~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/irq.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Common interrupt code for 32 and 64 bit
  4  */
  5 #include <linux/cpu.h>
  6 #include <linux/interrupt.h>
  7 #include <linux/kernel_stat.h>
  8 #include <linux/of.h>
  9 #include <linux/seq_file.h>
 10 #include <linux/smp.h>
 11 #include <linux/ftrace.h>
 12 #include <linux/delay.h>
 13 #include <linux/export.h>
 14 #include <linux/irq.h>
 15 
 16 #include <asm/irq_stack.h>
 17 #include <asm/apic.h>
 18 #include <asm/io_apic.h>
 19 #include <asm/irq.h>
 20 #include <asm/mce.h>
 21 #include <asm/hw_irq.h>
 22 #include <asm/desc.h>
 23 #include <asm/traps.h>
 24 #include <asm/thermal.h>
 25 #include <asm/posted_intr.h>
 26 #include <asm/irq_remapping.h>
 27 
 28 #define CREATE_TRACE_POINTS
 29 #include <asm/trace/irq_vectors.h>
 30 
 31 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
 32 EXPORT_PER_CPU_SYMBOL(irq_stat);
 33 
 34 atomic_t irq_err_count;
 35 
 36 /*
 37  * 'what should we do if we get a hw irq event on an illegal vector'.
 38  * each architecture has to answer this themselves.
 39  */
 40 void ack_bad_irq(unsigned int irq)
 41 {
 42         if (printk_ratelimit())
 43                 pr_err("unexpected IRQ trap at vector %02x\n", irq);
 44 
 45         /*
 46          * Currently unexpected vectors happen only on SMP and APIC.
 47          * We _must_ ack these because every local APIC has only N
 48          * irq slots per priority level, and a 'hanging, unacked' IRQ
 49          * holds up an irq slot - in excessive cases (when multiple
 50          * unexpected vectors occur) that might lock up the APIC
 51          * completely.
 52          * But only ack when the APIC is enabled -AK
 53          */
 54         apic_eoi();
 55 }
 56 
 57 #define irq_stats(x)            (&per_cpu(irq_stat, x))
 58 /*
 59  * /proc/interrupts printing for arch specific interrupts
 60  */
 61 int arch_show_interrupts(struct seq_file *p, int prec)
 62 {
 63         int j;
 64 
 65         seq_printf(p, "%*s: ", prec, "NMI");
 66         for_each_online_cpu(j)
 67                 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
 68         seq_puts(p, "  Non-maskable interrupts\n");
 69 #ifdef CONFIG_X86_LOCAL_APIC
 70         seq_printf(p, "%*s: ", prec, "LOC");
 71         for_each_online_cpu(j)
 72                 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
 73         seq_puts(p, "  Local timer interrupts\n");
 74 
 75         seq_printf(p, "%*s: ", prec, "SPU");
 76         for_each_online_cpu(j)
 77                 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
 78         seq_puts(p, "  Spurious interrupts\n");
 79         seq_printf(p, "%*s: ", prec, "PMI");
 80         for_each_online_cpu(j)
 81                 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
 82         seq_puts(p, "  Performance monitoring interrupts\n");
 83         seq_printf(p, "%*s: ", prec, "IWI");
 84         for_each_online_cpu(j)
 85                 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
 86         seq_puts(p, "  IRQ work interrupts\n");
 87         seq_printf(p, "%*s: ", prec, "RTR");
 88         for_each_online_cpu(j)
 89                 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
 90         seq_puts(p, "  APIC ICR read retries\n");
 91         if (x86_platform_ipi_callback) {
 92                 seq_printf(p, "%*s: ", prec, "PLT");
 93                 for_each_online_cpu(j)
 94                         seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
 95                 seq_puts(p, "  Platform interrupts\n");
 96         }
 97 #endif
 98 #ifdef CONFIG_SMP
 99         seq_printf(p, "%*s: ", prec, "RES");
100         for_each_online_cpu(j)
101                 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
102         seq_puts(p, "  Rescheduling interrupts\n");
103         seq_printf(p, "%*s: ", prec, "CAL");
104         for_each_online_cpu(j)
105                 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
106         seq_puts(p, "  Function call interrupts\n");
107         seq_printf(p, "%*s: ", prec, "TLB");
108         for_each_online_cpu(j)
109                 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
110         seq_puts(p, "  TLB shootdowns\n");
111 #endif
112 #ifdef CONFIG_X86_THERMAL_VECTOR
113         seq_printf(p, "%*s: ", prec, "TRM");
114         for_each_online_cpu(j)
115                 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
116         seq_puts(p, "  Thermal event interrupts\n");
117 #endif
118 #ifdef CONFIG_X86_MCE_THRESHOLD
119         seq_printf(p, "%*s: ", prec, "THR");
120         for_each_online_cpu(j)
121                 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
122         seq_puts(p, "  Threshold APIC interrupts\n");
123 #endif
124 #ifdef CONFIG_X86_MCE_AMD
125         seq_printf(p, "%*s: ", prec, "DFR");
126         for_each_online_cpu(j)
127                 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
128         seq_puts(p, "  Deferred Error APIC interrupts\n");
129 #endif
130 #ifdef CONFIG_X86_MCE
131         seq_printf(p, "%*s: ", prec, "MCE");
132         for_each_online_cpu(j)
133                 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
134         seq_puts(p, "  Machine check exceptions\n");
135         seq_printf(p, "%*s: ", prec, "MCP");
136         for_each_online_cpu(j)
137                 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
138         seq_puts(p, "  Machine check polls\n");
139 #endif
140 #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
141         if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
142                 seq_printf(p, "%*s: ", prec, "HYP");
143                 for_each_online_cpu(j)
144                         seq_printf(p, "%10u ",
145                                    irq_stats(j)->irq_hv_callback_count);
146                 seq_puts(p, "  Hypervisor callback interrupts\n");
147         }
148 #endif
149 #if IS_ENABLED(CONFIG_HYPERV)
150         if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
151                 seq_printf(p, "%*s: ", prec, "HRE");
152                 for_each_online_cpu(j)
153                         seq_printf(p, "%10u ",
154                                    irq_stats(j)->irq_hv_reenlightenment_count);
155                 seq_puts(p, "  Hyper-V reenlightenment interrupts\n");
156         }
157         if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
158                 seq_printf(p, "%*s: ", prec, "HVS");
159                 for_each_online_cpu(j)
160                         seq_printf(p, "%10u ",
161                                    irq_stats(j)->hyperv_stimer0_count);
162                 seq_puts(p, "  Hyper-V stimer0 interrupts\n");
163         }
164 #endif
165         seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
166 #if defined(CONFIG_X86_IO_APIC)
167         seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
168 #endif
169 #if IS_ENABLED(CONFIG_KVM)
170         seq_printf(p, "%*s: ", prec, "PIN");
171         for_each_online_cpu(j)
172                 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
173         seq_puts(p, "  Posted-interrupt notification event\n");
174 
175         seq_printf(p, "%*s: ", prec, "NPI");
176         for_each_online_cpu(j)
177                 seq_printf(p, "%10u ",
178                            irq_stats(j)->kvm_posted_intr_nested_ipis);
179         seq_puts(p, "  Nested posted-interrupt event\n");
180 
181         seq_printf(p, "%*s: ", prec, "PIW");
182         for_each_online_cpu(j)
183                 seq_printf(p, "%10u ",
184                            irq_stats(j)->kvm_posted_intr_wakeup_ipis);
185         seq_puts(p, "  Posted-interrupt wakeup event\n");
186 #endif
187 #ifdef CONFIG_X86_POSTED_MSI
188         seq_printf(p, "%*s: ", prec, "PMN");
189         for_each_online_cpu(j)
190                 seq_printf(p, "%10u ",
191                            irq_stats(j)->posted_msi_notification_count);
192         seq_puts(p, "  Posted MSI notification event\n");
193 #endif
194         return 0;
195 }
196 
197 /*
198  * /proc/stat helpers
199  */
200 u64 arch_irq_stat_cpu(unsigned int cpu)
201 {
202         u64 sum = irq_stats(cpu)->__nmi_count;
203 
204 #ifdef CONFIG_X86_LOCAL_APIC
205         sum += irq_stats(cpu)->apic_timer_irqs;
206         sum += irq_stats(cpu)->irq_spurious_count;
207         sum += irq_stats(cpu)->apic_perf_irqs;
208         sum += irq_stats(cpu)->apic_irq_work_irqs;
209         sum += irq_stats(cpu)->icr_read_retry_count;
210         if (x86_platform_ipi_callback)
211                 sum += irq_stats(cpu)->x86_platform_ipis;
212 #endif
213 #ifdef CONFIG_SMP
214         sum += irq_stats(cpu)->irq_resched_count;
215         sum += irq_stats(cpu)->irq_call_count;
216 #endif
217 #ifdef CONFIG_X86_THERMAL_VECTOR
218         sum += irq_stats(cpu)->irq_thermal_count;
219 #endif
220 #ifdef CONFIG_X86_MCE_THRESHOLD
221         sum += irq_stats(cpu)->irq_threshold_count;
222 #endif
223 #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
224         sum += irq_stats(cpu)->irq_hv_callback_count;
225 #endif
226 #if IS_ENABLED(CONFIG_HYPERV)
227         sum += irq_stats(cpu)->irq_hv_reenlightenment_count;
228         sum += irq_stats(cpu)->hyperv_stimer0_count;
229 #endif
230 #ifdef CONFIG_X86_MCE
231         sum += per_cpu(mce_exception_count, cpu);
232         sum += per_cpu(mce_poll_count, cpu);
233 #endif
234         return sum;
235 }
236 
237 u64 arch_irq_stat(void)
238 {
239         u64 sum = atomic_read(&irq_err_count);
240         return sum;
241 }
242 
243 static __always_inline void handle_irq(struct irq_desc *desc,
244                                        struct pt_regs *regs)
245 {
246         if (IS_ENABLED(CONFIG_X86_64))
247                 generic_handle_irq_desc(desc);
248         else
249                 __handle_irq(desc, regs);
250 }
251 
252 static __always_inline int call_irq_handler(int vector, struct pt_regs *regs)
253 {
254         struct irq_desc *desc;
255         int ret = 0;
256 
257         desc = __this_cpu_read(vector_irq[vector]);
258         if (likely(!IS_ERR_OR_NULL(desc))) {
259                 handle_irq(desc, regs);
260         } else {
261                 ret = -EINVAL;
262                 if (desc == VECTOR_UNUSED) {
263                         pr_emerg_ratelimited("%s: %d.%u No irq handler for vector\n",
264                                              __func__, smp_processor_id(),
265                                              vector);
266                 } else {
267                         __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
268                 }
269         }
270 
271         return ret;
272 }
273 
274 /*
275  * common_interrupt() handles all normal device IRQ's (the special SMP
276  * cross-CPU interrupts have their own entry points).
277  */
278 DEFINE_IDTENTRY_IRQ(common_interrupt)
279 {
280         struct pt_regs *old_regs = set_irq_regs(regs);
281 
282         /* entry code tells RCU that we're not quiescent.  Check it. */
283         RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
284 
285         if (unlikely(call_irq_handler(vector, regs)))
286                 apic_eoi();
287 
288         set_irq_regs(old_regs);
289 }
290 
291 #ifdef CONFIG_X86_LOCAL_APIC
292 /* Function pointer for generic interrupt vector handling */
293 void (*x86_platform_ipi_callback)(void) = NULL;
294 /*
295  * Handler for X86_PLATFORM_IPI_VECTOR.
296  */
297 DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)
298 {
299         struct pt_regs *old_regs = set_irq_regs(regs);
300 
301         apic_eoi();
302         trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
303         inc_irq_stat(x86_platform_ipis);
304         if (x86_platform_ipi_callback)
305                 x86_platform_ipi_callback();
306         trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
307         set_irq_regs(old_regs);
308 }
309 #endif
310 
311 #if IS_ENABLED(CONFIG_KVM)
312 static void dummy_handler(void) {}
313 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
314 
315 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
316 {
317         if (handler)
318                 kvm_posted_intr_wakeup_handler = handler;
319         else {
320                 kvm_posted_intr_wakeup_handler = dummy_handler;
321                 synchronize_rcu();
322         }
323 }
324 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
325 
326 /*
327  * Handler for POSTED_INTERRUPT_VECTOR.
328  */
329 DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)
330 {
331         apic_eoi();
332         inc_irq_stat(kvm_posted_intr_ipis);
333 }
334 
335 /*
336  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
337  */
338 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)
339 {
340         apic_eoi();
341         inc_irq_stat(kvm_posted_intr_wakeup_ipis);
342         kvm_posted_intr_wakeup_handler();
343 }
344 
345 /*
346  * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
347  */
348 DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)
349 {
350         apic_eoi();
351         inc_irq_stat(kvm_posted_intr_nested_ipis);
352 }
353 #endif
354 
355 #ifdef CONFIG_X86_POSTED_MSI
356 
357 /* Posted Interrupt Descriptors for coalesced MSIs to be posted */
358 DEFINE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc);
359 
360 void intel_posted_msi_init(void)
361 {
362         u32 destination;
363         u32 apic_id;
364 
365         this_cpu_write(posted_msi_pi_desc.nv, POSTED_MSI_NOTIFICATION_VECTOR);
366 
367         /*
368          * APIC destination ID is stored in bit 8:15 while in XAPIC mode.
369          * VT-d spec. CH 9.11
370          */
371         apic_id = this_cpu_read(x86_cpu_to_apicid);
372         destination = x2apic_enabled() ? apic_id : apic_id << 8;
373         this_cpu_write(posted_msi_pi_desc.ndst, destination);
374 }
375 
376 /*
377  * De-multiplexing posted interrupts is on the performance path, the code
378  * below is written to optimize the cache performance based on the following
379  * considerations:
380  * 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently
381  *   accessed by both CPU and IOMMU.
382  * 2.During posted MSI processing, the CPU needs to do 64-bit read and xchg
383  *   for checking and clearing posted interrupt request (PIR), a 256 bit field
384  *   within the PID.
385  * 3.On the other side, the IOMMU does atomic swaps of the entire PID cache
386  *   line when posting interrupts and setting control bits.
387  * 4.The CPU can access the cache line a magnitude faster than the IOMMU.
388  * 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID
389  *   cache line. The cache line states after each operation are as follows:
390  *   CPU                IOMMU                   PID Cache line state
391  *   ---------------------------------------------------------------
392  *...read64                                     exclusive
393  *...lock xchg64                                modified
394  *...                   post/atomic swap        invalid
395  *...-------------------------------------------------------------
396  *
397  * To reduce L1 data cache miss, it is important to avoid contention with
398  * IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used
399  * to dispatch interrupt handlers.
400  *
401  * In addition, the code is trying to keep the cache line state consistent
402  * as much as possible. e.g. when making a copy and clearing the PIR
403  * (assuming non-zero PIR bits are present in the entire PIR), it does:
404  *              read, read, read, read, xchg, xchg, xchg, xchg
405  * instead of:
406  *              read, xchg, read, xchg, read, xchg, read, xchg
407  */
408 static __always_inline bool handle_pending_pir(u64 *pir, struct pt_regs *regs)
409 {
410         int i, vec = FIRST_EXTERNAL_VECTOR;
411         unsigned long pir_copy[4];
412         bool handled = false;
413 
414         for (i = 0; i < 4; i++)
415                 pir_copy[i] = pir[i];
416 
417         for (i = 0; i < 4; i++) {
418                 if (!pir_copy[i])
419                         continue;
420 
421                 pir_copy[i] = arch_xchg(&pir[i], 0);
422                 handled = true;
423         }
424 
425         if (handled) {
426                 for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR)
427                         call_irq_handler(vec, regs);
428         }
429 
430         return handled;
431 }
432 
433 /*
434  * Performance data shows that 3 is good enough to harvest 90+% of the benefit
435  * on high IRQ rate workload.
436  */
437 #define MAX_POSTED_MSI_COALESCING_LOOP 3
438 
439 /*
440  * For MSIs that are delivered as posted interrupts, the CPU notifications
441  * can be coalesced if the MSIs arrive in high frequency bursts.
442  */
443 DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)
444 {
445         struct pt_regs *old_regs = set_irq_regs(regs);
446         struct pi_desc *pid;
447         int i = 0;
448 
449         pid = this_cpu_ptr(&posted_msi_pi_desc);
450 
451         inc_irq_stat(posted_msi_notification_count);
452         irq_enter();
453 
454         /*
455          * Max coalescing count includes the extra round of handle_pending_pir
456          * after clearing the outstanding notification bit. Hence, at most
457          * MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here.
458          */
459         while (++i < MAX_POSTED_MSI_COALESCING_LOOP) {
460                 if (!handle_pending_pir(pid->pir64, regs))
461                         break;
462         }
463 
464         /*
465          * Clear outstanding notification bit to allow new IRQ notifications,
466          * do this last to maximize the window of interrupt coalescing.
467          */
468         pi_clear_on(pid);
469 
470         /*
471          * There could be a race of PI notification and the clearing of ON bit,
472          * process PIR bits one last time such that handling the new interrupts
473          * are not delayed until the next IRQ.
474          */
475         handle_pending_pir(pid->pir64, regs);
476 
477         apic_eoi();
478         irq_exit();
479         set_irq_regs(old_regs);
480 }
481 #endif /* X86_POSTED_MSI */
482 
483 #ifdef CONFIG_HOTPLUG_CPU
484 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
485 void fixup_irqs(void)
486 {
487         unsigned int vector;
488         struct irq_desc *desc;
489         struct irq_data *data;
490         struct irq_chip *chip;
491 
492         irq_migrate_all_off_this_cpu();
493 
494         /*
495          * We can remove mdelay() and then send spurious interrupts to
496          * new cpu targets for all the irqs that were handled previously by
497          * this cpu. While it works, I have seen spurious interrupt messages
498          * (nothing wrong but still...).
499          *
500          * So for now, retain mdelay(1) and check the IRR and then send those
501          * interrupts to new targets as this cpu is already offlined...
502          */
503         mdelay(1);
504 
505         /*
506          * We can walk the vector array of this cpu without holding
507          * vector_lock because the cpu is already marked !online, so
508          * nothing else will touch it.
509          */
510         for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
511                 if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
512                         continue;
513 
514                 if (is_vector_pending(vector)) {
515                         desc = __this_cpu_read(vector_irq[vector]);
516 
517                         raw_spin_lock(&desc->lock);
518                         data = irq_desc_get_irq_data(desc);
519                         chip = irq_data_get_irq_chip(data);
520                         if (chip->irq_retrigger) {
521                                 chip->irq_retrigger(data);
522                                 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
523                         }
524                         raw_spin_unlock(&desc->lock);
525                 }
526                 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
527                         __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
528         }
529 }
530 #endif
531 
532 #ifdef CONFIG_X86_THERMAL_VECTOR
533 static void smp_thermal_vector(void)
534 {
535         if (x86_thermal_enabled())
536                 intel_thermal_interrupt();
537         else
538                 pr_err("CPU%d: Unexpected LVT thermal interrupt!\n",
539                        smp_processor_id());
540 }
541 
542 DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)
543 {
544         trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
545         inc_irq_stat(irq_thermal_count);
546         smp_thermal_vector();
547         trace_thermal_apic_exit(THERMAL_APIC_VECTOR);
548         apic_eoi();
549 }
550 #endif
551 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php