~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/process_64.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  Copyright (C) 1995  Linus Torvalds
  4  *
  5  *  Pentium III FXSR, SSE support
  6  *      Gareth Hughes <gareth@valinux.com>, May 2000
  7  *
  8  *  X86-64 port
  9  *      Andi Kleen.
 10  *
 11  *      CPU hotplug support - ashok.raj@intel.com
 12  */
 13 
 14 /*
 15  * This file handles the architecture-dependent parts of process handling..
 16  */
 17 
 18 #include <linux/cpu.h>
 19 #include <linux/errno.h>
 20 #include <linux/sched.h>
 21 #include <linux/sched/task.h>
 22 #include <linux/sched/task_stack.h>
 23 #include <linux/fs.h>
 24 #include <linux/kernel.h>
 25 #include <linux/mm.h>
 26 #include <linux/elfcore.h>
 27 #include <linux/smp.h>
 28 #include <linux/slab.h>
 29 #include <linux/user.h>
 30 #include <linux/interrupt.h>
 31 #include <linux/delay.h>
 32 #include <linux/export.h>
 33 #include <linux/ptrace.h>
 34 #include <linux/notifier.h>
 35 #include <linux/kprobes.h>
 36 #include <linux/kdebug.h>
 37 #include <linux/prctl.h>
 38 #include <linux/uaccess.h>
 39 #include <linux/io.h>
 40 #include <linux/ftrace.h>
 41 #include <linux/syscalls.h>
 42 #include <linux/iommu.h>
 43 
 44 #include <asm/processor.h>
 45 #include <asm/pkru.h>
 46 #include <asm/fpu/sched.h>
 47 #include <asm/mmu_context.h>
 48 #include <asm/prctl.h>
 49 #include <asm/desc.h>
 50 #include <asm/proto.h>
 51 #include <asm/ia32.h>
 52 #include <asm/debugreg.h>
 53 #include <asm/switch_to.h>
 54 #include <asm/xen/hypervisor.h>
 55 #include <asm/vdso.h>
 56 #include <asm/resctrl.h>
 57 #include <asm/unistd.h>
 58 #include <asm/fsgsbase.h>
 59 #include <asm/fred.h>
 60 #ifdef CONFIG_IA32_EMULATION
 61 /* Not included via unistd.h */
 62 #include <asm/unistd_32_ia32.h>
 63 #endif
 64 
 65 #include "process.h"
 66 
 67 /* Prints also some state that isn't saved in the pt_regs */
 68 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 69                  const char *log_lvl)
 70 {
 71         unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 72         unsigned long d0, d1, d2, d3, d6, d7;
 73         unsigned int fsindex, gsindex;
 74         unsigned int ds, es;
 75 
 76         show_iret_regs(regs, log_lvl);
 77 
 78         if (regs->orig_ax != -1)
 79                 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 80         else
 81                 pr_cont("\n");
 82 
 83         printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
 84                log_lvl, regs->ax, regs->bx, regs->cx);
 85         printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
 86                log_lvl, regs->dx, regs->si, regs->di);
 87         printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
 88                log_lvl, regs->bp, regs->r8, regs->r9);
 89         printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
 90                log_lvl, regs->r10, regs->r11, regs->r12);
 91         printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
 92                log_lvl, regs->r13, regs->r14, regs->r15);
 93 
 94         if (mode == SHOW_REGS_SHORT)
 95                 return;
 96 
 97         if (mode == SHOW_REGS_USER) {
 98                 rdmsrl(MSR_FS_BASE, fs);
 99                 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
100                 printk("%sFS:  %016lx GS:  %016lx\n",
101                        log_lvl, fs, shadowgs);
102                 return;
103         }
104 
105         asm("movl %%ds,%0" : "=r" (ds));
106         asm("movl %%es,%0" : "=r" (es));
107         asm("movl %%fs,%0" : "=r" (fsindex));
108         asm("movl %%gs,%0" : "=r" (gsindex));
109 
110         rdmsrl(MSR_FS_BASE, fs);
111         rdmsrl(MSR_GS_BASE, gs);
112         rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
113 
114         cr0 = read_cr0();
115         cr2 = read_cr2();
116         cr3 = __read_cr3();
117         cr4 = __read_cr4();
118 
119         printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
120                log_lvl, fs, fsindex, gs, gsindex, shadowgs);
121         printk("%sCS:  %04x DS: %04x ES: %04x CR0: %016lx\n",
122                 log_lvl, regs->cs, ds, es, cr0);
123         printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
124                 log_lvl, cr2, cr3, cr4);
125 
126         get_debugreg(d0, 0);
127         get_debugreg(d1, 1);
128         get_debugreg(d2, 2);
129         get_debugreg(d3, 3);
130         get_debugreg(d6, 6);
131         get_debugreg(d7, 7);
132 
133         /* Only print out debug registers if they are in their non-default state. */
134         if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
135             (d6 == DR6_RESERVED) && (d7 == 0x400))) {
136                 printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
137                        log_lvl, d0, d1, d2);
138                 printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
139                        log_lvl, d3, d6, d7);
140         }
141 
142         if (cr4 & X86_CR4_PKE)
143                 printk("%sPKRU: %08x\n", log_lvl, read_pkru());
144 }
145 
146 void release_thread(struct task_struct *dead_task)
147 {
148         WARN_ON(dead_task->mm);
149 }
150 
151 enum which_selector {
152         FS,
153         GS
154 };
155 
156 /*
157  * Out of line to be protected from kprobes and tracing. If this would be
158  * traced or probed than any access to a per CPU variable happens with
159  * the wrong GS.
160  *
161  * It is not used on Xen paravirt. When paravirt support is needed, it
162  * needs to be renamed with native_ prefix.
163  */
164 static noinstr unsigned long __rdgsbase_inactive(void)
165 {
166         unsigned long gsbase;
167 
168         lockdep_assert_irqs_disabled();
169 
170         /*
171          * SWAPGS is no longer needed thus NOT allowed with FRED because
172          * FRED transitions ensure that an operating system can _always_
173          * operate with its own GS base address:
174          * - For events that occur in ring 3, FRED event delivery swaps
175          *   the GS base address with the IA32_KERNEL_GS_BASE MSR.
176          * - ERETU (the FRED transition that returns to ring 3) also swaps
177          *   the GS base address with the IA32_KERNEL_GS_BASE MSR.
178          *
179          * And the operating system can still setup the GS segment for a
180          * user thread without the need of loading a user thread GS with:
181          * - Using LKGS, available with FRED, to modify other attributes
182          *   of the GS segment without compromising its ability always to
183          *   operate with its own GS base address.
184          * - Accessing the GS segment base address for a user thread as
185          *   before using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR.
186          *
187          * Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE
188          * MSR instead of the GS segment’s descriptor cache. As such, the
189          * operating system never changes its runtime GS base address.
190          */
191         if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
192             !cpu_feature_enabled(X86_FEATURE_XENPV)) {
193                 native_swapgs();
194                 gsbase = rdgsbase();
195                 native_swapgs();
196         } else {
197                 instrumentation_begin();
198                 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
199                 instrumentation_end();
200         }
201 
202         return gsbase;
203 }
204 
205 /*
206  * Out of line to be protected from kprobes and tracing. If this would be
207  * traced or probed than any access to a per CPU variable happens with
208  * the wrong GS.
209  *
210  * It is not used on Xen paravirt. When paravirt support is needed, it
211  * needs to be renamed with native_ prefix.
212  */
213 static noinstr void __wrgsbase_inactive(unsigned long gsbase)
214 {
215         lockdep_assert_irqs_disabled();
216 
217         if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
218             !cpu_feature_enabled(X86_FEATURE_XENPV)) {
219                 native_swapgs();
220                 wrgsbase(gsbase);
221                 native_swapgs();
222         } else {
223                 instrumentation_begin();
224                 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
225                 instrumentation_end();
226         }
227 }
228 
229 /*
230  * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
231  * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
232  * It's forcibly inlined because it'll generate better code and this function
233  * is hot.
234  */
235 static __always_inline void save_base_legacy(struct task_struct *prev_p,
236                                              unsigned short selector,
237                                              enum which_selector which)
238 {
239         if (likely(selector == 0)) {
240                 /*
241                  * On Intel (without X86_BUG_NULL_SEG), the segment base could
242                  * be the pre-existing saved base or it could be zero.  On AMD
243                  * (with X86_BUG_NULL_SEG), the segment base could be almost
244                  * anything.
245                  *
246                  * This branch is very hot (it's hit twice on almost every
247                  * context switch between 64-bit programs), and avoiding
248                  * the RDMSR helps a lot, so we just assume that whatever
249                  * value is already saved is correct.  This matches historical
250                  * Linux behavior, so it won't break existing applications.
251                  *
252                  * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
253                  * report that the base is zero, it needs to actually be zero:
254                  * see the corresponding logic in load_seg_legacy.
255                  */
256         } else {
257                 /*
258                  * If the selector is 1, 2, or 3, then the base is zero on
259                  * !X86_BUG_NULL_SEG CPUs and could be anything on
260                  * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
261                  * has never attempted to preserve the base across context
262                  * switches.
263                  *
264                  * If selector > 3, then it refers to a real segment, and
265                  * saving the base isn't necessary.
266                  */
267                 if (which == FS)
268                         prev_p->thread.fsbase = 0;
269                 else
270                         prev_p->thread.gsbase = 0;
271         }
272 }
273 
274 static __always_inline void save_fsgs(struct task_struct *task)
275 {
276         savesegment(fs, task->thread.fsindex);
277         savesegment(gs, task->thread.gsindex);
278         if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
279                 /*
280                  * If FSGSBASE is enabled, we can't make any useful guesses
281                  * about the base, and user code expects us to save the current
282                  * value.  Fortunately, reading the base directly is efficient.
283                  */
284                 task->thread.fsbase = rdfsbase();
285                 task->thread.gsbase = __rdgsbase_inactive();
286         } else {
287                 save_base_legacy(task, task->thread.fsindex, FS);
288                 save_base_legacy(task, task->thread.gsindex, GS);
289         }
290 }
291 
292 /*
293  * While a process is running,current->thread.fsbase and current->thread.gsbase
294  * may not match the corresponding CPU registers (see save_base_legacy()).
295  */
296 void current_save_fsgs(void)
297 {
298         unsigned long flags;
299 
300         /* Interrupts need to be off for FSGSBASE */
301         local_irq_save(flags);
302         save_fsgs(current);
303         local_irq_restore(flags);
304 }
305 #if IS_ENABLED(CONFIG_KVM)
306 EXPORT_SYMBOL_GPL(current_save_fsgs);
307 #endif
308 
309 static __always_inline void loadseg(enum which_selector which,
310                                     unsigned short sel)
311 {
312         if (which == FS)
313                 loadsegment(fs, sel);
314         else
315                 load_gs_index(sel);
316 }
317 
318 static __always_inline void load_seg_legacy(unsigned short prev_index,
319                                             unsigned long prev_base,
320                                             unsigned short next_index,
321                                             unsigned long next_base,
322                                             enum which_selector which)
323 {
324         if (likely(next_index <= 3)) {
325                 /*
326                  * The next task is using 64-bit TLS, is not using this
327                  * segment at all, or is having fun with arcane CPU features.
328                  */
329                 if (next_base == 0) {
330                         /*
331                          * Nasty case: on AMD CPUs, we need to forcibly zero
332                          * the base.
333                          */
334                         if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
335                                 loadseg(which, __USER_DS);
336                                 loadseg(which, next_index);
337                         } else {
338                                 /*
339                                  * We could try to exhaustively detect cases
340                                  * under which we can skip the segment load,
341                                  * but there's really only one case that matters
342                                  * for performance: if both the previous and
343                                  * next states are fully zeroed, we can skip
344                                  * the load.
345                                  *
346                                  * (This assumes that prev_base == 0 has no
347                                  * false positives.  This is the case on
348                                  * Intel-style CPUs.)
349                                  */
350                                 if (likely(prev_index | next_index | prev_base))
351                                         loadseg(which, next_index);
352                         }
353                 } else {
354                         if (prev_index != next_index)
355                                 loadseg(which, next_index);
356                         wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
357                                next_base);
358                 }
359         } else {
360                 /*
361                  * The next task is using a real segment.  Loading the selector
362                  * is sufficient.
363                  */
364                 loadseg(which, next_index);
365         }
366 }
367 
368 /*
369  * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
370  * is not XSTATE managed on context switch because that would require a
371  * lookup in the task's FPU xsave buffer and require to keep that updated
372  * in various places.
373  */
374 static __always_inline void x86_pkru_load(struct thread_struct *prev,
375                                           struct thread_struct *next)
376 {
377         if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
378                 return;
379 
380         /* Stash the prev task's value: */
381         prev->pkru = rdpkru();
382 
383         /*
384          * PKRU writes are slightly expensive.  Avoid them when not
385          * strictly necessary:
386          */
387         if (prev->pkru != next->pkru)
388                 wrpkru(next->pkru);
389 }
390 
391 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
392                                               struct thread_struct *next)
393 {
394         if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
395                 /* Update the FS and GS selectors if they could have changed. */
396                 if (unlikely(prev->fsindex || next->fsindex))
397                         loadseg(FS, next->fsindex);
398                 if (unlikely(prev->gsindex || next->gsindex))
399                         loadseg(GS, next->gsindex);
400 
401                 /* Update the bases. */
402                 wrfsbase(next->fsbase);
403                 __wrgsbase_inactive(next->gsbase);
404         } else {
405                 load_seg_legacy(prev->fsindex, prev->fsbase,
406                                 next->fsindex, next->fsbase, FS);
407                 load_seg_legacy(prev->gsindex, prev->gsbase,
408                                 next->gsindex, next->gsbase, GS);
409         }
410 }
411 
412 unsigned long x86_fsgsbase_read_task(struct task_struct *task,
413                                      unsigned short selector)
414 {
415         unsigned short idx = selector >> 3;
416         unsigned long base;
417 
418         if (likely((selector & SEGMENT_TI_MASK) == 0)) {
419                 if (unlikely(idx >= GDT_ENTRIES))
420                         return 0;
421 
422                 /*
423                  * There are no user segments in the GDT with nonzero bases
424                  * other than the TLS segments.
425                  */
426                 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
427                         return 0;
428 
429                 idx -= GDT_ENTRY_TLS_MIN;
430                 base = get_desc_base(&task->thread.tls_array[idx]);
431         } else {
432 #ifdef CONFIG_MODIFY_LDT_SYSCALL
433                 struct ldt_struct *ldt;
434 
435                 /*
436                  * If performance here mattered, we could protect the LDT
437                  * with RCU.  This is a slow path, though, so we can just
438                  * take the mutex.
439                  */
440                 mutex_lock(&task->mm->context.lock);
441                 ldt = task->mm->context.ldt;
442                 if (unlikely(!ldt || idx >= ldt->nr_entries))
443                         base = 0;
444                 else
445                         base = get_desc_base(ldt->entries + idx);
446                 mutex_unlock(&task->mm->context.lock);
447 #else
448                 base = 0;
449 #endif
450         }
451 
452         return base;
453 }
454 
455 unsigned long x86_gsbase_read_cpu_inactive(void)
456 {
457         unsigned long gsbase;
458 
459         if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
460                 unsigned long flags;
461 
462                 local_irq_save(flags);
463                 gsbase = __rdgsbase_inactive();
464                 local_irq_restore(flags);
465         } else {
466                 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
467         }
468 
469         return gsbase;
470 }
471 
472 void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
473 {
474         if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
475                 unsigned long flags;
476 
477                 local_irq_save(flags);
478                 __wrgsbase_inactive(gsbase);
479                 local_irq_restore(flags);
480         } else {
481                 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
482         }
483 }
484 
485 unsigned long x86_fsbase_read_task(struct task_struct *task)
486 {
487         unsigned long fsbase;
488 
489         if (task == current)
490                 fsbase = x86_fsbase_read_cpu();
491         else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
492                  (task->thread.fsindex == 0))
493                 fsbase = task->thread.fsbase;
494         else
495                 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
496 
497         return fsbase;
498 }
499 
500 unsigned long x86_gsbase_read_task(struct task_struct *task)
501 {
502         unsigned long gsbase;
503 
504         if (task == current)
505                 gsbase = x86_gsbase_read_cpu_inactive();
506         else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
507                  (task->thread.gsindex == 0))
508                 gsbase = task->thread.gsbase;
509         else
510                 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
511 
512         return gsbase;
513 }
514 
515 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
516 {
517         WARN_ON_ONCE(task == current);
518 
519         task->thread.fsbase = fsbase;
520 }
521 
522 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
523 {
524         WARN_ON_ONCE(task == current);
525 
526         task->thread.gsbase = gsbase;
527 }
528 
529 static void
530 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
531                     unsigned long new_sp,
532                     u16 _cs, u16 _ss, u16 _ds)
533 {
534         WARN_ON_ONCE(regs != current_pt_regs());
535 
536         if (static_cpu_has(X86_BUG_NULL_SEG)) {
537                 /* Loading zero below won't clear the base. */
538                 loadsegment(fs, __USER_DS);
539                 load_gs_index(__USER_DS);
540         }
541 
542         reset_thread_features();
543 
544         loadsegment(fs, 0);
545         loadsegment(es, _ds);
546         loadsegment(ds, _ds);
547         load_gs_index(0);
548 
549         regs->ip        = new_ip;
550         regs->sp        = new_sp;
551         regs->csx       = _cs;
552         regs->ssx       = _ss;
553         /*
554          * Allow single-step trap and NMI when starting a new task, thus
555          * once the new task enters user space, single-step trap and NMI
556          * are both enabled immediately.
557          *
558          * Entering a new task is logically speaking a return from a
559          * system call (exec, fork, clone, etc.). As such, if ptrace
560          * enables single stepping a single step exception should be
561          * allowed to trigger immediately upon entering user space.
562          * This is not optional.
563          *
564          * NMI should *never* be disabled in user space. As such, this
565          * is an optional, opportunistic way to catch errors.
566          *
567          * Paranoia: High-order 48 bits above the lowest 16 bit SS are
568          * discarded by the legacy IRET instruction on all Intel, AMD,
569          * and Cyrix/Centaur/VIA CPUs, thus can be set unconditionally,
570          * even when FRED is not enabled. But we choose the safer side
571          * to use these bits only when FRED is enabled.
572          */
573         if (cpu_feature_enabled(X86_FEATURE_FRED)) {
574                 regs->fred_ss.swevent   = true;
575                 regs->fred_ss.nmi       = true;
576         }
577 
578         regs->flags     = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
579 }
580 
581 void
582 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
583 {
584         start_thread_common(regs, new_ip, new_sp,
585                             __USER_CS, __USER_DS, 0);
586 }
587 EXPORT_SYMBOL_GPL(start_thread);
588 
589 #ifdef CONFIG_COMPAT
590 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
591 {
592         start_thread_common(regs, new_ip, new_sp,
593                             x32 ? __USER_CS : __USER32_CS,
594                             __USER_DS, __USER_DS);
595 }
596 #endif
597 
598 /*
599  *      switch_to(x,y) should switch tasks from x to y.
600  *
601  * This could still be optimized:
602  * - fold all the options into a flag word and test it with a single test.
603  * - could test fs/gs bitsliced
604  *
605  * Kprobes not supported here. Set the probe on schedule instead.
606  * Function graph tracer not supported too.
607  */
608 __no_kmsan_checks
609 __visible __notrace_funcgraph struct task_struct *
610 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
611 {
612         struct thread_struct *prev = &prev_p->thread;
613         struct thread_struct *next = &next_p->thread;
614         int cpu = smp_processor_id();
615 
616         WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
617                      this_cpu_read(pcpu_hot.hardirq_stack_inuse));
618 
619         if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD))
620                 switch_fpu_prepare(prev_p, cpu);
621 
622         /* We must save %fs and %gs before load_TLS() because
623          * %fs and %gs may be cleared by load_TLS().
624          *
625          * (e.g. xen_load_tls())
626          */
627         save_fsgs(prev_p);
628 
629         /*
630          * Load TLS before restoring any segments so that segment loads
631          * reference the correct GDT entries.
632          */
633         load_TLS(next, cpu);
634 
635         /*
636          * Leave lazy mode, flushing any hypercalls made here.  This
637          * must be done after loading TLS entries in the GDT but before
638          * loading segments that might reference them.
639          */
640         arch_end_context_switch(next_p);
641 
642         /* Switch DS and ES.
643          *
644          * Reading them only returns the selectors, but writing them (if
645          * nonzero) loads the full descriptor from the GDT or LDT.  The
646          * LDT for next is loaded in switch_mm, and the GDT is loaded
647          * above.
648          *
649          * We therefore need to write new values to the segment
650          * registers on every context switch unless both the new and old
651          * values are zero.
652          *
653          * Note that we don't need to do anything for CS and SS, as
654          * those are saved and restored as part of pt_regs.
655          */
656         savesegment(es, prev->es);
657         if (unlikely(next->es | prev->es))
658                 loadsegment(es, next->es);
659 
660         savesegment(ds, prev->ds);
661         if (unlikely(next->ds | prev->ds))
662                 loadsegment(ds, next->ds);
663 
664         x86_fsgsbase_load(prev, next);
665 
666         x86_pkru_load(prev, next);
667 
668         /*
669          * Switch the PDA and FPU contexts.
670          */
671         raw_cpu_write(pcpu_hot.current_task, next_p);
672         raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
673 
674         switch_fpu_finish(next_p);
675 
676         /* Reload sp0. */
677         update_task_stack(next_p);
678 
679         switch_to_extra(prev_p, next_p);
680 
681         if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
682                 /*
683                  * AMD CPUs have a misfeature: SYSRET sets the SS selector but
684                  * does not update the cached descriptor.  As a result, if we
685                  * do SYSRET while SS is NULL, we'll end up in user mode with
686                  * SS apparently equal to __USER_DS but actually unusable.
687                  *
688                  * The straightforward workaround would be to fix it up just
689                  * before SYSRET, but that would slow down the system call
690                  * fast paths.  Instead, we ensure that SS is never NULL in
691                  * system call context.  We do this by replacing NULL SS
692                  * selectors at every context switch.  SYSCALL sets up a valid
693                  * SS, so the only way to get NULL is to re-enter the kernel
694                  * from CPL 3 through an interrupt.  Since that can't happen
695                  * in the same task as a running syscall, we are guaranteed to
696                  * context switch between every interrupt vector entry and a
697                  * subsequent SYSRET.
698                  *
699                  * We read SS first because SS reads are much faster than
700                  * writes.  Out of caution, we force SS to __KERNEL_DS even if
701                  * it previously had a different non-NULL value.
702                  */
703                 unsigned short ss_sel;
704                 savesegment(ss, ss_sel);
705                 if (ss_sel != __KERNEL_DS)
706                         loadsegment(ss, __KERNEL_DS);
707         }
708 
709         /* Load the Intel cache allocation PQR MSR. */
710         resctrl_sched_in(next_p);
711 
712         return prev_p;
713 }
714 
715 void set_personality_64bit(void)
716 {
717         /* inherit personality from parent */
718 
719         /* Make sure to be in 64bit mode */
720         clear_thread_flag(TIF_ADDR32);
721         /* Pretend that this comes from a 64bit execve */
722         task_pt_regs(current)->orig_ax = __NR_execve;
723         current_thread_info()->status &= ~TS_COMPAT;
724         if (current->mm)
725                 __set_bit(MM_CONTEXT_HAS_VSYSCALL, &current->mm->context.flags);
726 
727         /* TBD: overwrites user setup. Should have two bits.
728            But 64bit processes have always behaved this way,
729            so it's not too bad. The main problem is just that
730            32bit children are affected again. */
731         current->personality &= ~READ_IMPLIES_EXEC;
732 }
733 
734 static void __set_personality_x32(void)
735 {
736 #ifdef CONFIG_X86_X32_ABI
737         if (current->mm)
738                 current->mm->context.flags = 0;
739 
740         current->personality &= ~READ_IMPLIES_EXEC;
741         /*
742          * in_32bit_syscall() uses the presence of the x32 syscall bit
743          * flag to determine compat status.  The x86 mmap() code relies on
744          * the syscall bitness so set x32 syscall bit right here to make
745          * in_32bit_syscall() work during exec().
746          *
747          * Pretend to come from a x32 execve.
748          */
749         task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
750         current_thread_info()->status &= ~TS_COMPAT;
751 #endif
752 }
753 
754 static void __set_personality_ia32(void)
755 {
756 #ifdef CONFIG_IA32_EMULATION
757         if (current->mm) {
758                 /*
759                  * uprobes applied to this MM need to know this and
760                  * cannot use user_64bit_mode() at that time.
761                  */
762                 __set_bit(MM_CONTEXT_UPROBE_IA32, &current->mm->context.flags);
763         }
764 
765         current->personality |= force_personality32;
766         /* Prepare the first "return" to user space */
767         task_pt_regs(current)->orig_ax = __NR_ia32_execve;
768         current_thread_info()->status |= TS_COMPAT;
769 #endif
770 }
771 
772 void set_personality_ia32(bool x32)
773 {
774         /* Make sure to be in 32bit mode */
775         set_thread_flag(TIF_ADDR32);
776 
777         if (x32)
778                 __set_personality_x32();
779         else
780                 __set_personality_ia32();
781 }
782 EXPORT_SYMBOL_GPL(set_personality_ia32);
783 
784 #ifdef CONFIG_CHECKPOINT_RESTORE
785 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
786 {
787         int ret;
788 
789         ret = map_vdso_once(image, addr);
790         if (ret)
791                 return ret;
792 
793         return (long)image->size;
794 }
795 #endif
796 
797 #ifdef CONFIG_ADDRESS_MASKING
798 
799 #define LAM_U57_BITS 6
800 
801 static void enable_lam_func(void *__mm)
802 {
803         struct mm_struct *mm = __mm;
804 
805         if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) {
806                 write_cr3(__read_cr3() | mm->context.lam_cr3_mask);
807                 set_tlbstate_lam_mode(mm);
808         }
809 }
810 
811 static void mm_enable_lam(struct mm_struct *mm)
812 {
813         /*
814          * Even though the process must still be single-threaded at this
815          * point, kernel threads may be using the mm.  IPI those kernel
816          * threads if they exist.
817          */
818         on_each_cpu_mask(mm_cpumask(mm), enable_lam_func, mm, true);
819         set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
820 }
821 
822 static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
823 {
824         if (!cpu_feature_enabled(X86_FEATURE_LAM))
825                 return -ENODEV;
826 
827         /* PTRACE_ARCH_PRCTL */
828         if (current->mm != mm)
829                 return -EINVAL;
830 
831         if (mm_valid_pasid(mm) &&
832             !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
833                 return -EINVAL;
834 
835         if (mmap_write_lock_killable(mm))
836                 return -EINTR;
837 
838         /*
839          * MM_CONTEXT_LOCK_LAM is set on clone.  Prevent LAM from
840          * being enabled unless the process is single threaded:
841          */
842         if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
843                 mmap_write_unlock(mm);
844                 return -EBUSY;
845         }
846 
847         if (!nr_bits) {
848                 mmap_write_unlock(mm);
849                 return -EINVAL;
850         } else if (nr_bits <= LAM_U57_BITS) {
851                 mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
852                 mm->context.untag_mask =  ~GENMASK(62, 57);
853         } else {
854                 mmap_write_unlock(mm);
855                 return -EINVAL;
856         }
857 
858         mm_enable_lam(mm);
859 
860         mmap_write_unlock(mm);
861 
862         return 0;
863 }
864 #endif
865 
866 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
867 {
868         int ret = 0;
869 
870         switch (option) {
871         case ARCH_SET_GS: {
872                 if (unlikely(arg2 >= TASK_SIZE_MAX))
873                         return -EPERM;
874 
875                 preempt_disable();
876                 /*
877                  * ARCH_SET_GS has always overwritten the index
878                  * and the base. Zero is the most sensible value
879                  * to put in the index, and is the only value that
880                  * makes any sense if FSGSBASE is unavailable.
881                  */
882                 if (task == current) {
883                         loadseg(GS, 0);
884                         x86_gsbase_write_cpu_inactive(arg2);
885 
886                         /*
887                          * On non-FSGSBASE systems, save_base_legacy() expects
888                          * that we also fill in thread.gsbase.
889                          */
890                         task->thread.gsbase = arg2;
891 
892                 } else {
893                         task->thread.gsindex = 0;
894                         x86_gsbase_write_task(task, arg2);
895                 }
896                 preempt_enable();
897                 break;
898         }
899         case ARCH_SET_FS: {
900                 /*
901                  * Not strictly needed for %fs, but do it for symmetry
902                  * with %gs
903                  */
904                 if (unlikely(arg2 >= TASK_SIZE_MAX))
905                         return -EPERM;
906 
907                 preempt_disable();
908                 /*
909                  * Set the selector to 0 for the same reason
910                  * as %gs above.
911                  */
912                 if (task == current) {
913                         loadseg(FS, 0);
914                         x86_fsbase_write_cpu(arg2);
915 
916                         /*
917                          * On non-FSGSBASE systems, save_base_legacy() expects
918                          * that we also fill in thread.fsbase.
919                          */
920                         task->thread.fsbase = arg2;
921                 } else {
922                         task->thread.fsindex = 0;
923                         x86_fsbase_write_task(task, arg2);
924                 }
925                 preempt_enable();
926                 break;
927         }
928         case ARCH_GET_FS: {
929                 unsigned long base = x86_fsbase_read_task(task);
930 
931                 ret = put_user(base, (unsigned long __user *)arg2);
932                 break;
933         }
934         case ARCH_GET_GS: {
935                 unsigned long base = x86_gsbase_read_task(task);
936 
937                 ret = put_user(base, (unsigned long __user *)arg2);
938                 break;
939         }
940 
941 #ifdef CONFIG_CHECKPOINT_RESTORE
942 # ifdef CONFIG_X86_X32_ABI
943         case ARCH_MAP_VDSO_X32:
944                 return prctl_map_vdso(&vdso_image_x32, arg2);
945 # endif
946 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
947         case ARCH_MAP_VDSO_32:
948                 return prctl_map_vdso(&vdso_image_32, arg2);
949 # endif
950         case ARCH_MAP_VDSO_64:
951                 return prctl_map_vdso(&vdso_image_64, arg2);
952 #endif
953 #ifdef CONFIG_ADDRESS_MASKING
954         case ARCH_GET_UNTAG_MASK:
955                 return put_user(task->mm->context.untag_mask,
956                                 (unsigned long __user *)arg2);
957         case ARCH_ENABLE_TAGGED_ADDR:
958                 return prctl_enable_tagged_addr(task->mm, arg2);
959         case ARCH_FORCE_TAGGED_SVA:
960                 if (current != task)
961                         return -EINVAL;
962                 set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
963                 return 0;
964         case ARCH_GET_MAX_TAG_BITS:
965                 if (!cpu_feature_enabled(X86_FEATURE_LAM))
966                         return put_user(0, (unsigned long __user *)arg2);
967                 else
968                         return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
969 #endif
970         case ARCH_SHSTK_ENABLE:
971         case ARCH_SHSTK_DISABLE:
972         case ARCH_SHSTK_LOCK:
973         case ARCH_SHSTK_UNLOCK:
974         case ARCH_SHSTK_STATUS:
975                 return shstk_prctl(task, option, arg2);
976         default:
977                 ret = -EINVAL;
978                 break;
979         }
980 
981         return ret;
982 }
983 
984 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
985 {
986         long ret;
987 
988         ret = do_arch_prctl_64(current, option, arg2);
989         if (ret == -EINVAL)
990                 ret = do_arch_prctl_common(option, arg2);
991 
992         return ret;
993 }
994 
995 #ifdef CONFIG_IA32_EMULATION
996 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
997 {
998         return do_arch_prctl_common(option, arg2);
999 }
1000 #endif
1001 
1002 unsigned long KSTK_ESP(struct task_struct *task)
1003 {
1004         return task_pt_regs(task)->sp;
1005 }
1006 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php