 #include <linux/mman.h> 19 #include <linux/perf_event.h> 20 #include <linux/pm_qos.h> 21 #include <linux/slab.h> 22 #include <linux/uaccess.h> 23 24 #include <asm/cacheflush.h> 25 #include <asm/cpu_device_id.h> 26 #include <asm/resctrl.h> 27 #include <asm/perf_event.h> 28 29 #include "../../events/perf_event.h" /* For X86_CONFIG() */ 30 #include "internal.h" 31 32 #define CREATE_TRACE_POINTS 33 #include "trace.h" 34 35 /* 36 * The bits needed to disable hardware prefetching varies based on the 37 * platform. During initialization we will discover which bits to use. 38 */ 39 static u64 prefetch_disable_bits; 40 41 /* 42 * Major number assigned to and shared by all devices exposing 43 * pseudo-locked regions. 44 */ 45 static unsigned int pseudo_lock_major; 46 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0); 47 48 static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode) 49 { 50 const struct rdtgroup *rdtgrp; 51 52 rdtgrp = dev_get_drvdata(dev); 53 if (mode) 54 *mode = 0600; 55 return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name); 56 } 57 58 static const struct class pseudo_lock_class = { 59 .name = "pseudo_lock", 60 .devnode = pseudo_lock_devnode, 61 }; 62 63 /** 64 * get_prefetch_disable_bits - prefetch disable bits of supported platforms 65 * @void: It takes no parameters. 66 * 67 * Capture the list of platforms that have been validated to support 68 * pseudo-locking. This includes testing to ensure pseudo-locked regions 69 * with low cache miss rates can be created under variety of load conditions 70 * as well as that these pseudo-locked regions can maintain their low cache 71 * miss rates under variety of load conditions for significant lengths of time. 72 * 73 * After a platform has been validated to support pseudo-locking its 74 * hardware prefetch disable bits are included here as they are documented 75 * in the SDM. 76 * 77 * When adding a platform here also add support for its cache events to 78 * measure_cycles_perf_fn() 79 * 80 * Return: 81 * If platform is supported, the bits to disable hardware prefetchers, 0 82 * if platform is not supported. 83 */ 84 static u64 get_prefetch_disable_bits(void) 85 { 86 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL || 87 boot_cpu_data.x86 != 6) 88 return 0; 89 90 switch (boot_cpu_data.x86_vfm) { 91 case INTEL_BROADWELL_X: 92 /* 93 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register 94 * as: 95 * 0 L2 Hardware Prefetcher Disable (R/W) 96 * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W) 97 * 2 DCU Hardware Prefetcher Disable (R/W) 98 * 3 DCU IP Prefetcher Disable (R/W) 99 * 63:4 Reserved 100 */ 101 return 0xF; 102 case INTEL_ATOM_GOLDMONT: 103 case INTEL_ATOM_GOLDMONT_PLUS: 104 /* 105 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register 106 * as: 107 * 0 L2 Hardware Prefetcher Disable (R/W) 108 * 1 Reserved 109 * 2 DCU Hardware Prefetcher Disable (R/W) 110 * 63:3 Reserved 111 */ 112 return 0x5; 113 } 114 115 return 0; 116 } 117 118 /** 119 * pseudo_lock_minor_get - Obtain available minor number 120 * @minor: Pointer to where new minor number will be stored 121 * 122 * A bitmask is used to track available minor numbers. Here the next free 123 * minor number is marked as unavailable and returned. 124 * 125 * Return: 0 on success, <0 on failure. 126 */ 127 static int pseudo_lock_minor_get(unsigned int *minor) 128 { 129 unsigned long first_bit; 130 131 first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS); 132 133 if (first_bit == MINORBITS) 134 return -ENOSPC; 135 136 __clear_bit(first_bit, &pseudo_lock_minor_avail); 137 *minor = first_bit; 138 139 return 0; 140 } 141 142 /** 143 * pseudo_lock_minor_release - Return minor number to available 144 * @minor: The minor number made available 145 */ 146 static void pseudo_lock_minor_release(unsigned int minor) 147 { 148 __set_bit(minor, &pseudo_lock_minor_avail); 149 } 150 151 /** 152 * region_find_by_minor - Locate a pseudo-lock region by inode minor number 153 * @minor: The minor number of the device representing pseudo-locked region 154 * 155 * When the character device is accessed we need to determine which 156 * pseudo-locked region it belongs to. This is done by matching the minor 157 * number of the device to the pseudo-locked region it belongs. 158 * 159 * Minor numbers are assigned at the time a pseudo-locked region is associated 160 * with a cache instance. 161 * 162 * Return: On success return pointer to resource group owning the pseudo-locked 163 * region, NULL on failure. 164 */ 165 static struct rdtgroup *region_find_by_minor(unsigned int minor) 166 { 167 struct rdtgroup *rdtgrp, *rdtgrp_match = NULL; 168 169 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 170 if (rdtgrp->plr && rdtgrp->plr->minor == minor) { 171 rdtgrp_match = rdtgrp; 172 break; 173 } 174 } 175 return rdtgrp_match; 176 } 177 178 /** 179 * struct pseudo_lock_pm_req - A power management QoS request list entry 180 * @list: Entry within the @pm_reqs list for a pseudo-locked region 181 * @req: PM QoS request 182 */ 183 struct pseudo_lock_pm_req { 184 struct list_head list; 185 struct dev_pm_qos_request req; 186 }; 187 188 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr) 189 { 190 struct pseudo_lock_pm_req *pm_req, *next; 191 192 list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) { 193 dev_pm_qos_remove_request(&pm_req->req); 194 list_del(&pm_req->list); 195 kfree(pm_req); 196 } 197 } 198 199 /** 200 * pseudo_lock_cstates_constrain - Restrict cores from entering C6 201 * @plr: Pseudo-locked region 202 * 203 * To prevent the cache from being affected by power management entering 204 * C6 has to be avoided. This is accomplished by requesting a latency 205 * requirement lower than lowest C6 exit latency of all supported 206 * platforms as found in the cpuidle state tables in the intel_idle driver. 207 * At this time it is possible to do so with a single latency requirement 208 * for all supported platforms. 209 * 210 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR, 211 * the ACPI latencies need to be considered while keeping in mind that C2 212 * may be set to map to deeper sleep states. In this case the latency 213 * requirement needs to prevent entering C2 also. 214 * 215 * Return: 0 on success, <0 on failure 216 */ 217 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr) 218 { 219 struct pseudo_lock_pm_req *pm_req; 220 int cpu; 221 int ret; 222 223 for_each_cpu(cpu, &plr->d->hdr.cpu_mask) { 224 pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL); 225 if (!pm_req) { 226 rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n"); 227 ret = -ENOMEM; 228 goto out_err; 229 } 230 ret = dev_pm_qos_add_request(get_cpu_device(cpu), 231 &pm_req->req, 232 DEV_PM_QOS_RESUME_LATENCY, 233 30); 234 if (ret < 0) { 235 rdt_last_cmd_printf("Failed to add latency req CPU%d\n", 236 cpu); 237 kfree(pm_req); 238 ret = -1; 239 goto out_err; 240 } 241 list_add(&pm_req->list, &plr->pm_reqs); 242 } 243 244 return 0; 245 246 out_err: 247 pseudo_lock_cstates_relax(plr); 248 return ret; 249 } 250 251 /** 252 * pseudo_lock_region_clear - Reset pseudo-lock region data 253 * @plr: pseudo-lock region 254 * 255 * All content of the pseudo-locked region is reset - any memory allocated 256 * freed. 257 * 258 * Return: void 259 */ 260 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr) 261 { 262 plr->size = 0; 263 plr->line_size = 0; 264 kfree(plr->kmem); 265 plr->kmem = NULL; 266 plr->s = NULL; 267 if (plr->d) 268 plr->d->plr = NULL; 269 plr->d = NULL; 270 plr->cbm = 0; 271 plr->debugfs_dir = NULL; 272 } 273 274 /** 275 * pseudo_lock_region_init - Initialize pseudo-lock region information 276 * @plr: pseudo-lock region 277 * 278 * Called after user provided a schemata to be pseudo-locked. From the 279 * schemata the &struct pseudo_lock_region is on entry already initialized 280 * with the resource, domain, and capacity bitmask. Here the information 281 * required for pseudo-locking is deduced from this data and &struct 282 * pseudo_lock_region initialized further. This information includes: 283 * - size in bytes of the region to be pseudo-locked 284 * - cache line size to know the stride with which data needs to be accessed 285 * to be pseudo-locked 286 * - a cpu associated with the cache instance on which the pseudo-locking 287 * flow can be executed 288 * 289 * Return: 0 on success, <0 on failure. Descriptive error will be written 290 * to last_cmd_status buffer. 291 */ 292 static int pseudo_lock_region_init(struct pseudo_lock_region *plr) 293 { 294 enum resctrl_scope scope = plr->s->res->ctrl_scope; 295 struct cacheinfo *ci; 296 int ret; 297 298 if (WARN_ON_ONCE(scope != RESCTRL_L2_CACHE && scope != RESCTRL_L3_CACHE)) 299 return -ENODEV; 300 301 /* Pick the first cpu we find that is associated with the cache. */ 302 plr->cpu = cpumask_first(&plr->d->hdr.cpu_mask); 303 304 if (!cpu_online(plr->cpu)) { 305 rdt_last_cmd_printf("CPU %u associated with cache not online\n", 306 plr->cpu); 307 ret = -ENODEV; 308 goto out_region; 309 } 310 311 ci = get_cpu_cacheinfo_level(plr->cpu, scope); 312 if (ci) { 313 plr->line_size = ci->coherency_line_size; 314 plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm); 315 return 0; 316 } 317 318 ret = -1; 319 rdt_last_cmd_puts("Unable to determine cache line size\n"); 320 out_region: 321 pseudo_lock_region_clear(plr); 322 return ret; 323 } 324 325 /** 326 * pseudo_lock_init - Initialize a pseudo-lock region 327 * @rdtgrp: resource group to which new pseudo-locked region will belong 328 * 329 * A pseudo-locked region is associated with a resource group. When this 330 * association is created the pseudo-locked region is initialized. The 331 * details of the pseudo-locked region are not known at this time so only 332 * allocation is done and association established. 333 * 334 * Return: 0 on success, <0 on failure 335 */ 336 static int pseudo_lock_init(struct rdtgroup *rdtgrp) 337 { 338 struct pseudo_lock_region *plr; 339 340 plr = kzalloc(sizeof(*plr), GFP_KERNEL); 341 if (!plr) 342 return -ENOMEM; 343 344 init_waitqueue_head(&plr->lock_thread_wq); 345 INIT_LIST_HEAD(&plr->pm_reqs); 346 rdtgrp->plr = plr; 347 return 0; 348 } 349 350 /** 351 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked 352 * @plr: pseudo-lock region 353 * 354 * Initialize the details required to set up the pseudo-locked region and 355 * allocate the contiguous memory that will be pseudo-locked to the cache. 356 * 357 * Return: 0 on success, <0 on failure. Descriptive error will be written 358 * to last_cmd_status buffer. 359 */ 360 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr) 361 { 362 int ret; 363 364 ret = pseudo_lock_region_init(plr); 365 if (ret < 0) 366 return ret; 367 368 /* 369 * We do not yet support contiguous regions larger than 370 * KMALLOC_MAX_SIZE. 371 */ 372 if (plr->size > KMALLOC_MAX_SIZE) { 373 rdt_last_cmd_puts("Requested region exceeds maximum size\n"); 374 ret = -E2BIG; 375 goto out_region; 376 } 377 378 plr->kmem = kzalloc(plr->size, GFP_KERNEL); 379 if (!plr->kmem) { 380 rdt_last_cmd_puts("Unable to allocate memory\n"); 381 ret = -ENOMEM; 382 goto out_region; 383 } 384 385 ret = 0; 386 goto out; 387 out_region: 388 pseudo_lock_region_clear(plr); 389 out: 390 return ret; 391 } 392 393 /** 394 * pseudo_lock_free - Free a pseudo-locked region 395 * @rdtgrp: resource group to which pseudo-locked region belonged 396 * 397 * The pseudo-locked region's resources have already been released, or not 398 * yet created at this point. Now it can be freed and disassociated from the 399 * resource group. 400 * 401 * Return: void 402 */ 403 static void pseudo_lock_free(struct rdtgroup *rdtgrp) 404 { 405 pseudo_lock_region_clear(rdtgrp->plr); 406 kfree(rdtgrp->plr); 407 rdtgrp->plr = NULL; 408 } 409 410 /** 411 * pseudo_lock_fn - Load kernel memory into cache 412 * @_rdtgrp: resource group to which pseudo-lock region belongs 413 * 414 * This is the core pseudo-locking flow. 415 * 416 * First we ensure that the kernel memory cannot be found in the cache. 417 * Then, while taking care that there will be as little interference as 418 * possible, the memory to be loaded is accessed while core is running 419 * with class of service set to the bitmask of the pseudo-locked region. 420 * After this is complete no future CAT allocations will be allowed to 421 * overlap with this bitmask. 422 * 423 * Local register variables are utilized to ensure that the memory region 424 * to be locked is the only memory access made during the critical locking 425 * loop. 426 * 427 * Return: 0. Waiter on waitqueue will be woken on completion. 428 */ 429 static int pseudo_lock_fn(void *_rdtgrp) 430 { 431 struct rdtgroup *rdtgrp = _rdtgrp; 432 struct pseudo_lock_region *plr = rdtgrp->plr; 433 u32 rmid_p, closid_p; 434 unsigned long i; 435 u64 saved_msr; 436 #ifdef CONFIG_KASAN 437 /* 438 * The registers used for local register variables are also used 439 * when KASAN is active. When KASAN is active we use a regular 440 * variable to ensure we always use a valid pointer, but the cost 441 * is that this variable will enter the cache through evicting the 442 * memory we are trying to lock into the cache. Thus expect lower 443 * pseudo-locking success rate when KASAN is active. 444 */ 445 unsigned int line_size; 446 unsigned int size; 447 void *mem_r; 448 #else 449 register unsigned int line_size asm("esi"); 450 register unsigned int size asm("edi"); 451 register void *mem_r asm(_ASM_BX); 452 #endif /* CONFIG_KASAN */ 453 454 /* 455 * Make sure none of the allocated memory is cached. If it is we 456 * will get a cache hit in below loop from outside of pseudo-locked 457 * region. 458 * wbinvd (as opposed to clflush/clflushopt) is required to 459 * increase likelihood that allocated cache portion will be filled 460 * with associated memory. 461 */ 462 native_wbinvd(); 463 464 /* 465 * Always called with interrupts enabled. By disabling interrupts 466 * ensure that we will not be preempted during this critical section. 467 */ 468 local_irq_disable(); 469 470 /* 471 * Call wrmsr and rdmsr as directly as possible to avoid tracing 472 * clobbering local register variables or affecting cache accesses. 473 * 474 * Disable the hardware prefetcher so that when the end of the memory 475 * being pseudo-locked is reached the hardware will not read beyond 476 * the buffer and evict pseudo-locked memory read earlier from the 477 * cache. 478 */ 479 saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL); 480 __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 481 closid_p = this_cpu_read(pqr_state.cur_closid); 482 rmid_p = this_cpu_read(pqr_state.cur_rmid); 483 mem_r = plr->kmem; 484 size = plr->size; 485 line_size = plr->line_size; 486 /* 487 * Critical section begin: start by writing the closid associated 488 * with the capacity bitmask of the cache region being 489 * pseudo-locked followed by reading of kernel memory to load it 490 * into the cache. 491 */ 492 __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, rdtgrp->closid); 493 /* 494 * Cache was flushed earlier. Now access kernel memory to read it 495 * into cache region associated with just activated plr->closid. 496 * Loop over data twice: 497 * - In first loop the cache region is shared with the page walker 498 * as it populates the paging structure caches (including TLB). 499 * - In the second loop the paging structure caches are used and 500 * cache region is populated with the memory being referenced. 501 */ 502 for (i = 0; i < size; i += PAGE_SIZE) { 503 /* 504 * Add a barrier to prevent speculative execution of this 505 * loop reading beyond the end of the buffer. 506 */ 507 rmb(); 508 asm volatile("mov (%0,%1,1), %%eax\n\t" 509 : 510 : "r" (mem_r), "r" (i) 511 : "%eax", "memory"); 512 } 513 for (i = 0; i < size; i += line_size) { 514 /* 515 * Add a barrier to prevent speculative execution of this 516 * loop reading beyond the end of the buffer. 517 */ 518 rmb(); 519 asm volatile("mov (%0,%1,1), %%eax\n\t" 520 : 521 : "r" (mem_r), "r" (i) 522 : "%eax", "memory"); 523 } 524 /* 525 * Critical section end: restore closid with capacity bitmask that 526 * does not overlap with pseudo-locked region. 527 */ 528 __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p); 529 530 /* Re-enable the hardware prefetcher(s) */ 531 wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr); 532 local_irq_enable(); 533 534 plr->thread_done = 1; 535 wake_up_interruptible(&plr->lock_thread_wq); 536 return 0; 537 } 538 539 /** 540 * rdtgroup_monitor_in_progress - Test if monitoring in progress 541 * @rdtgrp: resource group being queried 542 * 543 * Return: 1 if monitor groups have been created for this resource 544 * group, 0 otherwise. 545 */ 546 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp) 547 { 548 return !list_empty(&rdtgrp->mon.crdtgrp_list); 549 } 550 551 /** 552 * rdtgroup_locksetup_user_restrict - Restrict user access to group 553 * @rdtgrp: resource group needing access restricted 554 * 555 * A resource group used for cache pseudo-locking cannot have cpus or tasks 556 * assigned to it. This is communicated to the user by restricting access 557 * to all the files that can be used to make such changes. 558 * 559 * Permissions restored with rdtgroup_locksetup_user_restore() 560 * 561 * Return: 0 on success, <0 on failure. If a failure occurs during the 562 * restriction of access an attempt will be made to restore permissions but 563 * the state of the mode of these files will be uncertain when a failure 564 * occurs. 565 */ 566 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp) 567 { 568 int ret; 569 570 ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); 571 if (ret) 572 return ret; 573 574 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); 575 if (ret) 576 goto err_tasks; 577 578 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); 579 if (ret) 580 goto err_cpus; 581 582 if (resctrl_arch_mon_capable()) { 583 ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups"); 584 if (ret) 585 goto err_cpus_list; 586 } 587 588 ret = 0; 589 goto out; 590 591 err_cpus_list: 592 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); 593 err_cpus: 594 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); 595 err_tasks: 596 rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); 597 out: 598 return ret; 599 } 600 601 /** 602 * rdtgroup_locksetup_user_restore - Restore user access to group 603 * @rdtgrp: resource group needing access restored 604 * 605 * Restore all file access previously removed using 606 * rdtgroup_locksetup_user_restrict() 607 * 608 * Return: 0 on success, <0 on failure. If a failure occurs during the 609 * restoration of access an attempt will be made to restrict permissions 610 * again but the state of the mode of these files will be uncertain when 611 * a failure occurs. 612 */ 613 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp) 614 { 615 int ret; 616 617 ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); 618 if (ret) 619 return ret; 620 621 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); 622 if (ret) 623 goto err_tasks; 624 625 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); 626 if (ret) 627 goto err_cpus; 628 629 if (resctrl_arch_mon_capable()) { 630 ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777); 631 if (ret) 632 goto err_cpus_list; 633 } 634 635 ret = 0; 636 goto out; 637 638 err_cpus_list: 639 rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); 640 err_cpus: 641 rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); 642 err_tasks: 643 rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); 644 out: 645 return ret; 646 } 647 648 /** 649 * rdtgroup_locksetup_enter - Resource group enters locksetup mode 650 * @rdtgrp: resource group requested to enter locksetup mode 651 * 652 * A resource group enters locksetup mode to reflect that it would be used 653 * to represent a pseudo-locked region and is in the process of being set 654 * up to do so. A resource group used for a pseudo-locked region would 655 * lose the closid associated with it so we cannot allow it to have any 656 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the 657 * future. Monitoring of a pseudo-locked region is not allowed either. 658 * 659 * The above and more restrictions on a pseudo-locked region are checked 660 * for and enforced before the resource group enters the locksetup mode. 661 * 662 * Returns: 0 if the resource group successfully entered locksetup mode, <0 663 * on failure. On failure the last_cmd_status buffer is updated with text to 664 * communicate details of failure to the user. 665 */ 666 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp) 667 { 668 int ret; 669 670 /* 671 * The default resource group can neither be removed nor lose the 672 * default closid associated with it. 673 */ 674 if (rdtgrp == &rdtgroup_default) { 675 rdt_last_cmd_puts("Cannot pseudo-lock default group\n"); 676 return -EINVAL; 677 } 678 679 /* 680 * Cache Pseudo-locking not supported when CDP is enabled. 681 * 682 * Some things to consider if you would like to enable this 683 * support (using L3 CDP as example): 684 * - When CDP is enabled two separate resources are exposed, 685 * L3DATA and L3CODE, but they are actually on the same cache. 686 * The implication for pseudo-locking is that if a 687 * pseudo-locked region is created on a domain of one 688 * resource (eg. L3CODE), then a pseudo-locked region cannot 689 * be created on that same domain of the other resource 690 * (eg. L3DATA). This is because the creation of a 691 * pseudo-locked region involves a call to wbinvd that will 692 * affect all cache allocations on particular domain. 693 * - Considering the previous, it may be possible to only 694 * expose one of the CDP resources to pseudo-locking and 695 * hide the other. For example, we could consider to only 696 * expose L3DATA and since the L3 cache is unified it is 697 * still possible to place instructions there are execute it. 698 * - If only one region is exposed to pseudo-locking we should 699 * still keep in mind that availability of a portion of cache 700 * for pseudo-locking should take into account both resources. 701 * Similarly, if a pseudo-locked region is created in one 702 * resource, the portion of cache used by it should be made 703 * unavailable to all future allocations from both resources. 704 */ 705 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) || 706 resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) { 707 rdt_last_cmd_puts("CDP enabled\n"); 708 return -EINVAL; 709 } 710 711 /* 712 * Not knowing the bits to disable prefetching implies that this 713 * platform does not support Cache Pseudo-Locking. 714 */ 715 prefetch_disable_bits = get_prefetch_disable_bits(); 716 if (prefetch_disable_bits == 0) { 717 rdt_last_cmd_puts("Pseudo-locking not supported\n"); 718 return -EINVAL; 719 } 720 721 if (rdtgroup_monitor_in_progress(rdtgrp)) { 722 rdt_last_cmd_puts("Monitoring in progress\n"); 723 return -EINVAL; 724 } 725 726 if (rdtgroup_tasks_assigned(rdtgrp)) { 727 rdt_last_cmd_puts("Tasks assigned to resource group\n"); 728 return -EINVAL; 729 } 730 731 if (!cpumask_empty(&rdtgrp->cpu_mask)) { 732 rdt_last_cmd_puts("CPUs assigned to resource group\n"); 733 return -EINVAL; 734 } 735 736 if (rdtgroup_locksetup_user_restrict(rdtgrp)) { 737 rdt_last_cmd_puts("Unable to modify resctrl permissions\n"); 738 return -EIO; 739 } 740 741 ret = pseudo_lock_init(rdtgrp); 742 if (ret) { 743 rdt_last_cmd_puts("Unable to init pseudo-lock region\n"); 744 goto out_release; 745 } 746 747 /* 748 * If this system is capable of monitoring a rmid would have been 749 * allocated when the control group was created. This is not needed 750 * anymore when this group would be used for pseudo-locking. This 751 * is safe to call on platforms not capable of monitoring. 752 */ 753 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 754 755 ret = 0; 756 goto out; 757 758 out_release: 759 rdtgroup_locksetup_user_restore(rdtgrp); 760 out: 761 return ret; 762 } 763 764 /** 765 * rdtgroup_locksetup_exit - resource group exist locksetup mode 766 * @rdtgrp: resource group 767 * 768 * When a resource group exits locksetup mode the earlier restrictions are 769 * lifted. 770 * 771 * Return: 0 on success, <0 on failure 772 */ 773 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp) 774 { 775 int ret; 776 777 if (resctrl_arch_mon_capable()) { 778 ret = alloc_rmid(rdtgrp->closid); 779 if (ret < 0) { 780 rdt_last_cmd_puts("Out of RMIDs\n"); 781 return ret; 782 } 783 rdtgrp->mon.rmid = ret; 784 } 785 786 ret = rdtgroup_locksetup_user_restore(rdtgrp); 787 if (ret) { 788 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 789 return ret; 790 } 791 792 pseudo_lock_free(rdtgrp); 793 return 0; 794 } 795 796 /** 797 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked 798 * @d: RDT domain 799 * @cbm: CBM to test 800 * 801 * @d represents a cache instance and @cbm a capacity bitmask that is 802 * considered for it. Determine if @cbm overlaps with any existing 803 * pseudo-locked region on @d. 804 * 805 * @cbm is unsigned long, even if only 32 bits are used, to make the 806 * bitmap functions work correctly. 807 * 808 * Return: true if @cbm overlaps with pseudo-locked region on @d, false 809 * otherwise. 810 */ 811 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm) 812 { 813 unsigned int cbm_len; 814 unsigned long cbm_b; 815 816 if (d->plr) { 817 cbm_len = d->plr->s->res->cache.cbm_len; 818 cbm_b = d->plr->cbm; 819 if (bitmap_intersects(&cbm, &cbm_b, cbm_len)) 820 return true; 821 } 822 return false; 823 } 824 825 /** 826 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy 827 * @d: RDT domain under test 828 * 829 * The setup of a pseudo-locked region affects all cache instances within 830 * the hierarchy of the region. It is thus essential to know if any 831 * pseudo-locked regions exist within a cache hierarchy to prevent any 832 * attempts to create new pseudo-locked regions in the same hierarchy. 833 * 834 * Return: true if a pseudo-locked region exists in the hierarchy of @d or 835 * if it is not possible to test due to memory allocation issue, 836 * false otherwise. 837 */ 838 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d) 839 { 840 struct rdt_ctrl_domain *d_i; 841 cpumask_var_t cpu_with_psl; 842 struct rdt_resource *r; 843 bool ret = false; 844 845 /* Walking r->domains, ensure it can't race with cpuhp */ 846 lockdep_assert_cpus_held(); 847 848 if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL)) 849 return true; 850 851 /* 852 * First determine which cpus have pseudo-locked regions 853 * associated with them. 854 */ 855 for_each_alloc_capable_rdt_resource(r) { 856 list_for_each_entry(d_i, &r->ctrl_domains, hdr.list) { 857 if (d_i->plr) 858 cpumask_or(cpu_with_psl, cpu_with_psl, 859 &d_i->hdr.cpu_mask); 860 } 861 } 862 863 /* 864 * Next test if new pseudo-locked region would intersect with 865 * existing region. 866 */ 867 if (cpumask_intersects(&d->hdr.cpu_mask, cpu_with_psl)) 868 ret = true; 869 870 free_cpumask_var(cpu_with_psl); 871 return ret; 872 } 873 874 /** 875 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory 876 * @_plr: pseudo-lock region to measure 877 * 878 * There is no deterministic way to test if a memory region is cached. One 879 * way is to measure how long it takes to read the memory, the speed of 880 * access is a good way to learn how close to the cpu the data was. Even 881 * more, if the prefetcher is disabled and the memory is read at a stride 882 * of half the cache line, then a cache miss will be easy to spot since the 883 * read of the first half would be significantly slower than the read of 884 * the second half. 885 * 886 * Return: 0. Waiter on waitqueue will be woken on completion. 887 */ 888 static int measure_cycles_lat_fn(void *_plr) 889 { 890 struct pseudo_lock_region *plr = _plr; 891 u32 saved_low, saved_high; 892 unsigned long i; 893 u64 start, end; 894 void *mem_r; 895 896 local_irq_disable(); 897 /* 898 * Disable hardware prefetchers. 899 */ 900 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 901 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 902 mem_r = READ_ONCE(plr->kmem); 903 /* 904 * Dummy execute of the time measurement to load the needed 905 * instructions into the L1 instruction cache. 906 */ 907 start = rdtsc_ordered(); 908 for (i = 0; i < plr->size; i += 32) { 909 start = rdtsc_ordered(); 910 asm volatile("mov (%0,%1,1), %%eax\n\t" 911 : 912 : "r" (mem_r), "r" (i) 913 : "%eax", "memory"); 914 end = rdtsc_ordered(); 915 trace_pseudo_lock_mem_latency((u32)(end - start)); 916 } 917 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 918 local_irq_enable(); 919 plr->thread_done = 1; 920 wake_up_interruptible(&plr->lock_thread_wq); 921 return 0; 922 } 923 924 /* 925 * Create a perf_event_attr for the hit and miss perf events that will 926 * be used during the performance measurement. A perf_event maintains 927 * a pointer to its perf_event_attr so a unique attribute structure is 928 * created for each perf_event. 929 * 930 * The actual configuration of the event is set right before use in order 931 * to use the X86_CONFIG macro. 932 */ 933 static struct perf_event_attr perf_miss_attr = { 934 .type = PERF_TYPE_RAW, 935 .size = sizeof(struct perf_event_attr), 936 .pinned = 1, 937 .disabled = 0, 938 .exclude_user = 1, 939 }; 940 941 static struct perf_event_attr perf_hit_attr = { 942 .type = PERF_TYPE_RAW, 943 .size = sizeof(struct perf_event_attr), 944 .pinned = 1, 945 .disabled = 0, 946 .exclude_user = 1, 947 }; 948 949 struct residency_counts { 950 u64 miss_before, hits_before; 951 u64 miss_after, hits_after; 952 }; 953 954 static int measure_residency_fn(struct perf_event_attr *miss_attr, 955 struct perf_event_attr *hit_attr, 956 struct pseudo_lock_region *plr, 957 struct residency_counts *counts) 958 { 959 u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0; 960 struct perf_event *miss_event, *hit_event; 961 int hit_pmcnum, miss_pmcnum; 962 u32 saved_low, saved_high; 963 unsigned int line_size; 964 unsigned int size; 965 unsigned long i; 966 void *mem_r; 967 u64 tmp; 968 969 miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu, 970 NULL, NULL, NULL); 971 if (IS_ERR(miss_event)) 972 goto out; 973 974 hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu, 975 NULL, NULL, NULL); 976 if (IS_ERR(hit_event)) 977 goto out_miss; 978 979 local_irq_disable(); 980 /* 981 * Check any possible error state of events used by performing 982 * one local read. 983 */ 984 if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) { 985 local_irq_enable(); 986 goto out_hit; 987 } 988 if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) { 989 local_irq_enable(); 990 goto out_hit; 991 } 992 993 /* 994 * Disable hardware prefetchers. 995 */ 996 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 997 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 998 999 /* Initialize rest of local variables */ 1000 /* 1001 * Performance event has been validated right before this with 1002 * interrupts disabled - it is thus safe to read the counter index. 1003 */ 1004 miss_pmcnum = x86_perf_rdpmc_index(miss_event); 1005 hit_pmcnum = x86_perf_rdpmc_index(hit_event); 1006 line_size = READ_ONCE(plr->line_size); 1007 mem_r = READ_ONCE(plr->kmem); 1008 size = READ_ONCE(plr->size); 1009 1010 /* 1011 * Read counter variables twice - first to load the instructions 1012 * used in L1 cache, second to capture accurate value that does not 1013 * include cache misses incurred because of instruction loads. 1014 */ 1015 rdpmcl(hit_pmcnum, hits_before); 1016 rdpmcl(miss_pmcnum, miss_before); 1017 /* 1018 * From SDM: Performing back-to-back fast reads are not guaranteed 1019 * to be monotonic. 1020 * Use LFENCE to ensure all previous instructions are retired 1021 * before proceeding. 1022 */ 1023 rmb(); 1024 rdpmcl(hit_pmcnum, hits_before); 1025 rdpmcl(miss_pmcnum, miss_before); 1026 /* 1027 * Use LFENCE to ensure all previous instructions are retired 1028 * before proceeding. 1029 */ 1030 rmb(); 1031 for (i = 0; i < size; i += line_size) { 1032 /* 1033 * Add a barrier to prevent speculative execution of this 1034 * loop reading beyond the end of the buffer. 1035 */ 1036 rmb(); 1037 asm volatile("mov (%0,%1,1), %%eax\n\t" 1038 : 1039 : "r" (mem_r), "r" (i) 1040 : "%eax", "memory"); 1041 } 1042 /* 1043 * Use LFENCE to ensure all previous instructions are retired 1044 * before proceeding. 1045 */ 1046 rmb(); 1047 rdpmcl(hit_pmcnum, hits_after); 1048 rdpmcl(miss_pmcnum, miss_after); 1049 /* 1050 * Use LFENCE to ensure all previous instructions are retired 1051 * before proceeding. 1052 */ 1053 rmb(); 1054 /* Re-enable hardware prefetchers */ 1055 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 1056 local_irq_enable(); 1057 out_hit: 1058 perf_event_release_kernel(hit_event); 1059 out_miss: 1060 perf_event_release_kernel(miss_event); 1061 out: 1062 /* 1063 * All counts will be zero on failure. 1064 */ 1065 counts->miss_before = miss_before; 1066 counts->hits_before = hits_before; 1067 counts->miss_after = miss_after; 1068 counts->hits_after = hits_after; 1069 return 0; 1070 } 1071 1072 static int measure_l2_residency(void *_plr) 1073 { 1074 struct pseudo_lock_region *plr = _plr; 1075 struct residency_counts counts = {0}; 1076 1077 /* 1078 * Non-architectural event for the Goldmont Microarchitecture 1079 * from Intel x86 Architecture Software Developer Manual (SDM): 1080 * MEM_LOAD_UOPS_RETIRED D1H (event number) 1081 * Umask values: 1082 * L2_HIT 02H 1083 * L2_MISS 10H 1084 */ 1085 switch (boot_cpu_data.x86_vfm) { 1086 case INTEL_ATOM_GOLDMONT: 1087 case INTEL_ATOM_GOLDMONT_PLUS: 1088 perf_miss_attr.config = X86_CONFIG(.event = 0xd1, 1089 .umask = 0x10); 1090 perf_hit_attr.config = X86_CONFIG(.event = 0xd1, 1091 .umask = 0x2); 1092 break; 1093 default: 1094 goto out; 1095 } 1096 1097 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts); 1098 /* 1099 * If a failure prevented the measurements from succeeding 1100 * tracepoints will still be written and all counts will be zero. 1101 */ 1102 trace_pseudo_lock_l2(counts.hits_after - counts.hits_before, 1103 counts.miss_after - counts.miss_before); 1104 out: 1105 plr->thread_done = 1; 1106 wake_up_interruptible(&plr->lock_thread_wq); 1107 return 0; 1108 } 1109 1110 static int measure_l3_residency(void *_plr) 1111 { 1112 struct pseudo_lock_region *plr = _plr; 1113 struct residency_counts counts = {0}; 1114 1115 /* 1116 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event 1117 * has two "no fix" errata associated with it: BDM35 and BDM100. On 1118 * this platform the following events are used instead: 1119 * LONGEST_LAT_CACHE 2EH (Documented in SDM) 1120 * REFERENCE 4FH 1121 * MISS 41H 1122 */ 1123 1124 switch (boot_cpu_data.x86_vfm) { 1125 case INTEL_BROADWELL_X: 1126 /* On BDW the hit event counts references, not hits */ 1127 perf_hit_attr.config = X86_CONFIG(.event = 0x2e, 1128 .umask = 0x4f); 1129 perf_miss_attr.config = X86_CONFIG(.event = 0x2e, 1130 .umask = 0x41); 1131 break; 1132 default: 1133 goto out; 1134 } 1135 1136 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts); 1137 /* 1138 * If a failure prevented the measurements from succeeding 1139 * tracepoints will still be written and all counts will be zero. 1140 */ 1141 1142 counts.miss_after -= counts.miss_before; 1143 if (boot_cpu_data.x86_vfm == INTEL_BROADWELL_X) { 1144 /* 1145 * On BDW references and misses are counted, need to adjust. 1146 * Sometimes the "hits" counter is a bit more than the 1147 * references, for example, x references but x + 1 hits. 1148 * To not report invalid hit values in this case we treat 1149 * that as misses equal to references. 1150 */ 1151 /* First compute the number of cache references measured */ 1152 counts.hits_after -= counts.hits_before; 1153 /* Next convert references to cache hits */ 1154 counts.hits_after -= min(counts.miss_after, counts.hits_after); 1155 } else { 1156 counts.hits_after -= counts.hits_before; 1157 } 1158 1159 trace_pseudo_lock_l3(counts.hits_after, counts.miss_after); 1160 out: 1161 plr->thread_done = 1; 1162 wake_up_interruptible(&plr->lock_thread_wq); 1163 return 0; 1164 } 1165 1166 /** 1167 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region 1168 * @rdtgrp: Resource group to which the pseudo-locked region belongs. 1169 * @sel: Selector of which measurement to perform on a pseudo-locked region. 1170 * 1171 * The measurement of latency to access a pseudo-locked region should be 1172 * done from a cpu that is associated with that pseudo-locked region. 1173 * Determine which cpu is associated with this region and start a thread on 1174 * that cpu to perform the measurement, wait for that thread to complete. 1175 * 1176 * Return: 0 on success, <0 on failure 1177 */ 1178 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel) 1179 { 1180 struct pseudo_lock_region *plr = rdtgrp->plr; 1181 struct task_struct *thread; 1182 unsigned int cpu; 1183 int ret = -1; 1184 1185 cpus_read_lock(); 1186 mutex_lock(&rdtgroup_mutex); 1187 1188 if (rdtgrp->flags & RDT_DELETED) { 1189 ret = -ENODEV; 1190 goto out; 1191 } 1192 1193 if (!plr->d) { 1194 ret = -ENODEV; 1195 goto out; 1196 } 1197 1198 plr->thread_done = 0; 1199 cpu = cpumask_first(&plr->d->hdr.cpu_mask); 1200 if (!cpu_online(cpu)) { 1201 ret = -ENODEV; 1202 goto out; 1203 } 1204 1205 plr->cpu = cpu; 1206 1207 if (sel == 1) 1208 thread = kthread_create_on_node(measure_cycles_lat_fn, plr, 1209 cpu_to_node(cpu), 1210 "pseudo_lock_measure/%u", 1211 cpu); 1212 else if (sel == 2) 1213 thread = kthread_create_on_node(measure_l2_residency, plr, 1214 cpu_to_node(cpu), 1215 "pseudo_lock_measure/%u", 1216 cpu); 1217 else if (sel == 3) 1218 thread = kthread_create_on_node(measure_l3_residency, plr, 1219 cpu_to_node(cpu), 1220 "pseudo_lock_measure/%u", 1221 cpu); 1222 else 1223 goto out; 1224 1225 if (IS_ERR(thread)) { 1226 ret = PTR_ERR(thread); 1227 goto out; 1228 } 1229 kthread_bind(thread, cpu); 1230 wake_up_process(thread); 1231 1232 ret = wait_event_interruptible(plr->lock_thread_wq, 1233 plr->thread_done == 1); 1234 if (ret < 0) 1235 goto out; 1236 1237 ret = 0; 1238 1239 out: 1240 mutex_unlock(&rdtgroup_mutex); 1241 cpus_read_unlock(); 1242 return ret; 1243 } 1244 1245 static ssize_t pseudo_lock_measure_trigger(struct file *file, 1246 const char __user *user_buf, 1247 size_t count, loff_t *ppos) 1248 { 1249 struct rdtgroup *rdtgrp = file->private_data; 1250 size_t buf_size; 1251 char buf[32]; 1252 int ret; 1253 int sel; 1254 1255 buf_size = min(count, (sizeof(buf) - 1)); 1256 if (copy_from_user(buf, user_buf, buf_size)) 1257 return -EFAULT; 1258 1259 buf[buf_size] = '\0'; 1260 ret = kstrtoint(buf, 10, &sel); 1261 if (ret == 0) { 1262 if (sel != 1 && sel != 2 && sel != 3) 1263 return -EINVAL; 1264 ret = debugfs_file_get(file->f_path.dentry); 1265 if (ret) 1266 return ret; 1267 ret = pseudo_lock_measure_cycles(rdtgrp, sel); 1268 if (ret == 0) 1269 ret = count; 1270 debugfs_file_put(file->f_path.dentry); 1271 } 1272 1273 return ret; 1274 } 1275 1276 static const struct file_operations pseudo_measure_fops = { 1277 .write = pseudo_lock_measure_trigger, 1278 .open = simple_open, 1279 .llseek = default_llseek, 1280 }; 1281 1282 /** 1283 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region 1284 * @rdtgrp: resource group to which pseudo-lock region belongs 1285 * 1286 * Called when a resource group in the pseudo-locksetup mode receives a 1287 * valid schemata that should be pseudo-locked. Since the resource group is 1288 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been 1289 * allocated and initialized with the essential information. If a failure 1290 * occurs the resource group remains in the pseudo-locksetup mode with the 1291 * &struct pseudo_lock_region associated with it, but cleared from all 1292 * information and ready for the user to re-attempt pseudo-locking by 1293 * writing the schemata again. 1294 * 1295 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0 1296 * on failure. Descriptive error will be written to last_cmd_status buffer. 1297 */ 1298 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp) 1299 { 1300 struct pseudo_lock_region *plr = rdtgrp->plr; 1301 struct task_struct *thread; 1302 unsigned int new_minor; 1303 struct device *dev; 1304 int ret; 1305 1306 ret = pseudo_lock_region_alloc(plr); 1307 if (ret < 0) 1308 return ret; 1309 1310 ret = pseudo_lock_cstates_constrain(plr); 1311 if (ret < 0) { 1312 ret = -EINVAL; 1313 goto out_region; 1314 } 1315 1316 plr->thread_done = 0; 1317 1318 thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp, 1319 cpu_to_node(plr->cpu), 1320 "pseudo_lock/%u", plr->cpu); 1321 if (IS_ERR(thread)) { 1322 ret = PTR_ERR(thread); 1323 rdt_last_cmd_printf("Locking thread returned error %d\n", ret); 1324 goto out_cstates; 1325 } 1326 1327 kthread_bind(thread, plr->cpu); 1328 wake_up_process(thread); 1329 1330 ret = wait_event_interruptible(plr->lock_thread_wq, 1331 plr->thread_done == 1); 1332 if (ret < 0) { 1333 /* 1334 * If the thread does not get on the CPU for whatever 1335 * reason and the process which sets up the region is 1336 * interrupted then this will leave the thread in runnable 1337 * state and once it gets on the CPU it will dereference 1338 * the cleared, but not freed, plr struct resulting in an 1339 * empty pseudo-locking loop. 1340 */ 1341 rdt_last_cmd_puts("Locking thread interrupted\n"); 1342 goto out_cstates; 1343 } 1344 1345 ret = pseudo_lock_minor_get(&new_minor); 1346 if (ret < 0) { 1347 rdt_last_cmd_puts("Unable to obtain a new minor number\n"); 1348 goto out_cstates; 1349 } 1350 1351 /* 1352 * Unlock access but do not release the reference. The 1353 * pseudo-locked region will still be here on return. 1354 * 1355 * The mutex has to be released temporarily to avoid a potential 1356 * deadlock with the mm->mmap_lock which is obtained in the 1357 * device_create() and debugfs_create_dir() callpath below as well as 1358 * before the mmap() callback is called. 1359 */ 1360 mutex_unlock(&rdtgroup_mutex); 1361 1362 if (!IS_ERR_OR_NULL(debugfs_resctrl)) { 1363 plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name, 1364 debugfs_resctrl); 1365 if (!IS_ERR_OR_NULL(plr->debugfs_dir)) 1366 debugfs_create_file("pseudo_lock_measure", 0200, 1367 plr->debugfs_dir, rdtgrp, 1368 &pseudo_measure_fops); 1369 } 1370 1371 dev = device_create(&pseudo_lock_class, NULL, 1372 MKDEV(pseudo_lock_major, new_minor), 1373 rdtgrp, "%s", rdtgrp->kn->name); 1374 1375 mutex_lock(&rdtgroup_mutex); 1376 1377 if (IS_ERR(dev)) { 1378 ret = PTR_ERR(dev); 1379 rdt_last_cmd_printf("Failed to create character device: %d\n", 1380 ret); 1381 goto out_debugfs; 1382 } 1383 1384 /* We released the mutex - check if group was removed while we did so */ 1385 if (rdtgrp->flags & RDT_DELETED) { 1386 ret = -ENODEV; 1387 goto out_device; 1388 } 1389 1390 plr->minor = new_minor; 1391 1392 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED; 1393 closid_free(rdtgrp->closid); 1394 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444); 1395 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444); 1396 1397 ret = 0; 1398 goto out; 1399 1400 out_device: 1401 device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor)); 1402 out_debugfs: 1403 debugfs_remove_recursive(plr->debugfs_dir); 1404 pseudo_lock_minor_release(new_minor); 1405 out_cstates: 1406 pseudo_lock_cstates_relax(plr); 1407 out_region: 1408 pseudo_lock_region_clear(plr); 1409 out: 1410 return ret; 1411 } 1412 1413 /** 1414 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region 1415 * @rdtgrp: resource group to which the pseudo-locked region belongs 1416 * 1417 * The removal of a pseudo-locked region can be initiated when the resource 1418 * group is removed from user space via a "rmdir" from userspace or the 1419 * unmount of the resctrl filesystem. On removal the resource group does 1420 * not go back to pseudo-locksetup mode before it is removed, instead it is 1421 * removed directly. There is thus asymmetry with the creation where the 1422 * &struct pseudo_lock_region is removed here while it was not created in 1423 * rdtgroup_pseudo_lock_create(). 1424 * 1425 * Return: void 1426 */ 1427 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp) 1428 { 1429 struct pseudo_lock_region *plr = rdtgrp->plr; 1430 1431 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1432 /* 1433 * Default group cannot be a pseudo-locked region so we can 1434 * free closid here. 1435 */ 1436 closid_free(rdtgrp->closid); 1437 goto free; 1438 } 1439 1440 pseudo_lock_cstates_relax(plr); 1441 debugfs_remove_recursive(rdtgrp->plr->debugfs_dir); 1442 device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor)); 1443 pseudo_lock_minor_release(plr->minor); 1444 1445 free: 1446 pseudo_lock_free(rdtgrp); 1447 } 1448 1449 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp) 1450 { 1451 struct rdtgroup *rdtgrp; 1452 1453 mutex_lock(&rdtgroup_mutex); 1454 1455 rdtgrp = region_find_by_minor(iminor(inode)); 1456 if (!rdtgrp) { 1457 mutex_unlock(&rdtgroup_mutex); 1458 return -ENODEV; 1459 } 1460 1461 filp->private_data = rdtgrp; 1462 atomic_inc(&rdtgrp->waitcount); 1463 /* Perform a non-seekable open - llseek is not supported */ 1464 filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE); 1465 1466 mutex_unlock(&rdtgroup_mutex); 1467 1468 return 0; 1469 } 1470 1471 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp) 1472 { 1473 struct rdtgroup *rdtgrp; 1474 1475 mutex_lock(&rdtgroup_mutex); 1476 rdtgrp = filp->private_data; 1477 WARN_ON(!rdtgrp); 1478 if (!rdtgrp) { 1479 mutex_unlock(&rdtgroup_mutex); 1480 return -ENODEV; 1481 } 1482 filp->private_data = NULL; 1483 atomic_dec(&rdtgrp->waitcount); 1484 mutex_unlock(&rdtgroup_mutex); 1485 return 0; 1486 } 1487 1488 static int pseudo_lock_dev_mremap(struct vm_area_struct *area) 1489 { 1490 /* Not supported */ 1491 return -EINVAL; 1492 } 1493 1494 static const struct vm_operations_struct pseudo_mmap_ops = { 1495 .mremap = pseudo_lock_dev_mremap, 1496 }; 1497 1498 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma) 1499 { 1500 unsigned long vsize = vma->vm_end - vma->vm_start; 1501 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 1502 struct pseudo_lock_region *plr; 1503 struct rdtgroup *rdtgrp; 1504 unsigned long physical; 1505 unsigned long psize; 1506 1507 mutex_lock(&rdtgroup_mutex); 1508 1509 rdtgrp = filp->private_data; 1510 WARN_ON(!rdtgrp); 1511 if (!rdtgrp) { 1512 mutex_unlock(&rdtgroup_mutex); 1513 return -ENODEV; 1514 } 1515 1516 plr = rdtgrp->plr; 1517 1518 if (!plr->d) { 1519 mutex_unlock(&rdtgroup_mutex); 1520 return -ENODEV; 1521 } 1522 1523 /* 1524 * Task is required to run with affinity to the cpus associated 1525 * with the pseudo-locked region. If this is not the case the task 1526 * may be scheduled elsewhere and invalidate entries in the 1527 * pseudo-locked region. 1528 */ 1529 if (!cpumask_subset(current->cpus_ptr, &plr->d->hdr.cpu_mask)) { 1530 mutex_unlock(&rdtgroup_mutex); 1531 return -EINVAL; 1532 } 1533 1534 physical = __pa(plr->kmem) >> PAGE_SHIFT; 1535 psize = plr->size - off; 1536 1537 if (off > plr->size) { 1538 mutex_unlock(&rdtgroup_mutex); 1539 return -ENOSPC; 1540 } 1541 1542 /* 1543 * Ensure changes are carried directly to the memory being mapped, 1544 * do not allow copy-on-write mapping. 1545 */ 1546 if (!(vma->vm_flags & VM_SHARED)) { 1547 mutex_unlock(&rdtgroup_mutex); 1548 return -EINVAL; 1549 } 1550 1551 if (vsize > psize) { 1552 mutex_unlock(&rdtgroup_mutex); 1553 return -ENOSPC; 1554 } 1555 1556 memset(plr->kmem + off, 0, vsize); 1557 1558 if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff, 1559 vsize, vma->vm_page_prot)) { 1560 mutex_unlock(&rdtgroup_mutex); 1561 return -EAGAIN; 1562 } 1563 vma->vm_ops = &pseudo_mmap_ops; 1564 mutex_unlock(&rdtgroup_mutex); 1565 return 0; 1566 } 1567 1568 static const struct file_operations pseudo_lock_dev_fops = { 1569 .owner = THIS_MODULE, 1570 .llseek = no_llseek, 1571 .read = NULL, 1572 .write = NULL, 1573 .open = pseudo_lock_dev_open, 1574 .release = pseudo_lock_dev_release, 1575 .mmap = pseudo_lock_dev_mmap, 1576 }; 1577 1578 int rdt_pseudo_lock_init(void) 1579 { 1580 int ret; 1581 1582 ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops); 1583 if (ret < 0) 1584 return ret; 1585 1586 pseudo_lock_major = ret; 1587 1588 ret = class_register(&pseudo_lock_class); 1589 if (ret) { 1590 unregister_chrdev(pseudo_lock_major, "pseudo_lock"); 1591 return ret; 1592 } 1593 1594 return 0; 1595 } 1596 1597 void rdt_pseudo_lock_release(void) 1598 { 1599 class_unregister(&pseudo_lock_class); 1600 unregister_chrdev(pseudo_lock_major, "pseudo_lock"); 1601 pseudo_lock_major = 0; 1602 } 1603
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.