~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/kprobes/core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *  Kernel Probes (KProbes)
  4  *
  5  * Copyright (C) IBM Corporation, 2002, 2004
  6  *
  7  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  8  *              Probes initial implementation ( includes contributions from
  9  *              Rusty Russell).
 10  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 11  *              interface to access function arguments.
 12  * 2004-Oct     Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 13  *              <prasanna@in.ibm.com> adapted for x86_64 from i386.
 14  * 2005-Mar     Roland McGrath <roland@redhat.com>
 15  *              Fixed to handle %rip-relative addressing mode correctly.
 16  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
 17  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 18  *              <prasanna@in.ibm.com> added function-return probes.
 19  * 2005-May     Rusty Lynch <rusty.lynch@intel.com>
 20  *              Added function return probes functionality
 21  * 2006-Feb     Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
 22  *              kprobe-booster and kretprobe-booster for i386.
 23  * 2007-Dec     Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
 24  *              and kretprobe-booster for x86-64
 25  * 2007-Dec     Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
 26  *              <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
 27  *              unified x86 kprobes code.
 28  */
 29 #include <linux/kprobes.h>
 30 #include <linux/ptrace.h>
 31 #include <linux/string.h>
 32 #include <linux/slab.h>
 33 #include <linux/hardirq.h>
 34 #include <linux/preempt.h>
 35 #include <linux/sched/debug.h>
 36 #include <linux/perf_event.h>
 37 #include <linux/extable.h>
 38 #include <linux/kdebug.h>
 39 #include <linux/kallsyms.h>
 40 #include <linux/kgdb.h>
 41 #include <linux/ftrace.h>
 42 #include <linux/kasan.h>
 43 #include <linux/objtool.h>
 44 #include <linux/vmalloc.h>
 45 #include <linux/pgtable.h>
 46 #include <linux/set_memory.h>
 47 #include <linux/cfi.h>
 48 #include <linux/execmem.h>
 49 
 50 #include <asm/text-patching.h>
 51 #include <asm/cacheflush.h>
 52 #include <asm/desc.h>
 53 #include <linux/uaccess.h>
 54 #include <asm/alternative.h>
 55 #include <asm/insn.h>
 56 #include <asm/debugreg.h>
 57 #include <asm/ibt.h>
 58 
 59 #include "common.h"
 60 
 61 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 62 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 63 
 64 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
 65         (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
 66           (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
 67           (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
 68           (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
 69          << (row % 32))
 70         /*
 71          * Undefined/reserved opcodes, conditional jump, Opcode Extension
 72          * Groups, and some special opcodes can not boost.
 73          * This is non-const and volatile to keep gcc from statically
 74          * optimizing it out, as variable_test_bit makes gcc think only
 75          * *(unsigned long*) is used.
 76          */
 77 static volatile u32 twobyte_is_boostable[256 / 32] = {
 78         /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 79         /*      ----------------------------------------------          */
 80         W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
 81         W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
 82         W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
 83         W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
 84         W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 85         W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
 86         W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
 87         W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
 88         W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
 89         W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 90         W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
 91         W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
 92         W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 93         W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
 94         W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
 95         W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
 96         /*      -----------------------------------------------         */
 97         /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 98 };
 99 #undef W
100 
101 struct kretprobe_blackpoint kretprobe_blacklist[] = {
102         {"__switch_to", }, /* This function switches only current task, but
103                               doesn't switch kernel stack.*/
104         {NULL, NULL}    /* Terminator */
105 };
106 
107 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
108 
109 static nokprobe_inline void
110 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
111 {
112         struct __arch_relative_insn {
113                 u8 op;
114                 s32 raddr;
115         } __packed *insn;
116 
117         insn = (struct __arch_relative_insn *)dest;
118         insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
119         insn->op = op;
120 }
121 
122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
123 void synthesize_reljump(void *dest, void *from, void *to)
124 {
125         __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
126 }
127 NOKPROBE_SYMBOL(synthesize_reljump);
128 
129 /* Insert a call instruction at address 'from', which calls address 'to'.*/
130 void synthesize_relcall(void *dest, void *from, void *to)
131 {
132         __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
133 }
134 NOKPROBE_SYMBOL(synthesize_relcall);
135 
136 /*
137  * Returns non-zero if INSN is boostable.
138  * RIP relative instructions are adjusted at copying time in 64 bits mode
139  */
140 bool can_boost(struct insn *insn, void *addr)
141 {
142         kprobe_opcode_t opcode;
143         insn_byte_t prefix;
144         int i;
145 
146         if (search_exception_tables((unsigned long)addr))
147                 return false;   /* Page fault may occur on this address. */
148 
149         /* 2nd-byte opcode */
150         if (insn->opcode.nbytes == 2)
151                 return test_bit(insn->opcode.bytes[1],
152                                 (unsigned long *)twobyte_is_boostable);
153 
154         if (insn->opcode.nbytes != 1)
155                 return false;
156 
157         for_each_insn_prefix(insn, i, prefix) {
158                 insn_attr_t attr;
159 
160                 attr = inat_get_opcode_attribute(prefix);
161                 /* Can't boost Address-size override prefix and CS override prefix */
162                 if (prefix == 0x2e || inat_is_address_size_prefix(attr))
163                         return false;
164         }
165 
166         opcode = insn->opcode.bytes[0];
167 
168         switch (opcode) {
169         case 0x62:              /* bound */
170         case 0x70 ... 0x7f:     /* Conditional jumps */
171         case 0x9a:              /* Call far */
172         case 0xcc ... 0xce:     /* software exceptions */
173         case 0xd6:              /* (UD) */
174         case 0xd8 ... 0xdf:     /* ESC */
175         case 0xe0 ... 0xe3:     /* LOOP*, JCXZ */
176         case 0xe8 ... 0xe9:     /* near Call, JMP */
177         case 0xeb:              /* Short JMP */
178         case 0xf0 ... 0xf4:     /* LOCK/REP, HLT */
179                 /* ... are not boostable */
180                 return false;
181         case 0xc0 ... 0xc1:     /* Grp2 */
182         case 0xd0 ... 0xd3:     /* Grp2 */
183                 /*
184                  * AMD uses nnn == 110 as SHL/SAL, but Intel makes it reserved.
185                  */
186                 return X86_MODRM_REG(insn->modrm.bytes[0]) != 0b110;
187         case 0xf6 ... 0xf7:     /* Grp3 */
188                 /* AMD uses nnn == 001 as TEST, but Intel makes it reserved. */
189                 return X86_MODRM_REG(insn->modrm.bytes[0]) != 0b001;
190         case 0xfe:              /* Grp4 */
191                 /* Only INC and DEC are boostable */
192                 return X86_MODRM_REG(insn->modrm.bytes[0]) == 0b000 ||
193                        X86_MODRM_REG(insn->modrm.bytes[0]) == 0b001;
194         case 0xff:              /* Grp5 */
195                 /* Only INC, DEC, and indirect JMP are boostable */
196                 return X86_MODRM_REG(insn->modrm.bytes[0]) == 0b000 ||
197                        X86_MODRM_REG(insn->modrm.bytes[0]) == 0b001 ||
198                        X86_MODRM_REG(insn->modrm.bytes[0]) == 0b100;
199         default:
200                 return true;
201         }
202 }
203 
204 static unsigned long
205 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
206 {
207         struct kprobe *kp;
208         bool faddr;
209 
210         kp = get_kprobe((void *)addr);
211         faddr = ftrace_location(addr) == addr;
212         /*
213          * Use the current code if it is not modified by Kprobe
214          * and it cannot be modified by ftrace.
215          */
216         if (!kp && !faddr)
217                 return addr;
218 
219         /*
220          * Basically, kp->ainsn.insn has an original instruction.
221          * However, RIP-relative instruction can not do single-stepping
222          * at different place, __copy_instruction() tweaks the displacement of
223          * that instruction. In that case, we can't recover the instruction
224          * from the kp->ainsn.insn.
225          *
226          * On the other hand, in case on normal Kprobe, kp->opcode has a copy
227          * of the first byte of the probed instruction, which is overwritten
228          * by int3. And the instruction at kp->addr is not modified by kprobes
229          * except for the first byte, we can recover the original instruction
230          * from it and kp->opcode.
231          *
232          * In case of Kprobes using ftrace, we do not have a copy of
233          * the original instruction. In fact, the ftrace location might
234          * be modified at anytime and even could be in an inconsistent state.
235          * Fortunately, we know that the original code is the ideal 5-byte
236          * long NOP.
237          */
238         if (copy_from_kernel_nofault(buf, (void *)addr,
239                 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
240                 return 0UL;
241 
242         if (faddr)
243                 memcpy(buf, x86_nops[5], 5);
244         else
245                 buf[0] = kp->opcode;
246         return (unsigned long)buf;
247 }
248 
249 /*
250  * Recover the probed instruction at addr for further analysis.
251  * Caller must lock kprobes by kprobe_mutex, or disable preemption
252  * for preventing to release referencing kprobes.
253  * Returns zero if the instruction can not get recovered (or access failed).
254  */
255 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
256 {
257         unsigned long __addr;
258 
259         __addr = __recover_optprobed_insn(buf, addr);
260         if (__addr != addr)
261                 return __addr;
262 
263         return __recover_probed_insn(buf, addr);
264 }
265 
266 /* Check if insn is INT or UD */
267 static inline bool is_exception_insn(struct insn *insn)
268 {
269         /* UD uses 0f escape */
270         if (insn->opcode.bytes[0] == 0x0f) {
271                 /* UD0 / UD1 / UD2 */
272                 return insn->opcode.bytes[1] == 0xff ||
273                        insn->opcode.bytes[1] == 0xb9 ||
274                        insn->opcode.bytes[1] == 0x0b;
275         }
276 
277         /* INT3 / INT n / INTO / INT1 */
278         return insn->opcode.bytes[0] == 0xcc ||
279                insn->opcode.bytes[0] == 0xcd ||
280                insn->opcode.bytes[0] == 0xce ||
281                insn->opcode.bytes[0] == 0xf1;
282 }
283 
284 /*
285  * Check if paddr is at an instruction boundary and that instruction can
286  * be probed
287  */
288 static bool can_probe(unsigned long paddr)
289 {
290         unsigned long addr, __addr, offset = 0;
291         struct insn insn;
292         kprobe_opcode_t buf[MAX_INSN_SIZE];
293 
294         if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
295                 return false;
296 
297         /* Decode instructions */
298         addr = paddr - offset;
299         while (addr < paddr) {
300                 /*
301                  * Check if the instruction has been modified by another
302                  * kprobe, in which case we replace the breakpoint by the
303                  * original instruction in our buffer.
304                  * Also, jump optimization will change the breakpoint to
305                  * relative-jump. Since the relative-jump itself is
306                  * normally used, we just go through if there is no kprobe.
307                  */
308                 __addr = recover_probed_instruction(buf, addr);
309                 if (!__addr)
310                         return false;
311 
312                 if (insn_decode_kernel(&insn, (void *)__addr) < 0)
313                         return false;
314 
315 #ifdef CONFIG_KGDB
316                 /*
317                  * If there is a dynamically installed kgdb sw breakpoint,
318                  * this function should not be probed.
319                  */
320                 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE &&
321                     kgdb_has_hit_break(addr))
322                         return false;
323 #endif
324                 addr += insn.length;
325         }
326 
327         /* Check if paddr is at an instruction boundary */
328         if (addr != paddr)
329                 return false;
330 
331         __addr = recover_probed_instruction(buf, addr);
332         if (!__addr)
333                 return false;
334 
335         if (insn_decode_kernel(&insn, (void *)__addr) < 0)
336                 return false;
337 
338         /* INT and UD are special and should not be kprobed */
339         if (is_exception_insn(&insn))
340                 return false;
341 
342         if (IS_ENABLED(CONFIG_CFI_CLANG)) {
343                 /*
344                  * The compiler generates the following instruction sequence
345                  * for indirect call checks and cfi.c decodes this;
346                  *
347                  *   movl    -<id>, %r10d       ; 6 bytes
348                  *   addl    -4(%reg), %r10d    ; 4 bytes
349                  *   je      .Ltmp1             ; 2 bytes
350                  *   ud2                        ; <- regs->ip
351                  *   .Ltmp1:
352                  *
353                  * Also, these movl and addl are used for showing expected
354                  * type. So those must not be touched.
355                  */
356                 if (insn.opcode.value == 0xBA)
357                         offset = 12;
358                 else if (insn.opcode.value == 0x3)
359                         offset = 6;
360                 else
361                         goto out;
362 
363                 /* This movl/addl is used for decoding CFI. */
364                 if (is_cfi_trap(addr + offset))
365                         return false;
366         }
367 
368 out:
369         return true;
370 }
371 
372 /* If x86 supports IBT (ENDBR) it must be skipped. */
373 kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
374                                          bool *on_func_entry)
375 {
376         u32 insn;
377 
378         /*
379          * Since 'addr' is not guaranteed to be safe to access, use
380          * copy_from_kernel_nofault() to read the instruction:
381          */
382         if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(u32)))
383                 return NULL;
384 
385         if (is_endbr(insn)) {
386                 *on_func_entry = !offset || offset == 4;
387                 if (*on_func_entry)
388                         offset = 4;
389 
390         } else {
391                 *on_func_entry = !offset;
392         }
393 
394         return (kprobe_opcode_t *)(addr + offset);
395 }
396 
397 /*
398  * Copy an instruction with recovering modified instruction by kprobes
399  * and adjust the displacement if the instruction uses the %rip-relative
400  * addressing mode. Note that since @real will be the final place of copied
401  * instruction, displacement must be adjust by @real, not @dest.
402  * This returns the length of copied instruction, or 0 if it has an error.
403  */
404 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
405 {
406         kprobe_opcode_t buf[MAX_INSN_SIZE];
407         unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
408         int ret;
409 
410         if (!recovered_insn || !insn)
411                 return 0;
412 
413         /* This can access kernel text if given address is not recovered */
414         if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
415                         MAX_INSN_SIZE))
416                 return 0;
417 
418         ret = insn_decode_kernel(insn, dest);
419         if (ret < 0)
420                 return 0;
421 
422         /* We can not probe force emulate prefixed instruction */
423         if (insn_has_emulate_prefix(insn))
424                 return 0;
425 
426         /* Another subsystem puts a breakpoint, failed to recover */
427         if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
428                 return 0;
429 
430         /* We should not singlestep on the exception masking instructions */
431         if (insn_masking_exception(insn))
432                 return 0;
433 
434 #ifdef CONFIG_X86_64
435         /* Only x86_64 has RIP relative instructions */
436         if (insn_rip_relative(insn)) {
437                 s64 newdisp;
438                 u8 *disp;
439                 /*
440                  * The copied instruction uses the %rip-relative addressing
441                  * mode.  Adjust the displacement for the difference between
442                  * the original location of this instruction and the location
443                  * of the copy that will actually be run.  The tricky bit here
444                  * is making sure that the sign extension happens correctly in
445                  * this calculation, since we need a signed 32-bit result to
446                  * be sign-extended to 64 bits when it's added to the %rip
447                  * value and yield the same 64-bit result that the sign-
448                  * extension of the original signed 32-bit displacement would
449                  * have given.
450                  */
451                 newdisp = (u8 *) src + (s64) insn->displacement.value
452                           - (u8 *) real;
453                 if ((s64) (s32) newdisp != newdisp) {
454                         pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
455                         return 0;
456                 }
457                 disp = (u8 *) dest + insn_offset_displacement(insn);
458                 *(s32 *) disp = (s32) newdisp;
459         }
460 #endif
461         return insn->length;
462 }
463 
464 /* Prepare reljump or int3 right after instruction */
465 static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
466                               struct insn *insn)
467 {
468         int len = insn->length;
469 
470         if (!IS_ENABLED(CONFIG_PREEMPTION) &&
471             !p->post_handler && can_boost(insn, p->addr) &&
472             MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
473                 /*
474                  * These instructions can be executed directly if it
475                  * jumps back to correct address.
476                  */
477                 synthesize_reljump(buf + len, p->ainsn.insn + len,
478                                    p->addr + insn->length);
479                 len += JMP32_INSN_SIZE;
480                 p->ainsn.boostable = 1;
481         } else {
482                 /* Otherwise, put an int3 for trapping singlestep */
483                 if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
484                         return -ENOSPC;
485 
486                 buf[len] = INT3_INSN_OPCODE;
487                 len += INT3_INSN_SIZE;
488         }
489 
490         return len;
491 }
492 
493 /* Make page to RO mode when allocate it */
494 void *alloc_insn_page(void)
495 {
496         void *page;
497 
498         page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
499         if (!page)
500                 return NULL;
501 
502         /*
503          * TODO: Once additional kernel code protection mechanisms are set, ensure
504          * that the page was not maliciously altered and it is still zeroed.
505          */
506         set_memory_rox((unsigned long)page, 1);
507 
508         return page;
509 }
510 
511 /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
512 
513 static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
514 {
515         switch (p->ainsn.opcode) {
516         case 0xfa:      /* cli */
517                 regs->flags &= ~(X86_EFLAGS_IF);
518                 break;
519         case 0xfb:      /* sti */
520                 regs->flags |= X86_EFLAGS_IF;
521                 break;
522         case 0x9c:      /* pushf */
523                 int3_emulate_push(regs, regs->flags);
524                 break;
525         case 0x9d:      /* popf */
526                 regs->flags = int3_emulate_pop(regs);
527                 break;
528         }
529         regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
530 }
531 NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
532 
533 static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
534 {
535         int3_emulate_ret(regs);
536 }
537 NOKPROBE_SYMBOL(kprobe_emulate_ret);
538 
539 static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
540 {
541         unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
542 
543         func += p->ainsn.rel32;
544         int3_emulate_call(regs, func);
545 }
546 NOKPROBE_SYMBOL(kprobe_emulate_call);
547 
548 static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
549 {
550         unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
551 
552         ip += p->ainsn.rel32;
553         int3_emulate_jmp(regs, ip);
554 }
555 NOKPROBE_SYMBOL(kprobe_emulate_jmp);
556 
557 static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
558 {
559         unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
560 
561         int3_emulate_jcc(regs, p->ainsn.jcc.type, ip, p->ainsn.rel32);
562 }
563 NOKPROBE_SYMBOL(kprobe_emulate_jcc);
564 
565 static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
566 {
567         unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
568         bool match;
569 
570         if (p->ainsn.loop.type != 3) {  /* LOOP* */
571                 if (p->ainsn.loop.asize == 32)
572                         match = ((*(u32 *)&regs->cx)--) != 0;
573 #ifdef CONFIG_X86_64
574                 else if (p->ainsn.loop.asize == 64)
575                         match = ((*(u64 *)&regs->cx)--) != 0;
576 #endif
577                 else
578                         match = ((*(u16 *)&regs->cx)--) != 0;
579         } else {                        /* JCXZ */
580                 if (p->ainsn.loop.asize == 32)
581                         match = *(u32 *)(&regs->cx) == 0;
582 #ifdef CONFIG_X86_64
583                 else if (p->ainsn.loop.asize == 64)
584                         match = *(u64 *)(&regs->cx) == 0;
585 #endif
586                 else
587                         match = *(u16 *)(&regs->cx) == 0;
588         }
589 
590         if (p->ainsn.loop.type == 0)    /* LOOPNE */
591                 match = match && !(regs->flags & X86_EFLAGS_ZF);
592         else if (p->ainsn.loop.type == 1)       /* LOOPE */
593                 match = match && (regs->flags & X86_EFLAGS_ZF);
594 
595         if (match)
596                 ip += p->ainsn.rel32;
597         int3_emulate_jmp(regs, ip);
598 }
599 NOKPROBE_SYMBOL(kprobe_emulate_loop);
600 
601 static const int addrmode_regoffs[] = {
602         offsetof(struct pt_regs, ax),
603         offsetof(struct pt_regs, cx),
604         offsetof(struct pt_regs, dx),
605         offsetof(struct pt_regs, bx),
606         offsetof(struct pt_regs, sp),
607         offsetof(struct pt_regs, bp),
608         offsetof(struct pt_regs, si),
609         offsetof(struct pt_regs, di),
610 #ifdef CONFIG_X86_64
611         offsetof(struct pt_regs, r8),
612         offsetof(struct pt_regs, r9),
613         offsetof(struct pt_regs, r10),
614         offsetof(struct pt_regs, r11),
615         offsetof(struct pt_regs, r12),
616         offsetof(struct pt_regs, r13),
617         offsetof(struct pt_regs, r14),
618         offsetof(struct pt_regs, r15),
619 #endif
620 };
621 
622 static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
623 {
624         unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
625 
626         int3_emulate_push(regs, regs->ip - INT3_INSN_SIZE + p->ainsn.size);
627         int3_emulate_jmp(regs, regs_get_register(regs, offs));
628 }
629 NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
630 
631 static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
632 {
633         unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
634 
635         int3_emulate_jmp(regs, regs_get_register(regs, offs));
636 }
637 NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
638 
639 static int prepare_emulation(struct kprobe *p, struct insn *insn)
640 {
641         insn_byte_t opcode = insn->opcode.bytes[0];
642 
643         switch (opcode) {
644         case 0xfa:              /* cli */
645         case 0xfb:              /* sti */
646         case 0x9c:              /* pushfl */
647         case 0x9d:              /* popf/popfd */
648                 /*
649                  * IF modifiers must be emulated since it will enable interrupt while
650                  * int3 single stepping.
651                  */
652                 p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
653                 p->ainsn.opcode = opcode;
654                 break;
655         case 0xc2:      /* ret/lret */
656         case 0xc3:
657         case 0xca:
658         case 0xcb:
659                 p->ainsn.emulate_op = kprobe_emulate_ret;
660                 break;
661         case 0x9a:      /* far call absolute -- segment is not supported */
662         case 0xea:      /* far jmp absolute -- segment is not supported */
663         case 0xcc:      /* int3 */
664         case 0xcf:      /* iret -- in-kernel IRET is not supported */
665                 return -EOPNOTSUPP;
666                 break;
667         case 0xe8:      /* near call relative */
668                 p->ainsn.emulate_op = kprobe_emulate_call;
669                 if (insn->immediate.nbytes == 2)
670                         p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
671                 else
672                         p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
673                 break;
674         case 0xeb:      /* short jump relative */
675         case 0xe9:      /* near jump relative */
676                 p->ainsn.emulate_op = kprobe_emulate_jmp;
677                 if (insn->immediate.nbytes == 1)
678                         p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
679                 else if (insn->immediate.nbytes == 2)
680                         p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
681                 else
682                         p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
683                 break;
684         case 0x70 ... 0x7f:
685                 /* 1 byte conditional jump */
686                 p->ainsn.emulate_op = kprobe_emulate_jcc;
687                 p->ainsn.jcc.type = opcode & 0xf;
688                 p->ainsn.rel32 = insn->immediate.value;
689                 break;
690         case 0x0f:
691                 opcode = insn->opcode.bytes[1];
692                 if ((opcode & 0xf0) == 0x80) {
693                         /* 2 bytes Conditional Jump */
694                         p->ainsn.emulate_op = kprobe_emulate_jcc;
695                         p->ainsn.jcc.type = opcode & 0xf;
696                         if (insn->immediate.nbytes == 2)
697                                 p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
698                         else
699                                 p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
700                 } else if (opcode == 0x01 &&
701                            X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
702                            X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
703                         /* VM extensions - not supported */
704                         return -EOPNOTSUPP;
705                 }
706                 break;
707         case 0xe0:      /* Loop NZ */
708         case 0xe1:      /* Loop */
709         case 0xe2:      /* Loop */
710         case 0xe3:      /* J*CXZ */
711                 p->ainsn.emulate_op = kprobe_emulate_loop;
712                 p->ainsn.loop.type = opcode & 0x3;
713                 p->ainsn.loop.asize = insn->addr_bytes * 8;
714                 p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
715                 break;
716         case 0xff:
717                 /*
718                  * Since the 0xff is an extended group opcode, the instruction
719                  * is determined by the MOD/RM byte.
720                  */
721                 opcode = insn->modrm.bytes[0];
722                 switch (X86_MODRM_REG(opcode)) {
723                 case 0b010:     /* FF /2, call near, absolute indirect */
724                         p->ainsn.emulate_op = kprobe_emulate_call_indirect;
725                         break;
726                 case 0b100:     /* FF /4, jmp near, absolute indirect */
727                         p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
728                         break;
729                 case 0b011:     /* FF /3, call far, absolute indirect */
730                 case 0b101:     /* FF /5, jmp far, absolute indirect */
731                         return -EOPNOTSUPP;
732                 }
733 
734                 if (!p->ainsn.emulate_op)
735                         break;
736 
737                 if (insn->addr_bytes != sizeof(unsigned long))
738                         return -EOPNOTSUPP;     /* Don't support different size */
739                 if (X86_MODRM_MOD(opcode) != 3)
740                         return -EOPNOTSUPP;     /* TODO: support memory addressing */
741 
742                 p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
743 #ifdef CONFIG_X86_64
744                 if (X86_REX_B(insn->rex_prefix.value))
745                         p->ainsn.indirect.reg += 8;
746 #endif
747                 break;
748         default:
749                 break;
750         }
751         p->ainsn.size = insn->length;
752 
753         return 0;
754 }
755 
756 static int arch_copy_kprobe(struct kprobe *p)
757 {
758         struct insn insn;
759         kprobe_opcode_t buf[MAX_INSN_SIZE];
760         int ret, len;
761 
762         /* Copy an instruction with recovering if other optprobe modifies it.*/
763         len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
764         if (!len)
765                 return -EINVAL;
766 
767         /* Analyze the opcode and setup emulate functions */
768         ret = prepare_emulation(p, &insn);
769         if (ret < 0)
770                 return ret;
771 
772         /* Add int3 for single-step or booster jmp */
773         len = prepare_singlestep(buf, p, &insn);
774         if (len < 0)
775                 return len;
776 
777         /* Also, displacement change doesn't affect the first byte */
778         p->opcode = buf[0];
779 
780         p->ainsn.tp_len = len;
781         perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
782 
783         /* OK, write back the instruction(s) into ROX insn buffer */
784         text_poke(p->ainsn.insn, buf, len);
785 
786         return 0;
787 }
788 
789 int arch_prepare_kprobe(struct kprobe *p)
790 {
791         int ret;
792 
793         if (alternatives_text_reserved(p->addr, p->addr))
794                 return -EINVAL;
795 
796         if (!can_probe((unsigned long)p->addr))
797                 return -EILSEQ;
798 
799         memset(&p->ainsn, 0, sizeof(p->ainsn));
800 
801         /* insn: must be on special executable page on x86. */
802         p->ainsn.insn = get_insn_slot();
803         if (!p->ainsn.insn)
804                 return -ENOMEM;
805 
806         ret = arch_copy_kprobe(p);
807         if (ret) {
808                 free_insn_slot(p->ainsn.insn, 0);
809                 p->ainsn.insn = NULL;
810         }
811 
812         return ret;
813 }
814 
815 void arch_arm_kprobe(struct kprobe *p)
816 {
817         u8 int3 = INT3_INSN_OPCODE;
818 
819         text_poke(p->addr, &int3, 1);
820         text_poke_sync();
821         perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
822 }
823 
824 void arch_disarm_kprobe(struct kprobe *p)
825 {
826         u8 int3 = INT3_INSN_OPCODE;
827 
828         perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
829         text_poke(p->addr, &p->opcode, 1);
830         text_poke_sync();
831 }
832 
833 void arch_remove_kprobe(struct kprobe *p)
834 {
835         if (p->ainsn.insn) {
836                 /* Record the perf event before freeing the slot */
837                 perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
838                                      p->ainsn.tp_len, NULL, 0);
839                 free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
840                 p->ainsn.insn = NULL;
841         }
842 }
843 
844 static nokprobe_inline void
845 save_previous_kprobe(struct kprobe_ctlblk *kcb)
846 {
847         kcb->prev_kprobe.kp = kprobe_running();
848         kcb->prev_kprobe.status = kcb->kprobe_status;
849         kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
850         kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
851 }
852 
853 static nokprobe_inline void
854 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
855 {
856         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
857         kcb->kprobe_status = kcb->prev_kprobe.status;
858         kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
859         kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
860 }
861 
862 static nokprobe_inline void
863 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
864                    struct kprobe_ctlblk *kcb)
865 {
866         __this_cpu_write(current_kprobe, p);
867         kcb->kprobe_saved_flags = kcb->kprobe_old_flags
868                 = (regs->flags & X86_EFLAGS_IF);
869 }
870 
871 static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
872                                struct kprobe_ctlblk *kcb)
873 {
874         /* Restore back the original saved kprobes variables and continue. */
875         if (kcb->kprobe_status == KPROBE_REENTER) {
876                 /* This will restore both kcb and current_kprobe */
877                 restore_previous_kprobe(kcb);
878         } else {
879                 /*
880                  * Always update the kcb status because
881                  * reset_curent_kprobe() doesn't update kcb.
882                  */
883                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
884                 if (cur->post_handler)
885                         cur->post_handler(cur, regs, 0);
886                 reset_current_kprobe();
887         }
888 }
889 NOKPROBE_SYMBOL(kprobe_post_process);
890 
891 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
892                              struct kprobe_ctlblk *kcb, int reenter)
893 {
894         if (setup_detour_execution(p, regs, reenter))
895                 return;
896 
897 #if !defined(CONFIG_PREEMPTION)
898         if (p->ainsn.boostable) {
899                 /* Boost up -- we can execute copied instructions directly */
900                 if (!reenter)
901                         reset_current_kprobe();
902                 /*
903                  * Reentering boosted probe doesn't reset current_kprobe,
904                  * nor set current_kprobe, because it doesn't use single
905                  * stepping.
906                  */
907                 regs->ip = (unsigned long)p->ainsn.insn;
908                 return;
909         }
910 #endif
911         if (reenter) {
912                 save_previous_kprobe(kcb);
913                 set_current_kprobe(p, regs, kcb);
914                 kcb->kprobe_status = KPROBE_REENTER;
915         } else
916                 kcb->kprobe_status = KPROBE_HIT_SS;
917 
918         if (p->ainsn.emulate_op) {
919                 p->ainsn.emulate_op(p, regs);
920                 kprobe_post_process(p, regs, kcb);
921                 return;
922         }
923 
924         /* Disable interrupt, and set ip register on trampoline */
925         regs->flags &= ~X86_EFLAGS_IF;
926         regs->ip = (unsigned long)p->ainsn.insn;
927 }
928 NOKPROBE_SYMBOL(setup_singlestep);
929 
930 /*
931  * Called after single-stepping.  p->addr is the address of the
932  * instruction whose first byte has been replaced by the "int3"
933  * instruction.  To avoid the SMP problems that can occur when we
934  * temporarily put back the original opcode to single-step, we
935  * single-stepped a copy of the instruction.  The address of this
936  * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
937  * right after the copied instruction.
938  * Different from the trap single-step, "int3" single-step can not
939  * handle the instruction which changes the ip register, e.g. jmp,
940  * call, conditional jmp, and the instructions which changes the IF
941  * flags because interrupt must be disabled around the single-stepping.
942  * Such instructions are software emulated, but others are single-stepped
943  * using "int3".
944  *
945  * When the 2nd "int3" handled, the regs->ip and regs->flags needs to
946  * be adjusted, so that we can resume execution on correct code.
947  */
948 static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
949                               struct kprobe_ctlblk *kcb)
950 {
951         unsigned long copy_ip = (unsigned long)p->ainsn.insn;
952         unsigned long orig_ip = (unsigned long)p->addr;
953 
954         /* Restore saved interrupt flag and ip register */
955         regs->flags |= kcb->kprobe_saved_flags;
956         /* Note that regs->ip is executed int3 so must be a step back */
957         regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
958 }
959 NOKPROBE_SYMBOL(resume_singlestep);
960 
961 /*
962  * We have reentered the kprobe_handler(), since another probe was hit while
963  * within the handler. We save the original kprobes variables and just single
964  * step on the instruction of the new probe without calling any user handlers.
965  */
966 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
967                           struct kprobe_ctlblk *kcb)
968 {
969         switch (kcb->kprobe_status) {
970         case KPROBE_HIT_SSDONE:
971         case KPROBE_HIT_ACTIVE:
972         case KPROBE_HIT_SS:
973                 kprobes_inc_nmissed_count(p);
974                 setup_singlestep(p, regs, kcb, 1);
975                 break;
976         case KPROBE_REENTER:
977                 /* A probe has been hit in the codepath leading up to, or just
978                  * after, single-stepping of a probed instruction. This entire
979                  * codepath should strictly reside in .kprobes.text section.
980                  * Raise a BUG or we'll continue in an endless reentering loop
981                  * and eventually a stack overflow.
982                  */
983                 pr_err("Unrecoverable kprobe detected.\n");
984                 dump_kprobe(p);
985                 BUG();
986         default:
987                 /* impossible cases */
988                 WARN_ON(1);
989                 return 0;
990         }
991 
992         return 1;
993 }
994 NOKPROBE_SYMBOL(reenter_kprobe);
995 
996 static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
997 {
998         return (kcb->kprobe_status == KPROBE_HIT_SS ||
999                 kcb->kprobe_status == KPROBE_REENTER);
1000 }
1001 
1002 /*
1003  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
1004  * remain disabled throughout this function.
1005  */
1006 int kprobe_int3_handler(struct pt_regs *regs)
1007 {
1008         kprobe_opcode_t *addr;
1009         struct kprobe *p;
1010         struct kprobe_ctlblk *kcb;
1011 
1012         if (user_mode(regs))
1013                 return 0;
1014 
1015         addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
1016         /*
1017          * We don't want to be preempted for the entire duration of kprobe
1018          * processing. Since int3 and debug trap disables irqs and we clear
1019          * IF while singlestepping, it must be no preemptible.
1020          */
1021 
1022         kcb = get_kprobe_ctlblk();
1023         p = get_kprobe(addr);
1024 
1025         if (p) {
1026                 if (kprobe_running()) {
1027                         if (reenter_kprobe(p, regs, kcb))
1028                                 return 1;
1029                 } else {
1030                         set_current_kprobe(p, regs, kcb);
1031                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1032 
1033                         /*
1034                          * If we have no pre-handler or it returned 0, we
1035                          * continue with normal processing.  If we have a
1036                          * pre-handler and it returned non-zero, that means
1037                          * user handler setup registers to exit to another
1038                          * instruction, we must skip the single stepping.
1039                          */
1040                         if (!p->pre_handler || !p->pre_handler(p, regs))
1041                                 setup_singlestep(p, regs, kcb, 0);
1042                         else
1043                                 reset_current_kprobe();
1044                         return 1;
1045                 }
1046         } else if (kprobe_is_ss(kcb)) {
1047                 p = kprobe_running();
1048                 if ((unsigned long)p->ainsn.insn < regs->ip &&
1049                     (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
1050                         /* Most provably this is the second int3 for singlestep */
1051                         resume_singlestep(p, regs, kcb);
1052                         kprobe_post_process(p, regs, kcb);
1053                         return 1;
1054                 }
1055         } /* else: not a kprobe fault; let the kernel handle it */
1056 
1057         return 0;
1058 }
1059 NOKPROBE_SYMBOL(kprobe_int3_handler);
1060 
1061 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1062 {
1063         struct kprobe *cur = kprobe_running();
1064         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1065 
1066         if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1067                 /* This must happen on single-stepping */
1068                 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1069                         kcb->kprobe_status != KPROBE_REENTER);
1070                 /*
1071                  * We are here because the instruction being single
1072                  * stepped caused a page fault. We reset the current
1073                  * kprobe and the ip points back to the probe address
1074                  * and allow the page fault handler to continue as a
1075                  * normal page fault.
1076                  */
1077                 regs->ip = (unsigned long)cur->addr;
1078 
1079                 /*
1080                  * If the IF flag was set before the kprobe hit,
1081                  * don't touch it:
1082                  */
1083                 regs->flags |= kcb->kprobe_old_flags;
1084 
1085                 if (kcb->kprobe_status == KPROBE_REENTER)
1086                         restore_previous_kprobe(kcb);
1087                 else
1088                         reset_current_kprobe();
1089         }
1090 
1091         return 0;
1092 }
1093 NOKPROBE_SYMBOL(kprobe_fault_handler);
1094 
1095 int __init arch_populate_kprobe_blacklist(void)
1096 {
1097         return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1098                                          (unsigned long)__entry_text_end);
1099 }
1100 
1101 int __init arch_init_kprobes(void)
1102 {
1103         return 0;
1104 }
1105 
1106 int arch_trampoline_kprobe(struct kprobe *p)
1107 {
1108         return 0;
1109 }
1110 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php