~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * User interface for Resource Allocation in Resource Director Technology(RDT)
  4  *
  5  * Copyright (C) 2016 Intel Corporation
  6  *
  7  * Author: Fenghua Yu <fenghua.yu@intel.com>
  8  *
  9  * More information about RDT be found in the Intel (R) x86 Architecture
 10  * Software Developer Manual.
 11  */
 12 
 13 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
 14 
 15 #include <linux/cpu.h>
 16 #include <linux/debugfs.h>
 17 #include <linux/fs.h>
 18 #include <linux/fs_parser.h>
 19 #include <linux/sysfs.h>
 20 #include <linux/kernfs.h>
 21 #include <linux/seq_buf.h>
 22 #include <linux/seq_file.h>
 23 #include <linux/sched/signal.h>
 24 #include <linux/sched/task.h>
 25 #include <linux/slab.h>
 26 #include <linux/task_work.h>
 27 #include <linux/user_namespace.h>
 28 
 29 #include <uapi/linux/magic.h>
 30 
 31 #include <asm/resctrl.h>
 32 #include "internal.h"
 33 
 34 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
 35 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
 36 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
 37 
 38 /* Mutex to protect rdtgroup access. */
 39 DEFINE_MUTEX(rdtgroup_mutex);
 40 
 41 static struct kernfs_root *rdt_root;
 42 struct rdtgroup rdtgroup_default;
 43 LIST_HEAD(rdt_all_groups);
 44 
 45 /* list of entries for the schemata file */
 46 LIST_HEAD(resctrl_schema_all);
 47 
 48 /* The filesystem can only be mounted once. */
 49 bool resctrl_mounted;
 50 
 51 /* Kernel fs node for "info" directory under root */
 52 static struct kernfs_node *kn_info;
 53 
 54 /* Kernel fs node for "mon_groups" directory under root */
 55 static struct kernfs_node *kn_mongrp;
 56 
 57 /* Kernel fs node for "mon_data" directory under root */
 58 static struct kernfs_node *kn_mondata;
 59 
 60 static struct seq_buf last_cmd_status;
 61 static char last_cmd_status_buf[512];
 62 
 63 static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
 64 static void rdtgroup_destroy_root(void);
 65 
 66 struct dentry *debugfs_resctrl;
 67 
 68 static bool resctrl_debug;
 69 
 70 void rdt_last_cmd_clear(void)
 71 {
 72         lockdep_assert_held(&rdtgroup_mutex);
 73         seq_buf_clear(&last_cmd_status);
 74 }
 75 
 76 void rdt_last_cmd_puts(const char *s)
 77 {
 78         lockdep_assert_held(&rdtgroup_mutex);
 79         seq_buf_puts(&last_cmd_status, s);
 80 }
 81 
 82 void rdt_last_cmd_printf(const char *fmt, ...)
 83 {
 84         va_list ap;
 85 
 86         va_start(ap, fmt);
 87         lockdep_assert_held(&rdtgroup_mutex);
 88         seq_buf_vprintf(&last_cmd_status, fmt, ap);
 89         va_end(ap);
 90 }
 91 
 92 void rdt_staged_configs_clear(void)
 93 {
 94         struct rdt_ctrl_domain *dom;
 95         struct rdt_resource *r;
 96 
 97         lockdep_assert_held(&rdtgroup_mutex);
 98 
 99         for_each_alloc_capable_rdt_resource(r) {
100                 list_for_each_entry(dom, &r->ctrl_domains, hdr.list)
101                         memset(dom->staged_config, 0, sizeof(dom->staged_config));
102         }
103 }
104 
105 /*
106  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
107  * we can keep a bitmap of free CLOSIDs in a single integer.
108  *
109  * Using a global CLOSID across all resources has some advantages and
110  * some drawbacks:
111  * + We can simply set current's closid to assign a task to a resource
112  *   group.
113  * + Context switch code can avoid extra memory references deciding which
114  *   CLOSID to load into the PQR_ASSOC MSR
115  * - We give up some options in configuring resource groups across multi-socket
116  *   systems.
117  * - Our choices on how to configure each resource become progressively more
118  *   limited as the number of resources grows.
119  */
120 static unsigned long closid_free_map;
121 static int closid_free_map_len;
122 
123 int closids_supported(void)
124 {
125         return closid_free_map_len;
126 }
127 
128 static void closid_init(void)
129 {
130         struct resctrl_schema *s;
131         u32 rdt_min_closid = 32;
132 
133         /* Compute rdt_min_closid across all resources */
134         list_for_each_entry(s, &resctrl_schema_all, list)
135                 rdt_min_closid = min(rdt_min_closid, s->num_closid);
136 
137         closid_free_map = BIT_MASK(rdt_min_closid) - 1;
138 
139         /* RESCTRL_RESERVED_CLOSID is always reserved for the default group */
140         __clear_bit(RESCTRL_RESERVED_CLOSID, &closid_free_map);
141         closid_free_map_len = rdt_min_closid;
142 }
143 
144 static int closid_alloc(void)
145 {
146         int cleanest_closid;
147         u32 closid;
148 
149         lockdep_assert_held(&rdtgroup_mutex);
150 
151         if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
152                 cleanest_closid = resctrl_find_cleanest_closid();
153                 if (cleanest_closid < 0)
154                         return cleanest_closid;
155                 closid = cleanest_closid;
156         } else {
157                 closid = ffs(closid_free_map);
158                 if (closid == 0)
159                         return -ENOSPC;
160                 closid--;
161         }
162         __clear_bit(closid, &closid_free_map);
163 
164         return closid;
165 }
166 
167 void closid_free(int closid)
168 {
169         lockdep_assert_held(&rdtgroup_mutex);
170 
171         __set_bit(closid, &closid_free_map);
172 }
173 
174 /**
175  * closid_allocated - test if provided closid is in use
176  * @closid: closid to be tested
177  *
178  * Return: true if @closid is currently associated with a resource group,
179  * false if @closid is free
180  */
181 bool closid_allocated(unsigned int closid)
182 {
183         lockdep_assert_held(&rdtgroup_mutex);
184 
185         return !test_bit(closid, &closid_free_map);
186 }
187 
188 /**
189  * rdtgroup_mode_by_closid - Return mode of resource group with closid
190  * @closid: closid if the resource group
191  *
192  * Each resource group is associated with a @closid. Here the mode
193  * of a resource group can be queried by searching for it using its closid.
194  *
195  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
196  */
197 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
198 {
199         struct rdtgroup *rdtgrp;
200 
201         list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
202                 if (rdtgrp->closid == closid)
203                         return rdtgrp->mode;
204         }
205 
206         return RDT_NUM_MODES;
207 }
208 
209 static const char * const rdt_mode_str[] = {
210         [RDT_MODE_SHAREABLE]            = "shareable",
211         [RDT_MODE_EXCLUSIVE]            = "exclusive",
212         [RDT_MODE_PSEUDO_LOCKSETUP]     = "pseudo-locksetup",
213         [RDT_MODE_PSEUDO_LOCKED]        = "pseudo-locked",
214 };
215 
216 /**
217  * rdtgroup_mode_str - Return the string representation of mode
218  * @mode: the resource group mode as &enum rdtgroup_mode
219  *
220  * Return: string representation of valid mode, "unknown" otherwise
221  */
222 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
223 {
224         if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
225                 return "unknown";
226 
227         return rdt_mode_str[mode];
228 }
229 
230 /* set uid and gid of rdtgroup dirs and files to that of the creator */
231 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
232 {
233         struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
234                                 .ia_uid = current_fsuid(),
235                                 .ia_gid = current_fsgid(), };
236 
237         if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
238             gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
239                 return 0;
240 
241         return kernfs_setattr(kn, &iattr);
242 }
243 
244 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
245 {
246         struct kernfs_node *kn;
247         int ret;
248 
249         kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
250                                   GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
251                                   0, rft->kf_ops, rft, NULL, NULL);
252         if (IS_ERR(kn))
253                 return PTR_ERR(kn);
254 
255         ret = rdtgroup_kn_set_ugid(kn);
256         if (ret) {
257                 kernfs_remove(kn);
258                 return ret;
259         }
260 
261         return 0;
262 }
263 
264 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
265 {
266         struct kernfs_open_file *of = m->private;
267         struct rftype *rft = of->kn->priv;
268 
269         if (rft->seq_show)
270                 return rft->seq_show(of, m, arg);
271         return 0;
272 }
273 
274 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
275                                    size_t nbytes, loff_t off)
276 {
277         struct rftype *rft = of->kn->priv;
278 
279         if (rft->write)
280                 return rft->write(of, buf, nbytes, off);
281 
282         return -EINVAL;
283 }
284 
285 static const struct kernfs_ops rdtgroup_kf_single_ops = {
286         .atomic_write_len       = PAGE_SIZE,
287         .write                  = rdtgroup_file_write,
288         .seq_show               = rdtgroup_seqfile_show,
289 };
290 
291 static const struct kernfs_ops kf_mondata_ops = {
292         .atomic_write_len       = PAGE_SIZE,
293         .seq_show               = rdtgroup_mondata_show,
294 };
295 
296 static bool is_cpu_list(struct kernfs_open_file *of)
297 {
298         struct rftype *rft = of->kn->priv;
299 
300         return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
301 }
302 
303 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
304                               struct seq_file *s, void *v)
305 {
306         struct rdtgroup *rdtgrp;
307         struct cpumask *mask;
308         int ret = 0;
309 
310         rdtgrp = rdtgroup_kn_lock_live(of->kn);
311 
312         if (rdtgrp) {
313                 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
314                         if (!rdtgrp->plr->d) {
315                                 rdt_last_cmd_clear();
316                                 rdt_last_cmd_puts("Cache domain offline\n");
317                                 ret = -ENODEV;
318                         } else {
319                                 mask = &rdtgrp->plr->d->hdr.cpu_mask;
320                                 seq_printf(s, is_cpu_list(of) ?
321                                            "%*pbl\n" : "%*pb\n",
322                                            cpumask_pr_args(mask));
323                         }
324                 } else {
325                         seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
326                                    cpumask_pr_args(&rdtgrp->cpu_mask));
327                 }
328         } else {
329                 ret = -ENOENT;
330         }
331         rdtgroup_kn_unlock(of->kn);
332 
333         return ret;
334 }
335 
336 /*
337  * This is safe against resctrl_sched_in() called from __switch_to()
338  * because __switch_to() is executed with interrupts disabled. A local call
339  * from update_closid_rmid() is protected against __switch_to() because
340  * preemption is disabled.
341  */
342 static void update_cpu_closid_rmid(void *info)
343 {
344         struct rdtgroup *r = info;
345 
346         if (r) {
347                 this_cpu_write(pqr_state.default_closid, r->closid);
348                 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
349         }
350 
351         /*
352          * We cannot unconditionally write the MSR because the current
353          * executing task might have its own closid selected. Just reuse
354          * the context switch code.
355          */
356         resctrl_sched_in(current);
357 }
358 
359 /*
360  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
361  *
362  * Per task closids/rmids must have been set up before calling this function.
363  */
364 static void
365 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
366 {
367         on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
368 }
369 
370 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
371                           cpumask_var_t tmpmask)
372 {
373         struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
374         struct list_head *head;
375 
376         /* Check whether cpus belong to parent ctrl group */
377         cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
378         if (!cpumask_empty(tmpmask)) {
379                 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
380                 return -EINVAL;
381         }
382 
383         /* Check whether cpus are dropped from this group */
384         cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
385         if (!cpumask_empty(tmpmask)) {
386                 /* Give any dropped cpus to parent rdtgroup */
387                 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
388                 update_closid_rmid(tmpmask, prgrp);
389         }
390 
391         /*
392          * If we added cpus, remove them from previous group that owned them
393          * and update per-cpu rmid
394          */
395         cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
396         if (!cpumask_empty(tmpmask)) {
397                 head = &prgrp->mon.crdtgrp_list;
398                 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
399                         if (crgrp == rdtgrp)
400                                 continue;
401                         cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
402                                        tmpmask);
403                 }
404                 update_closid_rmid(tmpmask, rdtgrp);
405         }
406 
407         /* Done pushing/pulling - update this group with new mask */
408         cpumask_copy(&rdtgrp->cpu_mask, newmask);
409 
410         return 0;
411 }
412 
413 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
414 {
415         struct rdtgroup *crgrp;
416 
417         cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
418         /* update the child mon group masks as well*/
419         list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
420                 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
421 }
422 
423 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
424                            cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
425 {
426         struct rdtgroup *r, *crgrp;
427         struct list_head *head;
428 
429         /* Check whether cpus are dropped from this group */
430         cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
431         if (!cpumask_empty(tmpmask)) {
432                 /* Can't drop from default group */
433                 if (rdtgrp == &rdtgroup_default) {
434                         rdt_last_cmd_puts("Can't drop CPUs from default group\n");
435                         return -EINVAL;
436                 }
437 
438                 /* Give any dropped cpus to rdtgroup_default */
439                 cpumask_or(&rdtgroup_default.cpu_mask,
440                            &rdtgroup_default.cpu_mask, tmpmask);
441                 update_closid_rmid(tmpmask, &rdtgroup_default);
442         }
443 
444         /*
445          * If we added cpus, remove them from previous group and
446          * the prev group's child groups that owned them
447          * and update per-cpu closid/rmid.
448          */
449         cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
450         if (!cpumask_empty(tmpmask)) {
451                 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
452                         if (r == rdtgrp)
453                                 continue;
454                         cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
455                         if (!cpumask_empty(tmpmask1))
456                                 cpumask_rdtgrp_clear(r, tmpmask1);
457                 }
458                 update_closid_rmid(tmpmask, rdtgrp);
459         }
460 
461         /* Done pushing/pulling - update this group with new mask */
462         cpumask_copy(&rdtgrp->cpu_mask, newmask);
463 
464         /*
465          * Clear child mon group masks since there is a new parent mask
466          * now and update the rmid for the cpus the child lost.
467          */
468         head = &rdtgrp->mon.crdtgrp_list;
469         list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
470                 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
471                 update_closid_rmid(tmpmask, rdtgrp);
472                 cpumask_clear(&crgrp->cpu_mask);
473         }
474 
475         return 0;
476 }
477 
478 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
479                                    char *buf, size_t nbytes, loff_t off)
480 {
481         cpumask_var_t tmpmask, newmask, tmpmask1;
482         struct rdtgroup *rdtgrp;
483         int ret;
484 
485         if (!buf)
486                 return -EINVAL;
487 
488         if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
489                 return -ENOMEM;
490         if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
491                 free_cpumask_var(tmpmask);
492                 return -ENOMEM;
493         }
494         if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
495                 free_cpumask_var(tmpmask);
496                 free_cpumask_var(newmask);
497                 return -ENOMEM;
498         }
499 
500         rdtgrp = rdtgroup_kn_lock_live(of->kn);
501         if (!rdtgrp) {
502                 ret = -ENOENT;
503                 goto unlock;
504         }
505 
506         if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
507             rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
508                 ret = -EINVAL;
509                 rdt_last_cmd_puts("Pseudo-locking in progress\n");
510                 goto unlock;
511         }
512 
513         if (is_cpu_list(of))
514                 ret = cpulist_parse(buf, newmask);
515         else
516                 ret = cpumask_parse(buf, newmask);
517 
518         if (ret) {
519                 rdt_last_cmd_puts("Bad CPU list/mask\n");
520                 goto unlock;
521         }
522 
523         /* check that user didn't specify any offline cpus */
524         cpumask_andnot(tmpmask, newmask, cpu_online_mask);
525         if (!cpumask_empty(tmpmask)) {
526                 ret = -EINVAL;
527                 rdt_last_cmd_puts("Can only assign online CPUs\n");
528                 goto unlock;
529         }
530 
531         if (rdtgrp->type == RDTCTRL_GROUP)
532                 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
533         else if (rdtgrp->type == RDTMON_GROUP)
534                 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
535         else
536                 ret = -EINVAL;
537 
538 unlock:
539         rdtgroup_kn_unlock(of->kn);
540         free_cpumask_var(tmpmask);
541         free_cpumask_var(newmask);
542         free_cpumask_var(tmpmask1);
543 
544         return ret ?: nbytes;
545 }
546 
547 /**
548  * rdtgroup_remove - the helper to remove resource group safely
549  * @rdtgrp: resource group to remove
550  *
551  * On resource group creation via a mkdir, an extra kernfs_node reference is
552  * taken to ensure that the rdtgroup structure remains accessible for the
553  * rdtgroup_kn_unlock() calls where it is removed.
554  *
555  * Drop the extra reference here, then free the rdtgroup structure.
556  *
557  * Return: void
558  */
559 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
560 {
561         kernfs_put(rdtgrp->kn);
562         kfree(rdtgrp);
563 }
564 
565 static void _update_task_closid_rmid(void *task)
566 {
567         /*
568          * If the task is still current on this CPU, update PQR_ASSOC MSR.
569          * Otherwise, the MSR is updated when the task is scheduled in.
570          */
571         if (task == current)
572                 resctrl_sched_in(task);
573 }
574 
575 static void update_task_closid_rmid(struct task_struct *t)
576 {
577         if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
578                 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
579         else
580                 _update_task_closid_rmid(t);
581 }
582 
583 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp)
584 {
585         u32 closid, rmid = rdtgrp->mon.rmid;
586 
587         if (rdtgrp->type == RDTCTRL_GROUP)
588                 closid = rdtgrp->closid;
589         else if (rdtgrp->type == RDTMON_GROUP)
590                 closid = rdtgrp->mon.parent->closid;
591         else
592                 return false;
593 
594         return resctrl_arch_match_closid(tsk, closid) &&
595                resctrl_arch_match_rmid(tsk, closid, rmid);
596 }
597 
598 static int __rdtgroup_move_task(struct task_struct *tsk,
599                                 struct rdtgroup *rdtgrp)
600 {
601         /* If the task is already in rdtgrp, no need to move the task. */
602         if (task_in_rdtgroup(tsk, rdtgrp))
603                 return 0;
604 
605         /*
606          * Set the task's closid/rmid before the PQR_ASSOC MSR can be
607          * updated by them.
608          *
609          * For ctrl_mon groups, move both closid and rmid.
610          * For monitor groups, can move the tasks only from
611          * their parent CTRL group.
612          */
613         if (rdtgrp->type == RDTMON_GROUP &&
614             !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) {
615                 rdt_last_cmd_puts("Can't move task to different control group\n");
616                 return -EINVAL;
617         }
618 
619         if (rdtgrp->type == RDTMON_GROUP)
620                 resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid,
621                                              rdtgrp->mon.rmid);
622         else
623                 resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid,
624                                              rdtgrp->mon.rmid);
625 
626         /*
627          * Ensure the task's closid and rmid are written before determining if
628          * the task is current that will decide if it will be interrupted.
629          * This pairs with the full barrier between the rq->curr update and
630          * resctrl_sched_in() during context switch.
631          */
632         smp_mb();
633 
634         /*
635          * By now, the task's closid and rmid are set. If the task is current
636          * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
637          * group go into effect. If the task is not current, the MSR will be
638          * updated when the task is scheduled in.
639          */
640         update_task_closid_rmid(tsk);
641 
642         return 0;
643 }
644 
645 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
646 {
647         return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) &&
648                 resctrl_arch_match_closid(t, r->closid));
649 }
650 
651 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
652 {
653         return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) &&
654                 resctrl_arch_match_rmid(t, r->mon.parent->closid,
655                                         r->mon.rmid));
656 }
657 
658 /**
659  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
660  * @r: Resource group
661  *
662  * Return: 1 if tasks have been assigned to @r, 0 otherwise
663  */
664 int rdtgroup_tasks_assigned(struct rdtgroup *r)
665 {
666         struct task_struct *p, *t;
667         int ret = 0;
668 
669         lockdep_assert_held(&rdtgroup_mutex);
670 
671         rcu_read_lock();
672         for_each_process_thread(p, t) {
673                 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
674                         ret = 1;
675                         break;
676                 }
677         }
678         rcu_read_unlock();
679 
680         return ret;
681 }
682 
683 static int rdtgroup_task_write_permission(struct task_struct *task,
684                                           struct kernfs_open_file *of)
685 {
686         const struct cred *tcred = get_task_cred(task);
687         const struct cred *cred = current_cred();
688         int ret = 0;
689 
690         /*
691          * Even if we're attaching all tasks in the thread group, we only
692          * need to check permissions on one of them.
693          */
694         if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
695             !uid_eq(cred->euid, tcred->uid) &&
696             !uid_eq(cred->euid, tcred->suid)) {
697                 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
698                 ret = -EPERM;
699         }
700 
701         put_cred(tcred);
702         return ret;
703 }
704 
705 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
706                               struct kernfs_open_file *of)
707 {
708         struct task_struct *tsk;
709         int ret;
710 
711         rcu_read_lock();
712         if (pid) {
713                 tsk = find_task_by_vpid(pid);
714                 if (!tsk) {
715                         rcu_read_unlock();
716                         rdt_last_cmd_printf("No task %d\n", pid);
717                         return -ESRCH;
718                 }
719         } else {
720                 tsk = current;
721         }
722 
723         get_task_struct(tsk);
724         rcu_read_unlock();
725 
726         ret = rdtgroup_task_write_permission(tsk, of);
727         if (!ret)
728                 ret = __rdtgroup_move_task(tsk, rdtgrp);
729 
730         put_task_struct(tsk);
731         return ret;
732 }
733 
734 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
735                                     char *buf, size_t nbytes, loff_t off)
736 {
737         struct rdtgroup *rdtgrp;
738         char *pid_str;
739         int ret = 0;
740         pid_t pid;
741 
742         rdtgrp = rdtgroup_kn_lock_live(of->kn);
743         if (!rdtgrp) {
744                 rdtgroup_kn_unlock(of->kn);
745                 return -ENOENT;
746         }
747         rdt_last_cmd_clear();
748 
749         if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
750             rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
751                 ret = -EINVAL;
752                 rdt_last_cmd_puts("Pseudo-locking in progress\n");
753                 goto unlock;
754         }
755 
756         while (buf && buf[0] != '\0' && buf[0] != '\n') {
757                 pid_str = strim(strsep(&buf, ","));
758 
759                 if (kstrtoint(pid_str, 0, &pid)) {
760                         rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
761                         ret = -EINVAL;
762                         break;
763                 }
764 
765                 if (pid < 0) {
766                         rdt_last_cmd_printf("Invalid pid %d\n", pid);
767                         ret = -EINVAL;
768                         break;
769                 }
770 
771                 ret = rdtgroup_move_task(pid, rdtgrp, of);
772                 if (ret) {
773                         rdt_last_cmd_printf("Error while processing task %d\n", pid);
774                         break;
775                 }
776         }
777 
778 unlock:
779         rdtgroup_kn_unlock(of->kn);
780 
781         return ret ?: nbytes;
782 }
783 
784 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
785 {
786         struct task_struct *p, *t;
787         pid_t pid;
788 
789         rcu_read_lock();
790         for_each_process_thread(p, t) {
791                 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
792                         pid = task_pid_vnr(t);
793                         if (pid)
794                                 seq_printf(s, "%d\n", pid);
795                 }
796         }
797         rcu_read_unlock();
798 }
799 
800 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
801                                struct seq_file *s, void *v)
802 {
803         struct rdtgroup *rdtgrp;
804         int ret = 0;
805 
806         rdtgrp = rdtgroup_kn_lock_live(of->kn);
807         if (rdtgrp)
808                 show_rdt_tasks(rdtgrp, s);
809         else
810                 ret = -ENOENT;
811         rdtgroup_kn_unlock(of->kn);
812 
813         return ret;
814 }
815 
816 static int rdtgroup_closid_show(struct kernfs_open_file *of,
817                                 struct seq_file *s, void *v)
818 {
819         struct rdtgroup *rdtgrp;
820         int ret = 0;
821 
822         rdtgrp = rdtgroup_kn_lock_live(of->kn);
823         if (rdtgrp)
824                 seq_printf(s, "%u\n", rdtgrp->closid);
825         else
826                 ret = -ENOENT;
827         rdtgroup_kn_unlock(of->kn);
828 
829         return ret;
830 }
831 
832 static int rdtgroup_rmid_show(struct kernfs_open_file *of,
833                               struct seq_file *s, void *v)
834 {
835         struct rdtgroup *rdtgrp;
836         int ret = 0;
837 
838         rdtgrp = rdtgroup_kn_lock_live(of->kn);
839         if (rdtgrp)
840                 seq_printf(s, "%u\n", rdtgrp->mon.rmid);
841         else
842                 ret = -ENOENT;
843         rdtgroup_kn_unlock(of->kn);
844 
845         return ret;
846 }
847 
848 #ifdef CONFIG_PROC_CPU_RESCTRL
849 
850 /*
851  * A task can only be part of one resctrl control group and of one monitor
852  * group which is associated to that control group.
853  *
854  * 1)   res:
855  *      mon:
856  *
857  *    resctrl is not available.
858  *
859  * 2)   res:/
860  *      mon:
861  *
862  *    Task is part of the root resctrl control group, and it is not associated
863  *    to any monitor group.
864  *
865  * 3)  res:/
866  *     mon:mon0
867  *
868  *    Task is part of the root resctrl control group and monitor group mon0.
869  *
870  * 4)  res:group0
871  *     mon:
872  *
873  *    Task is part of resctrl control group group0, and it is not associated
874  *    to any monitor group.
875  *
876  * 5) res:group0
877  *    mon:mon1
878  *
879  *    Task is part of resctrl control group group0 and monitor group mon1.
880  */
881 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
882                       struct pid *pid, struct task_struct *tsk)
883 {
884         struct rdtgroup *rdtg;
885         int ret = 0;
886 
887         mutex_lock(&rdtgroup_mutex);
888 
889         /* Return empty if resctrl has not been mounted. */
890         if (!resctrl_mounted) {
891                 seq_puts(s, "res:\nmon:\n");
892                 goto unlock;
893         }
894 
895         list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
896                 struct rdtgroup *crg;
897 
898                 /*
899                  * Task information is only relevant for shareable
900                  * and exclusive groups.
901                  */
902                 if (rdtg->mode != RDT_MODE_SHAREABLE &&
903                     rdtg->mode != RDT_MODE_EXCLUSIVE)
904                         continue;
905 
906                 if (!resctrl_arch_match_closid(tsk, rdtg->closid))
907                         continue;
908 
909                 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
910                            rdtg->kn->name);
911                 seq_puts(s, "mon:");
912                 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
913                                     mon.crdtgrp_list) {
914                         if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid,
915                                                      crg->mon.rmid))
916                                 continue;
917                         seq_printf(s, "%s", crg->kn->name);
918                         break;
919                 }
920                 seq_putc(s, '\n');
921                 goto unlock;
922         }
923         /*
924          * The above search should succeed. Otherwise return
925          * with an error.
926          */
927         ret = -ENOENT;
928 unlock:
929         mutex_unlock(&rdtgroup_mutex);
930 
931         return ret;
932 }
933 #endif
934 
935 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
936                                     struct seq_file *seq, void *v)
937 {
938         int len;
939 
940         mutex_lock(&rdtgroup_mutex);
941         len = seq_buf_used(&last_cmd_status);
942         if (len)
943                 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
944         else
945                 seq_puts(seq, "ok\n");
946         mutex_unlock(&rdtgroup_mutex);
947         return 0;
948 }
949 
950 static int rdt_num_closids_show(struct kernfs_open_file *of,
951                                 struct seq_file *seq, void *v)
952 {
953         struct resctrl_schema *s = of->kn->parent->priv;
954 
955         seq_printf(seq, "%u\n", s->num_closid);
956         return 0;
957 }
958 
959 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
960                              struct seq_file *seq, void *v)
961 {
962         struct resctrl_schema *s = of->kn->parent->priv;
963         struct rdt_resource *r = s->res;
964 
965         seq_printf(seq, "%x\n", r->default_ctrl);
966         return 0;
967 }
968 
969 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
970                              struct seq_file *seq, void *v)
971 {
972         struct resctrl_schema *s = of->kn->parent->priv;
973         struct rdt_resource *r = s->res;
974 
975         seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
976         return 0;
977 }
978 
979 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
980                                    struct seq_file *seq, void *v)
981 {
982         struct resctrl_schema *s = of->kn->parent->priv;
983         struct rdt_resource *r = s->res;
984 
985         seq_printf(seq, "%x\n", r->cache.shareable_bits);
986         return 0;
987 }
988 
989 /*
990  * rdt_bit_usage_show - Display current usage of resources
991  *
992  * A domain is a shared resource that can now be allocated differently. Here
993  * we display the current regions of the domain as an annotated bitmask.
994  * For each domain of this resource its allocation bitmask
995  * is annotated as below to indicate the current usage of the corresponding bit:
996  *   0 - currently unused
997  *   X - currently available for sharing and used by software and hardware
998  *   H - currently used by hardware only but available for software use
999  *   S - currently used and shareable by software only
1000  *   E - currently used exclusively by one resource group
1001  *   P - currently pseudo-locked by one resource group
1002  */
1003 static int rdt_bit_usage_show(struct kernfs_open_file *of,
1004                               struct seq_file *seq, void *v)
1005 {
1006         struct resctrl_schema *s = of->kn->parent->priv;
1007         /*
1008          * Use unsigned long even though only 32 bits are used to ensure
1009          * test_bit() is used safely.
1010          */
1011         unsigned long sw_shareable = 0, hw_shareable = 0;
1012         unsigned long exclusive = 0, pseudo_locked = 0;
1013         struct rdt_resource *r = s->res;
1014         struct rdt_ctrl_domain *dom;
1015         int i, hwb, swb, excl, psl;
1016         enum rdtgrp_mode mode;
1017         bool sep = false;
1018         u32 ctrl_val;
1019 
1020         cpus_read_lock();
1021         mutex_lock(&rdtgroup_mutex);
1022         hw_shareable = r->cache.shareable_bits;
1023         list_for_each_entry(dom, &r->ctrl_domains, hdr.list) {
1024                 if (sep)
1025                         seq_putc(seq, ';');
1026                 sw_shareable = 0;
1027                 exclusive = 0;
1028                 seq_printf(seq, "%d=", dom->hdr.id);
1029                 for (i = 0; i < closids_supported(); i++) {
1030                         if (!closid_allocated(i))
1031                                 continue;
1032                         ctrl_val = resctrl_arch_get_config(r, dom, i,
1033                                                            s->conf_type);
1034                         mode = rdtgroup_mode_by_closid(i);
1035                         switch (mode) {
1036                         case RDT_MODE_SHAREABLE:
1037                                 sw_shareable |= ctrl_val;
1038                                 break;
1039                         case RDT_MODE_EXCLUSIVE:
1040                                 exclusive |= ctrl_val;
1041                                 break;
1042                         case RDT_MODE_PSEUDO_LOCKSETUP:
1043                         /*
1044                          * RDT_MODE_PSEUDO_LOCKSETUP is possible
1045                          * here but not included since the CBM
1046                          * associated with this CLOSID in this mode
1047                          * is not initialized and no task or cpu can be
1048                          * assigned this CLOSID.
1049                          */
1050                                 break;
1051                         case RDT_MODE_PSEUDO_LOCKED:
1052                         case RDT_NUM_MODES:
1053                                 WARN(1,
1054                                      "invalid mode for closid %d\n", i);
1055                                 break;
1056                         }
1057                 }
1058                 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1059                         pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1060                         hwb = test_bit(i, &hw_shareable);
1061                         swb = test_bit(i, &sw_shareable);
1062                         excl = test_bit(i, &exclusive);
1063                         psl = test_bit(i, &pseudo_locked);
1064                         if (hwb && swb)
1065                                 seq_putc(seq, 'X');
1066                         else if (hwb && !swb)
1067                                 seq_putc(seq, 'H');
1068                         else if (!hwb && swb)
1069                                 seq_putc(seq, 'S');
1070                         else if (excl)
1071                                 seq_putc(seq, 'E');
1072                         else if (psl)
1073                                 seq_putc(seq, 'P');
1074                         else /* Unused bits remain */
1075                                 seq_putc(seq, '');
1076                 }
1077                 sep = true;
1078         }
1079         seq_putc(seq, '\n');
1080         mutex_unlock(&rdtgroup_mutex);
1081         cpus_read_unlock();
1082         return 0;
1083 }
1084 
1085 static int rdt_min_bw_show(struct kernfs_open_file *of,
1086                              struct seq_file *seq, void *v)
1087 {
1088         struct resctrl_schema *s = of->kn->parent->priv;
1089         struct rdt_resource *r = s->res;
1090 
1091         seq_printf(seq, "%u\n", r->membw.min_bw);
1092         return 0;
1093 }
1094 
1095 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1096                               struct seq_file *seq, void *v)
1097 {
1098         struct rdt_resource *r = of->kn->parent->priv;
1099 
1100         seq_printf(seq, "%d\n", r->num_rmid);
1101 
1102         return 0;
1103 }
1104 
1105 static int rdt_mon_features_show(struct kernfs_open_file *of,
1106                                  struct seq_file *seq, void *v)
1107 {
1108         struct rdt_resource *r = of->kn->parent->priv;
1109         struct mon_evt *mevt;
1110 
1111         list_for_each_entry(mevt, &r->evt_list, list) {
1112                 seq_printf(seq, "%s\n", mevt->name);
1113                 if (mevt->configurable)
1114                         seq_printf(seq, "%s_config\n", mevt->name);
1115         }
1116 
1117         return 0;
1118 }
1119 
1120 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1121                              struct seq_file *seq, void *v)
1122 {
1123         struct resctrl_schema *s = of->kn->parent->priv;
1124         struct rdt_resource *r = s->res;
1125 
1126         seq_printf(seq, "%u\n", r->membw.bw_gran);
1127         return 0;
1128 }
1129 
1130 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1131                              struct seq_file *seq, void *v)
1132 {
1133         struct resctrl_schema *s = of->kn->parent->priv;
1134         struct rdt_resource *r = s->res;
1135 
1136         seq_printf(seq, "%u\n", r->membw.delay_linear);
1137         return 0;
1138 }
1139 
1140 static int max_threshold_occ_show(struct kernfs_open_file *of,
1141                                   struct seq_file *seq, void *v)
1142 {
1143         seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1144 
1145         return 0;
1146 }
1147 
1148 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1149                                          struct seq_file *seq, void *v)
1150 {
1151         struct resctrl_schema *s = of->kn->parent->priv;
1152         struct rdt_resource *r = s->res;
1153 
1154         if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1155                 seq_puts(seq, "per-thread\n");
1156         else
1157                 seq_puts(seq, "max\n");
1158 
1159         return 0;
1160 }
1161 
1162 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1163                                        char *buf, size_t nbytes, loff_t off)
1164 {
1165         unsigned int bytes;
1166         int ret;
1167 
1168         ret = kstrtouint(buf, 0, &bytes);
1169         if (ret)
1170                 return ret;
1171 
1172         if (bytes > resctrl_rmid_realloc_limit)
1173                 return -EINVAL;
1174 
1175         resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1176 
1177         return nbytes;
1178 }
1179 
1180 /*
1181  * rdtgroup_mode_show - Display mode of this resource group
1182  */
1183 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1184                               struct seq_file *s, void *v)
1185 {
1186         struct rdtgroup *rdtgrp;
1187 
1188         rdtgrp = rdtgroup_kn_lock_live(of->kn);
1189         if (!rdtgrp) {
1190                 rdtgroup_kn_unlock(of->kn);
1191                 return -ENOENT;
1192         }
1193 
1194         seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1195 
1196         rdtgroup_kn_unlock(of->kn);
1197         return 0;
1198 }
1199 
1200 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1201 {
1202         switch (my_type) {
1203         case CDP_CODE:
1204                 return CDP_DATA;
1205         case CDP_DATA:
1206                 return CDP_CODE;
1207         default:
1208         case CDP_NONE:
1209                 return CDP_NONE;
1210         }
1211 }
1212 
1213 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1214                                         struct seq_file *seq, void *v)
1215 {
1216         struct resctrl_schema *s = of->kn->parent->priv;
1217         struct rdt_resource *r = s->res;
1218 
1219         seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1220 
1221         return 0;
1222 }
1223 
1224 /**
1225  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1226  * @r: Resource to which domain instance @d belongs.
1227  * @d: The domain instance for which @closid is being tested.
1228  * @cbm: Capacity bitmask being tested.
1229  * @closid: Intended closid for @cbm.
1230  * @type: CDP type of @r.
1231  * @exclusive: Only check if overlaps with exclusive resource groups
1232  *
1233  * Checks if provided @cbm intended to be used for @closid on domain
1234  * @d overlaps with any other closids or other hardware usage associated
1235  * with this domain. If @exclusive is true then only overlaps with
1236  * resource groups in exclusive mode will be considered. If @exclusive
1237  * is false then overlaps with any resource group or hardware entities
1238  * will be considered.
1239  *
1240  * @cbm is unsigned long, even if only 32 bits are used, to make the
1241  * bitmap functions work correctly.
1242  *
1243  * Return: false if CBM does not overlap, true if it does.
1244  */
1245 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d,
1246                                     unsigned long cbm, int closid,
1247                                     enum resctrl_conf_type type, bool exclusive)
1248 {
1249         enum rdtgrp_mode mode;
1250         unsigned long ctrl_b;
1251         int i;
1252 
1253         /* Check for any overlap with regions used by hardware directly */
1254         if (!exclusive) {
1255                 ctrl_b = r->cache.shareable_bits;
1256                 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1257                         return true;
1258         }
1259 
1260         /* Check for overlap with other resource groups */
1261         for (i = 0; i < closids_supported(); i++) {
1262                 ctrl_b = resctrl_arch_get_config(r, d, i, type);
1263                 mode = rdtgroup_mode_by_closid(i);
1264                 if (closid_allocated(i) && i != closid &&
1265                     mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1266                         if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1267                                 if (exclusive) {
1268                                         if (mode == RDT_MODE_EXCLUSIVE)
1269                                                 return true;
1270                                         continue;
1271                                 }
1272                                 return true;
1273                         }
1274                 }
1275         }
1276 
1277         return false;
1278 }
1279 
1280 /**
1281  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1282  * @s: Schema for the resource to which domain instance @d belongs.
1283  * @d: The domain instance for which @closid is being tested.
1284  * @cbm: Capacity bitmask being tested.
1285  * @closid: Intended closid for @cbm.
1286  * @exclusive: Only check if overlaps with exclusive resource groups
1287  *
1288  * Resources that can be allocated using a CBM can use the CBM to control
1289  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1290  * for overlap. Overlap test is not limited to the specific resource for
1291  * which the CBM is intended though - when dealing with CDP resources that
1292  * share the underlying hardware the overlap check should be performed on
1293  * the CDP resource sharing the hardware also.
1294  *
1295  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1296  * overlap test.
1297  *
1298  * Return: true if CBM overlap detected, false if there is no overlap
1299  */
1300 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d,
1301                            unsigned long cbm, int closid, bool exclusive)
1302 {
1303         enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1304         struct rdt_resource *r = s->res;
1305 
1306         if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1307                                     exclusive))
1308                 return true;
1309 
1310         if (!resctrl_arch_get_cdp_enabled(r->rid))
1311                 return false;
1312         return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1313 }
1314 
1315 /**
1316  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1317  * @rdtgrp: Resource group identified through its closid.
1318  *
1319  * An exclusive resource group implies that there should be no sharing of
1320  * its allocated resources. At the time this group is considered to be
1321  * exclusive this test can determine if its current schemata supports this
1322  * setting by testing for overlap with all other resource groups.
1323  *
1324  * Return: true if resource group can be exclusive, false if there is overlap
1325  * with allocations of other resource groups and thus this resource group
1326  * cannot be exclusive.
1327  */
1328 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1329 {
1330         int closid = rdtgrp->closid;
1331         struct rdt_ctrl_domain *d;
1332         struct resctrl_schema *s;
1333         struct rdt_resource *r;
1334         bool has_cache = false;
1335         u32 ctrl;
1336 
1337         /* Walking r->domains, ensure it can't race with cpuhp */
1338         lockdep_assert_cpus_held();
1339 
1340         list_for_each_entry(s, &resctrl_schema_all, list) {
1341                 r = s->res;
1342                 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1343                         continue;
1344                 has_cache = true;
1345                 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1346                         ctrl = resctrl_arch_get_config(r, d, closid,
1347                                                        s->conf_type);
1348                         if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1349                                 rdt_last_cmd_puts("Schemata overlaps\n");
1350                                 return false;
1351                         }
1352                 }
1353         }
1354 
1355         if (!has_cache) {
1356                 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1357                 return false;
1358         }
1359 
1360         return true;
1361 }
1362 
1363 /*
1364  * rdtgroup_mode_write - Modify the resource group's mode
1365  */
1366 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1367                                    char *buf, size_t nbytes, loff_t off)
1368 {
1369         struct rdtgroup *rdtgrp;
1370         enum rdtgrp_mode mode;
1371         int ret = 0;
1372 
1373         /* Valid input requires a trailing newline */
1374         if (nbytes == 0 || buf[nbytes - 1] != '\n')
1375                 return -EINVAL;
1376         buf[nbytes - 1] = '\0';
1377 
1378         rdtgrp = rdtgroup_kn_lock_live(of->kn);
1379         if (!rdtgrp) {
1380                 rdtgroup_kn_unlock(of->kn);
1381                 return -ENOENT;
1382         }
1383 
1384         rdt_last_cmd_clear();
1385 
1386         mode = rdtgrp->mode;
1387 
1388         if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1389             (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1390             (!strcmp(buf, "pseudo-locksetup") &&
1391              mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1392             (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1393                 goto out;
1394 
1395         if (mode == RDT_MODE_PSEUDO_LOCKED) {
1396                 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1397                 ret = -EINVAL;
1398                 goto out;
1399         }
1400 
1401         if (!strcmp(buf, "shareable")) {
1402                 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1403                         ret = rdtgroup_locksetup_exit(rdtgrp);
1404                         if (ret)
1405                                 goto out;
1406                 }
1407                 rdtgrp->mode = RDT_MODE_SHAREABLE;
1408         } else if (!strcmp(buf, "exclusive")) {
1409                 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1410                         ret = -EINVAL;
1411                         goto out;
1412                 }
1413                 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1414                         ret = rdtgroup_locksetup_exit(rdtgrp);
1415                         if (ret)
1416                                 goto out;
1417                 }
1418                 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1419         } else if (!strcmp(buf, "pseudo-locksetup")) {
1420                 ret = rdtgroup_locksetup_enter(rdtgrp);
1421                 if (ret)
1422                         goto out;
1423                 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1424         } else {
1425                 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1426                 ret = -EINVAL;
1427         }
1428 
1429 out:
1430         rdtgroup_kn_unlock(of->kn);
1431         return ret ?: nbytes;
1432 }
1433 
1434 /**
1435  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1436  * @r: RDT resource to which @d belongs.
1437  * @d: RDT domain instance.
1438  * @cbm: bitmask for which the size should be computed.
1439  *
1440  * The bitmask provided associated with the RDT domain instance @d will be
1441  * translated into how many bytes it represents. The size in bytes is
1442  * computed by first dividing the total cache size by the CBM length to
1443  * determine how many bytes each bit in the bitmask represents. The result
1444  * is multiplied with the number of bits set in the bitmask.
1445  *
1446  * @cbm is unsigned long, even if only 32 bits are used to make the
1447  * bitmap functions work correctly.
1448  */
1449 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1450                                   struct rdt_ctrl_domain *d, unsigned long cbm)
1451 {
1452         unsigned int size = 0;
1453         struct cacheinfo *ci;
1454         int num_b;
1455 
1456         if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE))
1457                 return size;
1458 
1459         num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1460         ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope);
1461         if (ci)
1462                 size = ci->size / r->cache.cbm_len * num_b;
1463 
1464         return size;
1465 }
1466 
1467 /*
1468  * rdtgroup_size_show - Display size in bytes of allocated regions
1469  *
1470  * The "size" file mirrors the layout of the "schemata" file, printing the
1471  * size in bytes of each region instead of the capacity bitmask.
1472  */
1473 static int rdtgroup_size_show(struct kernfs_open_file *of,
1474                               struct seq_file *s, void *v)
1475 {
1476         struct resctrl_schema *schema;
1477         enum resctrl_conf_type type;
1478         struct rdt_ctrl_domain *d;
1479         struct rdtgroup *rdtgrp;
1480         struct rdt_resource *r;
1481         unsigned int size;
1482         int ret = 0;
1483         u32 closid;
1484         bool sep;
1485         u32 ctrl;
1486 
1487         rdtgrp = rdtgroup_kn_lock_live(of->kn);
1488         if (!rdtgrp) {
1489                 rdtgroup_kn_unlock(of->kn);
1490                 return -ENOENT;
1491         }
1492 
1493         if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1494                 if (!rdtgrp->plr->d) {
1495                         rdt_last_cmd_clear();
1496                         rdt_last_cmd_puts("Cache domain offline\n");
1497                         ret = -ENODEV;
1498                 } else {
1499                         seq_printf(s, "%*s:", max_name_width,
1500                                    rdtgrp->plr->s->name);
1501                         size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1502                                                     rdtgrp->plr->d,
1503                                                     rdtgrp->plr->cbm);
1504                         seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size);
1505                 }
1506                 goto out;
1507         }
1508 
1509         closid = rdtgrp->closid;
1510 
1511         list_for_each_entry(schema, &resctrl_schema_all, list) {
1512                 r = schema->res;
1513                 type = schema->conf_type;
1514                 sep = false;
1515                 seq_printf(s, "%*s:", max_name_width, schema->name);
1516                 list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
1517                         if (sep)
1518                                 seq_putc(s, ';');
1519                         if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1520                                 size = 0;
1521                         } else {
1522                                 if (is_mba_sc(r))
1523                                         ctrl = d->mbps_val[closid];
1524                                 else
1525                                         ctrl = resctrl_arch_get_config(r, d,
1526                                                                        closid,
1527                                                                        type);
1528                                 if (r->rid == RDT_RESOURCE_MBA ||
1529                                     r->rid == RDT_RESOURCE_SMBA)
1530                                         size = ctrl;
1531                                 else
1532                                         size = rdtgroup_cbm_to_size(r, d, ctrl);
1533                         }
1534                         seq_printf(s, "%d=%u", d->hdr.id, size);
1535                         sep = true;
1536                 }
1537                 seq_putc(s, '\n');
1538         }
1539 
1540 out:
1541         rdtgroup_kn_unlock(of->kn);
1542 
1543         return ret;
1544 }
1545 
1546 struct mon_config_info {
1547         u32 evtid;
1548         u32 mon_config;
1549 };
1550 
1551 #define INVALID_CONFIG_INDEX   UINT_MAX
1552 
1553 /**
1554  * mon_event_config_index_get - get the hardware index for the
1555  *                              configurable event
1556  * @evtid: event id.
1557  *
1558  * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1559  *         1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1560  *         INVALID_CONFIG_INDEX for invalid evtid
1561  */
1562 static inline unsigned int mon_event_config_index_get(u32 evtid)
1563 {
1564         switch (evtid) {
1565         case QOS_L3_MBM_TOTAL_EVENT_ID:
1566                 return 0;
1567         case QOS_L3_MBM_LOCAL_EVENT_ID:
1568                 return 1;
1569         default:
1570                 /* Should never reach here */
1571                 return INVALID_CONFIG_INDEX;
1572         }
1573 }
1574 
1575 static void mon_event_config_read(void *info)
1576 {
1577         struct mon_config_info *mon_info = info;
1578         unsigned int index;
1579         u64 msrval;
1580 
1581         index = mon_event_config_index_get(mon_info->evtid);
1582         if (index == INVALID_CONFIG_INDEX) {
1583                 pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1584                 return;
1585         }
1586         rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1587 
1588         /* Report only the valid event configuration bits */
1589         mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1590 }
1591 
1592 static void mondata_config_read(struct rdt_mon_domain *d, struct mon_config_info *mon_info)
1593 {
1594         smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_read, mon_info, 1);
1595 }
1596 
1597 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1598 {
1599         struct mon_config_info mon_info = {0};
1600         struct rdt_mon_domain *dom;
1601         bool sep = false;
1602 
1603         cpus_read_lock();
1604         mutex_lock(&rdtgroup_mutex);
1605 
1606         list_for_each_entry(dom, &r->mon_domains, hdr.list) {
1607                 if (sep)
1608                         seq_puts(s, ";");
1609 
1610                 memset(&mon_info, 0, sizeof(struct mon_config_info));
1611                 mon_info.evtid = evtid;
1612                 mondata_config_read(dom, &mon_info);
1613 
1614                 seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config);
1615                 sep = true;
1616         }
1617         seq_puts(s, "\n");
1618 
1619         mutex_unlock(&rdtgroup_mutex);
1620         cpus_read_unlock();
1621 
1622         return 0;
1623 }
1624 
1625 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1626                                        struct seq_file *seq, void *v)
1627 {
1628         struct rdt_resource *r = of->kn->parent->priv;
1629 
1630         mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1631 
1632         return 0;
1633 }
1634 
1635 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1636                                        struct seq_file *seq, void *v)
1637 {
1638         struct rdt_resource *r = of->kn->parent->priv;
1639 
1640         mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1641 
1642         return 0;
1643 }
1644 
1645 static void mon_event_config_write(void *info)
1646 {
1647         struct mon_config_info *mon_info = info;
1648         unsigned int index;
1649 
1650         index = mon_event_config_index_get(mon_info->evtid);
1651         if (index == INVALID_CONFIG_INDEX) {
1652                 pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1653                 return;
1654         }
1655         wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1656 }
1657 
1658 static void mbm_config_write_domain(struct rdt_resource *r,
1659                                     struct rdt_mon_domain *d, u32 evtid, u32 val)
1660 {
1661         struct mon_config_info mon_info = {0};
1662 
1663         /*
1664          * Read the current config value first. If both are the same then
1665          * no need to write it again.
1666          */
1667         mon_info.evtid = evtid;
1668         mondata_config_read(d, &mon_info);
1669         if (mon_info.mon_config == val)
1670                 return;
1671 
1672         mon_info.mon_config = val;
1673 
1674         /*
1675          * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1676          * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1677          * are scoped at the domain level. Writing any of these MSRs
1678          * on one CPU is observed by all the CPUs in the domain.
1679          */
1680         smp_call_function_any(&d->hdr.cpu_mask, mon_event_config_write,
1681                               &mon_info, 1);
1682 
1683         /*
1684          * When an Event Configuration is changed, the bandwidth counters
1685          * for all RMIDs and Events will be cleared by the hardware. The
1686          * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1687          * every RMID on the next read to any event for every RMID.
1688          * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1689          * cleared while it is tracked by the hardware. Clear the
1690          * mbm_local and mbm_total counts for all the RMIDs.
1691          */
1692         resctrl_arch_reset_rmid_all(r, d);
1693 }
1694 
1695 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1696 {
1697         struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1698         char *dom_str = NULL, *id_str;
1699         unsigned long dom_id, val;
1700         struct rdt_mon_domain *d;
1701 
1702         /* Walking r->domains, ensure it can't race with cpuhp */
1703         lockdep_assert_cpus_held();
1704 
1705 next:
1706         if (!tok || tok[0] == '\0')
1707                 return 0;
1708 
1709         /* Start processing the strings for each domain */
1710         dom_str = strim(strsep(&tok, ";"));
1711         id_str = strsep(&dom_str, "=");
1712 
1713         if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1714                 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1715                 return -EINVAL;
1716         }
1717 
1718         if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1719                 rdt_last_cmd_puts("Non-numeric event configuration value\n");
1720                 return -EINVAL;
1721         }
1722 
1723         /* Value from user cannot be more than the supported set of events */
1724         if ((val & hw_res->mbm_cfg_mask) != val) {
1725                 rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1726                                     hw_res->mbm_cfg_mask);
1727                 return -EINVAL;
1728         }
1729 
1730         list_for_each_entry(d, &r->mon_domains, hdr.list) {
1731                 if (d->hdr.id == dom_id) {
1732                         mbm_config_write_domain(r, d, evtid, val);
1733                         goto next;
1734                 }
1735         }
1736 
1737         return -EINVAL;
1738 }
1739 
1740 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1741                                             char *buf, size_t nbytes,
1742                                             loff_t off)
1743 {
1744         struct rdt_resource *r = of->kn->parent->priv;
1745         int ret;
1746 
1747         /* Valid input requires a trailing newline */
1748         if (nbytes == 0 || buf[nbytes - 1] != '\n')
1749                 return -EINVAL;
1750 
1751         cpus_read_lock();
1752         mutex_lock(&rdtgroup_mutex);
1753 
1754         rdt_last_cmd_clear();
1755 
1756         buf[nbytes - 1] = '\0';
1757 
1758         ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1759 
1760         mutex_unlock(&rdtgroup_mutex);
1761         cpus_read_unlock();
1762 
1763         return ret ?: nbytes;
1764 }
1765 
1766 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1767                                             char *buf, size_t nbytes,
1768                                             loff_t off)
1769 {
1770         struct rdt_resource *r = of->kn->parent->priv;
1771         int ret;
1772 
1773         /* Valid input requires a trailing newline */
1774         if (nbytes == 0 || buf[nbytes - 1] != '\n')
1775                 return -EINVAL;
1776 
1777         cpus_read_lock();
1778         mutex_lock(&rdtgroup_mutex);
1779 
1780         rdt_last_cmd_clear();
1781 
1782         buf[nbytes - 1] = '\0';
1783 
1784         ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1785 
1786         mutex_unlock(&rdtgroup_mutex);
1787         cpus_read_unlock();
1788 
1789         return ret ?: nbytes;
1790 }
1791 
1792 /* rdtgroup information files for one cache resource. */
1793 static struct rftype res_common_files[] = {
1794         {
1795                 .name           = "last_cmd_status",
1796                 .mode           = 0444,
1797                 .kf_ops         = &rdtgroup_kf_single_ops,
1798                 .seq_show       = rdt_last_cmd_status_show,
1799                 .fflags         = RFTYPE_TOP_INFO,
1800         },
1801         {
1802                 .name           = "num_closids",
1803                 .mode           = 0444,
1804                 .kf_ops         = &rdtgroup_kf_single_ops,
1805                 .seq_show       = rdt_num_closids_show,
1806                 .fflags         = RFTYPE_CTRL_INFO,
1807         },
1808         {
1809                 .name           = "mon_features",
1810                 .mode           = 0444,
1811                 .kf_ops         = &rdtgroup_kf_single_ops,
1812                 .seq_show       = rdt_mon_features_show,
1813                 .fflags         = RFTYPE_MON_INFO,
1814         },
1815         {
1816                 .name           = "num_rmids",
1817                 .mode           = 0444,
1818                 .kf_ops         = &rdtgroup_kf_single_ops,
1819                 .seq_show       = rdt_num_rmids_show,
1820                 .fflags         = RFTYPE_MON_INFO,
1821         },
1822         {
1823                 .name           = "cbm_mask",
1824                 .mode           = 0444,
1825                 .kf_ops         = &rdtgroup_kf_single_ops,
1826                 .seq_show       = rdt_default_ctrl_show,
1827                 .fflags         = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1828         },
1829         {
1830                 .name           = "min_cbm_bits",
1831                 .mode           = 0444,
1832                 .kf_ops         = &rdtgroup_kf_single_ops,
1833                 .seq_show       = rdt_min_cbm_bits_show,
1834                 .fflags         = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1835         },
1836         {
1837                 .name           = "shareable_bits",
1838                 .mode           = 0444,
1839                 .kf_ops         = &rdtgroup_kf_single_ops,
1840                 .seq_show       = rdt_shareable_bits_show,
1841                 .fflags         = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1842         },
1843         {
1844                 .name           = "bit_usage",
1845                 .mode           = 0444,
1846                 .kf_ops         = &rdtgroup_kf_single_ops,
1847                 .seq_show       = rdt_bit_usage_show,
1848                 .fflags         = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1849         },
1850         {
1851                 .name           = "min_bandwidth",
1852                 .mode           = 0444,
1853                 .kf_ops         = &rdtgroup_kf_single_ops,
1854                 .seq_show       = rdt_min_bw_show,
1855                 .fflags         = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1856         },
1857         {
1858                 .name           = "bandwidth_gran",
1859                 .mode           = 0444,
1860                 .kf_ops         = &rdtgroup_kf_single_ops,
1861                 .seq_show       = rdt_bw_gran_show,
1862                 .fflags         = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1863         },
1864         {
1865                 .name           = "delay_linear",
1866                 .mode           = 0444,
1867                 .kf_ops         = &rdtgroup_kf_single_ops,
1868                 .seq_show       = rdt_delay_linear_show,
1869                 .fflags         = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1870         },
1871         /*
1872          * Platform specific which (if any) capabilities are provided by
1873          * thread_throttle_mode. Defer "fflags" initialization to platform
1874          * discovery.
1875          */
1876         {
1877                 .name           = "thread_throttle_mode",
1878                 .mode           = 0444,
1879                 .kf_ops         = &rdtgroup_kf_single_ops,
1880                 .seq_show       = rdt_thread_throttle_mode_show,
1881         },
1882         {
1883                 .name           = "max_threshold_occupancy",
1884                 .mode           = 0644,
1885                 .kf_ops         = &rdtgroup_kf_single_ops,
1886                 .write          = max_threshold_occ_write,
1887                 .seq_show       = max_threshold_occ_show,
1888                 .fflags         = RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1889         },
1890         {
1891                 .name           = "mbm_total_bytes_config",
1892                 .mode           = 0644,
1893                 .kf_ops         = &rdtgroup_kf_single_ops,
1894                 .seq_show       = mbm_total_bytes_config_show,
1895                 .write          = mbm_total_bytes_config_write,
1896         },
1897         {
1898                 .name           = "mbm_local_bytes_config",
1899                 .mode           = 0644,
1900                 .kf_ops         = &rdtgroup_kf_single_ops,
1901                 .seq_show       = mbm_local_bytes_config_show,
1902                 .write          = mbm_local_bytes_config_write,
1903         },
1904         {
1905                 .name           = "cpus",
1906                 .mode           = 0644,
1907                 .kf_ops         = &rdtgroup_kf_single_ops,
1908                 .write          = rdtgroup_cpus_write,
1909                 .seq_show       = rdtgroup_cpus_show,
1910                 .fflags         = RFTYPE_BASE,
1911         },
1912         {
1913                 .name           = "cpus_list",
1914                 .mode           = 0644,
1915                 .kf_ops         = &rdtgroup_kf_single_ops,
1916                 .write          = rdtgroup_cpus_write,
1917                 .seq_show       = rdtgroup_cpus_show,
1918                 .flags          = RFTYPE_FLAGS_CPUS_LIST,
1919                 .fflags         = RFTYPE_BASE,
1920         },
1921         {
1922                 .name           = "tasks",
1923                 .mode           = 0644,
1924                 .kf_ops         = &rdtgroup_kf_single_ops,
1925                 .write          = rdtgroup_tasks_write,
1926                 .seq_show       = rdtgroup_tasks_show,
1927                 .fflags         = RFTYPE_BASE,
1928         },
1929         {
1930                 .name           = "mon_hw_id",
1931                 .mode           = 0444,
1932                 .kf_ops         = &rdtgroup_kf_single_ops,
1933                 .seq_show       = rdtgroup_rmid_show,
1934                 .fflags         = RFTYPE_MON_BASE | RFTYPE_DEBUG,
1935         },
1936         {
1937                 .name           = "schemata",
1938                 .mode           = 0644,
1939                 .kf_ops         = &rdtgroup_kf_single_ops,
1940                 .write          = rdtgroup_schemata_write,
1941                 .seq_show       = rdtgroup_schemata_show,
1942                 .fflags         = RFTYPE_CTRL_BASE,
1943         },
1944         {
1945                 .name           = "mode",
1946                 .mode           = 0644,
1947                 .kf_ops         = &rdtgroup_kf_single_ops,
1948                 .write          = rdtgroup_mode_write,
1949                 .seq_show       = rdtgroup_mode_show,
1950                 .fflags         = RFTYPE_CTRL_BASE,
1951         },
1952         {
1953                 .name           = "size",
1954                 .mode           = 0444,
1955                 .kf_ops         = &rdtgroup_kf_single_ops,
1956                 .seq_show       = rdtgroup_size_show,
1957                 .fflags         = RFTYPE_CTRL_BASE,
1958         },
1959         {
1960                 .name           = "sparse_masks",
1961                 .mode           = 0444,
1962                 .kf_ops         = &rdtgroup_kf_single_ops,
1963                 .seq_show       = rdt_has_sparse_bitmasks_show,
1964                 .fflags         = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1965         },
1966         {
1967                 .name           = "ctrl_hw_id",
1968                 .mode           = 0444,
1969                 .kf_ops         = &rdtgroup_kf_single_ops,
1970                 .seq_show       = rdtgroup_closid_show,
1971                 .fflags         = RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
1972         },
1973 
1974 };
1975 
1976 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1977 {
1978         struct rftype *rfts, *rft;
1979         int ret, len;
1980 
1981         rfts = res_common_files;
1982         len = ARRAY_SIZE(res_common_files);
1983 
1984         lockdep_assert_held(&rdtgroup_mutex);
1985 
1986         if (resctrl_debug)
1987                 fflags |= RFTYPE_DEBUG;
1988 
1989         for (rft = rfts; rft < rfts + len; rft++) {
1990                 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1991                         ret = rdtgroup_add_file(kn, rft);
1992                         if (ret)
1993                                 goto error;
1994                 }
1995         }
1996 
1997         return 0;
1998 error:
1999         pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
2000         while (--rft >= rfts) {
2001                 if ((fflags & rft->fflags) == rft->fflags)
2002                         kernfs_remove_by_name(kn, rft->name);
2003         }
2004         return ret;
2005 }
2006 
2007 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
2008 {
2009         struct rftype *rfts, *rft;
2010         int len;
2011 
2012         rfts = res_common_files;
2013         len = ARRAY_SIZE(res_common_files);
2014 
2015         for (rft = rfts; rft < rfts + len; rft++) {
2016                 if (!strcmp(rft->name, name))
2017                         return rft;
2018         }
2019 
2020         return NULL;
2021 }
2022 
2023 void __init thread_throttle_mode_init(void)
2024 {
2025         struct rftype *rft;
2026 
2027         rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
2028         if (!rft)
2029                 return;
2030 
2031         rft->fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB;
2032 }
2033 
2034 void __init mbm_config_rftype_init(const char *config)
2035 {
2036         struct rftype *rft;
2037 
2038         rft = rdtgroup_get_rftype_by_name(config);
2039         if (rft)
2040                 rft->fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE;
2041 }
2042 
2043 /**
2044  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2045  * @r: The resource group with which the file is associated.
2046  * @name: Name of the file
2047  *
2048  * The permissions of named resctrl file, directory, or link are modified
2049  * to not allow read, write, or execute by any user.
2050  *
2051  * WARNING: This function is intended to communicate to the user that the
2052  * resctrl file has been locked down - that it is not relevant to the
2053  * particular state the system finds itself in. It should not be relied
2054  * on to protect from user access because after the file's permissions
2055  * are restricted the user can still change the permissions using chmod
2056  * from the command line.
2057  *
2058  * Return: 0 on success, <0 on failure.
2059  */
2060 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2061 {
2062         struct iattr iattr = {.ia_valid = ATTR_MODE,};
2063         struct kernfs_node *kn;
2064         int ret = 0;
2065 
2066         kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2067         if (!kn)
2068                 return -ENOENT;
2069 
2070         switch (kernfs_type(kn)) {
2071         case KERNFS_DIR:
2072                 iattr.ia_mode = S_IFDIR;
2073                 break;
2074         case KERNFS_FILE:
2075                 iattr.ia_mode = S_IFREG;
2076                 break;
2077         case KERNFS_LINK:
2078                 iattr.ia_mode = S_IFLNK;
2079                 break;
2080         }
2081 
2082         ret = kernfs_setattr(kn, &iattr);
2083         kernfs_put(kn);
2084         return ret;
2085 }
2086 
2087 /**
2088  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2089  * @r: The resource group with which the file is associated.
2090  * @name: Name of the file
2091  * @mask: Mask of permissions that should be restored
2092  *
2093  * Restore the permissions of the named file. If @name is a directory the
2094  * permissions of its parent will be used.
2095  *
2096  * Return: 0 on success, <0 on failure.
2097  */
2098 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2099                              umode_t mask)
2100 {
2101         struct iattr iattr = {.ia_valid = ATTR_MODE,};
2102         struct kernfs_node *kn, *parent;
2103         struct rftype *rfts, *rft;
2104         int ret, len;
2105 
2106         rfts = res_common_files;
2107         len = ARRAY_SIZE(res_common_files);
2108 
2109         for (rft = rfts; rft < rfts + len; rft++) {
2110                 if (!strcmp(rft->name, name))
2111                         iattr.ia_mode = rft->mode & mask;
2112         }
2113 
2114         kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2115         if (!kn)
2116                 return -ENOENT;
2117 
2118         switch (kernfs_type(kn)) {
2119         case KERNFS_DIR:
2120                 parent = kernfs_get_parent(kn);
2121                 if (parent) {
2122                         iattr.ia_mode |= parent->mode;
2123                         kernfs_put(parent);
2124                 }
2125                 iattr.ia_mode |= S_IFDIR;
2126                 break;
2127         case KERNFS_FILE:
2128                 iattr.ia_mode |= S_IFREG;
2129                 break;
2130         case KERNFS_LINK:
2131                 iattr.ia_mode |= S_IFLNK;
2132                 break;
2133         }
2134 
2135         ret = kernfs_setattr(kn, &iattr);
2136         kernfs_put(kn);
2137         return ret;
2138 }
2139 
2140 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2141                                       unsigned long fflags)
2142 {
2143         struct kernfs_node *kn_subdir;
2144         int ret;
2145 
2146         kn_subdir = kernfs_create_dir(kn_info, name,
2147                                       kn_info->mode, priv);
2148         if (IS_ERR(kn_subdir))
2149                 return PTR_ERR(kn_subdir);
2150 
2151         ret = rdtgroup_kn_set_ugid(kn_subdir);
2152         if (ret)
2153                 return ret;
2154 
2155         ret = rdtgroup_add_files(kn_subdir, fflags);
2156         if (!ret)
2157                 kernfs_activate(kn_subdir);
2158 
2159         return ret;
2160 }
2161 
2162 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2163 {
2164         struct resctrl_schema *s;
2165         struct rdt_resource *r;
2166         unsigned long fflags;
2167         char name[32];
2168         int ret;
2169 
2170         /* create the directory */
2171         kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2172         if (IS_ERR(kn_info))
2173                 return PTR_ERR(kn_info);
2174 
2175         ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2176         if (ret)
2177                 goto out_destroy;
2178 
2179         /* loop over enabled controls, these are all alloc_capable */
2180         list_for_each_entry(s, &resctrl_schema_all, list) {
2181                 r = s->res;
2182                 fflags = r->fflags | RFTYPE_CTRL_INFO;
2183                 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2184                 if (ret)
2185                         goto out_destroy;
2186         }
2187 
2188         for_each_mon_capable_rdt_resource(r) {
2189                 fflags = r->fflags | RFTYPE_MON_INFO;
2190                 sprintf(name, "%s_MON", r->name);
2191                 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2192                 if (ret)
2193                         goto out_destroy;
2194         }
2195 
2196         ret = rdtgroup_kn_set_ugid(kn_info);
2197         if (ret)
2198                 goto out_destroy;
2199 
2200         kernfs_activate(kn_info);
2201 
2202         return 0;
2203 
2204 out_destroy:
2205         kernfs_remove(kn_info);
2206         return ret;
2207 }
2208 
2209 static int
2210 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2211                     char *name, struct kernfs_node **dest_kn)
2212 {
2213         struct kernfs_node *kn;
2214         int ret;
2215 
2216         /* create the directory */
2217         kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2218         if (IS_ERR(kn))
2219                 return PTR_ERR(kn);
2220 
2221         if (dest_kn)
2222                 *dest_kn = kn;
2223 
2224         ret = rdtgroup_kn_set_ugid(kn);
2225         if (ret)
2226                 goto out_destroy;
2227 
2228         kernfs_activate(kn);
2229 
2230         return 0;
2231 
2232 out_destroy:
2233         kernfs_remove(kn);
2234         return ret;
2235 }
2236 
2237 static void l3_qos_cfg_update(void *arg)
2238 {
2239         bool *enable = arg;
2240 
2241         wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2242 }
2243 
2244 static void l2_qos_cfg_update(void *arg)
2245 {
2246         bool *enable = arg;
2247 
2248         wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2249 }
2250 
2251 static inline bool is_mba_linear(void)
2252 {
2253         return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2254 }
2255 
2256 static int set_cache_qos_cfg(int level, bool enable)
2257 {
2258         void (*update)(void *arg);
2259         struct rdt_ctrl_domain *d;
2260         struct rdt_resource *r_l;
2261         cpumask_var_t cpu_mask;
2262         int cpu;
2263 
2264         /* Walking r->domains, ensure it can't race with cpuhp */
2265         lockdep_assert_cpus_held();
2266 
2267         if (level == RDT_RESOURCE_L3)
2268                 update = l3_qos_cfg_update;
2269         else if (level == RDT_RESOURCE_L2)
2270                 update = l2_qos_cfg_update;
2271         else
2272                 return -EINVAL;
2273 
2274         if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2275                 return -ENOMEM;
2276 
2277         r_l = &rdt_resources_all[level].r_resctrl;
2278         list_for_each_entry(d, &r_l->ctrl_domains, hdr.list) {
2279                 if (r_l->cache.arch_has_per_cpu_cfg)
2280                         /* Pick all the CPUs in the domain instance */
2281                         for_each_cpu(cpu, &d->hdr.cpu_mask)
2282                                 cpumask_set_cpu(cpu, cpu_mask);
2283                 else
2284                         /* Pick one CPU from each domain instance to update MSR */
2285                         cpumask_set_cpu(cpumask_any(&d->hdr.cpu_mask), cpu_mask);
2286         }
2287 
2288         /* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2289         on_each_cpu_mask(cpu_mask, update, &enable, 1);
2290 
2291         free_cpumask_var(cpu_mask);
2292 
2293         return 0;
2294 }
2295 
2296 /* Restore the qos cfg state when a domain comes online */
2297 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2298 {
2299         struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2300 
2301         if (!r->cdp_capable)
2302                 return;
2303 
2304         if (r->rid == RDT_RESOURCE_L2)
2305                 l2_qos_cfg_update(&hw_res->cdp_enabled);
2306 
2307         if (r->rid == RDT_RESOURCE_L3)
2308                 l3_qos_cfg_update(&hw_res->cdp_enabled);
2309 }
2310 
2311 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d)
2312 {
2313         u32 num_closid = resctrl_arch_get_num_closid(r);
2314         int cpu = cpumask_any(&d->hdr.cpu_mask);
2315         int i;
2316 
2317         d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2318                                    GFP_KERNEL, cpu_to_node(cpu));
2319         if (!d->mbps_val)
2320                 return -ENOMEM;
2321 
2322         for (i = 0; i < num_closid; i++)
2323                 d->mbps_val[i] = MBA_MAX_MBPS;
2324 
2325         return 0;
2326 }
2327 
2328 static void mba_sc_domain_destroy(struct rdt_resource *r,
2329                                   struct rdt_ctrl_domain *d)
2330 {
2331         kfree(d->mbps_val);
2332         d->mbps_val = NULL;
2333 }
2334 
2335 /*
2336  * MBA software controller is supported only if
2337  * MBM is supported and MBA is in linear scale,
2338  * and the MBM monitor scope is the same as MBA
2339  * control scope.
2340  */
2341 static bool supports_mba_mbps(void)
2342 {
2343         struct rdt_resource *rmbm = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2344         struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2345 
2346         return (is_mbm_local_enabled() &&
2347                 r->alloc_capable && is_mba_linear() &&
2348                 r->ctrl_scope == rmbm->mon_scope);
2349 }
2350 
2351 /*
2352  * Enable or disable the MBA software controller
2353  * which helps user specify bandwidth in MBps.
2354  */
2355 static int set_mba_sc(bool mba_sc)
2356 {
2357         struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2358         u32 num_closid = resctrl_arch_get_num_closid(r);
2359         struct rdt_ctrl_domain *d;
2360         int i;
2361 
2362         if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2363                 return -EINVAL;
2364 
2365         r->membw.mba_sc = mba_sc;
2366 
2367         list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2368                 for (i = 0; i < num_closid; i++)
2369                         d->mbps_val[i] = MBA_MAX_MBPS;
2370         }
2371 
2372         return 0;
2373 }
2374 
2375 static int cdp_enable(int level)
2376 {
2377         struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2378         int ret;
2379 
2380         if (!r_l->alloc_capable)
2381                 return -EINVAL;
2382 
2383         ret = set_cache_qos_cfg(level, true);
2384         if (!ret)
2385                 rdt_resources_all[level].cdp_enabled = true;
2386 
2387         return ret;
2388 }
2389 
2390 static void cdp_disable(int level)
2391 {
2392         struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2393 
2394         if (r_hw->cdp_enabled) {
2395                 set_cache_qos_cfg(level, false);
2396                 r_hw->cdp_enabled = false;
2397         }
2398 }
2399 
2400 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2401 {
2402         struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2403 
2404         if (!hw_res->r_resctrl.cdp_capable)
2405                 return -EINVAL;
2406 
2407         if (enable)
2408                 return cdp_enable(l);
2409 
2410         cdp_disable(l);
2411 
2412         return 0;
2413 }
2414 
2415 /*
2416  * We don't allow rdtgroup directories to be created anywhere
2417  * except the root directory. Thus when looking for the rdtgroup
2418  * structure for a kernfs node we are either looking at a directory,
2419  * in which case the rdtgroup structure is pointed at by the "priv"
2420  * field, otherwise we have a file, and need only look to the parent
2421  * to find the rdtgroup.
2422  */
2423 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2424 {
2425         if (kernfs_type(kn) == KERNFS_DIR) {
2426                 /*
2427                  * All the resource directories use "kn->priv"
2428                  * to point to the "struct rdtgroup" for the
2429                  * resource. "info" and its subdirectories don't
2430                  * have rdtgroup structures, so return NULL here.
2431                  */
2432                 if (kn == kn_info || kn->parent == kn_info)
2433                         return NULL;
2434                 else
2435                         return kn->priv;
2436         } else {
2437                 return kn->parent->priv;
2438         }
2439 }
2440 
2441 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2442 {
2443         atomic_inc(&rdtgrp->waitcount);
2444         kernfs_break_active_protection(kn);
2445 }
2446 
2447 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2448 {
2449         if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2450             (rdtgrp->flags & RDT_DELETED)) {
2451                 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2452                     rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2453                         rdtgroup_pseudo_lock_remove(rdtgrp);
2454                 kernfs_unbreak_active_protection(kn);
2455                 rdtgroup_remove(rdtgrp);
2456         } else {
2457                 kernfs_unbreak_active_protection(kn);
2458         }
2459 }
2460 
2461 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2462 {
2463         struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2464 
2465         if (!rdtgrp)
2466                 return NULL;
2467 
2468         rdtgroup_kn_get(rdtgrp, kn);
2469 
2470         cpus_read_lock();
2471         mutex_lock(&rdtgroup_mutex);
2472 
2473         /* Was this group deleted while we waited? */
2474         if (rdtgrp->flags & RDT_DELETED)
2475                 return NULL;
2476 
2477         return rdtgrp;
2478 }
2479 
2480 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2481 {
2482         struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2483 
2484         if (!rdtgrp)
2485                 return;
2486 
2487         mutex_unlock(&rdtgroup_mutex);
2488         cpus_read_unlock();
2489 
2490         rdtgroup_kn_put(rdtgrp, kn);
2491 }
2492 
2493 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2494                              struct rdtgroup *prgrp,
2495                              struct kernfs_node **mon_data_kn);
2496 
2497 static void rdt_disable_ctx(void)
2498 {
2499         resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2500         resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2501         set_mba_sc(false);
2502 
2503         resctrl_debug = false;
2504 }
2505 
2506 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2507 {
2508         int ret = 0;
2509 
2510         if (ctx->enable_cdpl2) {
2511                 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2512                 if (ret)
2513                         goto out_done;
2514         }
2515 
2516         if (ctx->enable_cdpl3) {
2517                 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2518                 if (ret)
2519                         goto out_cdpl2;
2520         }
2521 
2522         if (ctx->enable_mba_mbps) {
2523                 ret = set_mba_sc(true);
2524                 if (ret)
2525                         goto out_cdpl3;
2526         }
2527 
2528         if (ctx->enable_debug)
2529                 resctrl_debug = true;
2530 
2531         return 0;
2532 
2533 out_cdpl3:
2534         resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2535 out_cdpl2:
2536         resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2537 out_done:
2538         return ret;
2539 }
2540 
2541 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2542 {
2543         struct resctrl_schema *s;
2544         const char *suffix = "";
2545         int ret, cl;
2546 
2547         s = kzalloc(sizeof(*s), GFP_KERNEL);
2548         if (!s)
2549                 return -ENOMEM;
2550 
2551         s->res = r;
2552         s->num_closid = resctrl_arch_get_num_closid(r);
2553         if (resctrl_arch_get_cdp_enabled(r->rid))
2554                 s->num_closid /= 2;
2555 
2556         s->conf_type = type;
2557         switch (type) {
2558         case CDP_CODE:
2559                 suffix = "CODE";
2560                 break;
2561         case CDP_DATA:
2562                 suffix = "DATA";
2563                 break;
2564         case CDP_NONE:
2565                 suffix = "";
2566                 break;
2567         }
2568 
2569         ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2570         if (ret >= sizeof(s->name)) {
2571                 kfree(s);
2572                 return -EINVAL;
2573         }
2574 
2575         cl = strlen(s->name);
2576 
2577         /*
2578          * If CDP is supported by this resource, but not enabled,
2579          * include the suffix. This ensures the tabular format of the
2580          * schemata file does not change between mounts of the filesystem.
2581          */
2582         if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2583                 cl += 4;
2584 
2585         if (cl > max_name_width)
2586                 max_name_width = cl;
2587 
2588         INIT_LIST_HEAD(&s->list);
2589         list_add(&s->list, &resctrl_schema_all);
2590 
2591         return 0;
2592 }
2593 
2594 static int schemata_list_create(void)
2595 {
2596         struct rdt_resource *r;
2597         int ret = 0;
2598 
2599         for_each_alloc_capable_rdt_resource(r) {
2600                 if (resctrl_arch_get_cdp_enabled(r->rid)) {
2601                         ret = schemata_list_add(r, CDP_CODE);
2602                         if (ret)
2603                                 break;
2604 
2605                         ret = schemata_list_add(r, CDP_DATA);
2606                 } else {
2607                         ret = schemata_list_add(r, CDP_NONE);
2608                 }
2609 
2610                 if (ret)
2611                         break;
2612         }
2613 
2614         return ret;
2615 }
2616 
2617 static void schemata_list_destroy(void)
2618 {
2619         struct resctrl_schema *s, *tmp;
2620 
2621         list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2622                 list_del(&s->list);
2623                 kfree(s);
2624         }
2625 }
2626 
2627 static int rdt_get_tree(struct fs_context *fc)
2628 {
2629         struct rdt_fs_context *ctx = rdt_fc2context(fc);
2630         unsigned long flags = RFTYPE_CTRL_BASE;
2631         struct rdt_mon_domain *dom;
2632         struct rdt_resource *r;
2633         int ret;
2634 
2635         cpus_read_lock();
2636         mutex_lock(&rdtgroup_mutex);
2637         /*
2638          * resctrl file system can only be mounted once.
2639          */
2640         if (resctrl_mounted) {
2641                 ret = -EBUSY;
2642                 goto out;
2643         }
2644 
2645         ret = rdtgroup_setup_root(ctx);
2646         if (ret)
2647                 goto out;
2648 
2649         ret = rdt_enable_ctx(ctx);
2650         if (ret)
2651                 goto out_root;
2652 
2653         ret = schemata_list_create();
2654         if (ret) {
2655                 schemata_list_destroy();
2656                 goto out_ctx;
2657         }
2658 
2659         closid_init();
2660 
2661         if (resctrl_arch_mon_capable())
2662                 flags |= RFTYPE_MON;
2663 
2664         ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2665         if (ret)
2666                 goto out_schemata_free;
2667 
2668         kernfs_activate(rdtgroup_default.kn);
2669 
2670         ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2671         if (ret < 0)
2672                 goto out_schemata_free;
2673 
2674         if (resctrl_arch_mon_capable()) {
2675                 ret = mongroup_create_dir(rdtgroup_default.kn,
2676                                           &rdtgroup_default, "mon_groups",
2677                                           &kn_mongrp);
2678                 if (ret < 0)
2679                         goto out_info;
2680 
2681                 ret = mkdir_mondata_all(rdtgroup_default.kn,
2682                                         &rdtgroup_default, &kn_mondata);
2683                 if (ret < 0)
2684                         goto out_mongrp;
2685                 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2686         }
2687 
2688         ret = rdt_pseudo_lock_init();
2689         if (ret)
2690                 goto out_mondata;
2691 
2692         ret = kernfs_get_tree(fc);
2693         if (ret < 0)
2694                 goto out_psl;
2695 
2696         if (resctrl_arch_alloc_capable())
2697                 resctrl_arch_enable_alloc();
2698         if (resctrl_arch_mon_capable())
2699                 resctrl_arch_enable_mon();
2700 
2701         if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable())
2702                 resctrl_mounted = true;
2703 
2704         if (is_mbm_enabled()) {
2705                 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2706                 list_for_each_entry(dom, &r->mon_domains, hdr.list)
2707                         mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL,
2708                                                    RESCTRL_PICK_ANY_CPU);
2709         }
2710 
2711         goto out;
2712 
2713 out_psl:
2714         rdt_pseudo_lock_release();
2715 out_mondata:
2716         if (resctrl_arch_mon_capable())
2717                 kernfs_remove(kn_mondata);
2718 out_mongrp:
2719         if (resctrl_arch_mon_capable())
2720                 kernfs_remove(kn_mongrp);
2721 out_info:
2722         kernfs_remove(kn_info);
2723 out_schemata_free:
2724         schemata_list_destroy();
2725 out_ctx:
2726         rdt_disable_ctx();
2727 out_root:
2728         rdtgroup_destroy_root();
2729 out:
2730         rdt_last_cmd_clear();
2731         mutex_unlock(&rdtgroup_mutex);
2732         cpus_read_unlock();
2733         return ret;
2734 }
2735 
2736 enum rdt_param {
2737         Opt_cdp,
2738         Opt_cdpl2,
2739         Opt_mba_mbps,
2740         Opt_debug,
2741         nr__rdt_params
2742 };
2743 
2744 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2745         fsparam_flag("cdp",             Opt_cdp),
2746         fsparam_flag("cdpl2",           Opt_cdpl2),
2747         fsparam_flag("mba_MBps",        Opt_mba_mbps),
2748         fsparam_flag("debug",           Opt_debug),
2749         {}
2750 };
2751 
2752 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2753 {
2754         struct rdt_fs_context *ctx = rdt_fc2context(fc);
2755         struct fs_parse_result result;
2756         const char *msg;
2757         int opt;
2758 
2759         opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2760         if (opt < 0)
2761                 return opt;
2762 
2763         switch (opt) {
2764         case Opt_cdp:
2765                 ctx->enable_cdpl3 = true;
2766                 return 0;
2767         case Opt_cdpl2:
2768                 ctx->enable_cdpl2 = true;
2769                 return 0;
2770         case Opt_mba_mbps:
2771                 msg = "mba_MBps requires local MBM and linear scale MBA at L3 scope";
2772                 if (!supports_mba_mbps())
2773                         return invalfc(fc, msg);
2774                 ctx->enable_mba_mbps = true;
2775                 return 0;
2776         case Opt_debug:
2777                 ctx->enable_debug = true;
2778                 return 0;
2779         }
2780 
2781         return -EINVAL;
2782 }
2783 
2784 static void rdt_fs_context_free(struct fs_context *fc)
2785 {
2786         struct rdt_fs_context *ctx = rdt_fc2context(fc);
2787 
2788         kernfs_free_fs_context(fc);
2789         kfree(ctx);
2790 }
2791 
2792 static const struct fs_context_operations rdt_fs_context_ops = {
2793         .free           = rdt_fs_context_free,
2794         .parse_param    = rdt_parse_param,
2795         .get_tree       = rdt_get_tree,
2796 };
2797 
2798 static int rdt_init_fs_context(struct fs_context *fc)
2799 {
2800         struct rdt_fs_context *ctx;
2801 
2802         ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2803         if (!ctx)
2804                 return -ENOMEM;
2805 
2806         ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2807         fc->fs_private = &ctx->kfc;
2808         fc->ops = &rdt_fs_context_ops;
2809         put_user_ns(fc->user_ns);
2810         fc->user_ns = get_user_ns(&init_user_ns);
2811         fc->global = true;
2812         return 0;
2813 }
2814 
2815 static int reset_all_ctrls(struct rdt_resource *r)
2816 {
2817         struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2818         struct rdt_hw_ctrl_domain *hw_dom;
2819         struct msr_param msr_param;
2820         struct rdt_ctrl_domain *d;
2821         int i;
2822 
2823         /* Walking r->domains, ensure it can't race with cpuhp */
2824         lockdep_assert_cpus_held();
2825 
2826         msr_param.res = r;
2827         msr_param.low = 0;
2828         msr_param.high = hw_res->num_closid;
2829 
2830         /*
2831          * Disable resource control for this resource by setting all
2832          * CBMs in all ctrl_domains to the maximum mask value. Pick one CPU
2833          * from each domain to update the MSRs below.
2834          */
2835         list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
2836                 hw_dom = resctrl_to_arch_ctrl_dom(d);
2837 
2838                 for (i = 0; i < hw_res->num_closid; i++)
2839                         hw_dom->ctrl_val[i] = r->default_ctrl;
2840                 msr_param.dom = d;
2841                 smp_call_function_any(&d->hdr.cpu_mask, rdt_ctrl_update, &msr_param, 1);
2842         }
2843 
2844         return 0;
2845 }
2846 
2847 /*
2848  * Move tasks from one to the other group. If @from is NULL, then all tasks
2849  * in the systems are moved unconditionally (used for teardown).
2850  *
2851  * If @mask is not NULL the cpus on which moved tasks are running are set
2852  * in that mask so the update smp function call is restricted to affected
2853  * cpus.
2854  */
2855 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2856                                  struct cpumask *mask)
2857 {
2858         struct task_struct *p, *t;
2859 
2860         read_lock(&tasklist_lock);
2861         for_each_process_thread(p, t) {
2862                 if (!from || is_closid_match(t, from) ||
2863                     is_rmid_match(t, from)) {
2864                         resctrl_arch_set_closid_rmid(t, to->closid,
2865                                                      to->mon.rmid);
2866 
2867                         /*
2868                          * Order the closid/rmid stores above before the loads
2869                          * in task_curr(). This pairs with the full barrier
2870                          * between the rq->curr update and resctrl_sched_in()
2871                          * during context switch.
2872                          */
2873                         smp_mb();
2874 
2875                         /*
2876                          * If the task is on a CPU, set the CPU in the mask.
2877                          * The detection is inaccurate as tasks might move or
2878                          * schedule before the smp function call takes place.
2879                          * In such a case the function call is pointless, but
2880                          * there is no other side effect.
2881                          */
2882                         if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2883                                 cpumask_set_cpu(task_cpu(t), mask);
2884                 }
2885         }
2886         read_unlock(&tasklist_lock);
2887 }
2888 
2889 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2890 {
2891         struct rdtgroup *sentry, *stmp;
2892         struct list_head *head;
2893 
2894         head = &rdtgrp->mon.crdtgrp_list;
2895         list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2896                 free_rmid(sentry->closid, sentry->mon.rmid);
2897                 list_del(&sentry->mon.crdtgrp_list);
2898 
2899                 if (atomic_read(&sentry->waitcount) != 0)
2900                         sentry->flags = RDT_DELETED;
2901                 else
2902                         rdtgroup_remove(sentry);
2903         }
2904 }
2905 
2906 /*
2907  * Forcibly remove all of subdirectories under root.
2908  */
2909 static void rmdir_all_sub(void)
2910 {
2911         struct rdtgroup *rdtgrp, *tmp;
2912 
2913         /* Move all tasks to the default resource group */
2914         rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2915 
2916         list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2917                 /* Free any child rmids */
2918                 free_all_child_rdtgrp(rdtgrp);
2919 
2920                 /* Remove each rdtgroup other than root */
2921                 if (rdtgrp == &rdtgroup_default)
2922                         continue;
2923 
2924                 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2925                     rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2926                         rdtgroup_pseudo_lock_remove(rdtgrp);
2927 
2928                 /*
2929                  * Give any CPUs back to the default group. We cannot copy
2930                  * cpu_online_mask because a CPU might have executed the
2931                  * offline callback already, but is still marked online.
2932                  */
2933                 cpumask_or(&rdtgroup_default.cpu_mask,
2934                            &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2935 
2936                 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
2937 
2938                 kernfs_remove(rdtgrp->kn);
2939                 list_del(&rdtgrp->rdtgroup_list);
2940 
2941                 if (atomic_read(&rdtgrp->waitcount) != 0)
2942                         rdtgrp->flags = RDT_DELETED;
2943                 else
2944                         rdtgroup_remove(rdtgrp);
2945         }
2946         /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2947         update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2948 
2949         kernfs_remove(kn_info);
2950         kernfs_remove(kn_mongrp);
2951         kernfs_remove(kn_mondata);
2952 }
2953 
2954 static void rdt_kill_sb(struct super_block *sb)
2955 {
2956         struct rdt_resource *r;
2957 
2958         cpus_read_lock();
2959         mutex_lock(&rdtgroup_mutex);
2960 
2961         rdt_disable_ctx();
2962 
2963         /*Put everything back to default values. */
2964         for_each_alloc_capable_rdt_resource(r)
2965                 reset_all_ctrls(r);
2966         rmdir_all_sub();
2967         rdt_pseudo_lock_release();
2968         rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2969         schemata_list_destroy();
2970         rdtgroup_destroy_root();
2971         if (resctrl_arch_alloc_capable())
2972                 resctrl_arch_disable_alloc();
2973         if (resctrl_arch_mon_capable())
2974                 resctrl_arch_disable_mon();
2975         resctrl_mounted = false;
2976         kernfs_kill_sb(sb);
2977         mutex_unlock(&rdtgroup_mutex);
2978         cpus_read_unlock();
2979 }
2980 
2981 static struct file_system_type rdt_fs_type = {
2982         .name                   = "resctrl",
2983         .init_fs_context        = rdt_init_fs_context,
2984         .parameters             = rdt_fs_parameters,
2985         .kill_sb                = rdt_kill_sb,
2986 };
2987 
2988 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2989                        void *priv)
2990 {
2991         struct kernfs_node *kn;
2992         int ret = 0;
2993 
2994         kn = __kernfs_create_file(parent_kn, name, 0444,
2995                                   GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2996                                   &kf_mondata_ops, priv, NULL, NULL);
2997         if (IS_ERR(kn))
2998                 return PTR_ERR(kn);
2999 
3000         ret = rdtgroup_kn_set_ugid(kn);
3001         if (ret) {
3002                 kernfs_remove(kn);
3003                 return ret;
3004         }
3005 
3006         return ret;
3007 }
3008 
3009 static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname)
3010 {
3011         struct kernfs_node *kn;
3012 
3013         kn = kernfs_find_and_get(pkn, name);
3014         if (!kn)
3015                 return;
3016         kernfs_put(kn);
3017 
3018         if (kn->dir.subdirs <= 1)
3019                 kernfs_remove(kn);
3020         else
3021                 kernfs_remove_by_name(kn, subname);
3022 }
3023 
3024 /*
3025  * Remove all subdirectories of mon_data of ctrl_mon groups
3026  * and monitor groups for the given domain.
3027  * Remove files and directories containing "sum" of domain data
3028  * when last domain being summed is removed.
3029  */
3030 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3031                                            struct rdt_mon_domain *d)
3032 {
3033         struct rdtgroup *prgrp, *crgrp;
3034         char subname[32];
3035         bool snc_mode;
3036         char name[32];
3037 
3038         snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3039         sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3040         if (snc_mode)
3041                 sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id);
3042 
3043         list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3044                 mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname);
3045 
3046                 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
3047                         mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname);
3048         }
3049 }
3050 
3051 static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d,
3052                              struct rdt_resource *r, struct rdtgroup *prgrp,
3053                              bool do_sum)
3054 {
3055         struct rmid_read rr = {0};
3056         union mon_data_bits priv;
3057         struct mon_evt *mevt;
3058         int ret;
3059 
3060         if (WARN_ON(list_empty(&r->evt_list)))
3061                 return -EPERM;
3062 
3063         priv.u.rid = r->rid;
3064         priv.u.domid = do_sum ? d->ci->id : d->hdr.id;
3065         priv.u.sum = do_sum;
3066         list_for_each_entry(mevt, &r->evt_list, list) {
3067                 priv.u.evtid = mevt->evtid;
3068                 ret = mon_addfile(kn, mevt->name, priv.priv);
3069                 if (ret)
3070                         return ret;
3071 
3072                 if (!do_sum && is_mbm_event(mevt->evtid))
3073                         mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true);
3074         }
3075 
3076         return 0;
3077 }
3078 
3079 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
3080                                 struct rdt_mon_domain *d,
3081                                 struct rdt_resource *r, struct rdtgroup *prgrp)
3082 {
3083         struct kernfs_node *kn, *ckn;
3084         char name[32];
3085         bool snc_mode;
3086         int ret = 0;
3087 
3088         lockdep_assert_held(&rdtgroup_mutex);
3089 
3090         snc_mode = r->mon_scope == RESCTRL_L3_NODE;
3091         sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci->id : d->hdr.id);
3092         kn = kernfs_find_and_get(parent_kn, name);
3093         if (kn) {
3094                 /*
3095                  * rdtgroup_mutex will prevent this directory from being
3096                  * removed. No need to keep this hold.
3097                  */
3098                 kernfs_put(kn);
3099         } else {
3100                 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
3101                 if (IS_ERR(kn))
3102                         return PTR_ERR(kn);
3103 
3104                 ret = rdtgroup_kn_set_ugid(kn);
3105                 if (ret)
3106                         goto out_destroy;
3107                 ret = mon_add_all_files(kn, d, r, prgrp, snc_mode);
3108                 if (ret)
3109                         goto out_destroy;
3110         }
3111 
3112         if (snc_mode) {
3113                 sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id);
3114                 ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp);
3115                 if (IS_ERR(ckn)) {
3116                         ret = -EINVAL;
3117                         goto out_destroy;
3118                 }
3119 
3120                 ret = rdtgroup_kn_set_ugid(ckn);
3121                 if (ret)
3122                         goto out_destroy;
3123 
3124                 ret = mon_add_all_files(ckn, d, r, prgrp, false);
3125                 if (ret)
3126                         goto out_destroy;
3127         }
3128 
3129         kernfs_activate(kn);
3130         return 0;
3131 
3132 out_destroy:
3133         kernfs_remove(kn);
3134         return ret;
3135 }
3136 
3137 /*
3138  * Add all subdirectories of mon_data for "ctrl_mon" groups
3139  * and "monitor" groups with given domain id.
3140  */
3141 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3142                                            struct rdt_mon_domain *d)
3143 {
3144         struct kernfs_node *parent_kn;
3145         struct rdtgroup *prgrp, *crgrp;
3146         struct list_head *head;
3147 
3148         list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3149                 parent_kn = prgrp->mon.mon_data_kn;
3150                 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3151 
3152                 head = &prgrp->mon.crdtgrp_list;
3153                 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3154                         parent_kn = crgrp->mon.mon_data_kn;
3155                         mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3156                 }
3157         }
3158 }
3159 
3160 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3161                                        struct rdt_resource *r,
3162                                        struct rdtgroup *prgrp)
3163 {
3164         struct rdt_mon_domain *dom;
3165         int ret;
3166 
3167         /* Walking r->domains, ensure it can't race with cpuhp */
3168         lockdep_assert_cpus_held();
3169 
3170         list_for_each_entry(dom, &r->mon_domains, hdr.list) {
3171                 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3172                 if (ret)
3173                         return ret;
3174         }
3175 
3176         return 0;
3177 }
3178 
3179 /*
3180  * This creates a directory mon_data which contains the monitored data.
3181  *
3182  * mon_data has one directory for each domain which are named
3183  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3184  * with L3 domain looks as below:
3185  * ./mon_data:
3186  * mon_L3_00
3187  * mon_L3_01
3188  * mon_L3_02
3189  * ...
3190  *
3191  * Each domain directory has one file per event:
3192  * ./mon_L3_00/:
3193  * llc_occupancy
3194  *
3195  */
3196 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3197                              struct rdtgroup *prgrp,
3198                              struct kernfs_node **dest_kn)
3199 {
3200         struct rdt_resource *r;
3201         struct kernfs_node *kn;
3202         int ret;
3203 
3204         /*
3205          * Create the mon_data directory first.
3206          */
3207         ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3208         if (ret)
3209                 return ret;
3210 
3211         if (dest_kn)
3212                 *dest_kn = kn;
3213 
3214         /*
3215          * Create the subdirectories for each domain. Note that all events
3216          * in a domain like L3 are grouped into a resource whose domain is L3
3217          */
3218         for_each_mon_capable_rdt_resource(r) {
3219                 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3220                 if (ret)
3221                         goto out_destroy;
3222         }
3223 
3224         return 0;
3225 
3226 out_destroy:
3227         kernfs_remove(kn);
3228         return ret;
3229 }
3230 
3231 /**
3232  * cbm_ensure_valid - Enforce validity on provided CBM
3233  * @_val:       Candidate CBM
3234  * @r:          RDT resource to which the CBM belongs
3235  *
3236  * The provided CBM represents all cache portions available for use. This
3237  * may be represented by a bitmap that does not consist of contiguous ones
3238  * and thus be an invalid CBM.
3239  * Here the provided CBM is forced to be a valid CBM by only considering
3240  * the first set of contiguous bits as valid and clearing all bits.
3241  * The intention here is to provide a valid default CBM with which a new
3242  * resource group is initialized. The user can follow this with a
3243  * modification to the CBM if the default does not satisfy the
3244  * requirements.
3245  */
3246 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3247 {
3248         unsigned int cbm_len = r->cache.cbm_len;
3249         unsigned long first_bit, zero_bit;
3250         unsigned long val = _val;
3251 
3252         if (!val)
3253                 return 0;
3254 
3255         first_bit = find_first_bit(&val, cbm_len);
3256         zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3257 
3258         /* Clear any remaining bits to ensure contiguous region */
3259         bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3260         return (u32)val;
3261 }
3262 
3263 /*
3264  * Initialize cache resources per RDT domain
3265  *
3266  * Set the RDT domain up to start off with all usable allocations. That is,
3267  * all shareable and unused bits. All-zero CBM is invalid.
3268  */
3269 static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s,
3270                                  u32 closid)
3271 {
3272         enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3273         enum resctrl_conf_type t = s->conf_type;
3274         struct resctrl_staged_config *cfg;
3275         struct rdt_resource *r = s->res;
3276         u32 used_b = 0, unused_b = 0;
3277         unsigned long tmp_cbm;
3278         enum rdtgrp_mode mode;
3279         u32 peer_ctl, ctrl_val;
3280         int i;
3281 
3282         cfg = &d->staged_config[t];
3283         cfg->have_new_ctrl = false;
3284         cfg->new_ctrl = r->cache.shareable_bits;
3285         used_b = r->cache.shareable_bits;
3286         for (i = 0; i < closids_supported(); i++) {
3287                 if (closid_allocated(i) && i != closid) {
3288                         mode = rdtgroup_mode_by_closid(i);
3289                         if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3290                                 /*
3291                                  * ctrl values for locksetup aren't relevant
3292                                  * until the schemata is written, and the mode
3293                                  * becomes RDT_MODE_PSEUDO_LOCKED.
3294                                  */
3295                                 continue;
3296                         /*
3297                          * If CDP is active include peer domain's
3298                          * usage to ensure there is no overlap
3299                          * with an exclusive group.
3300                          */
3301                         if (resctrl_arch_get_cdp_enabled(r->rid))
3302                                 peer_ctl = resctrl_arch_get_config(r, d, i,
3303                                                                    peer_type);
3304                         else
3305                                 peer_ctl = 0;
3306                         ctrl_val = resctrl_arch_get_config(r, d, i,
3307                                                            s->conf_type);
3308                         used_b |= ctrl_val | peer_ctl;
3309                         if (mode == RDT_MODE_SHAREABLE)
3310                                 cfg->new_ctrl |= ctrl_val | peer_ctl;
3311                 }
3312         }
3313         if (d->plr && d->plr->cbm > 0)
3314                 used_b |= d->plr->cbm;
3315         unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3316         unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3317         cfg->new_ctrl |= unused_b;
3318         /*
3319          * Force the initial CBM to be valid, user can
3320          * modify the CBM based on system availability.
3321          */
3322         cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3323         /*
3324          * Assign the u32 CBM to an unsigned long to ensure that
3325          * bitmap_weight() does not access out-of-bound memory.
3326          */
3327         tmp_cbm = cfg->new_ctrl;
3328         if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3329                 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id);
3330                 return -ENOSPC;
3331         }
3332         cfg->have_new_ctrl = true;
3333 
3334         return 0;
3335 }
3336 
3337 /*
3338  * Initialize cache resources with default values.
3339  *
3340  * A new RDT group is being created on an allocation capable (CAT)
3341  * supporting system. Set this group up to start off with all usable
3342  * allocations.
3343  *
3344  * If there are no more shareable bits available on any domain then
3345  * the entire allocation will fail.
3346  */
3347 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3348 {
3349         struct rdt_ctrl_domain *d;
3350         int ret;
3351 
3352         list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) {
3353                 ret = __init_one_rdt_domain(d, s, closid);
3354                 if (ret < 0)
3355                         return ret;
3356         }
3357 
3358         return 0;
3359 }
3360 
3361 /* Initialize MBA resource with default values. */
3362 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3363 {
3364         struct resctrl_staged_config *cfg;
3365         struct rdt_ctrl_domain *d;
3366 
3367         list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
3368                 if (is_mba_sc(r)) {
3369                         d->mbps_val[closid] = MBA_MAX_MBPS;
3370                         continue;
3371                 }
3372 
3373                 cfg = &d->staged_config[CDP_NONE];
3374                 cfg->new_ctrl = r->default_ctrl;
3375                 cfg->have_new_ctrl = true;
3376         }
3377 }
3378 
3379 /* Initialize the RDT group's allocations. */
3380 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3381 {
3382         struct resctrl_schema *s;
3383         struct rdt_resource *r;
3384         int ret = 0;
3385 
3386         rdt_staged_configs_clear();
3387 
3388         list_for_each_entry(s, &resctrl_schema_all, list) {
3389                 r = s->res;
3390                 if (r->rid == RDT_RESOURCE_MBA ||
3391                     r->rid == RDT_RESOURCE_SMBA) {
3392                         rdtgroup_init_mba(r, rdtgrp->closid);
3393                         if (is_mba_sc(r))
3394                                 continue;
3395                 } else {
3396                         ret = rdtgroup_init_cat(s, rdtgrp->closid);
3397                         if (ret < 0)
3398                                 goto out;
3399                 }
3400 
3401                 ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3402                 if (ret < 0) {
3403                         rdt_last_cmd_puts("Failed to initialize allocations\n");
3404                         goto out;
3405                 }
3406 
3407         }
3408 
3409         rdtgrp->mode = RDT_MODE_SHAREABLE;
3410 
3411 out:
3412         rdt_staged_configs_clear();
3413         return ret;
3414 }
3415 
3416 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp)
3417 {
3418         int ret;
3419 
3420         if (!resctrl_arch_mon_capable())
3421                 return 0;
3422 
3423         ret = alloc_rmid(rdtgrp->closid);
3424         if (ret < 0) {
3425                 rdt_last_cmd_puts("Out of RMIDs\n");
3426                 return ret;
3427         }
3428         rdtgrp->mon.rmid = ret;
3429 
3430         ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3431         if (ret) {
3432                 rdt_last_cmd_puts("kernfs subdir error\n");
3433                 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3434                 return ret;
3435         }
3436 
3437         return 0;
3438 }
3439 
3440 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp)
3441 {
3442         if (resctrl_arch_mon_capable())
3443                 free_rmid(rgrp->closid, rgrp->mon.rmid);
3444 }
3445 
3446 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3447                              const char *name, umode_t mode,
3448                              enum rdt_group_type rtype, struct rdtgroup **r)
3449 {
3450         struct rdtgroup *prdtgrp, *rdtgrp;
3451         unsigned long files = 0;
3452         struct kernfs_node *kn;
3453         int ret;
3454 
3455         prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3456         if (!prdtgrp) {
3457                 ret = -ENODEV;
3458                 goto out_unlock;
3459         }
3460 
3461         if (rtype == RDTMON_GROUP &&
3462             (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3463              prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3464                 ret = -EINVAL;
3465                 rdt_last_cmd_puts("Pseudo-locking in progress\n");
3466                 goto out_unlock;
3467         }
3468 
3469         /* allocate the rdtgroup. */
3470         rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3471         if (!rdtgrp) {
3472                 ret = -ENOSPC;
3473                 rdt_last_cmd_puts("Kernel out of memory\n");
3474                 goto out_unlock;
3475         }
3476         *r = rdtgrp;
3477         rdtgrp->mon.parent = prdtgrp;
3478         rdtgrp->type = rtype;
3479         INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3480 
3481         /* kernfs creates the directory for rdtgrp */
3482         kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3483         if (IS_ERR(kn)) {
3484                 ret = PTR_ERR(kn);
3485                 rdt_last_cmd_puts("kernfs create error\n");
3486                 goto out_free_rgrp;
3487         }
3488         rdtgrp->kn = kn;
3489 
3490         /*
3491          * kernfs_remove() will drop the reference count on "kn" which
3492          * will free it. But we still need it to stick around for the
3493          * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3494          * which will be dropped by kernfs_put() in rdtgroup_remove().
3495          */
3496         kernfs_get(kn);
3497 
3498         ret = rdtgroup_kn_set_ugid(kn);
3499         if (ret) {
3500                 rdt_last_cmd_puts("kernfs perm error\n");
3501                 goto out_destroy;
3502         }
3503 
3504         if (rtype == RDTCTRL_GROUP) {
3505                 files = RFTYPE_BASE | RFTYPE_CTRL;
3506                 if (resctrl_arch_mon_capable())
3507                         files |= RFTYPE_MON;
3508         } else {
3509                 files = RFTYPE_BASE | RFTYPE_MON;
3510         }
3511 
3512         ret = rdtgroup_add_files(kn, files);
3513         if (ret) {
3514                 rdt_last_cmd_puts("kernfs fill error\n");
3515                 goto out_destroy;
3516         }
3517 
3518         /*
3519          * The caller unlocks the parent_kn upon success.
3520          */
3521         return 0;
3522 
3523 out_destroy:
3524         kernfs_put(rdtgrp->kn);
3525         kernfs_remove(rdtgrp->kn);
3526 out_free_rgrp:
3527         kfree(rdtgrp);
3528 out_unlock:
3529         rdtgroup_kn_unlock(parent_kn);
3530         return ret;
3531 }
3532 
3533 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3534 {
3535         kernfs_remove(rgrp->kn);
3536         rdtgroup_remove(rgrp);
3537 }
3538 
3539 /*
3540  * Create a monitor group under "mon_groups" directory of a control
3541  * and monitor group(ctrl_mon). This is a resource group
3542  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3543  */
3544 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3545                               const char *name, umode_t mode)
3546 {
3547         struct rdtgroup *rdtgrp, *prgrp;
3548         int ret;
3549 
3550         ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3551         if (ret)
3552                 return ret;
3553 
3554         prgrp = rdtgrp->mon.parent;
3555         rdtgrp->closid = prgrp->closid;
3556 
3557         ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3558         if (ret) {
3559                 mkdir_rdt_prepare_clean(rdtgrp);
3560                 goto out_unlock;
3561         }
3562 
3563         kernfs_activate(rdtgrp->kn);
3564 
3565         /*
3566          * Add the rdtgrp to the list of rdtgrps the parent
3567          * ctrl_mon group has to track.
3568          */
3569         list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3570 
3571 out_unlock:
3572         rdtgroup_kn_unlock(parent_kn);
3573         return ret;
3574 }
3575 
3576 /*
3577  * These are rdtgroups created under the root directory. Can be used
3578  * to allocate and monitor resources.
3579  */
3580 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3581                                    const char *name, umode_t mode)
3582 {
3583         struct rdtgroup *rdtgrp;
3584         struct kernfs_node *kn;
3585         u32 closid;
3586         int ret;
3587 
3588         ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3589         if (ret)
3590                 return ret;
3591 
3592         kn = rdtgrp->kn;
3593         ret = closid_alloc();
3594         if (ret < 0) {
3595                 rdt_last_cmd_puts("Out of CLOSIDs\n");
3596                 goto out_common_fail;
3597         }
3598         closid = ret;
3599         ret = 0;
3600 
3601         rdtgrp->closid = closid;
3602 
3603         ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3604         if (ret)
3605                 goto out_closid_free;
3606 
3607         kernfs_activate(rdtgrp->kn);
3608 
3609         ret = rdtgroup_init_alloc(rdtgrp);
3610         if (ret < 0)
3611                 goto out_rmid_free;
3612 
3613         list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3614 
3615         if (resctrl_arch_mon_capable()) {
3616                 /*
3617                  * Create an empty mon_groups directory to hold the subset
3618                  * of tasks and cpus to monitor.
3619                  */
3620                 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3621                 if (ret) {
3622                         rdt_last_cmd_puts("kernfs subdir error\n");
3623                         goto out_del_list;
3624                 }
3625         }
3626 
3627         goto out_unlock;
3628 
3629 out_del_list:
3630         list_del(&rdtgrp->rdtgroup_list);
3631 out_rmid_free:
3632         mkdir_rdt_prepare_rmid_free(rdtgrp);
3633 out_closid_free:
3634         closid_free(closid);
3635 out_common_fail:
3636         mkdir_rdt_prepare_clean(rdtgrp);
3637 out_unlock:
3638         rdtgroup_kn_unlock(parent_kn);
3639         return ret;
3640 }
3641 
3642 /*
3643  * We allow creating mon groups only with in a directory called "mon_groups"
3644  * which is present in every ctrl_mon group. Check if this is a valid
3645  * "mon_groups" directory.
3646  *
3647  * 1. The directory should be named "mon_groups".
3648  * 2. The mon group itself should "not" be named "mon_groups".
3649  *   This makes sure "mon_groups" directory always has a ctrl_mon group
3650  *   as parent.
3651  */
3652 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3653 {
3654         return (!strcmp(kn->name, "mon_groups") &&
3655                 strcmp(name, "mon_groups"));
3656 }
3657 
3658 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3659                           umode_t mode)
3660 {
3661         /* Do not accept '\n' to avoid unparsable situation. */
3662         if (strchr(name, '\n'))
3663                 return -EINVAL;
3664 
3665         /*
3666          * If the parent directory is the root directory and RDT
3667          * allocation is supported, add a control and monitoring
3668          * subdirectory
3669          */
3670         if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn)
3671                 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3672 
3673         /*
3674          * If RDT monitoring is supported and the parent directory is a valid
3675          * "mon_groups" directory, add a monitoring subdirectory.
3676          */
3677         if (resctrl_arch_mon_capable() && is_mon_groups(parent_kn, name))
3678                 return rdtgroup_mkdir_mon(parent_kn, name, mode);
3679 
3680         return -EPERM;
3681 }
3682 
3683 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3684 {
3685         struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3686         int cpu;
3687 
3688         /* Give any tasks back to the parent group */
3689         rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3690 
3691         /* Update per cpu rmid of the moved CPUs first */
3692         for_each_cpu(cpu, &rdtgrp->cpu_mask)
3693                 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3694         /*
3695          * Update the MSR on moved CPUs and CPUs which have moved
3696          * task running on them.
3697          */
3698         cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3699         update_closid_rmid(tmpmask, NULL);
3700 
3701         rdtgrp->flags = RDT_DELETED;
3702         free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3703 
3704         /*
3705          * Remove the rdtgrp from the parent ctrl_mon group's list
3706          */
3707         WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3708         list_del(&rdtgrp->mon.crdtgrp_list);
3709 
3710         kernfs_remove(rdtgrp->kn);
3711 
3712         return 0;
3713 }
3714 
3715 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3716 {
3717         rdtgrp->flags = RDT_DELETED;
3718         list_del(&rdtgrp->rdtgroup_list);
3719 
3720         kernfs_remove(rdtgrp->kn);
3721         return 0;
3722 }
3723 
3724 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3725 {
3726         int cpu;
3727 
3728         /* Give any tasks back to the default group */
3729         rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3730 
3731         /* Give any CPUs back to the default group */
3732         cpumask_or(&rdtgroup_default.cpu_mask,
3733                    &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3734 
3735         /* Update per cpu closid and rmid of the moved CPUs first */
3736         for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3737                 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3738                 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3739         }
3740 
3741         /*
3742          * Update the MSR on moved CPUs and CPUs which have moved
3743          * task running on them.
3744          */
3745         cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3746         update_closid_rmid(tmpmask, NULL);
3747 
3748         free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3749         closid_free(rdtgrp->closid);
3750 
3751         rdtgroup_ctrl_remove(rdtgrp);
3752 
3753         /*
3754          * Free all the child monitor group rmids.
3755          */
3756         free_all_child_rdtgrp(rdtgrp);
3757 
3758         return 0;
3759 }
3760 
3761 static int rdtgroup_rmdir(struct kernfs_node *kn)
3762 {
3763         struct kernfs_node *parent_kn = kn->parent;
3764         struct rdtgroup *rdtgrp;
3765         cpumask_var_t tmpmask;
3766         int ret = 0;
3767 
3768         if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3769                 return -ENOMEM;
3770 
3771         rdtgrp = rdtgroup_kn_lock_live(kn);
3772         if (!rdtgrp) {
3773                 ret = -EPERM;
3774                 goto out;
3775         }
3776 
3777         /*
3778          * If the rdtgroup is a ctrl_mon group and parent directory
3779          * is the root directory, remove the ctrl_mon group.
3780          *
3781          * If the rdtgroup is a mon group and parent directory
3782          * is a valid "mon_groups" directory, remove the mon group.
3783          */
3784         if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3785             rdtgrp != &rdtgroup_default) {
3786                 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3787                     rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3788                         ret = rdtgroup_ctrl_remove(rdtgrp);
3789                 } else {
3790                         ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3791                 }
3792         } else if (rdtgrp->type == RDTMON_GROUP &&
3793                  is_mon_groups(parent_kn, kn->name)) {
3794                 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3795         } else {
3796                 ret = -EPERM;
3797         }
3798 
3799 out:
3800         rdtgroup_kn_unlock(kn);
3801         free_cpumask_var(tmpmask);
3802         return ret;
3803 }
3804 
3805 /**
3806  * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3807  * @rdtgrp:             the MON group whose parent should be replaced
3808  * @new_prdtgrp:        replacement parent CTRL_MON group for @rdtgrp
3809  * @cpus:               cpumask provided by the caller for use during this call
3810  *
3811  * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3812  * tasks' CLOSID immediately changing to that of the new parent group.
3813  * Monitoring data for the group is unaffected by this operation.
3814  */
3815 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3816                             struct rdtgroup *new_prdtgrp,
3817                             cpumask_var_t cpus)
3818 {
3819         struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3820 
3821         WARN_ON(rdtgrp->type != RDTMON_GROUP);
3822         WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3823 
3824         /* Nothing to do when simply renaming a MON group. */
3825         if (prdtgrp == new_prdtgrp)
3826                 return;
3827 
3828         WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3829         list_move_tail(&rdtgrp->mon.crdtgrp_list,
3830                        &new_prdtgrp->mon.crdtgrp_list);
3831 
3832         rdtgrp->mon.parent = new_prdtgrp;
3833         rdtgrp->closid = new_prdtgrp->closid;
3834 
3835         /* Propagate updated closid to all tasks in this group. */
3836         rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3837 
3838         update_closid_rmid(cpus, NULL);
3839 }
3840 
3841 static int rdtgroup_rename(struct kernfs_node *kn,
3842                            struct kernfs_node *new_parent, const char *new_name)
3843 {
3844         struct rdtgroup *new_prdtgrp;
3845         struct rdtgroup *rdtgrp;
3846         cpumask_var_t tmpmask;
3847         int ret;
3848 
3849         rdtgrp = kernfs_to_rdtgroup(kn);
3850         new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3851         if (!rdtgrp || !new_prdtgrp)
3852                 return -ENOENT;
3853 
3854         /* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3855         rdtgroup_kn_get(rdtgrp, kn);
3856         rdtgroup_kn_get(new_prdtgrp, new_parent);
3857 
3858         mutex_lock(&rdtgroup_mutex);
3859 
3860         rdt_last_cmd_clear();
3861 
3862         /*
3863          * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3864          * either kernfs_node is a file.
3865          */
3866         if (kernfs_type(kn) != KERNFS_DIR ||
3867             kernfs_type(new_parent) != KERNFS_DIR) {
3868                 rdt_last_cmd_puts("Source and destination must be directories");
3869                 ret = -EPERM;
3870                 goto out;
3871         }
3872 
3873         if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
3874                 ret = -ENOENT;
3875                 goto out;
3876         }
3877 
3878         if (rdtgrp->type != RDTMON_GROUP || !kn->parent ||
3879             !is_mon_groups(kn->parent, kn->name)) {
3880                 rdt_last_cmd_puts("Source must be a MON group\n");
3881                 ret = -EPERM;
3882                 goto out;
3883         }
3884 
3885         if (!is_mon_groups(new_parent, new_name)) {
3886                 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3887                 ret = -EPERM;
3888                 goto out;
3889         }
3890 
3891         /*
3892          * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3893          * current parent CTRL_MON group and therefore cannot be assigned to
3894          * the new parent, making the move illegal.
3895          */
3896         if (!cpumask_empty(&rdtgrp->cpu_mask) &&
3897             rdtgrp->mon.parent != new_prdtgrp) {
3898                 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3899                 ret = -EPERM;
3900                 goto out;
3901         }
3902 
3903         /*
3904          * Allocate the cpumask for use in mongrp_reparent() to avoid the
3905          * possibility of failing to allocate it after kernfs_rename() has
3906          * succeeded.
3907          */
3908         if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
3909                 ret = -ENOMEM;
3910                 goto out;
3911         }
3912 
3913         /*
3914          * Perform all input validation and allocations needed to ensure
3915          * mongrp_reparent() will succeed before calling kernfs_rename(),
3916          * otherwise it would be necessary to revert this call if
3917          * mongrp_reparent() failed.
3918          */
3919         ret = kernfs_rename(kn, new_parent, new_name);
3920         if (!ret)
3921                 mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
3922 
3923         free_cpumask_var(tmpmask);
3924 
3925 out:
3926         mutex_unlock(&rdtgroup_mutex);
3927         rdtgroup_kn_put(rdtgrp, kn);
3928         rdtgroup_kn_put(new_prdtgrp, new_parent);
3929         return ret;
3930 }
3931 
3932 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3933 {
3934         if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3935                 seq_puts(seq, ",cdp");
3936 
3937         if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3938                 seq_puts(seq, ",cdpl2");
3939 
3940         if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3941                 seq_puts(seq, ",mba_MBps");
3942 
3943         if (resctrl_debug)
3944                 seq_puts(seq, ",debug");
3945 
3946         return 0;
3947 }
3948 
3949 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3950         .mkdir          = rdtgroup_mkdir,
3951         .rmdir          = rdtgroup_rmdir,
3952         .rename         = rdtgroup_rename,
3953         .show_options   = rdtgroup_show_options,
3954 };
3955 
3956 static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
3957 {
3958         rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3959                                       KERNFS_ROOT_CREATE_DEACTIVATED |
3960                                       KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3961                                       &rdtgroup_default);
3962         if (IS_ERR(rdt_root))
3963                 return PTR_ERR(rdt_root);
3964 
3965         ctx->kfc.root = rdt_root;
3966         rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3967 
3968         return 0;
3969 }
3970 
3971 static void rdtgroup_destroy_root(void)
3972 {
3973         kernfs_destroy_root(rdt_root);
3974         rdtgroup_default.kn = NULL;
3975 }
3976 
3977 static void __init rdtgroup_setup_default(void)
3978 {
3979         mutex_lock(&rdtgroup_mutex);
3980 
3981         rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID;
3982         rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID;
3983         rdtgroup_default.type = RDTCTRL_GROUP;
3984         INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3985 
3986         list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3987 
3988         mutex_unlock(&rdtgroup_mutex);
3989 }
3990 
3991 static void domain_destroy_mon_state(struct rdt_mon_domain *d)
3992 {
3993         bitmap_free(d->rmid_busy_llc);
3994         kfree(d->mbm_total);
3995         kfree(d->mbm_local);
3996 }
3997 
3998 void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
3999 {
4000         mutex_lock(&rdtgroup_mutex);
4001 
4002         if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
4003                 mba_sc_domain_destroy(r, d);
4004 
4005         mutex_unlock(&rdtgroup_mutex);
4006 }
4007 
4008 void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4009 {
4010         mutex_lock(&rdtgroup_mutex);
4011 
4012         /*
4013          * If resctrl is mounted, remove all the
4014          * per domain monitor data directories.
4015          */
4016         if (resctrl_mounted && resctrl_arch_mon_capable())
4017                 rmdir_mondata_subdir_allrdtgrp(r, d);
4018 
4019         if (is_mbm_enabled())
4020                 cancel_delayed_work(&d->mbm_over);
4021         if (is_llc_occupancy_enabled() && has_busy_rmid(d)) {
4022                 /*
4023                  * When a package is going down, forcefully
4024                  * decrement rmid->ebusy. There is no way to know
4025                  * that the L3 was flushed and hence may lead to
4026                  * incorrect counts in rare scenarios, but leaving
4027                  * the RMID as busy creates RMID leaks if the
4028                  * package never comes back.
4029                  */
4030                 __check_limbo(d, true);
4031                 cancel_delayed_work(&d->cqm_limbo);
4032         }
4033 
4034         domain_destroy_mon_state(d);
4035 
4036         mutex_unlock(&rdtgroup_mutex);
4037 }
4038 
4039 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d)
4040 {
4041         u32 idx_limit = resctrl_arch_system_num_rmid_idx();
4042         size_t tsize;
4043 
4044         if (is_llc_occupancy_enabled()) {
4045                 d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL);
4046                 if (!d->rmid_busy_llc)
4047                         return -ENOMEM;
4048         }
4049         if (is_mbm_total_enabled()) {
4050                 tsize = sizeof(*d->mbm_total);
4051                 d->mbm_total = kcalloc(idx_limit, tsize, GFP_KERNEL);
4052                 if (!d->mbm_total) {
4053                         bitmap_free(d->rmid_busy_llc);
4054                         return -ENOMEM;
4055                 }
4056         }
4057         if (is_mbm_local_enabled()) {
4058                 tsize = sizeof(*d->mbm_local);
4059                 d->mbm_local = kcalloc(idx_limit, tsize, GFP_KERNEL);
4060                 if (!d->mbm_local) {
4061                         bitmap_free(d->rmid_busy_llc);
4062                         kfree(d->mbm_total);
4063                         return -ENOMEM;
4064                 }
4065         }
4066 
4067         return 0;
4068 }
4069 
4070 int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d)
4071 {
4072         int err = 0;
4073 
4074         mutex_lock(&rdtgroup_mutex);
4075 
4076         if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) {
4077                 /* RDT_RESOURCE_MBA is never mon_capable */
4078                 err = mba_sc_domain_allocate(r, d);
4079         }
4080 
4081         mutex_unlock(&rdtgroup_mutex);
4082 
4083         return err;
4084 }
4085 
4086 int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d)
4087 {
4088         int err;
4089 
4090         mutex_lock(&rdtgroup_mutex);
4091 
4092         err = domain_setup_mon_state(r, d);
4093         if (err)
4094                 goto out_unlock;
4095 
4096         if (is_mbm_enabled()) {
4097                 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
4098                 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL,
4099                                            RESCTRL_PICK_ANY_CPU);
4100         }
4101 
4102         if (is_llc_occupancy_enabled())
4103                 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
4104 
4105         /*
4106          * If the filesystem is not mounted then only the default resource group
4107          * exists. Creation of its directories is deferred until mount time
4108          * by rdt_get_tree() calling mkdir_mondata_all().
4109          * If resctrl is mounted, add per domain monitor data directories.
4110          */
4111         if (resctrl_mounted && resctrl_arch_mon_capable())
4112                 mkdir_mondata_subdir_allrdtgrp(r, d);
4113 
4114 out_unlock:
4115         mutex_unlock(&rdtgroup_mutex);
4116 
4117         return err;
4118 }
4119 
4120 void resctrl_online_cpu(unsigned int cpu)
4121 {
4122         mutex_lock(&rdtgroup_mutex);
4123         /* The CPU is set in default rdtgroup after online. */
4124         cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
4125         mutex_unlock(&rdtgroup_mutex);
4126 }
4127 
4128 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
4129 {
4130         struct rdtgroup *cr;
4131 
4132         list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
4133                 if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask))
4134                         break;
4135         }
4136 }
4137 
4138 void resctrl_offline_cpu(unsigned int cpu)
4139 {
4140         struct rdt_resource *l3 = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
4141         struct rdt_mon_domain *d;
4142         struct rdtgroup *rdtgrp;
4143 
4144         mutex_lock(&rdtgroup_mutex);
4145         list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
4146                 if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
4147                         clear_childcpus(rdtgrp, cpu);
4148                         break;
4149                 }
4150         }
4151 
4152         if (!l3->mon_capable)
4153                 goto out_unlock;
4154 
4155         d = get_mon_domain_from_cpu(cpu, l3);
4156         if (d) {
4157                 if (is_mbm_enabled() && cpu == d->mbm_work_cpu) {
4158                         cancel_delayed_work(&d->mbm_over);
4159                         mbm_setup_overflow_handler(d, 0, cpu);
4160                 }
4161                 if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu &&
4162                     has_busy_rmid(d)) {
4163                         cancel_delayed_work(&d->cqm_limbo);
4164                         cqm_setup_limbo_handler(d, 0, cpu);
4165                 }
4166         }
4167 
4168 out_unlock:
4169         mutex_unlock(&rdtgroup_mutex);
4170 }
4171 
4172 /*
4173  * rdtgroup_init - rdtgroup initialization
4174  *
4175  * Setup resctrl file system including set up root, create mount point,
4176  * register rdtgroup filesystem, and initialize files under root directory.
4177  *
4178  * Return: 0 on success or -errno
4179  */
4180 int __init rdtgroup_init(void)
4181 {
4182         int ret = 0;
4183 
4184         seq_buf_init(&last_cmd_status, last_cmd_status_buf,
4185                      sizeof(last_cmd_status_buf));
4186 
4187         rdtgroup_setup_default();
4188 
4189         ret = sysfs_create_mount_point(fs_kobj, "resctrl");
4190         if (ret)
4191                 return ret;
4192 
4193         ret = register_filesystem(&rdt_fs_type);
4194         if (ret)
4195                 goto cleanup_mountpoint;
4196 
4197         /*
4198          * Adding the resctrl debugfs directory here may not be ideal since
4199          * it would let the resctrl debugfs directory appear on the debugfs
4200          * filesystem before the resctrl filesystem is mounted.
4201          * It may also be ok since that would enable debugging of RDT before
4202          * resctrl is mounted.
4203          * The reason why the debugfs directory is created here and not in
4204          * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
4205          * during the debugfs directory creation also &sb->s_type->i_mutex_key
4206          * (the lockdep class of inode->i_rwsem). Other filesystem
4207          * interactions (eg. SyS_getdents) have the lock ordering:
4208          * &sb->s_type->i_mutex_key --> &mm->mmap_lock
4209          * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
4210          * is taken, thus creating dependency:
4211          * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
4212          * issues considering the other two lock dependencies.
4213          * By creating the debugfs directory here we avoid a dependency
4214          * that may cause deadlock (even though file operations cannot
4215          * occur until the filesystem is mounted, but I do not know how to
4216          * tell lockdep that).
4217          */
4218         debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
4219 
4220         return 0;
4221 
4222 cleanup_mountpoint:
4223         sysfs_remove_mount_point(fs_kobj, "resctrl");
4224 
4225         return ret;
4226 }
4227 
4228 void __exit rdtgroup_exit(void)
4229 {
4230         debugfs_remove_recursive(debugfs_resctrl);
4231         unregister_filesystem(&rdt_fs_type);
4232         sysfs_remove_mount_point(fs_kobj, "resctrl");
4233 }
4234 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php