1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * General FPU state handling cleanups 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 #include <asm/fpu/api.h> 10 #include <asm/fpu/regset.h> 11 #include <asm/fpu/sched.h> 12 #include <asm/fpu/signal.h> 13 #include <asm/fpu/types.h> 14 #include <asm/traps.h> 15 #include <asm/irq_regs.h> 16 17 #include <uapi/asm/kvm.h> 18 19 #include <linux/hardirq.h> 20 #include <linux/pkeys.h> 21 #include <linux/vmalloc.h> 22 23 #include "context.h" 24 #include "internal.h" 25 #include "legacy.h" 26 #include "xstate.h" 27 28 #define CREATE_TRACE_POINTS 29 #include <asm/trace/fpu.h> 30 31 #ifdef CONFIG_X86_64 32 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic); 33 DEFINE_PER_CPU(u64, xfd_state); 34 #endif 35 36 /* The FPU state configuration data for kernel and user space */ 37 struct fpu_state_config fpu_kernel_cfg __ro_after_init; 38 struct fpu_state_config fpu_user_cfg __ro_after_init; 39 40 /* 41 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 42 * depending on the FPU hardware format: 43 */ 44 struct fpstate init_fpstate __ro_after_init; 45 46 /* Track in-kernel FPU usage */ 47 static DEFINE_PER_CPU(bool, in_kernel_fpu); 48 49 /* 50 * Track which context is using the FPU on the CPU: 51 */ 52 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 53 54 /* 55 * Can we use the FPU in kernel mode with the 56 * whole "kernel_fpu_begin/end()" sequence? 57 */ 58 bool irq_fpu_usable(void) 59 { 60 if (WARN_ON_ONCE(in_nmi())) 61 return false; 62 63 /* In kernel FPU usage already active? */ 64 if (this_cpu_read(in_kernel_fpu)) 65 return false; 66 67 /* 68 * When not in NMI or hard interrupt context, FPU can be used in: 69 * 70 * - Task context except from within fpregs_lock()'ed critical 71 * regions. 72 * 73 * - Soft interrupt processing context which cannot happen 74 * while in a fpregs_lock()'ed critical region. 75 */ 76 if (!in_hardirq()) 77 return true; 78 79 /* 80 * In hard interrupt context it's safe when soft interrupts 81 * are enabled, which means the interrupt did not hit in 82 * a fpregs_lock()'ed critical region. 83 */ 84 return !softirq_count(); 85 } 86 EXPORT_SYMBOL(irq_fpu_usable); 87 88 /* 89 * Track AVX512 state use because it is known to slow the max clock 90 * speed of the core. 91 */ 92 static void update_avx_timestamp(struct fpu *fpu) 93 { 94 95 #define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM) 96 97 if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK) 98 fpu->avx512_timestamp = jiffies; 99 } 100 101 /* 102 * Save the FPU register state in fpu->fpstate->regs. The register state is 103 * preserved. 104 * 105 * Must be called with fpregs_lock() held. 106 * 107 * The legacy FNSAVE instruction clears all FPU state unconditionally, so 108 * register state has to be reloaded. That might be a pointless exercise 109 * when the FPU is going to be used by another task right after that. But 110 * this only affects 20+ years old 32bit systems and avoids conditionals all 111 * over the place. 112 * 113 * FXSAVE and all XSAVE variants preserve the FPU register state. 114 */ 115 void save_fpregs_to_fpstate(struct fpu *fpu) 116 { 117 if (likely(use_xsave())) { 118 os_xsave(fpu->fpstate); 119 update_avx_timestamp(fpu); 120 return; 121 } 122 123 if (likely(use_fxsr())) { 124 fxsave(&fpu->fpstate->regs.fxsave); 125 return; 126 } 127 128 /* 129 * Legacy FPU register saving, FNSAVE always clears FPU registers, 130 * so we have to reload them from the memory state. 131 */ 132 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave)); 133 frstor(&fpu->fpstate->regs.fsave); 134 } 135 136 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask) 137 { 138 /* 139 * AMD K7/K8 and later CPUs up to Zen don't save/restore 140 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state 141 * here by setting it to fixed values. "m" is a random variable 142 * that should be in L1. 143 */ 144 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { 145 asm volatile( 146 "fnclex\n\t" 147 "emms\n\t" 148 "fildl %[addr]" /* set F?P to defined value */ 149 : : [addr] "m" (*fpstate)); 150 } 151 152 if (use_xsave()) { 153 /* 154 * Dynamically enabled features are enabled in XCR0, but 155 * usage requires also that the corresponding bits in XFD 156 * are cleared. If the bits are set then using a related 157 * instruction will raise #NM. This allows to do the 158 * allocation of the larger FPU buffer lazy from #NM or if 159 * the task has no permission to kill it which would happen 160 * via #UD if the feature is disabled in XCR0. 161 * 162 * XFD state is following the same life time rules as 163 * XSTATE and to restore state correctly XFD has to be 164 * updated before XRSTORS otherwise the component would 165 * stay in or go into init state even if the bits are set 166 * in fpstate::regs::xsave::xfeatures. 167 */ 168 xfd_update_state(fpstate); 169 170 /* 171 * Restoring state always needs to modify all features 172 * which are in @mask even if the current task cannot use 173 * extended features. 174 * 175 * So fpstate->xfeatures cannot be used here, because then 176 * a feature for which the task has no permission but was 177 * used by the previous task would not go into init state. 178 */ 179 mask = fpu_kernel_cfg.max_features & mask; 180 181 os_xrstor(fpstate, mask); 182 } else { 183 if (use_fxsr()) 184 fxrstor(&fpstate->regs.fxsave); 185 else 186 frstor(&fpstate->regs.fsave); 187 } 188 } 189 190 void fpu_reset_from_exception_fixup(void) 191 { 192 restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE); 193 } 194 195 #if IS_ENABLED(CONFIG_KVM) 196 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd); 197 198 static void fpu_init_guest_permissions(struct fpu_guest *gfpu) 199 { 200 struct fpu_state_perm *fpuperm; 201 u64 perm; 202 203 if (!IS_ENABLED(CONFIG_X86_64)) 204 return; 205 206 spin_lock_irq(¤t->sighand->siglock); 207 fpuperm = ¤t->group_leader->thread.fpu.guest_perm; 208 perm = fpuperm->__state_perm; 209 210 /* First fpstate allocation locks down permissions. */ 211 WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED); 212 213 spin_unlock_irq(¤t->sighand->siglock); 214 215 gfpu->perm = perm & ~FPU_GUEST_PERM_LOCKED; 216 } 217 218 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu) 219 { 220 struct fpstate *fpstate; 221 unsigned int size; 222 223 size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64); 224 fpstate = vzalloc(size); 225 if (!fpstate) 226 return false; 227 228 /* Leave xfd to 0 (the reset value defined by spec) */ 229 __fpstate_reset(fpstate, 0); 230 fpstate_init_user(fpstate); 231 fpstate->is_valloc = true; 232 fpstate->is_guest = true; 233 234 gfpu->fpstate = fpstate; 235 gfpu->xfeatures = fpu_user_cfg.default_features; 236 gfpu->perm = fpu_user_cfg.default_features; 237 238 /* 239 * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state 240 * to userspace, even when XSAVE is unsupported, so that restoring FPU 241 * state on a different CPU that does support XSAVE can cleanly load 242 * the incoming state using its natural XSAVE. In other words, KVM's 243 * uABI size may be larger than this host's default size. Conversely, 244 * the default size should never be larger than KVM's base uABI size; 245 * all features that can expand the uABI size must be opt-in. 246 */ 247 gfpu->uabi_size = sizeof(struct kvm_xsave); 248 if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size)) 249 gfpu->uabi_size = fpu_user_cfg.default_size; 250 251 fpu_init_guest_permissions(gfpu); 252 253 return true; 254 } 255 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate); 256 257 void fpu_free_guest_fpstate(struct fpu_guest *gfpu) 258 { 259 struct fpstate *fps = gfpu->fpstate; 260 261 if (!fps) 262 return; 263 264 if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use)) 265 return; 266 267 gfpu->fpstate = NULL; 268 vfree(fps); 269 } 270 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate); 271 272 /* 273 * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable 274 * @guest_fpu: Pointer to the guest FPU container 275 * @xfeatures: Features requested by guest CPUID 276 * 277 * Enable all dynamic xfeatures according to guest perm and requested CPUID. 278 * 279 * Return: 0 on success, error code otherwise 280 */ 281 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures) 282 { 283 lockdep_assert_preemption_enabled(); 284 285 /* Nothing to do if all requested features are already enabled. */ 286 xfeatures &= ~guest_fpu->xfeatures; 287 if (!xfeatures) 288 return 0; 289 290 return __xfd_enable_feature(xfeatures, guest_fpu); 291 } 292 EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features); 293 294 #ifdef CONFIG_X86_64 295 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd) 296 { 297 fpregs_lock(); 298 guest_fpu->fpstate->xfd = xfd; 299 if (guest_fpu->fpstate->in_use) 300 xfd_update_state(guest_fpu->fpstate); 301 fpregs_unlock(); 302 } 303 EXPORT_SYMBOL_GPL(fpu_update_guest_xfd); 304 305 /** 306 * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state 307 * 308 * Must be invoked from KVM after a VMEXIT before enabling interrupts when 309 * XFD write emulation is disabled. This is required because the guest can 310 * freely modify XFD and the state at VMEXIT is not guaranteed to be the 311 * same as the state on VMENTER. So software state has to be updated before 312 * any operation which depends on it can take place. 313 * 314 * Note: It can be invoked unconditionally even when write emulation is 315 * enabled for the price of a then pointless MSR read. 316 */ 317 void fpu_sync_guest_vmexit_xfd_state(void) 318 { 319 struct fpstate *fps = current->thread.fpu.fpstate; 320 321 lockdep_assert_irqs_disabled(); 322 if (fpu_state_size_dynamic()) { 323 rdmsrl(MSR_IA32_XFD, fps->xfd); 324 __this_cpu_write(xfd_state, fps->xfd); 325 } 326 } 327 EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state); 328 #endif /* CONFIG_X86_64 */ 329 330 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest) 331 { 332 struct fpstate *guest_fps = guest_fpu->fpstate; 333 struct fpu *fpu = ¤t->thread.fpu; 334 struct fpstate *cur_fps = fpu->fpstate; 335 336 fpregs_lock(); 337 if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD)) 338 save_fpregs_to_fpstate(fpu); 339 340 /* Swap fpstate */ 341 if (enter_guest) { 342 fpu->__task_fpstate = cur_fps; 343 fpu->fpstate = guest_fps; 344 guest_fps->in_use = true; 345 } else { 346 guest_fps->in_use = false; 347 fpu->fpstate = fpu->__task_fpstate; 348 fpu->__task_fpstate = NULL; 349 } 350 351 cur_fps = fpu->fpstate; 352 353 if (!cur_fps->is_confidential) { 354 /* Includes XFD update */ 355 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE); 356 } else { 357 /* 358 * XSTATE is restored by firmware from encrypted 359 * memory. Make sure XFD state is correct while 360 * running with guest fpstate 361 */ 362 xfd_update_state(cur_fps); 363 } 364 365 fpregs_mark_activate(); 366 fpregs_unlock(); 367 return 0; 368 } 369 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate); 370 371 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf, 372 unsigned int size, u64 xfeatures, u32 pkru) 373 { 374 struct fpstate *kstate = gfpu->fpstate; 375 union fpregs_state *ustate = buf; 376 struct membuf mb = { .p = buf, .left = size }; 377 378 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) { 379 __copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru, 380 XSTATE_COPY_XSAVE); 381 } else { 382 memcpy(&ustate->fxsave, &kstate->regs.fxsave, 383 sizeof(ustate->fxsave)); 384 /* Make it restorable on a XSAVE enabled host */ 385 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE; 386 } 387 } 388 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi); 389 390 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf, 391 u64 xcr0, u32 *vpkru) 392 { 393 struct fpstate *kstate = gfpu->fpstate; 394 const union fpregs_state *ustate = buf; 395 396 if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) { 397 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE) 398 return -EINVAL; 399 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask) 400 return -EINVAL; 401 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave)); 402 return 0; 403 } 404 405 if (ustate->xsave.header.xfeatures & ~xcr0) 406 return -EINVAL; 407 408 /* 409 * Nullify @vpkru to preserve its current value if PKRU's bit isn't set 410 * in the header. KVM's odd ABI is to leave PKRU untouched in this 411 * case (all other components are eventually re-initialized). 412 */ 413 if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU)) 414 vpkru = NULL; 415 416 return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru); 417 } 418 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate); 419 #endif /* CONFIG_KVM */ 420 421 void kernel_fpu_begin_mask(unsigned int kfpu_mask) 422 { 423 preempt_disable(); 424 425 WARN_ON_FPU(!irq_fpu_usable()); 426 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 427 428 this_cpu_write(in_kernel_fpu, true); 429 430 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) && 431 !test_thread_flag(TIF_NEED_FPU_LOAD)) { 432 set_thread_flag(TIF_NEED_FPU_LOAD); 433 save_fpregs_to_fpstate(¤t->thread.fpu); 434 } 435 __cpu_invalidate_fpregs_state(); 436 437 /* Put sane initial values into the control registers. */ 438 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) 439 ldmxcsr(MXCSR_DEFAULT); 440 441 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) 442 asm volatile ("fninit"); 443 } 444 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); 445 446 void kernel_fpu_end(void) 447 { 448 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 449 450 this_cpu_write(in_kernel_fpu, false); 451 preempt_enable(); 452 } 453 EXPORT_SYMBOL_GPL(kernel_fpu_end); 454 455 /* 456 * Sync the FPU register state to current's memory register state when the 457 * current task owns the FPU. The hardware register state is preserved. 458 */ 459 void fpu_sync_fpstate(struct fpu *fpu) 460 { 461 WARN_ON_FPU(fpu != ¤t->thread.fpu); 462 463 fpregs_lock(); 464 trace_x86_fpu_before_save(fpu); 465 466 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 467 save_fpregs_to_fpstate(fpu); 468 469 trace_x86_fpu_after_save(fpu); 470 fpregs_unlock(); 471 } 472 473 static inline unsigned int init_fpstate_copy_size(void) 474 { 475 if (!use_xsave()) 476 return fpu_kernel_cfg.default_size; 477 478 /* XSAVE(S) just needs the legacy and the xstate header part */ 479 return sizeof(init_fpstate.regs.xsave); 480 } 481 482 static inline void fpstate_init_fxstate(struct fpstate *fpstate) 483 { 484 fpstate->regs.fxsave.cwd = 0x37f; 485 fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT; 486 } 487 488 /* 489 * Legacy x87 fpstate state init: 490 */ 491 static inline void fpstate_init_fstate(struct fpstate *fpstate) 492 { 493 fpstate->regs.fsave.cwd = 0xffff037fu; 494 fpstate->regs.fsave.swd = 0xffff0000u; 495 fpstate->regs.fsave.twd = 0xffffffffu; 496 fpstate->regs.fsave.fos = 0xffff0000u; 497 } 498 499 /* 500 * Used in two places: 501 * 1) Early boot to setup init_fpstate for non XSAVE systems 502 * 2) fpu_init_fpstate_user() which is invoked from KVM 503 */ 504 void fpstate_init_user(struct fpstate *fpstate) 505 { 506 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 507 fpstate_init_soft(&fpstate->regs.soft); 508 return; 509 } 510 511 xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures); 512 513 if (cpu_feature_enabled(X86_FEATURE_FXSR)) 514 fpstate_init_fxstate(fpstate); 515 else 516 fpstate_init_fstate(fpstate); 517 } 518 519 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd) 520 { 521 /* Initialize sizes and feature masks */ 522 fpstate->size = fpu_kernel_cfg.default_size; 523 fpstate->user_size = fpu_user_cfg.default_size; 524 fpstate->xfeatures = fpu_kernel_cfg.default_features; 525 fpstate->user_xfeatures = fpu_user_cfg.default_features; 526 fpstate->xfd = xfd; 527 } 528 529 void fpstate_reset(struct fpu *fpu) 530 { 531 /* Set the fpstate pointer to the default fpstate */ 532 fpu->fpstate = &fpu->__fpstate; 533 __fpstate_reset(fpu->fpstate, init_fpstate.xfd); 534 535 /* Initialize the permission related info in fpu */ 536 fpu->perm.__state_perm = fpu_kernel_cfg.default_features; 537 fpu->perm.__state_size = fpu_kernel_cfg.default_size; 538 fpu->perm.__user_state_size = fpu_user_cfg.default_size; 539 /* Same defaults for guests */ 540 fpu->guest_perm = fpu->perm; 541 } 542 543 static inline void fpu_inherit_perms(struct fpu *dst_fpu) 544 { 545 if (fpu_state_size_dynamic()) { 546 struct fpu *src_fpu = ¤t->group_leader->thread.fpu; 547 548 spin_lock_irq(¤t->sighand->siglock); 549 /* Fork also inherits the permissions of the parent */ 550 dst_fpu->perm = src_fpu->perm; 551 dst_fpu->guest_perm = src_fpu->guest_perm; 552 spin_unlock_irq(¤t->sighand->siglock); 553 } 554 } 555 556 /* A passed ssp of zero will not cause any update */ 557 static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp) 558 { 559 #ifdef CONFIG_X86_USER_SHADOW_STACK 560 struct cet_user_state *xstate; 561 562 /* If ssp update is not needed. */ 563 if (!ssp) 564 return 0; 565 566 xstate = get_xsave_addr(&dst->thread.fpu.fpstate->regs.xsave, 567 XFEATURE_CET_USER); 568 569 /* 570 * If there is a non-zero ssp, then 'dst' must be configured with a shadow 571 * stack and the fpu state should be up to date since it was just copied 572 * from the parent in fpu_clone(). So there must be a valid non-init CET 573 * state location in the buffer. 574 */ 575 if (WARN_ON_ONCE(!xstate)) 576 return 1; 577 578 xstate->user_ssp = (u64)ssp; 579 #endif 580 return 0; 581 } 582 583 /* Clone current's FPU state on fork */ 584 int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal, 585 unsigned long ssp) 586 { 587 struct fpu *src_fpu = ¤t->thread.fpu; 588 struct fpu *dst_fpu = &dst->thread.fpu; 589 590 /* The new task's FPU state cannot be valid in the hardware. */ 591 dst_fpu->last_cpu = -1; 592 593 fpstate_reset(dst_fpu); 594 595 if (!cpu_feature_enabled(X86_FEATURE_FPU)) 596 return 0; 597 598 /* 599 * Enforce reload for user space tasks and prevent kernel threads 600 * from trying to save the FPU registers on context switch. 601 */ 602 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); 603 604 /* 605 * No FPU state inheritance for kernel threads and IO 606 * worker threads. 607 */ 608 if (minimal) { 609 /* Clear out the minimal state */ 610 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs, 611 init_fpstate_copy_size()); 612 return 0; 613 } 614 615 /* 616 * If a new feature is added, ensure all dynamic features are 617 * caller-saved from here! 618 */ 619 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA); 620 621 /* 622 * Save the default portion of the current FPU state into the 623 * clone. Assume all dynamic features to be defined as caller- 624 * saved, which enables skipping both the expansion of fpstate 625 * and the copying of any dynamic state. 626 * 627 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because 628 * copying is not valid when current uses non-default states. 629 */ 630 fpregs_lock(); 631 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 632 fpregs_restore_userregs(); 633 save_fpregs_to_fpstate(dst_fpu); 634 fpregs_unlock(); 635 if (!(clone_flags & CLONE_THREAD)) 636 fpu_inherit_perms(dst_fpu); 637 638 /* 639 * Children never inherit PASID state. 640 * Force it to have its init value: 641 */ 642 if (use_xsave()) 643 dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID; 644 645 /* 646 * Update shadow stack pointer, in case it changed during clone. 647 */ 648 if (update_fpu_shstk(dst, ssp)) 649 return 1; 650 651 trace_x86_fpu_copy_src(src_fpu); 652 trace_x86_fpu_copy_dst(dst_fpu); 653 654 return 0; 655 } 656 657 /* 658 * Whitelist the FPU register state embedded into task_struct for hardened 659 * usercopy. 660 */ 661 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size) 662 { 663 *offset = offsetof(struct thread_struct, fpu.__fpstate.regs); 664 *size = fpu_kernel_cfg.default_size; 665 } 666 667 /* 668 * Drops current FPU state: deactivates the fpregs and 669 * the fpstate. NOTE: it still leaves previous contents 670 * in the fpregs in the eager-FPU case. 671 * 672 * This function can be used in cases where we know that 673 * a state-restore is coming: either an explicit one, 674 * or a reschedule. 675 */ 676 void fpu__drop(struct fpu *fpu) 677 { 678 preempt_disable(); 679 680 if (fpu == ¤t->thread.fpu) { 681 /* Ignore delayed exceptions from user space */ 682 asm volatile("1: fwait\n" 683 "2:\n" 684 _ASM_EXTABLE(1b, 2b)); 685 fpregs_deactivate(fpu); 686 } 687 688 trace_x86_fpu_dropped(fpu); 689 690 preempt_enable(); 691 } 692 693 /* 694 * Clear FPU registers by setting them up from the init fpstate. 695 * Caller must do fpregs_[un]lock() around it. 696 */ 697 static inline void restore_fpregs_from_init_fpstate(u64 features_mask) 698 { 699 if (use_xsave()) 700 os_xrstor(&init_fpstate, features_mask); 701 else if (use_fxsr()) 702 fxrstor(&init_fpstate.regs.fxsave); 703 else 704 frstor(&init_fpstate.regs.fsave); 705 706 pkru_write_default(); 707 } 708 709 /* 710 * Reset current->fpu memory state to the init values. 711 */ 712 static void fpu_reset_fpregs(void) 713 { 714 struct fpu *fpu = ¤t->thread.fpu; 715 716 fpregs_lock(); 717 __fpu_invalidate_fpregs_state(fpu); 718 /* 719 * This does not change the actual hardware registers. It just 720 * resets the memory image and sets TIF_NEED_FPU_LOAD so a 721 * subsequent return to usermode will reload the registers from the 722 * task's memory image. 723 * 724 * Do not use fpstate_init() here. Just copy init_fpstate which has 725 * the correct content already except for PKRU. 726 * 727 * PKRU handling does not rely on the xstate when restoring for 728 * user space as PKRU is eagerly written in switch_to() and 729 * flush_thread(). 730 */ 731 memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size()); 732 set_thread_flag(TIF_NEED_FPU_LOAD); 733 fpregs_unlock(); 734 } 735 736 /* 737 * Reset current's user FPU states to the init states. current's 738 * supervisor states, if any, are not modified by this function. The 739 * caller guarantees that the XSTATE header in memory is intact. 740 */ 741 void fpu__clear_user_states(struct fpu *fpu) 742 { 743 WARN_ON_FPU(fpu != ¤t->thread.fpu); 744 745 fpregs_lock(); 746 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 747 fpu_reset_fpregs(); 748 fpregs_unlock(); 749 return; 750 } 751 752 /* 753 * Ensure that current's supervisor states are loaded into their 754 * corresponding registers. 755 */ 756 if (xfeatures_mask_supervisor() && 757 !fpregs_state_valid(fpu, smp_processor_id())) 758 os_xrstor_supervisor(fpu->fpstate); 759 760 /* Reset user states in registers. */ 761 restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE); 762 763 /* 764 * Now all FPU registers have their desired values. Inform the FPU 765 * state machine that current's FPU registers are in the hardware 766 * registers. The memory image does not need to be updated because 767 * any operation relying on it has to save the registers first when 768 * current's FPU is marked active. 769 */ 770 fpregs_mark_activate(); 771 fpregs_unlock(); 772 } 773 774 void fpu_flush_thread(void) 775 { 776 fpstate_reset(¤t->thread.fpu); 777 fpu_reset_fpregs(); 778 } 779 /* 780 * Load FPU context before returning to userspace. 781 */ 782 void switch_fpu_return(void) 783 { 784 if (!static_cpu_has(X86_FEATURE_FPU)) 785 return; 786 787 fpregs_restore_userregs(); 788 } 789 EXPORT_SYMBOL_GPL(switch_fpu_return); 790 791 void fpregs_lock_and_load(void) 792 { 793 /* 794 * fpregs_lock() only disables preemption (mostly). So modifying state 795 * in an interrupt could screw up some in progress fpregs operation. 796 * Warn about it. 797 */ 798 WARN_ON_ONCE(!irq_fpu_usable()); 799 WARN_ON_ONCE(current->flags & PF_KTHREAD); 800 801 fpregs_lock(); 802 803 fpregs_assert_state_consistent(); 804 805 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 806 fpregs_restore_userregs(); 807 } 808 809 #ifdef CONFIG_X86_DEBUG_FPU 810 /* 811 * If current FPU state according to its tracking (loaded FPU context on this 812 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is 813 * loaded on return to userland. 814 */ 815 void fpregs_assert_state_consistent(void) 816 { 817 struct fpu *fpu = ¤t->thread.fpu; 818 819 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 820 return; 821 822 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); 823 } 824 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); 825 #endif 826 827 void fpregs_mark_activate(void) 828 { 829 struct fpu *fpu = ¤t->thread.fpu; 830 831 fpregs_activate(fpu); 832 fpu->last_cpu = smp_processor_id(); 833 clear_thread_flag(TIF_NEED_FPU_LOAD); 834 } 835 836 /* 837 * x87 math exception handling: 838 */ 839 840 int fpu__exception_code(struct fpu *fpu, int trap_nr) 841 { 842 int err; 843 844 if (trap_nr == X86_TRAP_MF) { 845 unsigned short cwd, swd; 846 /* 847 * (~cwd & swd) will mask out exceptions that are not set to unmasked 848 * status. 0x3f is the exception bits in these regs, 0x200 is the 849 * C1 reg you need in case of a stack fault, 0x040 is the stack 850 * fault bit. We should only be taking one exception at a time, 851 * so if this combination doesn't produce any single exception, 852 * then we have a bad program that isn't synchronizing its FPU usage 853 * and it will suffer the consequences since we won't be able to 854 * fully reproduce the context of the exception. 855 */ 856 if (boot_cpu_has(X86_FEATURE_FXSR)) { 857 cwd = fpu->fpstate->regs.fxsave.cwd; 858 swd = fpu->fpstate->regs.fxsave.swd; 859 } else { 860 cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd; 861 swd = (unsigned short)fpu->fpstate->regs.fsave.swd; 862 } 863 864 err = swd & ~cwd; 865 } else { 866 /* 867 * The SIMD FPU exceptions are handled a little differently, as there 868 * is only a single status/control register. Thus, to determine which 869 * unmasked exception was caught we must mask the exception mask bits 870 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 871 */ 872 unsigned short mxcsr = MXCSR_DEFAULT; 873 874 if (boot_cpu_has(X86_FEATURE_XMM)) 875 mxcsr = fpu->fpstate->regs.fxsave.mxcsr; 876 877 err = ~(mxcsr >> 7) & mxcsr; 878 } 879 880 if (err & 0x001) { /* Invalid op */ 881 /* 882 * swd & 0x240 == 0x040: Stack Underflow 883 * swd & 0x240 == 0x240: Stack Overflow 884 * User must clear the SF bit (0x40) if set 885 */ 886 return FPE_FLTINV; 887 } else if (err & 0x004) { /* Divide by Zero */ 888 return FPE_FLTDIV; 889 } else if (err & 0x008) { /* Overflow */ 890 return FPE_FLTOVF; 891 } else if (err & 0x012) { /* Denormal, Underflow */ 892 return FPE_FLTUND; 893 } else if (err & 0x020) { /* Precision */ 894 return FPE_FLTRES; 895 } 896 897 /* 898 * If we're using IRQ 13, or supposedly even some trap 899 * X86_TRAP_MF implementations, it's possible 900 * we get a spurious trap, which is not an error. 901 */ 902 return 0; 903 } 904 905 /* 906 * Initialize register state that may prevent from entering low-power idle. 907 * This function will be invoked from the cpuidle driver only when needed. 908 */ 909 noinstr void fpu_idle_fpregs(void) 910 { 911 /* Note: AMX_TILE being enabled implies XGETBV1 support */ 912 if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) && 913 (xfeatures_in_use() & XFEATURE_MASK_XTILE)) { 914 tile_release(); 915 __this_cpu_write(fpu_fpregs_owner_ctx, NULL); 916 } 917 } 918
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.