1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Allocation in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cpu.h> 16 #include <linux/debugfs.h> 17 #include <linux/fs.h> 18 #include <linux/fs_parser.h> 19 #include <linux/sysfs.h> 20 #include <linux/kernfs.h> 21 #include <linux/seq_buf.h> 22 #include <linux/seq_file.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/task.h> 25 #include <linux/slab.h> 26 #include <linux/task_work.h> 27 #include <linux/user_namespace.h> 28 29 #include <uapi/linux/magic.h> 30 31 #include <asm/resctrl.h> 32 #include "internal.h" 33 34 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 35 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 37 38 /* Mutex to protect rdtgroup access. */ 39 DEFINE_MUTEX(rdtgroup_mutex); 40 41 static struct kernfs_root *rdt_root; 42 struct rdtgroup rdtgroup_default; 43 LIST_HEAD(rdt_all_groups); 44 45 /* list of entries for the schemata file */ 46 LIST_HEAD(resctrl_schema_all); 47 48 /* The filesystem can only be mounted once. */ 49 bool resctrl_mounted; 50 51 /* Kernel fs node for "info" directory under root */ 52 static struct kernfs_node *kn_info; 53 54 /* Kernel fs node for "mon_groups" directory under root */ 55 static struct kernfs_node *kn_mongrp; 56 57 /* Kernel fs node for "mon_data" directory under root */ 58 static struct kernfs_node *kn_mondata; 59 60 static struct seq_buf last_cmd_status; 61 static char last_cmd_status_buf[512]; 62 63 static int rdtgroup_setup_root(struct rdt_fs_context *ctx); 64 static void rdtgroup_destroy_root(void); 65 66 struct dentry *debugfs_resctrl; 67 68 static bool resctrl_debug; 69 70 void rdt_last_cmd_clear(void) 71 { 72 lockdep_assert_held(&rdtgroup_mutex); 73 seq_buf_clear(&last_cmd_status); 74 } 75 76 void rdt_last_cmd_puts(const char *s) 77 { 78 lockdep_assert_held(&rdtgroup_mutex); 79 seq_buf_puts(&last_cmd_status, s); 80 } 81 82 void rdt_last_cmd_printf(const char *fmt, ...) 83 { 84 va_list ap; 85 86 va_start(ap, fmt); 87 lockdep_assert_held(&rdtgroup_mutex); 88 seq_buf_vprintf(&last_cmd_status, fmt, ap); 89 va_end(ap); 90 } 91 92 void rdt_staged_configs_clear(void) 93 { 94 struct rdt_ctrl_domain *dom; 95 struct rdt_resource *r; 96 97 lockdep_assert_held(&rdtgroup_mutex); 98 99 for_each_alloc_capable_rdt_resource(r) { 100 list_for_each_entry(dom, &r->ctrl_domains, hdr.list) 101 memset(dom->staged_config, 0, sizeof(dom->staged_config)); 102 } 103 } 104 105 /* 106 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 107 * we can keep a bitmap of free CLOSIDs in a single integer. 108 * 109 * Using a global CLOSID across all resources has some advantages and 110 * some drawbacks: 111 * + We can simply set current's closid to assign a task to a resource 112 * group. 113 * + Context switch code can avoid extra memory references deciding which 114 * CLOSID to load into the PQR_ASSOC MSR 115 * - We give up some options in configuring resource groups across multi-socket 116 * systems. 117 * - Our choices on how to configure each resource become progressively more 118 * limited as the number of resources grows. 119 */ 120 static unsigned long closid_free_map; 121 static int closid_free_map_len; 122 123 int closids_supported(void) 124 { 125 return closid_free_map_len; 126 } 127 128 static void closid_init(void) 129 { 130 struct resctrl_schema *s; 131 u32 rdt_min_closid = 32; 132 133 /* Compute rdt_min_closid across all resources */ 134 list_for_each_entry(s, &resctrl_schema_all, list) 135 rdt_min_closid = min(rdt_min_closid, s->num_closid); 136 137 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 138 139 /* RESCTRL_RESERVED_CLOSID is always reserved for the default group */ 140 __clear_bit(RESCTRL_RESERVED_CLOSID, &closid_free_map); 141 closid_free_map_len = rdt_min_closid; 142 } 143 144 static int closid_alloc(void) 145 { 146 int cleanest_closid; 147 u32 closid; 148 149 lockdep_assert_held(&rdtgroup_mutex); 150 151 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { 152 cleanest_closid = resctrl_find_cleanest_closid(); 153 if (cleanest_closid < 0) 154 return cleanest_closid; 155 closid = cleanest_closid; 156 } else { 157 closid = ffs(closid_free_map); 158 if (closid == 0) 159 return -ENOSPC; 160 closid--; 161 } 162 __clear_bit(closid, &closid_free_map); 163 164 return closid; 165 } 166 167 void closid_free(int closid) 168 { 169 lockdep_assert_held(&rdtgroup_mutex); 170 171 __set_bit(closid, &closid_free_map); 172 } 173 174 /** 175 * closid_allocated - test if provided closid is in use 176 * @closid: closid to be tested 177 * 178 * Return: true if @closid is currently associated with a resource group, 179 * false if @closid is free 180 */ 181 bool closid_allocated(unsigned int closid) 182 { 183 lockdep_assert_held(&rdtgroup_mutex); 184 185 return !test_bit(closid, &closid_free_map); 186 } 187 188 /** 189 * rdtgroup_mode_by_closid - Return mode of resource group with closid 190 * @closid: closid if the resource group 191 * 192 * Each resource group is associated with a @closid. Here the mode 193 * of a resource group can be queried by searching for it using its closid. 194 * 195 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 196 */ 197 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 198 { 199 struct rdtgroup *rdtgrp; 200 201 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 202 if (rdtgrp->closid == closid) 203 return rdtgrp->mode; 204 } 205 206 return RDT_NUM_MODES; 207 } 208 209 static const char * const rdt_mode_str[] = { 210 [RDT_MODE_SHAREABLE] = "shareable", 211 [RDT_MODE_EXCLUSIVE] = "exclusive", 212 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 213 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 214 }; 215 216 /** 217 * rdtgroup_mode_str - Return the string representation of mode 218 * @mode: the resource group mode as &enum rdtgroup_mode 219 * 220 * Return: string representation of valid mode, "unknown" otherwise 221 */ 222 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 223 { 224 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 225 return "unknown"; 226 227 return rdt_mode_str[mode]; 228 } 229 230 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 231 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 232 { 233 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 234 .ia_uid = current_fsuid(), 235 .ia_gid = current_fsgid(), }; 236 237 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 238 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 239 return 0; 240 241 return kernfs_setattr(kn, &iattr); 242 } 243 244 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 245 { 246 struct kernfs_node *kn; 247 int ret; 248 249 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 250 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 251 0, rft->kf_ops, rft, NULL, NULL); 252 if (IS_ERR(kn)) 253 return PTR_ERR(kn); 254 255 ret = rdtgroup_kn_set_ugid(kn); 256 if (ret) { 257 kernfs_remove(kn); 258 return ret; 259 } 260 261 return 0; 262 } 263 264 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 265 { 266 struct kernfs_open_file *of = m->private; 267 struct rftype *rft = of->kn->priv; 268 269 if (rft->seq_show) 270 return rft->seq_show(of, m, arg); 271 return 0; 272 } 273 274 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 275 size_t nbytes, loff_t off) 276 { 277 struct rftype *rft = of->kn->priv; 278 279 if (rft->write) 280 return rft->write(of, buf, nbytes, off); 281 282 return -EINVAL; 283 } 284 285 static const struct kernfs_ops rdtgroup_kf_single_ops = { 286 .atomic_write_len = PAGE_SIZE, 287 .write = rdtgroup_file_write, 288 .seq_show = rdtgroup_seqfile_show, 289 }; 290 291 static const struct kernfs_ops kf_mondata_ops = { 292 .atomic_write_len = PAGE_SIZE, 293 .seq_show = rdtgroup_mondata_show, 294 }; 295 296 static bool is_cpu_list(struct kernfs_open_file *of) 297 { 298 struct rftype *rft = of->kn->priv; 299 300 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 301 } 302 303 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 304 struct seq_file *s, void *v) 305 { 306 struct rdtgroup *rdtgrp; 307 struct cpumask *mask; 308 int ret = 0; 309 310 rdtgrp = rdtgroup_kn_lock_live(of->kn); 311 312 if (rdtgrp) { 313 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 314 if (!rdtgrp->plr->d) { 315 rdt_last_cmd_clear(); 316 rdt_last_cmd_puts("Cache domain offline\n"); 317 ret = -ENODEV; 318 } else { 319 mask = &rdtgrp->plr->d->hdr.cpu_mask; 320 seq_printf(s, is_cpu_list(of) ? 321 "%*pbl\n" : "%*pb\n", 322 cpumask_pr_args(mask)); 323 } 324 } else { 325 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 326 cpumask_pr_args(&rdtgrp->cpu_mask)); 327 } 328 } else { 329 ret = -ENOENT; 330 } 331 rdtgroup_kn_unlock(of->kn); 332 333 return ret; 334 } 335 336 /* 337 * This is safe against resctrl_sched_in() called from __switch_to() 338 * because __switch_to() is executed with interrupts disabled. A local call 339 * from update_closid_rmid() is protected against __switch_to() because 340 * preemption is disabled. 341 */ 342 static void update_cpu_closid_rmid(void *info) 343 { 344 struct rdtgroup *r = info; 345 346 if (r) { 347 this_cpu_write(pqr_state.default_closid, r->closid); 348 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 349 } 350 351 /* 352 * We cannot unconditionally write the MSR because the current 353 * executing task might have its own closid selected. Just reuse 354 * the context switch code. 355 */ 356 resctrl_sched_in(current); 357 } 358 359 /* 360 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 361 * 362 * Per task closids/rmids must have been set up before calling this function. 363 */ 364 static void 365 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 366 { 367 on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1); 368 } 369 370 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 371 cpumask_var_t tmpmask) 372 { 373 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 374 struct list_head *head; 375 376 /* Check whether cpus belong to parent ctrl group */ 377 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 378 if (!cpumask_empty(tmpmask)) { 379 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 380 return -EINVAL; 381 } 382 383 /* Check whether cpus are dropped from this group */ 384 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 385 if (!cpumask_empty(tmpmask)) { 386 /* Give any dropped cpus to parent rdtgroup */ 387 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 388 update_closid_rmid(tmpmask, prgrp); 389 } 390 391 /* 392 * If we added cpus, remove them from previous group that owned them 393 * and update per-cpu rmid 394 */ 395 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 396 if (!cpumask_empty(tmpmask)) { 397 head = &prgrp->mon.crdtgrp_list; 398 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 399 if (crgrp == rdtgrp) 400 continue; 401 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 402 tmpmask); 403 } 404 update_closid_rmid(tmpmask, rdtgrp); 405 } 406 407 /* Done pushing/pulling - update this group with new mask */ 408 cpumask_copy(&rdtgrp->cpu_mask, newmask); 409 410 return 0; 411 } 412 413 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 414 { 415 struct rdtgroup *crgrp; 416 417 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 418 /* update the child mon group masks as well*/ 419 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 420 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 421 } 422 423 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 424 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 425 { 426 struct rdtgroup *r, *crgrp; 427 struct list_head *head; 428 429 /* Check whether cpus are dropped from this group */ 430 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 431 if (!cpumask_empty(tmpmask)) { 432 /* Can't drop from default group */ 433 if (rdtgrp == &rdtgroup_default) { 434 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 435 return -EINVAL; 436 } 437 438 /* Give any dropped cpus to rdtgroup_default */ 439 cpumask_or(&rdtgroup_default.cpu_mask, 440 &rdtgroup_default.cpu_mask, tmpmask); 441 update_closid_rmid(tmpmask, &rdtgroup_default); 442 } 443 444 /* 445 * If we added cpus, remove them from previous group and 446 * the prev group's child groups that owned them 447 * and update per-cpu closid/rmid. 448 */ 449 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 450 if (!cpumask_empty(tmpmask)) { 451 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 452 if (r == rdtgrp) 453 continue; 454 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 455 if (!cpumask_empty(tmpmask1)) 456 cpumask_rdtgrp_clear(r, tmpmask1); 457 } 458 update_closid_rmid(tmpmask, rdtgrp); 459 } 460 461 /* Done pushing/pulling - update this group with new mask */ 462 cpumask_copy(&rdtgrp->cpu_mask, newmask); 463 464 /* 465 * Clear child mon group masks since there is a new parent mask 466 * now and update the rmid for the cpus the child lost. 467 */ 468 head = &rdtgrp->mon.crdtgrp_list; 469 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 470 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 471 update_closid_rmid(tmpmask, rdtgrp); 472 cpumask_clear(&crgrp->cpu_mask); 473 } 474 475 return 0; 476 } 477 478 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 479 char *buf, size_t nbytes, loff_t off) 480 { 481 cpumask_var_t tmpmask, newmask, tmpmask1; 482 struct rdtgroup *rdtgrp; 483 int ret; 484 485 if (!buf) 486 return -EINVAL; 487 488 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 489 return -ENOMEM; 490 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 491 free_cpumask_var(tmpmask); 492 return -ENOMEM; 493 } 494 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 495 free_cpumask_var(tmpmask); 496 free_cpumask_var(newmask); 497 return -ENOMEM; 498 } 499 500 rdtgrp = rdtgroup_kn_lock_live(of->kn); 501 if (!rdtgrp) { 502 ret = -ENOENT; 503 goto unlock; 504 } 505 506 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 507 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 508 ret = -EINVAL; 509 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 510 goto unlock; 511 } 512 513 if (is_cpu_list(of)) 514 ret = cpulist_parse(buf, newmask); 515 else 516 ret = cpumask_parse(buf, newmask); 517 518 if (ret) { 519 rdt_last_cmd_puts("Bad CPU list/mask\n"); 520 goto unlock; 521 } 522 523 /* check that user didn't specify any offline cpus */ 524 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 525 if (!cpumask_empty(tmpmask)) { 526 ret = -EINVAL; 527 rdt_last_cmd_puts("Can only assign online CPUs\n"); 528 goto unlock; 529 } 530 531 if (rdtgrp->type == RDTCTRL_GROUP) 532 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 533 else if (rdtgrp->type == RDTMON_GROUP) 534 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 535 else 536 ret = -EINVAL; 537 538 unlock: 539 rdtgroup_kn_unlock(of->kn); 540 free_cpumask_var(tmpmask); 541 free_cpumask_var(newmask); 542 free_cpumask_var(tmpmask1); 543 544 return ret ?: nbytes; 545 } 546 547 /** 548 * rdtgroup_remove - the helper to remove resource group safely 549 * @rdtgrp: resource group to remove 550 * 551 * On resource group creation via a mkdir, an extra kernfs_node reference is 552 * taken to ensure that the rdtgroup structure remains accessible for the 553 * rdtgroup_kn_unlock() calls where it is removed. 554 * 555 * Drop the extra reference here, then free the rdtgroup structure. 556 * 557 * Return: void 558 */ 559 static void rdtgroup_remove(struct rdtgroup *rdtgrp) 560 { 561 kernfs_put(rdtgrp->kn); 562 kfree(rdtgrp); 563 } 564 565 static void _update_task_closid_rmid(void *task) 566 { 567 /* 568 * If the task is still current on this CPU, update PQR_ASSOC MSR. 569 * Otherwise, the MSR is updated when the task is scheduled in. 570 */ 571 if (task == current) 572 resctrl_sched_in(task); 573 } 574 575 static void update_task_closid_rmid(struct task_struct *t) 576 { 577 if (IS_ENABLED(CONFIG_SMP) && task_curr(t)) 578 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1); 579 else 580 _update_task_closid_rmid(t); 581 } 582 583 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp) 584 { 585 u32 closid, rmid = rdtgrp->mon.rmid; 586 587 if (rdtgrp->type == RDTCTRL_GROUP) 588 closid = rdtgrp->closid; 589 else if (rdtgrp->type == RDTMON_GROUP) 590 closid = rdtgrp->mon.parent->closid; 591 else 592 return false; 593 594 return resctrl_arch_match_closid(tsk, closid) && 595 resctrl_arch_match_rmid(tsk, closid, rmid); 596 } 597 598 static int __rdtgroup_move_task(struct task_struct *tsk, 599 struct rdtgroup *rdtgrp) 600 { 601 /* If the task is already in rdtgrp, no need to move the task. */ 602 if (task_in_rdtgroup(tsk, rdtgrp)) 603 return 0; 604 605 /* 606 * Set the task's closid/rmid before the PQR_ASSOC MSR can be 607 * updated by them. 608 * 609 * For ctrl_mon groups, move both closid and rmid. 610 * For monitor groups, can move the tasks only from 611 * their parent CTRL group. 612 */ 613 if (rdtgrp->type == RDTMON_GROUP && 614 !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) { 615 rdt_last_cmd_puts("Can't move task to different control group\n"); 616 return -EINVAL; 617 } 618 619 if (rdtgrp->type == RDTMON_GROUP) 620 resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid, 621 rdtgrp->mon.rmid); 622 else 623 resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid, 624 rdtgrp->mon.rmid); 625 626 /* 627 * Ensure the task's closid and rmid are written before determining if 628 * the task is current that will decide if it will be interrupted. 629 * This pairs with the full barrier between the rq->curr update and 630 * resctrl_sched_in() during context switch. 631 */ 632 smp_mb(); 633 634 /* 635 * By now, the task's closid and rmid are set. If the task is current 636 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource 637 * group go into effect. If the task is not current, the MSR will be 638 * updated when the task is scheduled in. 639 */ 640 update_task_closid_rmid(tsk); 641 642 return 0; 643 } 644 645 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 646 { 647 return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) && 648 resctrl_arch_match_closid(t, r->closid)); 649 } 650 651 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 652 { 653 return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) && 654 resctrl_arch_match_rmid(t, r->mon.parent->closid, 655 r->mon.rmid)); 656 } 657 658 /** 659 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 660 * @r: Resource group 661 * 662 * Return: 1 if tasks have been assigned to @r, 0 otherwise 663 */ 664 int rdtgroup_tasks_assigned(struct rdtgroup *r) 665 { 666 struct task_struct *p, *t; 667 int ret = 0; 668 669 lockdep_assert_held(&rdtgroup_mutex); 670 671 rcu_read_lock(); 672 for_each_process_thread(p, t) { 673 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 674 ret = 1; 675 break; 676 } 677 } 678 rcu_read_unlock(); 679 680 return ret; 681 } 682 683 static int rdtgroup_task_write_permission(struct task_struct *task, 684 struct kernfs_open_file *of) 685 { 686 const struct cred *tcred = get_task_cred(task); 687 const struct cred *cred = current_cred(); 688 int ret = 0; 689 690 /* 691 * Even if we're attaching all tasks in the thread group, we only 692 * need to check permissions on one of them. 693 */ 694 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 695 !uid_eq(cred->euid, tcred->uid) && 696 !uid_eq(cred->euid, tcred->suid)) { 697 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 698 ret = -EPERM; 699 } 700 701 put_cred(tcred); 702 return ret; 703 } 704 705 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 706 struct kernfs_open_file *of) 707 { 708 struct task_struct *tsk; 709 int ret; 710 711 rcu_read_lock(); 712 if (pid) { 713 tsk = find_task_by_vpid(pid); 714 if (!tsk) { 715 rcu_read_unlock(); 716 rdt_last_cmd_printf("No task %d\n", pid); 717 return -ESRCH; 718 } 719 } else { 720 tsk = current; 721 } 722 723 get_task_struct(tsk); 724 rcu_read_unlock(); 725 726 ret = rdtgroup_task_write_permission(tsk, of); 727 if (!ret) 728 ret = __rdtgroup_move_task(tsk, rdtgrp); 729 730 put_task_struct(tsk); 731 return ret; 732 } 733 734 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 735 char *buf, size_t nbytes, loff_t off) 736 { 737 struct rdtgroup *rdtgrp; 738 char *pid_str; 739 int ret = 0; 740 pid_t pid; 741 742 rdtgrp = rdtgroup_kn_lock_live(of->kn); 743 if (!rdtgrp) { 744 rdtgroup_kn_unlock(of->kn); 745 return -ENOENT; 746 } 747 rdt_last_cmd_clear(); 748 749 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 750 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 751 ret = -EINVAL; 752 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 753 goto unlock; 754 } 755 756 while (buf && buf[0] != '\0' && buf[0] != '\n') { 757 pid_str = strim(strsep(&buf, ",")); 758 759 if (kstrtoint(pid_str, 0, &pid)) { 760 rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str); 761 ret = -EINVAL; 762 break; 763 } 764 765 if (pid < 0) { 766 rdt_last_cmd_printf("Invalid pid %d\n", pid); 767 ret = -EINVAL; 768 break; 769 } 770 771 ret = rdtgroup_move_task(pid, rdtgrp, of); 772 if (ret) { 773 rdt_last_cmd_printf("Error while processing task %d\n", pid); 774 break; 775 } 776 } 777 778 unlock: 779 rdtgroup_kn_unlock(of->kn); 780 781 return ret ?: nbytes; 782 } 783 784 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 785 { 786 struct task_struct *p, *t; 787 pid_t pid; 788 789 rcu_read_lock(); 790 for_each_process_thread(p, t) { 791 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 792 pid = task_pid_vnr(t); 793 if (pid) 794 seq_printf(s, "%d\n", pid); 795 } 796 } 797 rcu_read_unlock(); 798 } 799 800 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 801 struct seq_file *s, void *v) 802 { 803 struct rdtgroup *rdtgrp; 804 int ret = 0; 805 806 rdtgrp = rdtgroup_kn_lock_live(of->kn); 807 if (rdtgrp) 808 show_rdt_tasks(rdtgrp, s); 809 else 810 ret = -ENOENT; 811 rdtgroup_kn_unlock(of->kn); 812 813 return ret; 814 } 815 816 static int rdtgroup_closid_show(struct kernfs_open_file *of, 817 struct seq_file *s, void *v) 818 { 819 struct rdtgroup *rdtgrp; 820 int ret = 0; 821 822 rdtgrp = rdtgroup_kn_lock_live(of->kn); 823 if (rdtgrp) 824 seq_printf(s, "%u\n", rdtgrp->closid); 825 else 826 ret = -ENOENT; 827 rdtgroup_kn_unlock(of->kn); 828 829 return ret; 830 } 831 832 static int rdtgroup_rmid_show(struct kernfs_open_file *of, 833 struct seq_file *s, void *v) 834 { 835 struct rdtgroup *rdtgrp; 836 int ret = 0; 837 838 rdtgrp = rdtgroup_kn_lock_live(of->kn); 839 if (rdtgrp) 840 seq_printf(s, "%u\n", rdtgrp->mon.rmid); 841 else 842 ret = -ENOENT; 843 rdtgroup_kn_unlock(of->kn); 844 845 return ret; 846 } 847 848 #ifdef CONFIG_PROC_CPU_RESCTRL 849 850 /* 851 * A task can only be part of one resctrl control group and of one monitor 852 * group which is associated to that control group. 853 * 854 * 1) res: 855 * mon: 856 * 857 * resctrl is not available. 858 * 859 * 2) res:/ 860 * mon: 861 * 862 * Task is part of the root resctrl control group, and it is not associated 863 * to any monitor group. 864 * 865 * 3) res:/ 866 * mon:mon0 867 * 868 * Task is part of the root resctrl control group and monitor group mon0. 869 * 870 * 4) res:group0 871 * mon: 872 * 873 * Task is part of resctrl control group group0, and it is not associated 874 * to any monitor group. 875 * 876 * 5) res:group0 877 * mon:mon1 878 * 879 * Task is part of resctrl control group group0 and monitor group mon1. 880 */ 881 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 882 struct pid *pid, struct task_struct *tsk) 883 { 884 struct rdtgroup *rdtg; 885 int ret = 0; 886 887 mutex_lock(&rdtgroup_mutex); 888 889 /* Return empty if resctrl has not been mounted. */ 890 if (!resctrl_mounted) { 891 seq_puts(s, "res:\nmon:\n"); 892 goto unlock; 893 } 894 895 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 896 struct rdtgroup *crg; 897 898 /* 899 * Task information is only relevant for shareable 900 * and exclusive groups. 901 */ 902 if (rdtg->mode != RDT_MODE_SHAREABLE && 903 rdtg->mode != RDT_MODE_EXCLUSIVE) 904 continue; 905 906 if (!resctrl_arch_match_closid(tsk, rdtg->closid)) 907 continue; 908 909 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 910 rdtg->kn->name); 911 seq_puts(s, "mon:"); 912 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 913 mon.crdtgrp_list) { 914 if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid, 915 crg->mon.rmid)) 916 continue; 917 seq_printf(s, "%s", crg->kn->name); 918 break; 919 } 920 seq_putc(s, '\n'); 921 goto unlock; 922 } 923 /* 924 * The above search should succeed. Otherwise return 925 * with an error. 926 */ 927 ret = -ENOENT; 928 unlock: 929 mutex_unlock(&rdtgroup_mutex); 930 931 return ret; 932 } 933 #endif 934 935 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 936 struct seq_file *seq, void *v) 937 { 938 int len; 939 940 mutex_lock(&rdtgroup_mutex); 941 len = seq_buf_used(&last_cmd_status); 942 if (len) 943 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 944 else 945 seq_puts(seq, "ok\n"); 946 mutex_unlock(&rdtgroup_mutex); 947 return 0; 948 } 949 950 static int rdt_num_closids_show(struct kernfs_open_file *of, 951 struct seq_file *seq, void *v) 952 { 953 struct resctrl_schema *s = of->kn->parent->priv; 954 955 seq_printf(seq, "%u\n", s->num_closid); 956 return 0; 957 } 958 959 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 960 struct seq_file *seq, void *v) 961 { 962 struct resctrl_schema *s = of->kn->parent->priv; 963 struct rdt_resource *r = s->res; 964 965 seq_printf(seq, "%x\n", r->default_ctrl); 966 return 0; 967 } 968 969 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 970 struct seq_file *seq, void *v) 971 { 972 struct resctrl_schema *s = of->kn->parent->priv; 973 struct rdt_resource *r = s->res; 974 975 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 976 return 0; 977 } 978 979 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 980 struct seq_file *seq, void *v) 981 { 982 struct resctrl_schema *s = of->kn->parent->priv; 983 struct rdt_resource *r = s->res; 984 985 seq_printf(seq, "%x\n", r->cache.shareable_bits); 986 return 0; 987 } 988 989 /* 990 * rdt_bit_usage_show - Display current usage of resources 991 * 992 * A domain is a shared resource that can now be allocated differently. Here 993 * we display the current regions of the domain as an annotated bitmask. 994 * For each domain of this resource its allocation bitmask 995 * is annotated as below to indicate the current usage of the corresponding bit: 996 * 0 - currently unused 997 * X - currently available for sharing and used by software and hardware 998 * H - currently used by hardware only but available for software use 999 * S - currently used and shareable by software only 1000 * E - currently used exclusively by one resource group 1001 * P - currently pseudo-locked by one resource group 1002 */ 1003 static int rdt_bit_usage_show(struct kernfs_open_file *of, 1004 struct seq_file *seq, void *v) 1005 { 1006 struct resctrl_schema *s = of->kn->parent->priv; 1007 /* 1008 * Use unsigned long even though only 32 bits are used to ensure 1009 * test_bit() is used safely. 1010 */ 1011 unsigned long sw_shareable = 0, hw_shareable = 0; 1012 unsigned long exclusive = 0, pseudo_locked = 0; 1013 struct rdt_resource *r = s->res; 1014 struct rdt_ctrl_domain *dom; 1015 int i, hwb, swb, excl, psl; 1016 enum rdtgrp_mode mode; 1017 bool sep = false; 1018 u32 ctrl_val; 1019 1020 cpus_read_lock(); 1021 mutex_lock(&rdtgroup_mutex); 1022 hw_shareable = r->cache.shareable_bits; 1023 list_for_each_entry(dom, &r->ctrl_domains, hdr.list) { 1024 if (sep) 1025 seq_putc(seq, ';'); 1026 sw_shareable = 0; 1027 exclusive = 0; 1028 seq_printf(seq, "%d=", dom->hdr.id); 1029 for (i = 0; i < closids_supported(); i++) { 1030 if (!closid_allocated(i)) 1031 continue; 1032 ctrl_val = resctrl_arch_get_config(r, dom, i, 1033 s->conf_type); 1034 mode = rdtgroup_mode_by_closid(i); 1035 switch (mode) { 1036 case RDT_MODE_SHAREABLE: 1037 sw_shareable |= ctrl_val; 1038 break; 1039 case RDT_MODE_EXCLUSIVE: 1040 exclusive |= ctrl_val; 1041 break; 1042 case RDT_MODE_PSEUDO_LOCKSETUP: 1043 /* 1044 * RDT_MODE_PSEUDO_LOCKSETUP is possible 1045 * here but not included since the CBM 1046 * associated with this CLOSID in this mode 1047 * is not initialized and no task or cpu can be 1048 * assigned this CLOSID. 1049 */ 1050 break; 1051 case RDT_MODE_PSEUDO_LOCKED: 1052 case RDT_NUM_MODES: 1053 WARN(1, 1054 "invalid mode for closid %d\n", i); 1055 break; 1056 } 1057 } 1058 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 1059 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 1060 hwb = test_bit(i, &hw_shareable); 1061 swb = test_bit(i, &sw_shareable); 1062 excl = test_bit(i, &exclusive); 1063 psl = test_bit(i, &pseudo_locked); 1064 if (hwb && swb) 1065 seq_putc(seq, 'X'); 1066 else if (hwb && !swb) 1067 seq_putc(seq, 'H'); 1068 else if (!hwb && swb) 1069 seq_putc(seq, 'S'); 1070 else if (excl) 1071 seq_putc(seq, 'E'); 1072 else if (psl) 1073 seq_putc(seq, 'P'); 1074 else /* Unused bits remain */ 1075 seq_putc(seq, ''); 1076 } 1077 sep = true; 1078 } 1079 seq_putc(seq, '\n'); 1080 mutex_unlock(&rdtgroup_mutex); 1081 cpus_read_unlock(); 1082 return 0; 1083 } 1084 1085 static int rdt_min_bw_show(struct kernfs_open_file *of, 1086 struct seq_file *seq, void *v) 1087 { 1088 struct resctrl_schema *s = of->kn->parent->priv; 1089 struct rdt_resource *r = s->res; 1090 1091 seq_printf(seq, "%u\n", r->membw.min_bw); 1092 return 0; 1093 } 1094 1095 static int rdt_num_rmids_show(struct kernfs_open_file *of, 1096 struct seq_file *seq, void *v) 1097 { 1098 struct rdt_resource *r = of->kn->parent->priv; 1099 1100 seq_printf(seq, "%d\n", r->num_rmid); 1101 1102 return 0; 1103 } 1104 1105 static int rdt_mon_features_show(struct kernfs_open_file *of, 1106 struct seq_file *seq, void *v) 1107 { 1108 struct rdt_resource *r = of->kn->parent->priv; 1109 struct mon_evt *mevt; 1110 1111 list_for_each_entry(mevt, &r->evt_list, list) { 1112 seq_printf(seq, "%s\n", mevt->name); 1113 if (mevt->configurable) 1114 seq_printf(seq, "%s_config\n", mevt->name); 1115 } 1116 1117 return 0; 1118 } 1119 1120 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1121 struct seq_file *seq, void *v) 1122 { 1123 struct resctrl_schema *s = of->kn->parent->priv; 1124 struct rdt_resource *r = s->res; 1125 1126 seq_printf(seq, "%u\n", r->membw.bw_gran); 1127 return 0; 1128 } 1129 1130 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1131 struct seq_file *seq, void *v) 1132 { 1133 struct resctrl_schema *s = of->kn->parent->priv; 1134 struct rdt_resource *r = s->res; 1135 1136 seq_printf(seq, "%u\n", r->membw.delay_linear); 1137 return 0; 1138 } 1139 1140 static int max_threshold_occ_show(struct kernfs_open_file *of, 1141 struct seq_file *seq, void *v) 1142 { 1143 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold); 1144 1145 return 0; 1146 } 1147 1148 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1149 struct seq_file *seq, void *v) 1150 { 1151 struct resctrl_schema *s = of->kn->parent->priv; 1152 struct rdt_resource *r = s->res; 1153 1154 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD) 1155 seq_puts(seq, "per-thread\n"); 1156 else 1157 seq_puts(seq, "max\n"); 1158 1159 return 0; 1160 } 1161 1162 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1163 char *buf, size_t nbytes, loff_t off) 1164 { 1165 unsigned int bytes; 1166 int ret; 1167 1168 ret = kstrtouint(buf, 0, &bytes); 1169 if (ret) 1170 return ret; 1171 1172 if (bytes > resctrl_rmid_realloc_limit) 1173 return -EINVAL; 1174 1175 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes); 1176 1177 return nbytes; 1178 } 1179 1180 /* 1181 * rdtgroup_mode_show - Display mode of this resource group 1182 */ 1183 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1184 struct seq_file *s, void *v) 1185 { 1186 struct rdtgroup *rdtgrp; 1187 1188 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1189 if (!rdtgrp) { 1190 rdtgroup_kn_unlock(of->kn); 1191 return -ENOENT; 1192 } 1193 1194 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1195 1196 rdtgroup_kn_unlock(of->kn); 1197 return 0; 1198 } 1199 1200 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type) 1201 { 1202 switch (my_type) { 1203 case CDP_CODE: 1204 return CDP_DATA; 1205 case CDP_DATA: 1206 return CDP_CODE; 1207 default: 1208 case CDP_NONE: 1209 return CDP_NONE; 1210 } 1211 } 1212 1213 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of, 1214 struct seq_file *seq, void *v) 1215 { 1216 struct resctrl_schema *s = of->kn->parent->priv; 1217 struct rdt_resource *r = s->res; 1218 1219 seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks); 1220 1221 return 0; 1222 } 1223 1224 /** 1225 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1226 * @r: Resource to which domain instance @d belongs. 1227 * @d: The domain instance for which @closid is being tested. 1228 * @cbm: Capacity bitmask being tested. 1229 * @closid: Intended closid for @cbm. 1230 * @type: CDP type of @r. 1231 * @exclusive: Only check if overlaps with exclusive resource groups 1232 * 1233 * Checks if provided @cbm intended to be used for @closid on domain 1234 * @d overlaps with any other closids or other hardware usage associated 1235 * with this domain. If @exclusive is true then only overlaps with 1236 * resource groups in exclusive mode will be considered. If @exclusive 1237 * is false then overlaps with any resource group or hardware entities 1238 * will be considered. 1239 * 1240 * @cbm is unsigned long, even if only 32 bits are used, to make the 1241 * bitmap functions work correctly. 1242 * 1243 * Return: false if CBM does not overlap, true if it does. 1244 */ 1245 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d, 1246 unsigned long cbm, int closid, 1247 enum resctrl_conf_type type, bool exclusive) 1248 { 1249 enum rdtgrp_mode mode; 1250 unsigned long ctrl_b; 1251 int i; 1252 1253 /* Check for any overlap with regions used by hardware directly */ 1254 if (!exclusive) { 1255 ctrl_b = r->cache.shareable_bits; 1256 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1257 return true; 1258 } 1259 1260 /* Check for overlap with other resource groups */ 1261 for (i = 0; i < closids_supported(); i++) { 1262 ctrl_b = resctrl_arch_get_config(r, d, i, type); 1263 mode = rdtgroup_mode_by_closid(i); 1264 if (closid_allocated(i) && i != closid && 1265 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1266 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1267 if (exclusive) { 1268 if (mode == RDT_MODE_EXCLUSIVE) 1269 return true; 1270 continue; 1271 } 1272 return true; 1273 } 1274 } 1275 } 1276 1277 return false; 1278 } 1279 1280 /** 1281 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1282 * @s: Schema for the resource to which domain instance @d belongs. 1283 * @d: The domain instance for which @closid is being tested. 1284 * @cbm: Capacity bitmask being tested. 1285 * @closid: Intended closid for @cbm. 1286 * @exclusive: Only check if overlaps with exclusive resource groups 1287 * 1288 * Resources that can be allocated using a CBM can use the CBM to control 1289 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1290 * for overlap. Overlap test is not limited to the specific resource for 1291 * which the CBM is intended though - when dealing with CDP resources that 1292 * share the underlying hardware the overlap check should be performed on 1293 * the CDP resource sharing the hardware also. 1294 * 1295 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1296 * overlap test. 1297 * 1298 * Return: true if CBM overlap detected, false if there is no overlap 1299 */ 1300 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d, 1301 unsigned long cbm, int closid, bool exclusive) 1302 { 1303 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 1304 struct rdt_resource *r = s->res; 1305 1306 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type, 1307 exclusive)) 1308 return true; 1309 1310 if (!resctrl_arch_get_cdp_enabled(r->rid)) 1311 return false; 1312 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive); 1313 } 1314 1315 /** 1316 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1317 * @rdtgrp: Resource group identified through its closid. 1318 * 1319 * An exclusive resource group implies that there should be no sharing of 1320 * its allocated resources. At the time this group is considered to be 1321 * exclusive this test can determine if its current schemata supports this 1322 * setting by testing for overlap with all other resource groups. 1323 * 1324 * Return: true if resource group can be exclusive, false if there is overlap 1325 * with allocations of other resource groups and thus this resource group 1326 * cannot be exclusive. 1327 */ 1328 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1329 { 1330 int closid = rdtgrp->closid; 1331 struct rdt_ctrl_domain *d; 1332 struct resctrl_schema *s; 1333 struct rdt_resource *r; 1334 bool has_cache = false; 1335 u32 ctrl; 1336 1337 /* Walking r->domains, ensure it can't race with cpuhp */ 1338 lockdep_assert_cpus_held(); 1339 1340 list_for_each_entry(s, &resctrl_schema_all, list) { 1341 r = s->res; 1342 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA) 1343 continue; 1344 has_cache = true; 1345 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 1346 ctrl = resctrl_arch_get_config(r, d, closid, 1347 s->conf_type); 1348 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) { 1349 rdt_last_cmd_puts("Schemata overlaps\n"); 1350 return false; 1351 } 1352 } 1353 } 1354 1355 if (!has_cache) { 1356 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1357 return false; 1358 } 1359 1360 return true; 1361 } 1362 1363 /* 1364 * rdtgroup_mode_write - Modify the resource group's mode 1365 */ 1366 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1367 char *buf, size_t nbytes, loff_t off) 1368 { 1369 struct rdtgroup *rdtgrp; 1370 enum rdtgrp_mode mode; 1371 int ret = 0; 1372 1373 /* Valid input requires a trailing newline */ 1374 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1375 return -EINVAL; 1376 buf[nbytes - 1] = '\0'; 1377 1378 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1379 if (!rdtgrp) { 1380 rdtgroup_kn_unlock(of->kn); 1381 return -ENOENT; 1382 } 1383 1384 rdt_last_cmd_clear(); 1385 1386 mode = rdtgrp->mode; 1387 1388 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1389 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1390 (!strcmp(buf, "pseudo-locksetup") && 1391 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1392 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1393 goto out; 1394 1395 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1396 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1397 ret = -EINVAL; 1398 goto out; 1399 } 1400 1401 if (!strcmp(buf, "shareable")) { 1402 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1403 ret = rdtgroup_locksetup_exit(rdtgrp); 1404 if (ret) 1405 goto out; 1406 } 1407 rdtgrp->mode = RDT_MODE_SHAREABLE; 1408 } else if (!strcmp(buf, "exclusive")) { 1409 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1410 ret = -EINVAL; 1411 goto out; 1412 } 1413 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1414 ret = rdtgroup_locksetup_exit(rdtgrp); 1415 if (ret) 1416 goto out; 1417 } 1418 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1419 } else if (!strcmp(buf, "pseudo-locksetup")) { 1420 ret = rdtgroup_locksetup_enter(rdtgrp); 1421 if (ret) 1422 goto out; 1423 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1424 } else { 1425 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1426 ret = -EINVAL; 1427 } 1428 1429 out: 1430 rdtgroup_kn_unlock(of->kn); 1431 return ret ?: nbytes; 1432 } 1433 1434 /** 1435 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1436 * @r: RDT resource to which @d belongs. 1437 * @d: RDT domain instance. 1438 * @cbm: bitmask for which the size should be computed. 1439 * 1440 * The bitmask provided associated with the RDT domain instance @d will be 1441 * translated into how many bytes it represents. The size in bytes is 1442 * computed by first dividing the total cache size by the CBM length to 1443 * determine how many bytes each bit in the bitmask represents. The result 1444 * is multiplied with the number of bits set in the bitmask. 1445 * 1446 * @cbm is unsigned long, even if only 32 bits are used to make the 1447 * bitmap functions work correctly. 1448 */ 1449 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1450 struct rdt_ctrl_domain *d, unsigned long cbm) 1451 { 1452 unsigned int size = 0; 1453 struct cacheinfo *ci; 1454 int num_b; 1455 1456 if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE)) 1457 return size; 1458 1459 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1460 ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope); 1461 if (ci) 1462 size = ci->size / r->cache.cbm_len * num_b; 1463 1464 return size; 1465 } 1466 1467 /* 1468 * rdtgroup_size_show - Display size in bytes of allocated regions 1469 * 1470 * The "size" file mirrors the layout of the "schemata" file, printing the 1471 * size in bytes of each region instead of the capacity bitmask. 1472 */ 1473 static int rdtgroup_size_show(struct kernfs_open_file *of, 1474 struct seq_file *s, void *v) 1475 { 1476 struct resctrl_schema *schema; 1477 enum resctrl_conf_type type; 1478 struct rdt_ctrl_domain *d; 1479 struct rdtgroup *rdtgrp; 1480 struct rdt_resource *r; 1481 unsigned int size; 1482 int ret = 0; 1483 u32 closid; 1484 bool sep; 1485 u32 ctrl; 1486 1487 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1488 if (!rdtgrp) { 1489 rdtgroup_kn_unlock(of->kn); 1490 return -ENOENT; 1491 } 1492 1493 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1494 if (!rdtgrp->plr->d) { 1495 rdt_last_cmd_clear(); 1496 rdt_last_cmd_puts("Cache domain offline\n"); 1497 ret = -ENODEV; 1498 } else { 1499 seq_printf(s, "%*s:", max_name_width, 1500 rdtgrp->plr->s->name); 1501 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res, 1502 rdtgrp->plr->d, 1503 rdtgrp->plr->cbm); 1504 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size); 1505 } 1506 goto out; 1507 } 1508 1509 closid = rdtgrp->closid; 1510 1511 list_for_each_entry(schema, &resctrl_schema_all, list) { 1512 r = schema->res; 1513 type = schema->conf_type; 1514 sep = false; 1515 seq_printf(s, "%*s:", max_name_width, schema->name); 1516 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 1517 if (sep) 1518 seq_putc(s, ';'); 1519 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1520 size = 0; 1521 } else { 1522 if (is_mba_sc(r)) 1523 ctrl = d->mbps_val[closid]; 1524 else 1525 ctrl = resctrl_arch_get_config(r, d, 1526 closid, 1527 type); 1528 if (r->rid == RDT_RESOURCE_MBA || 1529 r->rid == RDT_RESOURCE_SMBA) 1530 size = ctrl; 1531 else 1532 size = rdtgroup_cbm_to_size(r, d, ctrl); 1533 } 1534 seq_printf(s, "%d=%u", d->hdr.id, size); 1535 sep = true; 1536 } 1537 seq_putc(s, '\n'); 1538 } 1539 1540 out: 1541 rdtgroup_kn_unlock(of->kn); 1542 1543 return ret; 1544 } 1545 1546 struct mon_config_info { 1547 u32 evtid; 1548 u32 mon_config; 1549 }; 1550 1551 #define INVALID_CONFIG_INDEX UINT_MAX 1552 1553 /** 1554 * mon_event_config_index_get - get the hardware index for the 1555 * configurable event 1556 * @evtid: event id. 1557 * 1558 * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID 1559 * 1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID 1560 * INVALID_CONFIG_INDEX for invalid evtid 1561 */ 1562 static inline unsigned int mon_event_config_index_get(u32 evtid) 1563 { 1564 switch (evtid) { 1565 case QOS_L3_MBM_TOTAL_EVENT_ID: 1566 return 0; 1567 case QOS_L3_MBM_LOCAL_EVENT_ID: 1568 return 1; 1569 default: 1570 /* Should never reach here */ 1571 return INVALID_CONFIG_INDEX; 1572 } 1573 } 1574 1575 static void mon_event_config_read(void *info) 1576 { 1577 struct mon_config_info *mon_info = info; 1578 unsigned int index; 1579 u64 msrval; 1580 1581 index = mon_event_config_index_get(mon_info->evtid); 1582 if (index == INVALID_CONFIG_INDEX) { 1583 pr_warn_once("Invalid event id %d\n", mon_info->evtid); 1584 return; 1585 } 1586 rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval); 1587 1588 /* Report only the valid event configuration bits */ 1589 mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS; 1590 } 1591 1592 static void mondata_config_read(struct rdt_mon_domain *d, struct mon_config_info *mon_info) 1593 { 1594 smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_read, mon_info, 1); 1595 } 1596 1597 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid) 1598 { 1599 struct mon_config_info mon_info = {0}; 1600 struct rdt_mon_domain *dom; 1601 bool sep = false; 1602 1603 cpus_read_lock(); 1604 mutex_lock(&rdtgroup_mutex); 1605 1606 list_for_each_entry(dom, &r->mon_domains, hdr.list) { 1607 if (sep) 1608 seq_puts(s, ";"); 1609 1610 memset(&mon_info, 0, sizeof(struct mon_config_info)); 1611 mon_info.evtid = evtid; 1612 mondata_config_read(dom, &mon_info); 1613 1614 seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config); 1615 sep = true; 1616 } 1617 seq_puts(s, "\n"); 1618 1619 mutex_unlock(&rdtgroup_mutex); 1620 cpus_read_unlock(); 1621 1622 return 0; 1623 } 1624 1625 static int mbm_total_bytes_config_show(struct kernfs_open_file *of, 1626 struct seq_file *seq, void *v) 1627 { 1628 struct rdt_resource *r = of->kn->parent->priv; 1629 1630 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID); 1631 1632 return 0; 1633 } 1634 1635 static int mbm_local_bytes_config_show(struct kernfs_open_file *of, 1636 struct seq_file *seq, void *v) 1637 { 1638 struct rdt_resource *r = of->kn->parent->priv; 1639 1640 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID); 1641 1642 return 0; 1643 } 1644 1645 static void mon_event_config_write(void *info) 1646 { 1647 struct mon_config_info *mon_info = info; 1648 unsigned int index; 1649 1650 index = mon_event_config_index_get(mon_info->evtid); 1651 if (index == INVALID_CONFIG_INDEX) { 1652 pr_warn_once("Invalid event id %d\n", mon_info->evtid); 1653 return; 1654 } 1655 wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0); 1656 } 1657 1658 static void mbm_config_write_domain(struct rdt_resource *r, 1659 struct rdt_mon_domain *d, u32 evtid, u32 val) 1660 { 1661 struct mon_config_info mon_info = {0}; 1662 1663 /* 1664 * Read the current config value first. If both are the same then 1665 * no need to write it again. 1666 */ 1667 mon_info.evtid = evtid; 1668 mondata_config_read(d, &mon_info); 1669 if (mon_info.mon_config == val) 1670 return; 1671 1672 mon_info.mon_config = val; 1673 1674 /* 1675 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the 1676 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE 1677 * are scoped at the domain level. Writing any of these MSRs 1678 * on one CPU is observed by all the CPUs in the domain. 1679 */ 1680 smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_write, 1681 &mon_info, 1); 1682 1683 /* 1684 * When an Event Configuration is changed, the bandwidth counters 1685 * for all RMIDs and Events will be cleared by the hardware. The 1686 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for 1687 * every RMID on the next read to any event for every RMID. 1688 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62) 1689 * cleared while it is tracked by the hardware. Clear the 1690 * mbm_local and mbm_total counts for all the RMIDs. 1691 */ 1692 resctrl_arch_reset_rmid_all(r, d); 1693 } 1694 1695 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid) 1696 { 1697 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 1698 char *dom_str = NULL, *id_str; 1699 unsigned long dom_id, val; 1700 struct rdt_mon_domain *d; 1701 1702 /* Walking r->domains, ensure it can't race with cpuhp */ 1703 lockdep_assert_cpus_held(); 1704 1705 next: 1706 if (!tok || tok[0] == '\0') 1707 return 0; 1708 1709 /* Start processing the strings for each domain */ 1710 dom_str = strim(strsep(&tok, ";")); 1711 id_str = strsep(&dom_str, "="); 1712 1713 if (!id_str || kstrtoul(id_str, 10, &dom_id)) { 1714 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n"); 1715 return -EINVAL; 1716 } 1717 1718 if (!dom_str || kstrtoul(dom_str, 16, &val)) { 1719 rdt_last_cmd_puts("Non-numeric event configuration value\n"); 1720 return -EINVAL; 1721 } 1722 1723 /* Value from user cannot be more than the supported set of events */ 1724 if ((val & hw_res->mbm_cfg_mask) != val) { 1725 rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n", 1726 hw_res->mbm_cfg_mask); 1727 return -EINVAL; 1728 } 1729 1730 list_for_each_entry(d, &r->mon_domains, hdr.list) { 1731 if (d->hdr.id == dom_id) { 1732 mbm_config_write_domain(r, d, evtid, val); 1733 goto next; 1734 } 1735 } 1736 1737 return -EINVAL; 1738 } 1739 1740 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of, 1741 char *buf, size_t nbytes, 1742 loff_t off) 1743 { 1744 struct rdt_resource *r = of->kn->parent->priv; 1745 int ret; 1746 1747 /* Valid input requires a trailing newline */ 1748 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1749 return -EINVAL; 1750 1751 cpus_read_lock(); 1752 mutex_lock(&rdtgroup_mutex); 1753 1754 rdt_last_cmd_clear(); 1755 1756 buf[nbytes - 1] = '\0'; 1757 1758 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID); 1759 1760 mutex_unlock(&rdtgroup_mutex); 1761 cpus_read_unlock(); 1762 1763 return ret ?: nbytes; 1764 } 1765 1766 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of, 1767 char *buf, size_t nbytes, 1768 loff_t off) 1769 { 1770 struct rdt_resource *r = of->kn->parent->priv; 1771 int ret; 1772 1773 /* Valid input requires a trailing newline */ 1774 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1775 return -EINVAL; 1776 1777 cpus_read_lock(); 1778 mutex_lock(&rdtgroup_mutex); 1779 1780 rdt_last_cmd_clear(); 1781 1782 buf[nbytes - 1] = '\0'; 1783 1784 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID); 1785 1786 mutex_unlock(&rdtgroup_mutex); 1787 cpus_read_unlock(); 1788 1789 return ret ?: nbytes; 1790 } 1791 1792 /* rdtgroup information files for one cache resource. */ 1793 static struct rftype res_common_files[] = { 1794 { 1795 .name = "last_cmd_status", 1796 .mode = 0444, 1797 .kf_ops = &rdtgroup_kf_single_ops, 1798 .seq_show = rdt_last_cmd_status_show, 1799 .fflags = RFTYPE_TOP_INFO, 1800 }, 1801 { 1802 .name = "num_closids", 1803 .mode = 0444, 1804 .kf_ops = &rdtgroup_kf_single_ops, 1805 .seq_show = rdt_num_closids_show, 1806 .fflags = RFTYPE_CTRL_INFO, 1807 }, 1808 { 1809 .name = "mon_features", 1810 .mode = 0444, 1811 .kf_ops = &rdtgroup_kf_single_ops, 1812 .seq_show = rdt_mon_features_show, 1813 .fflags = RFTYPE_MON_INFO, 1814 }, 1815 { 1816 .name = "num_rmids", 1817 .mode = 0444, 1818 .kf_ops = &rdtgroup_kf_single_ops, 1819 .seq_show = rdt_num_rmids_show, 1820 .fflags = RFTYPE_MON_INFO, 1821 }, 1822 { 1823 .name = "cbm_mask", 1824 .mode = 0444, 1825 .kf_ops = &rdtgroup_kf_single_ops, 1826 .seq_show = rdt_default_ctrl_show, 1827 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1828 }, 1829 { 1830 .name = "min_cbm_bits", 1831 .mode = 0444, 1832 .kf_ops = &rdtgroup_kf_single_ops, 1833 .seq_show = rdt_min_cbm_bits_show, 1834 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1835 }, 1836 { 1837 .name = "shareable_bits", 1838 .mode = 0444, 1839 .kf_ops = &rdtgroup_kf_single_ops, 1840 .seq_show = rdt_shareable_bits_show, 1841 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1842 }, 1843 { 1844 .name = "bit_usage", 1845 .mode = 0444, 1846 .kf_ops = &rdtgroup_kf_single_ops, 1847 .seq_show = rdt_bit_usage_show, 1848 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1849 }, 1850 { 1851 .name = "min_bandwidth", 1852 .mode = 0444, 1853 .kf_ops = &rdtgroup_kf_single_ops, 1854 .seq_show = rdt_min_bw_show, 1855 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1856 }, 1857 { 1858 .name = "bandwidth_gran", 1859 .mode = 0444, 1860 .kf_ops = &rdtgroup_kf_single_ops, 1861 .seq_show = rdt_bw_gran_show, 1862 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1863 }, 1864 { 1865 .name = "delay_linear", 1866 .mode = 0444, 1867 .kf_ops = &rdtgroup_kf_single_ops, 1868 .seq_show = rdt_delay_linear_show, 1869 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1870 }, 1871 /* 1872 * Platform specific which (if any) capabilities are provided by 1873 * thread_throttle_mode. Defer "fflags" initialization to platform 1874 * discovery. 1875 */ 1876 { 1877 .name = "thread_throttle_mode", 1878 .mode = 0444, 1879 .kf_ops = &rdtgroup_kf_single_ops, 1880 .seq_show = rdt_thread_throttle_mode_show, 1881 }, 1882 { 1883 .name = "max_threshold_occupancy", 1884 .mode = 0644, 1885 .kf_ops = &rdtgroup_kf_single_ops, 1886 .write = max_threshold_occ_write, 1887 .seq_show = max_threshold_occ_show, 1888 .fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE, 1889 }, 1890 { 1891 .name = "mbm_total_bytes_config", 1892 .mode = 0644, 1893 .kf_ops = &rdtgroup_kf_single_ops, 1894 .seq_show = mbm_total_bytes_config_show, 1895 .write = mbm_total_bytes_config_write, 1896 }, 1897 { 1898 .name = "mbm_local_bytes_config", 1899 .mode = 0644, 1900 .kf_ops = &rdtgroup_kf_single_ops, 1901 .seq_show = mbm_local_bytes_config_show, 1902 .write = mbm_local_bytes_config_write, 1903 }, 1904 { 1905 .name = "cpus", 1906 .mode = 0644, 1907 .kf_ops = &rdtgroup_kf_single_ops, 1908 .write = rdtgroup_cpus_write, 1909 .seq_show = rdtgroup_cpus_show, 1910 .fflags = RFTYPE_BASE, 1911 }, 1912 { 1913 .name = "cpus_list", 1914 .mode = 0644, 1915 .kf_ops = &rdtgroup_kf_single_ops, 1916 .write = rdtgroup_cpus_write, 1917 .seq_show = rdtgroup_cpus_show, 1918 .flags = RFTYPE_FLAGS_CPUS_LIST, 1919 .fflags = RFTYPE_BASE, 1920 }, 1921 { 1922 .name = "tasks", 1923 .mode = 0644, 1924 .kf_ops = &rdtgroup_kf_single_ops, 1925 .write = rdtgroup_tasks_write, 1926 .seq_show = rdtgroup_tasks_show, 1927 .fflags = RFTYPE_BASE, 1928 }, 1929 { 1930 .name = "mon_hw_id", 1931 .mode = 0444, 1932 .kf_ops = &rdtgroup_kf_single_ops, 1933 .seq_show = rdtgroup_rmid_show, 1934 .fflags = RFTYPE_MON_BASE | RFTYPE_DEBUG, 1935 }, 1936 { 1937 .name = "schemata", 1938 .mode = 0644, 1939 .kf_ops = &rdtgroup_kf_single_ops, 1940 .write = rdtgroup_schemata_write, 1941 .seq_show = rdtgroup_schemata_show, 1942 .fflags = RFTYPE_CTRL_BASE, 1943 }, 1944 { 1945 .name = "mode", 1946 .mode = 0644, 1947 .kf_ops = &rdtgroup_kf_single_ops, 1948 .write = rdtgroup_mode_write, 1949 .seq_show = rdtgroup_mode_show, 1950 .fflags = RFTYPE_CTRL_BASE, 1951 }, 1952 { 1953 .name = "size", 1954 .mode = 0444, 1955 .kf_ops = &rdtgroup_kf_single_ops, 1956 .seq_show = rdtgroup_size_show, 1957 .fflags = RFTYPE_CTRL_BASE, 1958 }, 1959 { 1960 .name = "sparse_masks", 1961 .mode = 0444, 1962 .kf_ops = &rdtgroup_kf_single_ops, 1963 .seq_show = rdt_has_sparse_bitmasks_show, 1964 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1965 }, 1966 { 1967 .name = "ctrl_hw_id", 1968 .mode = 0444, 1969 .kf_ops = &rdtgroup_kf_single_ops, 1970 .seq_show = rdtgroup_closid_show, 1971 .fflags = RFTYPE_CTRL_BASE | RFTYPE_DEBUG, 1972 }, 1973 1974 }; 1975 1976 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1977 { 1978 struct rftype *rfts, *rft; 1979 int ret, len; 1980 1981 rfts = res_common_files; 1982 len = ARRAY_SIZE(res_common_files); 1983 1984 lockdep_assert_held(&rdtgroup_mutex); 1985 1986 if (resctrl_debug) 1987 fflags |= RFTYPE_DEBUG; 1988 1989 for (rft = rfts; rft < rfts + len; rft++) { 1990 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 1991 ret = rdtgroup_add_file(kn, rft); 1992 if (ret) 1993 goto error; 1994 } 1995 } 1996 1997 return 0; 1998 error: 1999 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 2000 while (--rft >= rfts) { 2001 if ((fflags & rft->fflags) == rft->fflags) 2002 kernfs_remove_by_name(kn, rft->name); 2003 } 2004 return ret; 2005 } 2006 2007 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 2008 { 2009 struct rftype *rfts, *rft; 2010 int len; 2011 2012 rfts = res_common_files; 2013 len = ARRAY_SIZE(res_common_files); 2014 2015 for (rft = rfts; rft < rfts + len; rft++) { 2016 if (!strcmp(rft->name, name)) 2017 return rft; 2018 } 2019 2020 return NULL; 2021 } 2022 2023 void __init thread_throttle_mode_init(void) 2024 { 2025 struct rftype *rft; 2026 2027 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode"); 2028 if (!rft) 2029 return; 2030 2031 rft->fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB; 2032 } 2033 2034 void __init mbm_config_rftype_init(const char *config) 2035 { 2036 struct rftype *rft; 2037 2038 rft = rdtgroup_get_rftype_by_name(config); 2039 if (rft) 2040 rft->fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE; 2041 } 2042 2043 /** 2044 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 2045 * @r: The resource group with which the file is associated. 2046 * @name: Name of the file 2047 * 2048 * The permissions of named resctrl file, directory, or link are modified 2049 * to not allow read, write, or execute by any user. 2050 * 2051 * WARNING: This function is intended to communicate to the user that the 2052 * resctrl file has been locked down - that it is not relevant to the 2053 * particular state the system finds itself in. It should not be relied 2054 * on to protect from user access because after the file's permissions 2055 * are restricted the user can still change the permissions using chmod 2056 * from the command line. 2057 * 2058 * Return: 0 on success, <0 on failure. 2059 */ 2060 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 2061 { 2062 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 2063 struct kernfs_node *kn; 2064 int ret = 0; 2065 2066 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 2067 if (!kn) 2068 return -ENOENT; 2069 2070 switch (kernfs_type(kn)) { 2071 case KERNFS_DIR: 2072 iattr.ia_mode = S_IFDIR; 2073 break; 2074 case KERNFS_FILE: 2075 iattr.ia_mode = S_IFREG; 2076 break; 2077 case KERNFS_LINK: 2078 iattr.ia_mode = S_IFLNK; 2079 break; 2080 } 2081 2082 ret = kernfs_setattr(kn, &iattr); 2083 kernfs_put(kn); 2084 return ret; 2085 } 2086 2087 /** 2088 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 2089 * @r: The resource group with which the file is associated. 2090 * @name: Name of the file 2091 * @mask: Mask of permissions that should be restored 2092 * 2093 * Restore the permissions of the named file. If @name is a directory the 2094 * permissions of its parent will be used. 2095 * 2096 * Return: 0 on success, <0 on failure. 2097 */ 2098 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 2099 umode_t mask) 2100 { 2101 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 2102 struct kernfs_node *kn, *parent; 2103 struct rftype *rfts, *rft; 2104 int ret, len; 2105 2106 rfts = res_common_files; 2107 len = ARRAY_SIZE(res_common_files); 2108 2109 for (rft = rfts; rft < rfts + len; rft++) { 2110 if (!strcmp(rft->name, name)) 2111 iattr.ia_mode = rft->mode & mask; 2112 } 2113 2114 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 2115 if (!kn) 2116 return -ENOENT; 2117 2118 switch (kernfs_type(kn)) { 2119 case KERNFS_DIR: 2120 parent = kernfs_get_parent(kn); 2121 if (parent) { 2122 iattr.ia_mode |= parent->mode; 2123 kernfs_put(parent); 2124 } 2125 iattr.ia_mode |= S_IFDIR; 2126 break; 2127 case KERNFS_FILE: 2128 iattr.ia_mode |= S_IFREG; 2129 break; 2130 case KERNFS_LINK: 2131 iattr.ia_mode |= S_IFLNK; 2132 break; 2133 } 2134 2135 ret = kernfs_setattr(kn, &iattr); 2136 kernfs_put(kn); 2137 return ret; 2138 } 2139 2140 static int rdtgroup_mkdir_info_resdir(void *priv, char *name, 2141 unsigned long fflags) 2142 { 2143 struct kernfs_node *kn_subdir; 2144 int ret; 2145 2146 kn_subdir = kernfs_create_dir(kn_info, name, 2147 kn_info->mode, priv); 2148 if (IS_ERR(kn_subdir)) 2149 return PTR_ERR(kn_subdir); 2150 2151 ret = rdtgroup_kn_set_ugid(kn_subdir); 2152 if (ret) 2153 return ret; 2154 2155 ret = rdtgroup_add_files(kn_subdir, fflags); 2156 if (!ret) 2157 kernfs_activate(kn_subdir); 2158 2159 return ret; 2160 } 2161 2162 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 2163 { 2164 struct resctrl_schema *s; 2165 struct rdt_resource *r; 2166 unsigned long fflags; 2167 char name[32]; 2168 int ret; 2169 2170 /* create the directory */ 2171 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 2172 if (IS_ERR(kn_info)) 2173 return PTR_ERR(kn_info); 2174 2175 ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO); 2176 if (ret) 2177 goto out_destroy; 2178 2179 /* loop over enabled controls, these are all alloc_capable */ 2180 list_for_each_entry(s, &resctrl_schema_all, list) { 2181 r = s->res; 2182 fflags = r->fflags | RFTYPE_CTRL_INFO; 2183 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags); 2184 if (ret) 2185 goto out_destroy; 2186 } 2187 2188 for_each_mon_capable_rdt_resource(r) { 2189 fflags = r->fflags | RFTYPE_MON_INFO; 2190 sprintf(name, "%s_MON", r->name); 2191 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 2192 if (ret) 2193 goto out_destroy; 2194 } 2195 2196 ret = rdtgroup_kn_set_ugid(kn_info); 2197 if (ret) 2198 goto out_destroy; 2199 2200 kernfs_activate(kn_info); 2201 2202 return 0; 2203 2204 out_destroy: 2205 kernfs_remove(kn_info); 2206 return ret; 2207 } 2208 2209 static int 2210 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 2211 char *name, struct kernfs_node **dest_kn) 2212 { 2213 struct kernfs_node *kn; 2214 int ret; 2215 2216 /* create the directory */ 2217 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2218 if (IS_ERR(kn)) 2219 return PTR_ERR(kn); 2220 2221 if (dest_kn) 2222 *dest_kn = kn; 2223 2224 ret = rdtgroup_kn_set_ugid(kn); 2225 if (ret) 2226 goto out_destroy; 2227 2228 kernfs_activate(kn); 2229 2230 return 0; 2231 2232 out_destroy: 2233 kernfs_remove(kn); 2234 return ret; 2235 } 2236 2237 static void l3_qos_cfg_update(void *arg) 2238 { 2239 bool *enable = arg; 2240 2241 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 2242 } 2243 2244 static void l2_qos_cfg_update(void *arg) 2245 { 2246 bool *enable = arg; 2247 2248 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 2249 } 2250 2251 static inline bool is_mba_linear(void) 2252 { 2253 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear; 2254 } 2255 2256 static int set_cache_qos_cfg(int level, bool enable) 2257 { 2258 void (*update)(void *arg); 2259 struct rdt_ctrl_domain *d; 2260 struct rdt_resource *r_l; 2261 cpumask_var_t cpu_mask; 2262 int cpu; 2263 2264 /* Walking r->domains, ensure it can't race with cpuhp */ 2265 lockdep_assert_cpus_held(); 2266 2267 if (level == RDT_RESOURCE_L3) 2268 update = l3_qos_cfg_update; 2269 else if (level == RDT_RESOURCE_L2) 2270 update = l2_qos_cfg_update; 2271 else 2272 return -EINVAL; 2273 2274 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2275 return -ENOMEM; 2276 2277 r_l = &rdt_resources_all[level].r_resctrl; 2278 list_for_each_entry(d, &r_l->ctrl_domains, hdr.list) { 2279 if (r_l->cache.arch_has_per_cpu_cfg) 2280 /* Pick all the CPUs in the domain instance */ 2281 for_each_cpu(cpu, &d->hdr.cpu_mask) 2282 cpumask_set_cpu(cpu, cpu_mask); 2283 else 2284 /* Pick one CPU from each domain instance to update MSR */ 2285 cpumask_set_cpu(cpumask_any(&d->hdr.cpu_mask), cpu_mask); 2286 } 2287 2288 /* Update QOS_CFG MSR on all the CPUs in cpu_mask */ 2289 on_each_cpu_mask(cpu_mask, update, &enable, 1); 2290 2291 free_cpumask_var(cpu_mask); 2292 2293 return 0; 2294 } 2295 2296 /* Restore the qos cfg state when a domain comes online */ 2297 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 2298 { 2299 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2300 2301 if (!r->cdp_capable) 2302 return; 2303 2304 if (r->rid == RDT_RESOURCE_L2) 2305 l2_qos_cfg_update(&hw_res->cdp_enabled); 2306 2307 if (r->rid == RDT_RESOURCE_L3) 2308 l3_qos_cfg_update(&hw_res->cdp_enabled); 2309 } 2310 2311 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d) 2312 { 2313 u32 num_closid = resctrl_arch_get_num_closid(r); 2314 int cpu = cpumask_any(&d->hdr.cpu_mask); 2315 int i; 2316 2317 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val), 2318 GFP_KERNEL, cpu_to_node(cpu)); 2319 if (!d->mbps_val) 2320 return -ENOMEM; 2321 2322 for (i = 0; i < num_closid; i++) 2323 d->mbps_val[i] = MBA_MAX_MBPS; 2324 2325 return 0; 2326 } 2327 2328 static void mba_sc_domain_destroy(struct rdt_resource *r, 2329 struct rdt_ctrl_domain *d) 2330 { 2331 kfree(d->mbps_val); 2332 d->mbps_val = NULL; 2333 } 2334 2335 /* 2336 * MBA software controller is supported only if 2337 * MBM is supported and MBA is in linear scale, 2338 * and the MBM monitor scope is the same as MBA 2339 * control scope. 2340 */ 2341 static bool supports_mba_mbps(void) 2342 { 2343 struct rdt_resource *rmbm = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 2344 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 2345 2346 return (is_mbm_local_enabled() && 2347 r->alloc_capable && is_mba_linear() && 2348 r->ctrl_scope == rmbm->mon_scope); 2349 } 2350 2351 /* 2352 * Enable or disable the MBA software controller 2353 * which helps user specify bandwidth in MBps. 2354 */ 2355 static int set_mba_sc(bool mba_sc) 2356 { 2357 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 2358 u32 num_closid = resctrl_arch_get_num_closid(r); 2359 struct rdt_ctrl_domain *d; 2360 int i; 2361 2362 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r)) 2363 return -EINVAL; 2364 2365 r->membw.mba_sc = mba_sc; 2366 2367 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 2368 for (i = 0; i < num_closid; i++) 2369 d->mbps_val[i] = MBA_MAX_MBPS; 2370 } 2371 2372 return 0; 2373 } 2374 2375 static int cdp_enable(int level) 2376 { 2377 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl; 2378 int ret; 2379 2380 if (!r_l->alloc_capable) 2381 return -EINVAL; 2382 2383 ret = set_cache_qos_cfg(level, true); 2384 if (!ret) 2385 rdt_resources_all[level].cdp_enabled = true; 2386 2387 return ret; 2388 } 2389 2390 static void cdp_disable(int level) 2391 { 2392 struct rdt_hw_resource *r_hw = &rdt_resources_all[level]; 2393 2394 if (r_hw->cdp_enabled) { 2395 set_cache_qos_cfg(level, false); 2396 r_hw->cdp_enabled = false; 2397 } 2398 } 2399 2400 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable) 2401 { 2402 struct rdt_hw_resource *hw_res = &rdt_resources_all[l]; 2403 2404 if (!hw_res->r_resctrl.cdp_capable) 2405 return -EINVAL; 2406 2407 if (enable) 2408 return cdp_enable(l); 2409 2410 cdp_disable(l); 2411 2412 return 0; 2413 } 2414 2415 /* 2416 * We don't allow rdtgroup directories to be created anywhere 2417 * except the root directory. Thus when looking for the rdtgroup 2418 * structure for a kernfs node we are either looking at a directory, 2419 * in which case the rdtgroup structure is pointed at by the "priv" 2420 * field, otherwise we have a file, and need only look to the parent 2421 * to find the rdtgroup. 2422 */ 2423 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 2424 { 2425 if (kernfs_type(kn) == KERNFS_DIR) { 2426 /* 2427 * All the resource directories use "kn->priv" 2428 * to point to the "struct rdtgroup" for the 2429 * resource. "info" and its subdirectories don't 2430 * have rdtgroup structures, so return NULL here. 2431 */ 2432 if (kn == kn_info || kn->parent == kn_info) 2433 return NULL; 2434 else 2435 return kn->priv; 2436 } else { 2437 return kn->parent->priv; 2438 } 2439 } 2440 2441 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2442 { 2443 atomic_inc(&rdtgrp->waitcount); 2444 kernfs_break_active_protection(kn); 2445 } 2446 2447 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2448 { 2449 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2450 (rdtgrp->flags & RDT_DELETED)) { 2451 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2452 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2453 rdtgroup_pseudo_lock_remove(rdtgrp); 2454 kernfs_unbreak_active_protection(kn); 2455 rdtgroup_remove(rdtgrp); 2456 } else { 2457 kernfs_unbreak_active_protection(kn); 2458 } 2459 } 2460 2461 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 2462 { 2463 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2464 2465 if (!rdtgrp) 2466 return NULL; 2467 2468 rdtgroup_kn_get(rdtgrp, kn); 2469 2470 cpus_read_lock(); 2471 mutex_lock(&rdtgroup_mutex); 2472 2473 /* Was this group deleted while we waited? */ 2474 if (rdtgrp->flags & RDT_DELETED) 2475 return NULL; 2476 2477 return rdtgrp; 2478 } 2479 2480 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2481 { 2482 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2483 2484 if (!rdtgrp) 2485 return; 2486 2487 mutex_unlock(&rdtgroup_mutex); 2488 cpus_read_unlock(); 2489 2490 rdtgroup_kn_put(rdtgrp, kn); 2491 } 2492 2493 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2494 struct rdtgroup *prgrp, 2495 struct kernfs_node **mon_data_kn); 2496 2497 static void rdt_disable_ctx(void) 2498 { 2499 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2500 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2501 set_mba_sc(false); 2502 2503 resctrl_debug = false; 2504 } 2505 2506 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2507 { 2508 int ret = 0; 2509 2510 if (ctx->enable_cdpl2) { 2511 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true); 2512 if (ret) 2513 goto out_done; 2514 } 2515 2516 if (ctx->enable_cdpl3) { 2517 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true); 2518 if (ret) 2519 goto out_cdpl2; 2520 } 2521 2522 if (ctx->enable_mba_mbps) { 2523 ret = set_mba_sc(true); 2524 if (ret) 2525 goto out_cdpl3; 2526 } 2527 2528 if (ctx->enable_debug) 2529 resctrl_debug = true; 2530 2531 return 0; 2532 2533 out_cdpl3: 2534 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2535 out_cdpl2: 2536 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2537 out_done: 2538 return ret; 2539 } 2540 2541 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type) 2542 { 2543 struct resctrl_schema *s; 2544 const char *suffix = ""; 2545 int ret, cl; 2546 2547 s = kzalloc(sizeof(*s), GFP_KERNEL); 2548 if (!s) 2549 return -ENOMEM; 2550 2551 s->res = r; 2552 s->num_closid = resctrl_arch_get_num_closid(r); 2553 if (resctrl_arch_get_cdp_enabled(r->rid)) 2554 s->num_closid /= 2; 2555 2556 s->conf_type = type; 2557 switch (type) { 2558 case CDP_CODE: 2559 suffix = "CODE"; 2560 break; 2561 case CDP_DATA: 2562 suffix = "DATA"; 2563 break; 2564 case CDP_NONE: 2565 suffix = ""; 2566 break; 2567 } 2568 2569 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix); 2570 if (ret >= sizeof(s->name)) { 2571 kfree(s); 2572 return -EINVAL; 2573 } 2574 2575 cl = strlen(s->name); 2576 2577 /* 2578 * If CDP is supported by this resource, but not enabled, 2579 * include the suffix. This ensures the tabular format of the 2580 * schemata file does not change between mounts of the filesystem. 2581 */ 2582 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid)) 2583 cl += 4; 2584 2585 if (cl > max_name_width) 2586 max_name_width = cl; 2587 2588 INIT_LIST_HEAD(&s->list); 2589 list_add(&s->list, &resctrl_schema_all); 2590 2591 return 0; 2592 } 2593 2594 static int schemata_list_create(void) 2595 { 2596 struct rdt_resource *r; 2597 int ret = 0; 2598 2599 for_each_alloc_capable_rdt_resource(r) { 2600 if (resctrl_arch_get_cdp_enabled(r->rid)) { 2601 ret = schemata_list_add(r, CDP_CODE); 2602 if (ret) 2603 break; 2604 2605 ret = schemata_list_add(r, CDP_DATA); 2606 } else { 2607 ret = schemata_list_add(r, CDP_NONE); 2608 } 2609 2610 if (ret) 2611 break; 2612 } 2613 2614 return ret; 2615 } 2616 2617 static void schemata_list_destroy(void) 2618 { 2619 struct resctrl_schema *s, *tmp; 2620 2621 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) { 2622 list_del(&s->list); 2623 kfree(s); 2624 } 2625 } 2626 2627 static int rdt_get_tree(struct fs_context *fc) 2628 { 2629 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2630 unsigned long flags = RFTYPE_CTRL_BASE; 2631 struct rdt_mon_domain *dom; 2632 struct rdt_resource *r; 2633 int ret; 2634 2635 cpus_read_lock(); 2636 mutex_lock(&rdtgroup_mutex); 2637 /* 2638 * resctrl file system can only be mounted once. 2639 */ 2640 if (resctrl_mounted) { 2641 ret = -EBUSY; 2642 goto out; 2643 } 2644 2645 ret = rdtgroup_setup_root(ctx); 2646 if (ret) 2647 goto out; 2648 2649 ret = rdt_enable_ctx(ctx); 2650 if (ret) 2651 goto out_root; 2652 2653 ret = schemata_list_create(); 2654 if (ret) { 2655 schemata_list_destroy(); 2656 goto out_ctx; 2657 } 2658 2659 closid_init(); 2660 2661 if (resctrl_arch_mon_capable()) 2662 flags |= RFTYPE_MON; 2663 2664 ret = rdtgroup_add_files(rdtgroup_default.kn, flags); 2665 if (ret) 2666 goto out_schemata_free; 2667 2668 kernfs_activate(rdtgroup_default.kn); 2669 2670 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2671 if (ret < 0) 2672 goto out_schemata_free; 2673 2674 if (resctrl_arch_mon_capable()) { 2675 ret = mongroup_create_dir(rdtgroup_default.kn, 2676 &rdtgroup_default, "mon_groups", 2677 &kn_mongrp); 2678 if (ret < 0) 2679 goto out_info; 2680 2681 ret = mkdir_mondata_all(rdtgroup_default.kn, 2682 &rdtgroup_default, &kn_mondata); 2683 if (ret < 0) 2684 goto out_mongrp; 2685 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2686 } 2687 2688 ret = rdt_pseudo_lock_init(); 2689 if (ret) 2690 goto out_mondata; 2691 2692 ret = kernfs_get_tree(fc); 2693 if (ret < 0) 2694 goto out_psl; 2695 2696 if (resctrl_arch_alloc_capable()) 2697 resctrl_arch_enable_alloc(); 2698 if (resctrl_arch_mon_capable()) 2699 resctrl_arch_enable_mon(); 2700 2701 if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable()) 2702 resctrl_mounted = true; 2703 2704 if (is_mbm_enabled()) { 2705 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 2706 list_for_each_entry(dom, &r->mon_domains, hdr.list) 2707 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL, 2708 RESCTRL_PICK_ANY_CPU); 2709 } 2710 2711 goto out; 2712 2713 out_psl: 2714 rdt_pseudo_lock_release(); 2715 out_mondata: 2716 if (resctrl_arch_mon_capable()) 2717 kernfs_remove(kn_mondata); 2718 out_mongrp: 2719 if (resctrl_arch_mon_capable()) 2720 kernfs_remove(kn_mongrp); 2721 out_info: 2722 kernfs_remove(kn_info); 2723 out_schemata_free: 2724 schemata_list_destroy(); 2725 out_ctx: 2726 rdt_disable_ctx(); 2727 out_root: 2728 rdtgroup_destroy_root(); 2729 out: 2730 rdt_last_cmd_clear(); 2731 mutex_unlock(&rdtgroup_mutex); 2732 cpus_read_unlock(); 2733 return ret; 2734 } 2735 2736 enum rdt_param { 2737 Opt_cdp, 2738 Opt_cdpl2, 2739 Opt_mba_mbps, 2740 Opt_debug, 2741 nr__rdt_params 2742 }; 2743 2744 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2745 fsparam_flag("cdp", Opt_cdp), 2746 fsparam_flag("cdpl2", Opt_cdpl2), 2747 fsparam_flag("mba_MBps", Opt_mba_mbps), 2748 fsparam_flag("debug", Opt_debug), 2749 {} 2750 }; 2751 2752 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2753 { 2754 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2755 struct fs_parse_result result; 2756 const char *msg; 2757 int opt; 2758 2759 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2760 if (opt < 0) 2761 return opt; 2762 2763 switch (opt) { 2764 case Opt_cdp: 2765 ctx->enable_cdpl3 = true; 2766 return 0; 2767 case Opt_cdpl2: 2768 ctx->enable_cdpl2 = true; 2769 return 0; 2770 case Opt_mba_mbps: 2771 msg = "mba_MBps requires local MBM and linear scale MBA at L3 scope"; 2772 if (!supports_mba_mbps()) 2773 return invalfc(fc, msg); 2774 ctx->enable_mba_mbps = true; 2775 return 0; 2776 case Opt_debug: 2777 ctx->enable_debug = true; 2778 return 0; 2779 } 2780 2781 return -EINVAL; 2782 } 2783 2784 static void rdt_fs_context_free(struct fs_context *fc) 2785 { 2786 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2787 2788 kernfs_free_fs_context(fc); 2789 kfree(ctx); 2790 } 2791 2792 static const struct fs_context_operations rdt_fs_context_ops = { 2793 .free = rdt_fs_context_free, 2794 .parse_param = rdt_parse_param, 2795 .get_tree = rdt_get_tree, 2796 }; 2797 2798 static int rdt_init_fs_context(struct fs_context *fc) 2799 { 2800 struct rdt_fs_context *ctx; 2801 2802 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2803 if (!ctx) 2804 return -ENOMEM; 2805 2806 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2807 fc->fs_private = &ctx->kfc; 2808 fc->ops = &rdt_fs_context_ops; 2809 put_user_ns(fc->user_ns); 2810 fc->user_ns = get_user_ns(&init_user_ns); 2811 fc->global = true; 2812 return 0; 2813 } 2814 2815 static int reset_all_ctrls(struct rdt_resource *r) 2816 { 2817 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2818 struct rdt_hw_ctrl_domain *hw_dom; 2819 struct msr_param msr_param; 2820 struct rdt_ctrl_domain *d; 2821 int i; 2822 2823 /* Walking r->domains, ensure it can't race with cpuhp */ 2824 lockdep_assert_cpus_held(); 2825 2826 msr_param.res = r; 2827 msr_param.low = 0; 2828 msr_param.high = hw_res->num_closid; 2829 2830 /* 2831 * Disable resource control for this resource by setting all 2832 * CBMs in all ctrl_domains to the maximum mask value. Pick one CPU 2833 * from each domain to update the MSRs below. 2834 */ 2835 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 2836 hw_dom = resctrl_to_arch_ctrl_dom(d); 2837 2838 for (i = 0; i < hw_res->num_closid; i++) 2839 hw_dom->ctrl_val[i] = r->default_ctrl; 2840 msr_param.dom = d; 2841 smp_call_function_any(&d->hdr.cpu_mask, rdt_ctrl_update, &msr_param, 1); 2842 } 2843 2844 return 0; 2845 } 2846 2847 /* 2848 * Move tasks from one to the other group. If @from is NULL, then all tasks 2849 * in the systems are moved unconditionally (used for teardown). 2850 * 2851 * If @mask is not NULL the cpus on which moved tasks are running are set 2852 * in that mask so the update smp function call is restricted to affected 2853 * cpus. 2854 */ 2855 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2856 struct cpumask *mask) 2857 { 2858 struct task_struct *p, *t; 2859 2860 read_lock(&tasklist_lock); 2861 for_each_process_thread(p, t) { 2862 if (!from || is_closid_match(t, from) || 2863 is_rmid_match(t, from)) { 2864 resctrl_arch_set_closid_rmid(t, to->closid, 2865 to->mon.rmid); 2866 2867 /* 2868 * Order the closid/rmid stores above before the loads 2869 * in task_curr(). This pairs with the full barrier 2870 * between the rq->curr update and resctrl_sched_in() 2871 * during context switch. 2872 */ 2873 smp_mb(); 2874 2875 /* 2876 * If the task is on a CPU, set the CPU in the mask. 2877 * The detection is inaccurate as tasks might move or 2878 * schedule before the smp function call takes place. 2879 * In such a case the function call is pointless, but 2880 * there is no other side effect. 2881 */ 2882 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t)) 2883 cpumask_set_cpu(task_cpu(t), mask); 2884 } 2885 } 2886 read_unlock(&tasklist_lock); 2887 } 2888 2889 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2890 { 2891 struct rdtgroup *sentry, *stmp; 2892 struct list_head *head; 2893 2894 head = &rdtgrp->mon.crdtgrp_list; 2895 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2896 free_rmid(sentry->closid, sentry->mon.rmid); 2897 list_del(&sentry->mon.crdtgrp_list); 2898 2899 if (atomic_read(&sentry->waitcount) != 0) 2900 sentry->flags = RDT_DELETED; 2901 else 2902 rdtgroup_remove(sentry); 2903 } 2904 } 2905 2906 /* 2907 * Forcibly remove all of subdirectories under root. 2908 */ 2909 static void rmdir_all_sub(void) 2910 { 2911 struct rdtgroup *rdtgrp, *tmp; 2912 2913 /* Move all tasks to the default resource group */ 2914 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2915 2916 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2917 /* Free any child rmids */ 2918 free_all_child_rdtgrp(rdtgrp); 2919 2920 /* Remove each rdtgroup other than root */ 2921 if (rdtgrp == &rdtgroup_default) 2922 continue; 2923 2924 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2925 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2926 rdtgroup_pseudo_lock_remove(rdtgrp); 2927 2928 /* 2929 * Give any CPUs back to the default group. We cannot copy 2930 * cpu_online_mask because a CPU might have executed the 2931 * offline callback already, but is still marked online. 2932 */ 2933 cpumask_or(&rdtgroup_default.cpu_mask, 2934 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2935 2936 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 2937 2938 kernfs_remove(rdtgrp->kn); 2939 list_del(&rdtgrp->rdtgroup_list); 2940 2941 if (atomic_read(&rdtgrp->waitcount) != 0) 2942 rdtgrp->flags = RDT_DELETED; 2943 else 2944 rdtgroup_remove(rdtgrp); 2945 } 2946 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2947 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2948 2949 kernfs_remove(kn_info); 2950 kernfs_remove(kn_mongrp); 2951 kernfs_remove(kn_mondata); 2952 } 2953 2954 static void rdt_kill_sb(struct super_block *sb) 2955 { 2956 struct rdt_resource *r; 2957 2958 cpus_read_lock(); 2959 mutex_lock(&rdtgroup_mutex); 2960 2961 rdt_disable_ctx(); 2962 2963 /*Put everything back to default values. */ 2964 for_each_alloc_capable_rdt_resource(r) 2965 reset_all_ctrls(r); 2966 rmdir_all_sub(); 2967 rdt_pseudo_lock_release(); 2968 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2969 schemata_list_destroy(); 2970 rdtgroup_destroy_root(); 2971 if (resctrl_arch_alloc_capable()) 2972 resctrl_arch_disable_alloc(); 2973 if (resctrl_arch_mon_capable()) 2974 resctrl_arch_disable_mon(); 2975 resctrl_mounted = false; 2976 kernfs_kill_sb(sb); 2977 mutex_unlock(&rdtgroup_mutex); 2978 cpus_read_unlock(); 2979 } 2980 2981 static struct file_system_type rdt_fs_type = { 2982 .name = "resctrl", 2983 .init_fs_context = rdt_init_fs_context, 2984 .parameters = rdt_fs_parameters, 2985 .kill_sb = rdt_kill_sb, 2986 }; 2987 2988 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2989 void *priv) 2990 { 2991 struct kernfs_node *kn; 2992 int ret = 0; 2993 2994 kn = __kernfs_create_file(parent_kn, name, 0444, 2995 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2996 &kf_mondata_ops, priv, NULL, NULL); 2997 if (IS_ERR(kn)) 2998 return PTR_ERR(kn); 2999 3000 ret = rdtgroup_kn_set_ugid(kn); 3001 if (ret) { 3002 kernfs_remove(kn); 3003 return ret; 3004 } 3005 3006 return ret; 3007 } 3008 3009 static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname) 3010 { 3011 struct kernfs_node *kn; 3012 3013 kn = kernfs_find_and_get(pkn, name); 3014 if (!kn) 3015 return; 3016 kernfs_put(kn); 3017 3018 if (kn->dir.subdirs <= 1) 3019 kernfs_remove(kn); 3020 else 3021 kernfs_remove_by_name(kn, subname); 3022 } 3023 3024 /* 3025 * Remove all subdirectories of mon_data of ctrl_mon groups 3026 * and monitor groups for the given domain. 3027 * Remove files and directories containing "sum" of domain data 3028 * when last domain being summed is removed. 3029 */ 3030 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 3031 struct rdt_mon_domain *d) 3032 { 3033 struct rdtgroup *prgrp, *crgrp; 3034 char subname[32]; 3035 bool snc_mode; 3036 char name[32]; 3037 3038 snc_mode = r->mon_scope == RESCTRL_L3_NODE; 3039 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id); 3040 if (snc_mode) 3041 sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id); 3042 3043 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 3044 mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname); 3045 3046 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 3047 mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname); 3048 } 3049 } 3050 3051 static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d, 3052 struct rdt_resource *r, struct rdtgroup *prgrp, 3053 bool do_sum) 3054 { 3055 struct rmid_read rr = {0}; 3056 union mon_data_bits priv; 3057 struct mon_evt *mevt; 3058 int ret; 3059 3060 if (WARN_ON(list_empty(&r->evt_list))) 3061 return -EPERM; 3062 3063 priv.u.rid = r->rid; 3064 priv.u.domid = do_sum ? d->ci->id : d->hdr.id; 3065 priv.u.sum = do_sum; 3066 list_for_each_entry(mevt, &r->evt_list, list) { 3067 priv.u.evtid = mevt->evtid; 3068 ret = mon_addfile(kn, mevt->name, priv.priv); 3069 if (ret) 3070 return ret; 3071 3072 if (!do_sum && is_mbm_event(mevt->evtid)) 3073 mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true); 3074 } 3075 3076 return 0; 3077 } 3078 3079 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 3080 struct rdt_mon_domain *d, 3081 struct rdt_resource *r, struct rdtgroup *prgrp) 3082 { 3083 struct kernfs_node *kn, *ckn; 3084 char name[32]; 3085 bool snc_mode; 3086 int ret = 0; 3087 3088 lockdep_assert_held(&rdtgroup_mutex); 3089 3090 snc_mode = r->mon_scope == RESCTRL_L3_NODE; 3091 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id); 3092 kn = kernfs_find_and_get(parent_kn, name); 3093 if (kn) { 3094 /* 3095 * rdtgroup_mutex will prevent this directory from being 3096 * removed. No need to keep this hold. 3097 */ 3098 kernfs_put(kn); 3099 } else { 3100 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 3101 if (IS_ERR(kn)) 3102 return PTR_ERR(kn); 3103 3104 ret = rdtgroup_kn_set_ugid(kn); 3105 if (ret) 3106 goto out_destroy; 3107 ret = mon_add_all_files(kn, d, r, prgrp, snc_mode); 3108 if (ret) 3109 goto out_destroy; 3110 } 3111 3112 if (snc_mode) { 3113 sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id); 3114 ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp); 3115 if (IS_ERR(ckn)) { 3116 ret = -EINVAL; 3117 goto out_destroy; 3118 } 3119 3120 ret = rdtgroup_kn_set_ugid(ckn); 3121 if (ret) 3122 goto out_destroy; 3123 3124 ret = mon_add_all_files(ckn, d, r, prgrp, false); 3125 if (ret) 3126 goto out_destroy; 3127 } 3128 3129 kernfs_activate(kn); 3130 return 0; 3131 3132 out_destroy: 3133 kernfs_remove(kn); 3134 return ret; 3135 } 3136 3137 /* 3138 * Add all subdirectories of mon_data for "ctrl_mon" groups 3139 * and "monitor" groups with given domain id. 3140 */ 3141 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 3142 struct rdt_mon_domain *d) 3143 { 3144 struct kernfs_node *parent_kn; 3145 struct rdtgroup *prgrp, *crgrp; 3146 struct list_head *head; 3147 3148 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 3149 parent_kn = prgrp->mon.mon_data_kn; 3150 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 3151 3152 head = &prgrp->mon.crdtgrp_list; 3153 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 3154 parent_kn = crgrp->mon.mon_data_kn; 3155 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 3156 } 3157 } 3158 } 3159 3160 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 3161 struct rdt_resource *r, 3162 struct rdtgroup *prgrp) 3163 { 3164 struct rdt_mon_domain *dom; 3165 int ret; 3166 3167 /* Walking r->domains, ensure it can't race with cpuhp */ 3168 lockdep_assert_cpus_held(); 3169 3170 list_for_each_entry(dom, &r->mon_domains, hdr.list) { 3171 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 3172 if (ret) 3173 return ret; 3174 } 3175 3176 return 0; 3177 } 3178 3179 /* 3180 * This creates a directory mon_data which contains the monitored data. 3181 * 3182 * mon_data has one directory for each domain which are named 3183 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 3184 * with L3 domain looks as below: 3185 * ./mon_data: 3186 * mon_L3_00 3187 * mon_L3_01 3188 * mon_L3_02 3189 * ... 3190 * 3191 * Each domain directory has one file per event: 3192 * ./mon_L3_00/: 3193 * llc_occupancy 3194 * 3195 */ 3196 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 3197 struct rdtgroup *prgrp, 3198 struct kernfs_node **dest_kn) 3199 { 3200 struct rdt_resource *r; 3201 struct kernfs_node *kn; 3202 int ret; 3203 3204 /* 3205 * Create the mon_data directory first. 3206 */ 3207 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 3208 if (ret) 3209 return ret; 3210 3211 if (dest_kn) 3212 *dest_kn = kn; 3213 3214 /* 3215 * Create the subdirectories for each domain. Note that all events 3216 * in a domain like L3 are grouped into a resource whose domain is L3 3217 */ 3218 for_each_mon_capable_rdt_resource(r) { 3219 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 3220 if (ret) 3221 goto out_destroy; 3222 } 3223 3224 return 0; 3225 3226 out_destroy: 3227 kernfs_remove(kn); 3228 return ret; 3229 } 3230 3231 /** 3232 * cbm_ensure_valid - Enforce validity on provided CBM 3233 * @_val: Candidate CBM 3234 * @r: RDT resource to which the CBM belongs 3235 * 3236 * The provided CBM represents all cache portions available for use. This 3237 * may be represented by a bitmap that does not consist of contiguous ones 3238 * and thus be an invalid CBM. 3239 * Here the provided CBM is forced to be a valid CBM by only considering 3240 * the first set of contiguous bits as valid and clearing all bits. 3241 * The intention here is to provide a valid default CBM with which a new 3242 * resource group is initialized. The user can follow this with a 3243 * modification to the CBM if the default does not satisfy the 3244 * requirements. 3245 */ 3246 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 3247 { 3248 unsigned int cbm_len = r->cache.cbm_len; 3249 unsigned long first_bit, zero_bit; 3250 unsigned long val = _val; 3251 3252 if (!val) 3253 return 0; 3254 3255 first_bit = find_first_bit(&val, cbm_len); 3256 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 3257 3258 /* Clear any remaining bits to ensure contiguous region */ 3259 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 3260 return (u32)val; 3261 } 3262 3263 /* 3264 * Initialize cache resources per RDT domain 3265 * 3266 * Set the RDT domain up to start off with all usable allocations. That is, 3267 * all shareable and unused bits. All-zero CBM is invalid. 3268 */ 3269 static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s, 3270 u32 closid) 3271 { 3272 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 3273 enum resctrl_conf_type t = s->conf_type; 3274 struct resctrl_staged_config *cfg; 3275 struct rdt_resource *r = s->res; 3276 u32 used_b = 0, unused_b = 0; 3277 unsigned long tmp_cbm; 3278 enum rdtgrp_mode mode; 3279 u32 peer_ctl, ctrl_val; 3280 int i; 3281 3282 cfg = &d->staged_config[t]; 3283 cfg->have_new_ctrl = false; 3284 cfg->new_ctrl = r->cache.shareable_bits; 3285 used_b = r->cache.shareable_bits; 3286 for (i = 0; i < closids_supported(); i++) { 3287 if (closid_allocated(i) && i != closid) { 3288 mode = rdtgroup_mode_by_closid(i); 3289 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 3290 /* 3291 * ctrl values for locksetup aren't relevant 3292 * until the schemata is written, and the mode 3293 * becomes RDT_MODE_PSEUDO_LOCKED. 3294 */ 3295 continue; 3296 /* 3297 * If CDP is active include peer domain's 3298 * usage to ensure there is no overlap 3299 * with an exclusive group. 3300 */ 3301 if (resctrl_arch_get_cdp_enabled(r->rid)) 3302 peer_ctl = resctrl_arch_get_config(r, d, i, 3303 peer_type); 3304 else 3305 peer_ctl = 0; 3306 ctrl_val = resctrl_arch_get_config(r, d, i, 3307 s->conf_type); 3308 used_b |= ctrl_val | peer_ctl; 3309 if (mode == RDT_MODE_SHAREABLE) 3310 cfg->new_ctrl |= ctrl_val | peer_ctl; 3311 } 3312 } 3313 if (d->plr && d->plr->cbm > 0) 3314 used_b |= d->plr->cbm; 3315 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 3316 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 3317 cfg->new_ctrl |= unused_b; 3318 /* 3319 * Force the initial CBM to be valid, user can 3320 * modify the CBM based on system availability. 3321 */ 3322 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r); 3323 /* 3324 * Assign the u32 CBM to an unsigned long to ensure that 3325 * bitmap_weight() does not access out-of-bound memory. 3326 */ 3327 tmp_cbm = cfg->new_ctrl; 3328 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 3329 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id); 3330 return -ENOSPC; 3331 } 3332 cfg->have_new_ctrl = true; 3333 3334 return 0; 3335 } 3336 3337 /* 3338 * Initialize cache resources with default values. 3339 * 3340 * A new RDT group is being created on an allocation capable (CAT) 3341 * supporting system. Set this group up to start off with all usable 3342 * allocations. 3343 * 3344 * If there are no more shareable bits available on any domain then 3345 * the entire allocation will fail. 3346 */ 3347 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid) 3348 { 3349 struct rdt_ctrl_domain *d; 3350 int ret; 3351 3352 list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) { 3353 ret = __init_one_rdt_domain(d, s, closid); 3354 if (ret < 0) 3355 return ret; 3356 } 3357 3358 return 0; 3359 } 3360 3361 /* Initialize MBA resource with default values. */ 3362 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid) 3363 { 3364 struct resctrl_staged_config *cfg; 3365 struct rdt_ctrl_domain *d; 3366 3367 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 3368 if (is_mba_sc(r)) { 3369 d->mbps_val[closid] = MBA_MAX_MBPS; 3370 continue; 3371 } 3372 3373 cfg = &d->staged_config[CDP_NONE]; 3374 cfg->new_ctrl = r->default_ctrl; 3375 cfg->have_new_ctrl = true; 3376 } 3377 } 3378 3379 /* Initialize the RDT group's allocations. */ 3380 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 3381 { 3382 struct resctrl_schema *s; 3383 struct rdt_resource *r; 3384 int ret = 0; 3385 3386 rdt_staged_configs_clear(); 3387 3388 list_for_each_entry(s, &resctrl_schema_all, list) { 3389 r = s->res; 3390 if (r->rid == RDT_RESOURCE_MBA || 3391 r->rid == RDT_RESOURCE_SMBA) { 3392 rdtgroup_init_mba(r, rdtgrp->closid); 3393 if (is_mba_sc(r)) 3394 continue; 3395 } else { 3396 ret = rdtgroup_init_cat(s, rdtgrp->closid); 3397 if (ret < 0) 3398 goto out; 3399 } 3400 3401 ret = resctrl_arch_update_domains(r, rdtgrp->closid); 3402 if (ret < 0) { 3403 rdt_last_cmd_puts("Failed to initialize allocations\n"); 3404 goto out; 3405 } 3406 3407 } 3408 3409 rdtgrp->mode = RDT_MODE_SHAREABLE; 3410 3411 out: 3412 rdt_staged_configs_clear(); 3413 return ret; 3414 } 3415 3416 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp) 3417 { 3418 int ret; 3419 3420 if (!resctrl_arch_mon_capable()) 3421 return 0; 3422 3423 ret = alloc_rmid(rdtgrp->closid); 3424 if (ret < 0) { 3425 rdt_last_cmd_puts("Out of RMIDs\n"); 3426 return ret; 3427 } 3428 rdtgrp->mon.rmid = ret; 3429 3430 ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 3431 if (ret) { 3432 rdt_last_cmd_puts("kernfs subdir error\n"); 3433 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3434 return ret; 3435 } 3436 3437 return 0; 3438 } 3439 3440 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp) 3441 { 3442 if (resctrl_arch_mon_capable()) 3443 free_rmid(rgrp->closid, rgrp->mon.rmid); 3444 } 3445 3446 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 3447 const char *name, umode_t mode, 3448 enum rdt_group_type rtype, struct rdtgroup **r) 3449 { 3450 struct rdtgroup *prdtgrp, *rdtgrp; 3451 unsigned long files = 0; 3452 struct kernfs_node *kn; 3453 int ret; 3454 3455 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 3456 if (!prdtgrp) { 3457 ret = -ENODEV; 3458 goto out_unlock; 3459 } 3460 3461 if (rtype == RDTMON_GROUP && 3462 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3463 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 3464 ret = -EINVAL; 3465 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 3466 goto out_unlock; 3467 } 3468 3469 /* allocate the rdtgroup. */ 3470 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 3471 if (!rdtgrp) { 3472 ret = -ENOSPC; 3473 rdt_last_cmd_puts("Kernel out of memory\n"); 3474 goto out_unlock; 3475 } 3476 *r = rdtgrp; 3477 rdtgrp->mon.parent = prdtgrp; 3478 rdtgrp->type = rtype; 3479 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 3480 3481 /* kernfs creates the directory for rdtgrp */ 3482 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 3483 if (IS_ERR(kn)) { 3484 ret = PTR_ERR(kn); 3485 rdt_last_cmd_puts("kernfs create error\n"); 3486 goto out_free_rgrp; 3487 } 3488 rdtgrp->kn = kn; 3489 3490 /* 3491 * kernfs_remove() will drop the reference count on "kn" which 3492 * will free it. But we still need it to stick around for the 3493 * rdtgroup_kn_unlock(kn) call. Take one extra reference here, 3494 * which will be dropped by kernfs_put() in rdtgroup_remove(). 3495 */ 3496 kernfs_get(kn); 3497 3498 ret = rdtgroup_kn_set_ugid(kn); 3499 if (ret) { 3500 rdt_last_cmd_puts("kernfs perm error\n"); 3501 goto out_destroy; 3502 } 3503 3504 if (rtype == RDTCTRL_GROUP) { 3505 files = RFTYPE_BASE | RFTYPE_CTRL; 3506 if (resctrl_arch_mon_capable()) 3507 files |= RFTYPE_MON; 3508 } else { 3509 files = RFTYPE_BASE | RFTYPE_MON; 3510 } 3511 3512 ret = rdtgroup_add_files(kn, files); 3513 if (ret) { 3514 rdt_last_cmd_puts("kernfs fill error\n"); 3515 goto out_destroy; 3516 } 3517 3518 /* 3519 * The caller unlocks the parent_kn upon success. 3520 */ 3521 return 0; 3522 3523 out_destroy: 3524 kernfs_put(rdtgrp->kn); 3525 kernfs_remove(rdtgrp->kn); 3526 out_free_rgrp: 3527 kfree(rdtgrp); 3528 out_unlock: 3529 rdtgroup_kn_unlock(parent_kn); 3530 return ret; 3531 } 3532 3533 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 3534 { 3535 kernfs_remove(rgrp->kn); 3536 rdtgroup_remove(rgrp); 3537 } 3538 3539 /* 3540 * Create a monitor group under "mon_groups" directory of a control 3541 * and monitor group(ctrl_mon). This is a resource group 3542 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 3543 */ 3544 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 3545 const char *name, umode_t mode) 3546 { 3547 struct rdtgroup *rdtgrp, *prgrp; 3548 int ret; 3549 3550 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 3551 if (ret) 3552 return ret; 3553 3554 prgrp = rdtgrp->mon.parent; 3555 rdtgrp->closid = prgrp->closid; 3556 3557 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp); 3558 if (ret) { 3559 mkdir_rdt_prepare_clean(rdtgrp); 3560 goto out_unlock; 3561 } 3562 3563 kernfs_activate(rdtgrp->kn); 3564 3565 /* 3566 * Add the rdtgrp to the list of rdtgrps the parent 3567 * ctrl_mon group has to track. 3568 */ 3569 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 3570 3571 out_unlock: 3572 rdtgroup_kn_unlock(parent_kn); 3573 return ret; 3574 } 3575 3576 /* 3577 * These are rdtgroups created under the root directory. Can be used 3578 * to allocate and monitor resources. 3579 */ 3580 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 3581 const char *name, umode_t mode) 3582 { 3583 struct rdtgroup *rdtgrp; 3584 struct kernfs_node *kn; 3585 u32 closid; 3586 int ret; 3587 3588 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 3589 if (ret) 3590 return ret; 3591 3592 kn = rdtgrp->kn; 3593 ret = closid_alloc(); 3594 if (ret < 0) { 3595 rdt_last_cmd_puts("Out of CLOSIDs\n"); 3596 goto out_common_fail; 3597 } 3598 closid = ret; 3599 ret = 0; 3600 3601 rdtgrp->closid = closid; 3602 3603 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp); 3604 if (ret) 3605 goto out_closid_free; 3606 3607 kernfs_activate(rdtgrp->kn); 3608 3609 ret = rdtgroup_init_alloc(rdtgrp); 3610 if (ret < 0) 3611 goto out_rmid_free; 3612 3613 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 3614 3615 if (resctrl_arch_mon_capable()) { 3616 /* 3617 * Create an empty mon_groups directory to hold the subset 3618 * of tasks and cpus to monitor. 3619 */ 3620 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 3621 if (ret) { 3622 rdt_last_cmd_puts("kernfs subdir error\n"); 3623 goto out_del_list; 3624 } 3625 } 3626 3627 goto out_unlock; 3628 3629 out_del_list: 3630 list_del(&rdtgrp->rdtgroup_list); 3631 out_rmid_free: 3632 mkdir_rdt_prepare_rmid_free(rdtgrp); 3633 out_closid_free: 3634 closid_free(closid); 3635 out_common_fail: 3636 mkdir_rdt_prepare_clean(rdtgrp); 3637 out_unlock: 3638 rdtgroup_kn_unlock(parent_kn); 3639 return ret; 3640 } 3641 3642 /* 3643 * We allow creating mon groups only with in a directory called "mon_groups" 3644 * which is present in every ctrl_mon group. Check if this is a valid 3645 * "mon_groups" directory. 3646 * 3647 * 1. The directory should be named "mon_groups". 3648 * 2. The mon group itself should "not" be named "mon_groups". 3649 * This makes sure "mon_groups" directory always has a ctrl_mon group 3650 * as parent. 3651 */ 3652 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 3653 { 3654 return (!strcmp(kn->name, "mon_groups") && 3655 strcmp(name, "mon_groups")); 3656 } 3657 3658 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 3659 umode_t mode) 3660 { 3661 /* Do not accept '\n' to avoid unparsable situation. */ 3662 if (strchr(name, '\n')) 3663 return -EINVAL; 3664 3665 /* 3666 * If the parent directory is the root directory and RDT 3667 * allocation is supported, add a control and monitoring 3668 * subdirectory 3669 */ 3670 if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn) 3671 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 3672 3673 /* 3674 * If RDT monitoring is supported and the parent directory is a valid 3675 * "mon_groups" directory, add a monitoring subdirectory. 3676 */ 3677 if (resctrl_arch_mon_capable() && is_mon_groups(parent_kn, name)) 3678 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3679 3680 return -EPERM; 3681 } 3682 3683 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3684 { 3685 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3686 int cpu; 3687 3688 /* Give any tasks back to the parent group */ 3689 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3690 3691 /* Update per cpu rmid of the moved CPUs first */ 3692 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3693 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 3694 /* 3695 * Update the MSR on moved CPUs and CPUs which have moved 3696 * task running on them. 3697 */ 3698 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3699 update_closid_rmid(tmpmask, NULL); 3700 3701 rdtgrp->flags = RDT_DELETED; 3702 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3703 3704 /* 3705 * Remove the rdtgrp from the parent ctrl_mon group's list 3706 */ 3707 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3708 list_del(&rdtgrp->mon.crdtgrp_list); 3709 3710 kernfs_remove(rdtgrp->kn); 3711 3712 return 0; 3713 } 3714 3715 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp) 3716 { 3717 rdtgrp->flags = RDT_DELETED; 3718 list_del(&rdtgrp->rdtgroup_list); 3719 3720 kernfs_remove(rdtgrp->kn); 3721 return 0; 3722 } 3723 3724 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3725 { 3726 int cpu; 3727 3728 /* Give any tasks back to the default group */ 3729 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3730 3731 /* Give any CPUs back to the default group */ 3732 cpumask_or(&rdtgroup_default.cpu_mask, 3733 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3734 3735 /* Update per cpu closid and rmid of the moved CPUs first */ 3736 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 3737 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 3738 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 3739 } 3740 3741 /* 3742 * Update the MSR on moved CPUs and CPUs which have moved 3743 * task running on them. 3744 */ 3745 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3746 update_closid_rmid(tmpmask, NULL); 3747 3748 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3749 closid_free(rdtgrp->closid); 3750 3751 rdtgroup_ctrl_remove(rdtgrp); 3752 3753 /* 3754 * Free all the child monitor group rmids. 3755 */ 3756 free_all_child_rdtgrp(rdtgrp); 3757 3758 return 0; 3759 } 3760 3761 static int rdtgroup_rmdir(struct kernfs_node *kn) 3762 { 3763 struct kernfs_node *parent_kn = kn->parent; 3764 struct rdtgroup *rdtgrp; 3765 cpumask_var_t tmpmask; 3766 int ret = 0; 3767 3768 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3769 return -ENOMEM; 3770 3771 rdtgrp = rdtgroup_kn_lock_live(kn); 3772 if (!rdtgrp) { 3773 ret = -EPERM; 3774 goto out; 3775 } 3776 3777 /* 3778 * If the rdtgroup is a ctrl_mon group and parent directory 3779 * is the root directory, remove the ctrl_mon group. 3780 * 3781 * If the rdtgroup is a mon group and parent directory 3782 * is a valid "mon_groups" directory, remove the mon group. 3783 */ 3784 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3785 rdtgrp != &rdtgroup_default) { 3786 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3787 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3788 ret = rdtgroup_ctrl_remove(rdtgrp); 3789 } else { 3790 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask); 3791 } 3792 } else if (rdtgrp->type == RDTMON_GROUP && 3793 is_mon_groups(parent_kn, kn->name)) { 3794 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask); 3795 } else { 3796 ret = -EPERM; 3797 } 3798 3799 out: 3800 rdtgroup_kn_unlock(kn); 3801 free_cpumask_var(tmpmask); 3802 return ret; 3803 } 3804 3805 /** 3806 * mongrp_reparent() - replace parent CTRL_MON group of a MON group 3807 * @rdtgrp: the MON group whose parent should be replaced 3808 * @new_prdtgrp: replacement parent CTRL_MON group for @rdtgrp 3809 * @cpus: cpumask provided by the caller for use during this call 3810 * 3811 * Replaces the parent CTRL_MON group for a MON group, resulting in all member 3812 * tasks' CLOSID immediately changing to that of the new parent group. 3813 * Monitoring data for the group is unaffected by this operation. 3814 */ 3815 static void mongrp_reparent(struct rdtgroup *rdtgrp, 3816 struct rdtgroup *new_prdtgrp, 3817 cpumask_var_t cpus) 3818 { 3819 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3820 3821 WARN_ON(rdtgrp->type != RDTMON_GROUP); 3822 WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP); 3823 3824 /* Nothing to do when simply renaming a MON group. */ 3825 if (prdtgrp == new_prdtgrp) 3826 return; 3827 3828 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3829 list_move_tail(&rdtgrp->mon.crdtgrp_list, 3830 &new_prdtgrp->mon.crdtgrp_list); 3831 3832 rdtgrp->mon.parent = new_prdtgrp; 3833 rdtgrp->closid = new_prdtgrp->closid; 3834 3835 /* Propagate updated closid to all tasks in this group. */ 3836 rdt_move_group_tasks(rdtgrp, rdtgrp, cpus); 3837 3838 update_closid_rmid(cpus, NULL); 3839 } 3840 3841 static int rdtgroup_rename(struct kernfs_node *kn, 3842 struct kernfs_node *new_parent, const char *new_name) 3843 { 3844 struct rdtgroup *new_prdtgrp; 3845 struct rdtgroup *rdtgrp; 3846 cpumask_var_t tmpmask; 3847 int ret; 3848 3849 rdtgrp = kernfs_to_rdtgroup(kn); 3850 new_prdtgrp = kernfs_to_rdtgroup(new_parent); 3851 if (!rdtgrp || !new_prdtgrp) 3852 return -ENOENT; 3853 3854 /* Release both kernfs active_refs before obtaining rdtgroup mutex. */ 3855 rdtgroup_kn_get(rdtgrp, kn); 3856 rdtgroup_kn_get(new_prdtgrp, new_parent); 3857 3858 mutex_lock(&rdtgroup_mutex); 3859 3860 rdt_last_cmd_clear(); 3861 3862 /* 3863 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if 3864 * either kernfs_node is a file. 3865 */ 3866 if (kernfs_type(kn) != KERNFS_DIR || 3867 kernfs_type(new_parent) != KERNFS_DIR) { 3868 rdt_last_cmd_puts("Source and destination must be directories"); 3869 ret = -EPERM; 3870 goto out; 3871 } 3872 3873 if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) { 3874 ret = -ENOENT; 3875 goto out; 3876 } 3877 3878 if (rdtgrp->type != RDTMON_GROUP || !kn->parent || 3879 !is_mon_groups(kn->parent, kn->name)) { 3880 rdt_last_cmd_puts("Source must be a MON group\n"); 3881 ret = -EPERM; 3882 goto out; 3883 } 3884 3885 if (!is_mon_groups(new_parent, new_name)) { 3886 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n"); 3887 ret = -EPERM; 3888 goto out; 3889 } 3890 3891 /* 3892 * If the MON group is monitoring CPUs, the CPUs must be assigned to the 3893 * current parent CTRL_MON group and therefore cannot be assigned to 3894 * the new parent, making the move illegal. 3895 */ 3896 if (!cpumask_empty(&rdtgrp->cpu_mask) && 3897 rdtgrp->mon.parent != new_prdtgrp) { 3898 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n"); 3899 ret = -EPERM; 3900 goto out; 3901 } 3902 3903 /* 3904 * Allocate the cpumask for use in mongrp_reparent() to avoid the 3905 * possibility of failing to allocate it after kernfs_rename() has 3906 * succeeded. 3907 */ 3908 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) { 3909 ret = -ENOMEM; 3910 goto out; 3911 } 3912 3913 /* 3914 * Perform all input validation and allocations needed to ensure 3915 * mongrp_reparent() will succeed before calling kernfs_rename(), 3916 * otherwise it would be necessary to revert this call if 3917 * mongrp_reparent() failed. 3918 */ 3919 ret = kernfs_rename(kn, new_parent, new_name); 3920 if (!ret) 3921 mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask); 3922 3923 free_cpumask_var(tmpmask); 3924 3925 out: 3926 mutex_unlock(&rdtgroup_mutex); 3927 rdtgroup_kn_put(rdtgrp, kn); 3928 rdtgroup_kn_put(new_prdtgrp, new_parent); 3929 return ret; 3930 } 3931 3932 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3933 { 3934 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 3935 seq_puts(seq, ",cdp"); 3936 3937 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 3938 seq_puts(seq, ",cdpl2"); 3939 3940 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl)) 3941 seq_puts(seq, ",mba_MBps"); 3942 3943 if (resctrl_debug) 3944 seq_puts(seq, ",debug"); 3945 3946 return 0; 3947 } 3948 3949 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3950 .mkdir = rdtgroup_mkdir, 3951 .rmdir = rdtgroup_rmdir, 3952 .rename = rdtgroup_rename, 3953 .show_options = rdtgroup_show_options, 3954 }; 3955 3956 static int rdtgroup_setup_root(struct rdt_fs_context *ctx) 3957 { 3958 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3959 KERNFS_ROOT_CREATE_DEACTIVATED | 3960 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3961 &rdtgroup_default); 3962 if (IS_ERR(rdt_root)) 3963 return PTR_ERR(rdt_root); 3964 3965 ctx->kfc.root = rdt_root; 3966 rdtgroup_default.kn = kernfs_root_to_node(rdt_root); 3967 3968 return 0; 3969 } 3970 3971 static void rdtgroup_destroy_root(void) 3972 { 3973 kernfs_destroy_root(rdt_root); 3974 rdtgroup_default.kn = NULL; 3975 } 3976 3977 static void __init rdtgroup_setup_default(void) 3978 { 3979 mutex_lock(&rdtgroup_mutex); 3980 3981 rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID; 3982 rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID; 3983 rdtgroup_default.type = RDTCTRL_GROUP; 3984 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3985 3986 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3987 3988 mutex_unlock(&rdtgroup_mutex); 3989 } 3990 3991 static void domain_destroy_mon_state(struct rdt_mon_domain *d) 3992 { 3993 bitmap_free(d->rmid_busy_llc); 3994 kfree(d->mbm_total); 3995 kfree(d->mbm_local); 3996 } 3997 3998 void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d) 3999 { 4000 mutex_lock(&rdtgroup_mutex); 4001 4002 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 4003 mba_sc_domain_destroy(r, d); 4004 4005 mutex_unlock(&rdtgroup_mutex); 4006 } 4007 4008 void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d) 4009 { 4010 mutex_lock(&rdtgroup_mutex); 4011 4012 /* 4013 * If resctrl is mounted, remove all the 4014 * per domain monitor data directories. 4015 */ 4016 if (resctrl_mounted && resctrl_arch_mon_capable()) 4017 rmdir_mondata_subdir_allrdtgrp(r, d); 4018 4019 if (is_mbm_enabled()) 4020 cancel_delayed_work(&d->mbm_over); 4021 if (is_llc_occupancy_enabled() && has_busy_rmid(d)) { 4022 /* 4023 * When a package is going down, forcefully 4024 * decrement rmid->ebusy. There is no way to know 4025 * that the L3 was flushed and hence may lead to 4026 * incorrect counts in rare scenarios, but leaving 4027 * the RMID as busy creates RMID leaks if the 4028 * package never comes back. 4029 */ 4030 __check_limbo(d, true); 4031 cancel_delayed_work(&d->cqm_limbo); 4032 } 4033 4034 domain_destroy_mon_state(d); 4035 4036 mutex_unlock(&rdtgroup_mutex); 4037 } 4038 4039 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d) 4040 { 4041 u32 idx_limit = resctrl_arch_system_num_rmid_idx(); 4042 size_t tsize; 4043 4044 if (is_llc_occupancy_enabled()) { 4045 d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL); 4046 if (!d->rmid_busy_llc) 4047 return -ENOMEM; 4048 } 4049 if (is_mbm_total_enabled()) { 4050 tsize = sizeof(*d->mbm_total); 4051 d->mbm_total = kcalloc(idx_limit, tsize, GFP_KERNEL); 4052 if (!d->mbm_total) { 4053 bitmap_free(d->rmid_busy_llc); 4054 return -ENOMEM; 4055 } 4056 } 4057 if (is_mbm_local_enabled()) { 4058 tsize = sizeof(*d->mbm_local); 4059 d->mbm_local = kcalloc(idx_limit, tsize, GFP_KERNEL); 4060 if (!d->mbm_local) { 4061 bitmap_free(d->rmid_busy_llc); 4062 kfree(d->mbm_total); 4063 return -ENOMEM; 4064 } 4065 } 4066 4067 return 0; 4068 } 4069 4070 int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d) 4071 { 4072 int err = 0; 4073 4074 mutex_lock(&rdtgroup_mutex); 4075 4076 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) { 4077 /* RDT_RESOURCE_MBA is never mon_capable */ 4078 err = mba_sc_domain_allocate(r, d); 4079 } 4080 4081 mutex_unlock(&rdtgroup_mutex); 4082 4083 return err; 4084 } 4085 4086 int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d) 4087 { 4088 int err; 4089 4090 mutex_lock(&rdtgroup_mutex); 4091 4092 err = domain_setup_mon_state(r, d); 4093 if (err) 4094 goto out_unlock; 4095 4096 if (is_mbm_enabled()) { 4097 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow); 4098 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL, 4099 RESCTRL_PICK_ANY_CPU); 4100 } 4101 4102 if (is_llc_occupancy_enabled()) 4103 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo); 4104 4105 /* 4106 * If the filesystem is not mounted then only the default resource group 4107 * exists. Creation of its directories is deferred until mount time 4108 * by rdt_get_tree() calling mkdir_mondata_all(). 4109 * If resctrl is mounted, add per domain monitor data directories. 4110 */ 4111 if (resctrl_mounted && resctrl_arch_mon_capable()) 4112 mkdir_mondata_subdir_allrdtgrp(r, d); 4113 4114 out_unlock: 4115 mutex_unlock(&rdtgroup_mutex); 4116 4117 return err; 4118 } 4119 4120 void resctrl_online_cpu(unsigned int cpu) 4121 { 4122 mutex_lock(&rdtgroup_mutex); 4123 /* The CPU is set in default rdtgroup after online. */ 4124 cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask); 4125 mutex_unlock(&rdtgroup_mutex); 4126 } 4127 4128 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu) 4129 { 4130 struct rdtgroup *cr; 4131 4132 list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) { 4133 if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask)) 4134 break; 4135 } 4136 } 4137 4138 void resctrl_offline_cpu(unsigned int cpu) 4139 { 4140 struct rdt_resource *l3 = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 4141 struct rdt_mon_domain *d; 4142 struct rdtgroup *rdtgrp; 4143 4144 mutex_lock(&rdtgroup_mutex); 4145 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 4146 if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) { 4147 clear_childcpus(rdtgrp, cpu); 4148 break; 4149 } 4150 } 4151 4152 if (!l3->mon_capable) 4153 goto out_unlock; 4154 4155 d = get_mon_domain_from_cpu(cpu, l3); 4156 if (d) { 4157 if (is_mbm_enabled() && cpu == d->mbm_work_cpu) { 4158 cancel_delayed_work(&d->mbm_over); 4159 mbm_setup_overflow_handler(d, 0, cpu); 4160 } 4161 if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu && 4162 has_busy_rmid(d)) { 4163 cancel_delayed_work(&d->cqm_limbo); 4164 cqm_setup_limbo_handler(d, 0, cpu); 4165 } 4166 } 4167 4168 out_unlock: 4169 mutex_unlock(&rdtgroup_mutex); 4170 } 4171 4172 /* 4173 * rdtgroup_init - rdtgroup initialization 4174 * 4175 * Setup resctrl file system including set up root, create mount point, 4176 * register rdtgroup filesystem, and initialize files under root directory. 4177 * 4178 * Return: 0 on success or -errno 4179 */ 4180 int __init rdtgroup_init(void) 4181 { 4182 int ret = 0; 4183 4184 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 4185 sizeof(last_cmd_status_buf)); 4186 4187 rdtgroup_setup_default(); 4188 4189 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 4190 if (ret) 4191 return ret; 4192 4193 ret = register_filesystem(&rdt_fs_type); 4194 if (ret) 4195 goto cleanup_mountpoint; 4196 4197 /* 4198 * Adding the resctrl debugfs directory here may not be ideal since 4199 * it would let the resctrl debugfs directory appear on the debugfs 4200 * filesystem before the resctrl filesystem is mounted. 4201 * It may also be ok since that would enable debugging of RDT before 4202 * resctrl is mounted. 4203 * The reason why the debugfs directory is created here and not in 4204 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 4205 * during the debugfs directory creation also &sb->s_type->i_mutex_key 4206 * (the lockdep class of inode->i_rwsem). Other filesystem 4207 * interactions (eg. SyS_getdents) have the lock ordering: 4208 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 4209 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 4210 * is taken, thus creating dependency: 4211 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 4212 * issues considering the other two lock dependencies. 4213 * By creating the debugfs directory here we avoid a dependency 4214 * that may cause deadlock (even though file operations cannot 4215 * occur until the filesystem is mounted, but I do not know how to 4216 * tell lockdep that). 4217 */ 4218 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 4219 4220 return 0; 4221 4222 cleanup_mountpoint: 4223 sysfs_remove_mount_point(fs_kobj, "resctrl"); 4224 4225 return ret; 4226 } 4227 4228 void __exit rdtgroup_exit(void) 4229 { 4230 debugfs_remove_recursive(debugfs_resctrl); 4231 unregister_filesystem(&rdt_fs_type); 4232 sysfs_remove_mount_point(fs_kobj, "resctrl"); 4233 } 4234
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.