~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/nmi.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  Copyright (C) 1991, 1992  Linus Torvalds
  4  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  5  *  Copyright (C) 2011  Don Zickus Red Hat, Inc.
  6  *
  7  *  Pentium III FXSR, SSE support
  8  *      Gareth Hughes <gareth@valinux.com>, May 2000
  9  */
 10 
 11 /*
 12  * Handle hardware traps and faults.
 13  */
 14 #include <linux/spinlock.h>
 15 #include <linux/kprobes.h>
 16 #include <linux/kdebug.h>
 17 #include <linux/sched/debug.h>
 18 #include <linux/nmi.h>
 19 #include <linux/debugfs.h>
 20 #include <linux/delay.h>
 21 #include <linux/hardirq.h>
 22 #include <linux/ratelimit.h>
 23 #include <linux/slab.h>
 24 #include <linux/export.h>
 25 #include <linux/atomic.h>
 26 #include <linux/sched/clock.h>
 27 
 28 #include <asm/cpu_entry_area.h>
 29 #include <asm/traps.h>
 30 #include <asm/mach_traps.h>
 31 #include <asm/nmi.h>
 32 #include <asm/x86_init.h>
 33 #include <asm/reboot.h>
 34 #include <asm/cache.h>
 35 #include <asm/nospec-branch.h>
 36 #include <asm/microcode.h>
 37 #include <asm/sev.h>
 38 #include <asm/fred.h>
 39 
 40 #define CREATE_TRACE_POINTS
 41 #include <trace/events/nmi.h>
 42 
 43 struct nmi_desc {
 44         raw_spinlock_t lock;
 45         struct list_head head;
 46 };
 47 
 48 static struct nmi_desc nmi_desc[NMI_MAX] = 
 49 {
 50         {
 51                 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
 52                 .head = LIST_HEAD_INIT(nmi_desc[0].head),
 53         },
 54         {
 55                 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
 56                 .head = LIST_HEAD_INIT(nmi_desc[1].head),
 57         },
 58         {
 59                 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
 60                 .head = LIST_HEAD_INIT(nmi_desc[2].head),
 61         },
 62         {
 63                 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
 64                 .head = LIST_HEAD_INIT(nmi_desc[3].head),
 65         },
 66 
 67 };
 68 
 69 struct nmi_stats {
 70         unsigned int normal;
 71         unsigned int unknown;
 72         unsigned int external;
 73         unsigned int swallow;
 74         unsigned long recv_jiffies;
 75         unsigned long idt_seq;
 76         unsigned long idt_nmi_seq;
 77         unsigned long idt_ignored;
 78         atomic_long_t idt_calls;
 79         unsigned long idt_seq_snap;
 80         unsigned long idt_nmi_seq_snap;
 81         unsigned long idt_ignored_snap;
 82         long idt_calls_snap;
 83 };
 84 
 85 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
 86 
 87 static int ignore_nmis __read_mostly;
 88 
 89 int unknown_nmi_panic;
 90 /*
 91  * Prevent NMI reason port (0x61) being accessed simultaneously, can
 92  * only be used in NMI handler.
 93  */
 94 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 95 
 96 static int __init setup_unknown_nmi_panic(char *str)
 97 {
 98         unknown_nmi_panic = 1;
 99         return 1;
100 }
101 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
102 
103 #define nmi_to_desc(type) (&nmi_desc[type])
104 
105 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
106 
107 static int __init nmi_warning_debugfs(void)
108 {
109         debugfs_create_u64("nmi_longest_ns", 0644,
110                         arch_debugfs_dir, &nmi_longest_ns);
111         return 0;
112 }
113 fs_initcall(nmi_warning_debugfs);
114 
115 static void nmi_check_duration(struct nmiaction *action, u64 duration)
116 {
117         int remainder_ns, decimal_msecs;
118 
119         if (duration < nmi_longest_ns || duration < action->max_duration)
120                 return;
121 
122         action->max_duration = duration;
123 
124         remainder_ns = do_div(duration, (1000 * 1000));
125         decimal_msecs = remainder_ns / 1000;
126 
127         printk_ratelimited(KERN_INFO
128                 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
129                 action->handler, duration, decimal_msecs);
130 }
131 
132 static int nmi_handle(unsigned int type, struct pt_regs *regs)
133 {
134         struct nmi_desc *desc = nmi_to_desc(type);
135         struct nmiaction *a;
136         int handled=0;
137 
138         rcu_read_lock();
139 
140         /*
141          * NMIs are edge-triggered, which means if you have enough
142          * of them concurrently, you can lose some because only one
143          * can be latched at any given time.  Walk the whole list
144          * to handle those situations.
145          */
146         list_for_each_entry_rcu(a, &desc->head, list) {
147                 int thishandled;
148                 u64 delta;
149 
150                 delta = sched_clock();
151                 thishandled = a->handler(type, regs);
152                 handled += thishandled;
153                 delta = sched_clock() - delta;
154                 trace_nmi_handler(a->handler, (int)delta, thishandled);
155 
156                 nmi_check_duration(a, delta);
157         }
158 
159         rcu_read_unlock();
160 
161         /* return total number of NMI events handled */
162         return handled;
163 }
164 NOKPROBE_SYMBOL(nmi_handle);
165 
166 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
167 {
168         struct nmi_desc *desc = nmi_to_desc(type);
169         unsigned long flags;
170 
171         if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
172                 return -EINVAL;
173 
174         raw_spin_lock_irqsave(&desc->lock, flags);
175 
176         /*
177          * Indicate if there are multiple registrations on the
178          * internal NMI handler call chains (SERR and IO_CHECK).
179          */
180         WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
181         WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
182 
183         /*
184          * some handlers need to be executed first otherwise a fake
185          * event confuses some handlers (kdump uses this flag)
186          */
187         if (action->flags & NMI_FLAG_FIRST)
188                 list_add_rcu(&action->list, &desc->head);
189         else
190                 list_add_tail_rcu(&action->list, &desc->head);
191 
192         raw_spin_unlock_irqrestore(&desc->lock, flags);
193         return 0;
194 }
195 EXPORT_SYMBOL(__register_nmi_handler);
196 
197 void unregister_nmi_handler(unsigned int type, const char *name)
198 {
199         struct nmi_desc *desc = nmi_to_desc(type);
200         struct nmiaction *n, *found = NULL;
201         unsigned long flags;
202 
203         raw_spin_lock_irqsave(&desc->lock, flags);
204 
205         list_for_each_entry_rcu(n, &desc->head, list) {
206                 /*
207                  * the name passed in to describe the nmi handler
208                  * is used as the lookup key
209                  */
210                 if (!strcmp(n->name, name)) {
211                         WARN(in_nmi(),
212                                 "Trying to free NMI (%s) from NMI context!\n", n->name);
213                         list_del_rcu(&n->list);
214                         found = n;
215                         break;
216                 }
217         }
218 
219         raw_spin_unlock_irqrestore(&desc->lock, flags);
220         if (found) {
221                 synchronize_rcu();
222                 INIT_LIST_HEAD(&found->list);
223         }
224 }
225 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
226 
227 static void
228 pci_serr_error(unsigned char reason, struct pt_regs *regs)
229 {
230         /* check to see if anyone registered against these types of errors */
231         if (nmi_handle(NMI_SERR, regs))
232                 return;
233 
234         pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
235                  reason, smp_processor_id());
236 
237         if (panic_on_unrecovered_nmi)
238                 nmi_panic(regs, "NMI: Not continuing");
239 
240         pr_emerg("Dazed and confused, but trying to continue\n");
241 
242         /* Clear and disable the PCI SERR error line. */
243         reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
244         outb(reason, NMI_REASON_PORT);
245 }
246 NOKPROBE_SYMBOL(pci_serr_error);
247 
248 static void
249 io_check_error(unsigned char reason, struct pt_regs *regs)
250 {
251         unsigned long i;
252 
253         /* check to see if anyone registered against these types of errors */
254         if (nmi_handle(NMI_IO_CHECK, regs))
255                 return;
256 
257         pr_emerg(
258         "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
259                  reason, smp_processor_id());
260         show_regs(regs);
261 
262         if (panic_on_io_nmi) {
263                 nmi_panic(regs, "NMI IOCK error: Not continuing");
264 
265                 /*
266                  * If we end up here, it means we have received an NMI while
267                  * processing panic(). Simply return without delaying and
268                  * re-enabling NMIs.
269                  */
270                 return;
271         }
272 
273         /* Re-enable the IOCK line, wait for a few seconds */
274         reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
275         outb(reason, NMI_REASON_PORT);
276 
277         i = 20000;
278         while (--i) {
279                 touch_nmi_watchdog();
280                 udelay(100);
281         }
282 
283         reason &= ~NMI_REASON_CLEAR_IOCHK;
284         outb(reason, NMI_REASON_PORT);
285 }
286 NOKPROBE_SYMBOL(io_check_error);
287 
288 static void
289 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
290 {
291         int handled;
292 
293         /*
294          * Use 'false' as back-to-back NMIs are dealt with one level up.
295          * Of course this makes having multiple 'unknown' handlers useless
296          * as only the first one is ever run (unless it can actually determine
297          * if it caused the NMI)
298          */
299         handled = nmi_handle(NMI_UNKNOWN, regs);
300         if (handled) {
301                 __this_cpu_add(nmi_stats.unknown, handled);
302                 return;
303         }
304 
305         __this_cpu_add(nmi_stats.unknown, 1);
306 
307         pr_emerg_ratelimited("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
308                              reason, smp_processor_id());
309 
310         if (unknown_nmi_panic || panic_on_unrecovered_nmi)
311                 nmi_panic(regs, "NMI: Not continuing");
312 
313         pr_emerg_ratelimited("Dazed and confused, but trying to continue\n");
314 }
315 NOKPROBE_SYMBOL(unknown_nmi_error);
316 
317 static DEFINE_PER_CPU(bool, swallow_nmi);
318 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
319 
320 static noinstr void default_do_nmi(struct pt_regs *regs)
321 {
322         unsigned char reason = 0;
323         int handled;
324         bool b2b = false;
325 
326         /*
327          * CPU-specific NMI must be processed before non-CPU-specific
328          * NMI, otherwise we may lose it, because the CPU-specific
329          * NMI can not be detected/processed on other CPUs.
330          */
331 
332         /*
333          * Back-to-back NMIs are interesting because they can either
334          * be two NMI or more than two NMIs (any thing over two is dropped
335          * due to NMI being edge-triggered).  If this is the second half
336          * of the back-to-back NMI, assume we dropped things and process
337          * more handlers.  Otherwise reset the 'swallow' NMI behaviour
338          */
339         if (regs->ip == __this_cpu_read(last_nmi_rip))
340                 b2b = true;
341         else
342                 __this_cpu_write(swallow_nmi, false);
343 
344         __this_cpu_write(last_nmi_rip, regs->ip);
345 
346         instrumentation_begin();
347 
348         if (microcode_nmi_handler_enabled() && microcode_nmi_handler())
349                 goto out;
350 
351         handled = nmi_handle(NMI_LOCAL, regs);
352         __this_cpu_add(nmi_stats.normal, handled);
353         if (handled) {
354                 /*
355                  * There are cases when a NMI handler handles multiple
356                  * events in the current NMI.  One of these events may
357                  * be queued for in the next NMI.  Because the event is
358                  * already handled, the next NMI will result in an unknown
359                  * NMI.  Instead lets flag this for a potential NMI to
360                  * swallow.
361                  */
362                 if (handled > 1)
363                         __this_cpu_write(swallow_nmi, true);
364                 goto out;
365         }
366 
367         /*
368          * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
369          *
370          * Another CPU may be processing panic routines while holding
371          * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
372          * and if so, call its callback directly.  If there is no CPU preparing
373          * crash dump, we simply loop here.
374          */
375         while (!raw_spin_trylock(&nmi_reason_lock)) {
376                 run_crash_ipi_callback(regs);
377                 cpu_relax();
378         }
379 
380         reason = x86_platform.get_nmi_reason();
381 
382         if (reason & NMI_REASON_MASK) {
383                 if (reason & NMI_REASON_SERR)
384                         pci_serr_error(reason, regs);
385                 else if (reason & NMI_REASON_IOCHK)
386                         io_check_error(reason, regs);
387 #ifdef CONFIG_X86_32
388                 /*
389                  * Reassert NMI in case it became active
390                  * meanwhile as it's edge-triggered:
391                  */
392                 reassert_nmi();
393 #endif
394                 __this_cpu_add(nmi_stats.external, 1);
395                 raw_spin_unlock(&nmi_reason_lock);
396                 goto out;
397         }
398         raw_spin_unlock(&nmi_reason_lock);
399 
400         /*
401          * Only one NMI can be latched at a time.  To handle
402          * this we may process multiple nmi handlers at once to
403          * cover the case where an NMI is dropped.  The downside
404          * to this approach is we may process an NMI prematurely,
405          * while its real NMI is sitting latched.  This will cause
406          * an unknown NMI on the next run of the NMI processing.
407          *
408          * We tried to flag that condition above, by setting the
409          * swallow_nmi flag when we process more than one event.
410          * This condition is also only present on the second half
411          * of a back-to-back NMI, so we flag that condition too.
412          *
413          * If both are true, we assume we already processed this
414          * NMI previously and we swallow it.  Otherwise we reset
415          * the logic.
416          *
417          * There are scenarios where we may accidentally swallow
418          * a 'real' unknown NMI.  For example, while processing
419          * a perf NMI another perf NMI comes in along with a
420          * 'real' unknown NMI.  These two NMIs get combined into
421          * one (as described above).  When the next NMI gets
422          * processed, it will be flagged by perf as handled, but
423          * no one will know that there was a 'real' unknown NMI sent
424          * also.  As a result it gets swallowed.  Or if the first
425          * perf NMI returns two events handled then the second
426          * NMI will get eaten by the logic below, again losing a
427          * 'real' unknown NMI.  But this is the best we can do
428          * for now.
429          */
430         if (b2b && __this_cpu_read(swallow_nmi))
431                 __this_cpu_add(nmi_stats.swallow, 1);
432         else
433                 unknown_nmi_error(reason, regs);
434 
435 out:
436         instrumentation_end();
437 }
438 
439 /*
440  * NMIs can page fault or hit breakpoints which will cause it to lose
441  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
442  *
443  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
444  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
445  * if the outer NMI came from kernel mode, but we can still nest if the
446  * outer NMI came from user mode.
447  *
448  * To handle these nested NMIs, we have three states:
449  *
450  *  1) not running
451  *  2) executing
452  *  3) latched
453  *
454  * When no NMI is in progress, it is in the "not running" state.
455  * When an NMI comes in, it goes into the "executing" state.
456  * Normally, if another NMI is triggered, it does not interrupt
457  * the running NMI and the HW will simply latch it so that when
458  * the first NMI finishes, it will restart the second NMI.
459  * (Note, the latch is binary, thus multiple NMIs triggering,
460  *  when one is running, are ignored. Only one NMI is restarted.)
461  *
462  * If an NMI executes an iret, another NMI can preempt it. We do not
463  * want to allow this new NMI to run, but we want to execute it when the
464  * first one finishes.  We set the state to "latched", and the exit of
465  * the first NMI will perform a dec_return, if the result is zero
466  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
467  * dec_return would have set the state to NMI_EXECUTING (what we want it
468  * to be when we are running). In this case, we simply jump back to
469  * rerun the NMI handler again, and restart the 'latched' NMI.
470  *
471  * No trap (breakpoint or page fault) should be hit before nmi_restart,
472  * thus there is no race between the first check of state for NOT_RUNNING
473  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
474  * at this point.
475  *
476  * In case the NMI takes a page fault, we need to save off the CR2
477  * because the NMI could have preempted another page fault and corrupt
478  * the CR2 that is about to be read. As nested NMIs must be restarted
479  * and they can not take breakpoints or page faults, the update of the
480  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
481  * Otherwise, there would be a race of another nested NMI coming in
482  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
483  */
484 enum nmi_states {
485         NMI_NOT_RUNNING = 0,
486         NMI_EXECUTING,
487         NMI_LATCHED,
488 };
489 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
490 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
491 static DEFINE_PER_CPU(unsigned long, nmi_dr7);
492 
493 DEFINE_IDTENTRY_RAW(exc_nmi)
494 {
495         irqentry_state_t irq_state;
496         struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);
497 
498         /*
499          * Re-enable NMIs right here when running as an SEV-ES guest. This might
500          * cause nested NMIs, but those can be handled safely.
501          */
502         sev_es_nmi_complete();
503         if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
504                 raw_atomic_long_inc(&nsp->idt_calls);
505 
506         if (arch_cpu_is_offline(smp_processor_id())) {
507                 if (microcode_nmi_handler_enabled())
508                         microcode_offline_nmi_handler();
509                 return;
510         }
511 
512         if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
513                 this_cpu_write(nmi_state, NMI_LATCHED);
514                 return;
515         }
516         this_cpu_write(nmi_state, NMI_EXECUTING);
517         this_cpu_write(nmi_cr2, read_cr2());
518 
519 nmi_restart:
520         if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
521                 WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
522                 WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
523                 WRITE_ONCE(nsp->recv_jiffies, jiffies);
524         }
525 
526         /*
527          * Needs to happen before DR7 is accessed, because the hypervisor can
528          * intercept DR7 reads/writes, turning those into #VC exceptions.
529          */
530         sev_es_ist_enter(regs);
531 
532         this_cpu_write(nmi_dr7, local_db_save());
533 
534         irq_state = irqentry_nmi_enter(regs);
535 
536         inc_irq_stat(__nmi_count);
537 
538         if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
539                 WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
540         } else if (!ignore_nmis) {
541                 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
542                         WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
543                         WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
544                 }
545                 default_do_nmi(regs);
546                 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
547                         WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
548                         WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
549                 }
550         }
551 
552         irqentry_nmi_exit(regs, irq_state);
553 
554         local_db_restore(this_cpu_read(nmi_dr7));
555 
556         sev_es_ist_exit();
557 
558         if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
559                 write_cr2(this_cpu_read(nmi_cr2));
560         if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
561                 WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
562                 WARN_ON_ONCE(nsp->idt_seq & 0x1);
563                 WRITE_ONCE(nsp->recv_jiffies, jiffies);
564         }
565         if (this_cpu_dec_return(nmi_state))
566                 goto nmi_restart;
567 }
568 
569 #if IS_ENABLED(CONFIG_KVM_INTEL)
570 DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
571 {
572         exc_nmi(regs);
573 }
574 #if IS_MODULE(CONFIG_KVM_INTEL)
575 EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
576 #endif
577 #endif
578 
579 #ifdef CONFIG_NMI_CHECK_CPU
580 
581 static char *nmi_check_stall_msg[] = {
582 /*                                                                      */
583 /* +--------- nmi_seq & 0x1: CPU is currently in NMI handler.           */
584 /* | +------ cpu_is_offline(cpu)                                        */
585 /* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls):   */
586 /* | | |        NMI handler has been invoked.                           */
587 /* | | |                                                                */
588 /* V V V                                                                */
589 /* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
590 /* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
591 /* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
592 /* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
593 /* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
594 /* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
595 /* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
596 /* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
597 };
598 
599 void nmi_backtrace_stall_snap(const struct cpumask *btp)
600 {
601         int cpu;
602         struct nmi_stats *nsp;
603 
604         for_each_cpu(cpu, btp) {
605                 nsp = per_cpu_ptr(&nmi_stats, cpu);
606                 nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
607                 nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
608                 nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
609                 nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
610         }
611 }
612 
613 void nmi_backtrace_stall_check(const struct cpumask *btp)
614 {
615         int cpu;
616         int idx;
617         unsigned long nmi_seq;
618         unsigned long j = jiffies;
619         char *modp;
620         char *msgp;
621         char *msghp;
622         struct nmi_stats *nsp;
623 
624         for_each_cpu(cpu, btp) {
625                 nsp = per_cpu_ptr(&nmi_stats, cpu);
626                 modp = "";
627                 msghp = "";
628                 nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
629                 if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
630                         msgp = "CPU entered NMI handler function, but has not exited";
631                 } else if (nsp->idt_nmi_seq_snap == nmi_seq ||
632                            nsp->idt_nmi_seq_snap + 1 == nmi_seq) {
633                         idx = ((nmi_seq & 0x1) << 2) |
634                               (cpu_is_offline(cpu) << 1) |
635                               (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
636                         msgp = nmi_check_stall_msg[idx];
637                         if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
638                                 modp = ", but OK because ignore_nmis was set";
639                         if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
640                                 msghp = " (CPU exited one NMI handler function)";
641                         else if (nmi_seq & 0x1)
642                                 msghp = " (CPU currently in NMI handler function)";
643                         else
644                                 msghp = " (CPU was never in an NMI handler function)";
645                 } else {
646                         msgp = "CPU is handling NMIs";
647                 }
648                 pr_alert("%s: CPU %d: %s%s%s\n", __func__, cpu, msgp, modp, msghp);
649                 pr_alert("%s: last activity: %lu jiffies ago.\n",
650                          __func__, j - READ_ONCE(nsp->recv_jiffies));
651         }
652 }
653 
654 #endif
655 
656 #ifdef CONFIG_X86_FRED
657 /*
658  * With FRED, CR2/DR6 is pushed to #PF/#DB stack frame during FRED
659  * event delivery, i.e., there is no problem of transient states.
660  * And NMI unblocking only happens when the stack frame indicates
661  * that so should happen.
662  *
663  * Thus, the NMI entry stub for FRED is really straightforward and
664  * as simple as most exception handlers. As such, #DB is allowed
665  * during NMI handling.
666  */
667 DEFINE_FREDENTRY_NMI(exc_nmi)
668 {
669         irqentry_state_t irq_state;
670 
671         if (arch_cpu_is_offline(smp_processor_id())) {
672                 if (microcode_nmi_handler_enabled())
673                         microcode_offline_nmi_handler();
674                 return;
675         }
676 
677         /*
678          * Save CR2 for eventual restore to cover the case where the NMI
679          * hits the VMENTER/VMEXIT region where guest CR2 is life. This
680          * prevents guest state corruption in case that the NMI handler
681          * takes a page fault.
682          */
683         this_cpu_write(nmi_cr2, read_cr2());
684 
685         irq_state = irqentry_nmi_enter(regs);
686 
687         inc_irq_stat(__nmi_count);
688         default_do_nmi(regs);
689 
690         irqentry_nmi_exit(regs, irq_state);
691 
692         if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
693                 write_cr2(this_cpu_read(nmi_cr2));
694 }
695 #endif
696 
697 void stop_nmi(void)
698 {
699         ignore_nmis++;
700 }
701 
702 void restart_nmi(void)
703 {
704         ignore_nmis--;
705 }
706 
707 /* reset the back-to-back NMI logic */
708 void local_touch_nmi(void)
709 {
710         __this_cpu_write(last_nmi_rip, 0);
711 }
712 EXPORT_SYMBOL_GPL(local_touch_nmi);
713 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php