~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/unwind_frame.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 #include <linux/sched.h>
  3 #include <linux/sched/task.h>
  4 #include <linux/sched/task_stack.h>
  5 #include <linux/interrupt.h>
  6 #include <asm/sections.h>
  7 #include <asm/ptrace.h>
  8 #include <asm/bitops.h>
  9 #include <asm/stacktrace.h>
 10 #include <asm/unwind.h>
 11 
 12 #define FRAME_HEADER_SIZE (sizeof(long) * 2)
 13 
 14 unsigned long unwind_get_return_address(struct unwind_state *state)
 15 {
 16         if (unwind_done(state))
 17                 return 0;
 18 
 19         return __kernel_text_address(state->ip) ? state->ip : 0;
 20 }
 21 EXPORT_SYMBOL_GPL(unwind_get_return_address);
 22 
 23 unsigned long *unwind_get_return_address_ptr(struct unwind_state *state)
 24 {
 25         if (unwind_done(state))
 26                 return NULL;
 27 
 28         return state->regs ? &state->regs->ip : state->bp + 1;
 29 }
 30 
 31 static void unwind_dump(struct unwind_state *state)
 32 {
 33         static bool dumped_before = false;
 34         bool prev_zero, zero = false;
 35         unsigned long word, *sp;
 36         struct stack_info stack_info = {0};
 37         unsigned long visit_mask = 0;
 38 
 39         if (dumped_before)
 40                 return;
 41 
 42         dumped_before = true;
 43 
 44         printk_deferred("unwind stack type:%d next_sp:%p mask:0x%lx graph_idx:%d\n",
 45                         state->stack_info.type, state->stack_info.next_sp,
 46                         state->stack_mask, state->graph_idx);
 47 
 48         for (sp = PTR_ALIGN(state->orig_sp, sizeof(long)); sp;
 49              sp = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
 50                 if (get_stack_info(sp, state->task, &stack_info, &visit_mask))
 51                         break;
 52 
 53                 for (; sp < stack_info.end; sp++) {
 54 
 55                         word = READ_ONCE_NOCHECK(*sp);
 56 
 57                         prev_zero = zero;
 58                         zero = word == 0;
 59 
 60                         if (zero) {
 61                                 if (!prev_zero)
 62                                         printk_deferred("%p: %0*x ...\n",
 63                                                         sp, BITS_PER_LONG/4, 0);
 64                                 continue;
 65                         }
 66 
 67                         printk_deferred("%p: %0*lx (%pB)\n",
 68                                         sp, BITS_PER_LONG/4, word, (void *)word);
 69                 }
 70         }
 71 }
 72 
 73 static bool in_entry_code(unsigned long ip)
 74 {
 75         char *addr = (char *)ip;
 76 
 77         return addr >= __entry_text_start && addr < __entry_text_end;
 78 }
 79 
 80 static inline unsigned long *last_frame(struct unwind_state *state)
 81 {
 82         return (unsigned long *)task_pt_regs(state->task) - 2;
 83 }
 84 
 85 static bool is_last_frame(struct unwind_state *state)
 86 {
 87         return state->bp == last_frame(state);
 88 }
 89 
 90 #ifdef CONFIG_X86_32
 91 #define GCC_REALIGN_WORDS 3
 92 #else
 93 #define GCC_REALIGN_WORDS 1
 94 #endif
 95 
 96 static inline unsigned long *last_aligned_frame(struct unwind_state *state)
 97 {
 98         return last_frame(state) - GCC_REALIGN_WORDS;
 99 }
100 
101 static bool is_last_aligned_frame(struct unwind_state *state)
102 {
103         unsigned long *last_bp = last_frame(state);
104         unsigned long *aligned_bp = last_aligned_frame(state);
105 
106         /*
107          * GCC can occasionally decide to realign the stack pointer and change
108          * the offset of the stack frame in the prologue of a function called
109          * by head/entry code.  Examples:
110          *
111          * <start_secondary>:
112          *      push   %edi
113          *      lea    0x8(%esp),%edi
114          *      and    $0xfffffff8,%esp
115          *      pushl  -0x4(%edi)
116          *      push   %ebp
117          *      mov    %esp,%ebp
118          *
119          * <x86_64_start_kernel>:
120          *      lea    0x8(%rsp),%r10
121          *      and    $0xfffffffffffffff0,%rsp
122          *      pushq  -0x8(%r10)
123          *      push   %rbp
124          *      mov    %rsp,%rbp
125          *
126          * After aligning the stack, it pushes a duplicate copy of the return
127          * address before pushing the frame pointer.
128          */
129         return (state->bp == aligned_bp && *(aligned_bp + 1) == *(last_bp + 1));
130 }
131 
132 static bool is_last_ftrace_frame(struct unwind_state *state)
133 {
134         unsigned long *last_bp = last_frame(state);
135         unsigned long *last_ftrace_bp = last_bp - 3;
136 
137         /*
138          * When unwinding from an ftrace handler of a function called by entry
139          * code, the stack layout of the last frame is:
140          *
141          *   bp
142          *   parent ret addr
143          *   bp
144          *   function ret addr
145          *   parent ret addr
146          *   pt_regs
147          *   -----------------
148          */
149         return (state->bp == last_ftrace_bp &&
150                 *state->bp == *(state->bp + 2) &&
151                 *(state->bp + 1) == *(state->bp + 4));
152 }
153 
154 static bool is_last_task_frame(struct unwind_state *state)
155 {
156         return is_last_frame(state) || is_last_aligned_frame(state) ||
157                is_last_ftrace_frame(state);
158 }
159 
160 /*
161  * This determines if the frame pointer actually contains an encoded pointer to
162  * pt_regs on the stack.  See ENCODE_FRAME_POINTER.
163  */
164 #ifdef CONFIG_X86_64
165 static struct pt_regs *decode_frame_pointer(unsigned long *bp)
166 {
167         unsigned long regs = (unsigned long)bp;
168 
169         if (!(regs & 0x1))
170                 return NULL;
171 
172         return (struct pt_regs *)(regs & ~0x1);
173 }
174 #else
175 static struct pt_regs *decode_frame_pointer(unsigned long *bp)
176 {
177         unsigned long regs = (unsigned long)bp;
178 
179         if (regs & 0x80000000)
180                 return NULL;
181 
182         return (struct pt_regs *)(regs | 0x80000000);
183 }
184 #endif
185 
186 /*
187  * While walking the stack, KMSAN may stomp on stale locals from other
188  * functions that were marked as uninitialized upon function exit, and
189  * now hold the call frame information for the current function (e.g. the frame
190  * pointer). Because KMSAN does not specifically mark call frames as
191  * initialized, false positive reports are possible. To prevent such reports,
192  * we mark the functions scanning the stack (here and below) with
193  * __no_kmsan_checks.
194  */
195 __no_kmsan_checks
196 static bool update_stack_state(struct unwind_state *state,
197                                unsigned long *next_bp)
198 {
199         struct stack_info *info = &state->stack_info;
200         enum stack_type prev_type = info->type;
201         struct pt_regs *regs;
202         unsigned long *frame, *prev_frame_end, *addr_p, addr;
203         size_t len;
204 
205         if (state->regs)
206                 prev_frame_end = (void *)state->regs + sizeof(*state->regs);
207         else
208                 prev_frame_end = (void *)state->bp + FRAME_HEADER_SIZE;
209 
210         /* Is the next frame pointer an encoded pointer to pt_regs? */
211         regs = decode_frame_pointer(next_bp);
212         if (regs) {
213                 frame = (unsigned long *)regs;
214                 len = sizeof(*regs);
215                 state->got_irq = true;
216         } else {
217                 frame = next_bp;
218                 len = FRAME_HEADER_SIZE;
219         }
220 
221         /*
222          * If the next bp isn't on the current stack, switch to the next one.
223          *
224          * We may have to traverse multiple stacks to deal with the possibility
225          * that info->next_sp could point to an empty stack and the next bp
226          * could be on a subsequent stack.
227          */
228         while (!on_stack(info, frame, len))
229                 if (get_stack_info(info->next_sp, state->task, info,
230                                    &state->stack_mask))
231                         return false;
232 
233         /* Make sure it only unwinds up and doesn't overlap the prev frame: */
234         if (state->orig_sp && state->stack_info.type == prev_type &&
235             frame < prev_frame_end)
236                 return false;
237 
238         /* Move state to the next frame: */
239         if (regs) {
240                 state->regs = regs;
241                 state->bp = NULL;
242         } else {
243                 state->bp = next_bp;
244                 state->regs = NULL;
245         }
246 
247         /* Save the return address: */
248         if (state->regs && user_mode(state->regs))
249                 state->ip = 0;
250         else {
251                 addr_p = unwind_get_return_address_ptr(state);
252                 addr = READ_ONCE_TASK_STACK(state->task, *addr_p);
253                 state->ip = unwind_recover_ret_addr(state, addr, addr_p);
254         }
255 
256         /* Save the original stack pointer for unwind_dump(): */
257         if (!state->orig_sp)
258                 state->orig_sp = frame;
259 
260         return true;
261 }
262 
263 __no_kmsan_checks
264 bool unwind_next_frame(struct unwind_state *state)
265 {
266         struct pt_regs *regs;
267         unsigned long *next_bp;
268 
269         if (unwind_done(state))
270                 return false;
271 
272         /* Have we reached the end? */
273         if (state->regs && user_mode(state->regs))
274                 goto the_end;
275 
276         if (is_last_task_frame(state)) {
277                 regs = task_pt_regs(state->task);
278 
279                 /*
280                  * kthreads (other than the boot CPU's idle thread) have some
281                  * partial regs at the end of their stack which were placed
282                  * there by copy_thread().  But the regs don't have any
283                  * useful information, so we can skip them.
284                  *
285                  * This user_mode() check is slightly broader than a PF_KTHREAD
286                  * check because it also catches the awkward situation where a
287                  * newly forked kthread transitions into a user task by calling
288                  * kernel_execve(), which eventually clears PF_KTHREAD.
289                  */
290                 if (!user_mode(regs))
291                         goto the_end;
292 
293                 /*
294                  * We're almost at the end, but not quite: there's still the
295                  * syscall regs frame.  Entry code doesn't encode the regs
296                  * pointer for syscalls, so we have to set it manually.
297                  */
298                 state->regs = regs;
299                 state->bp = NULL;
300                 state->ip = 0;
301                 return true;
302         }
303 
304         /* Get the next frame pointer: */
305         if (state->next_bp) {
306                 next_bp = state->next_bp;
307                 state->next_bp = NULL;
308         } else if (state->regs) {
309                 next_bp = (unsigned long *)state->regs->bp;
310         } else {
311                 next_bp = (unsigned long *)READ_ONCE_TASK_STACK(state->task, *state->bp);
312         }
313 
314         /* Move to the next frame if it's safe: */
315         if (!update_stack_state(state, next_bp))
316                 goto bad_address;
317 
318         return true;
319 
320 bad_address:
321         state->error = true;
322 
323         /*
324          * When unwinding a non-current task, the task might actually be
325          * running on another CPU, in which case it could be modifying its
326          * stack while we're reading it.  This is generally not a problem and
327          * can be ignored as long as the caller understands that unwinding
328          * another task will not always succeed.
329          */
330         if (state->task != current)
331                 goto the_end;
332 
333         /*
334          * Don't warn if the unwinder got lost due to an interrupt in entry
335          * code or in the C handler before the first frame pointer got set up:
336          */
337         if (state->got_irq && in_entry_code(state->ip))
338                 goto the_end;
339         if (state->regs &&
340             state->regs->sp >= (unsigned long)last_aligned_frame(state) &&
341             state->regs->sp < (unsigned long)task_pt_regs(state->task))
342                 goto the_end;
343 
344         /*
345          * There are some known frame pointer issues on 32-bit.  Disable
346          * unwinder warnings on 32-bit until it gets objtool support.
347          */
348         if (IS_ENABLED(CONFIG_X86_32))
349                 goto the_end;
350 
351         if (state->task != current)
352                 goto the_end;
353 
354         if (state->regs) {
355                 printk_deferred_once(KERN_WARNING
356                         "WARNING: kernel stack regs at %p in %s:%d has bad 'bp' value %p\n",
357                         state->regs, state->task->comm,
358                         state->task->pid, next_bp);
359                 unwind_dump(state);
360         } else {
361                 printk_deferred_once(KERN_WARNING
362                         "WARNING: kernel stack frame pointer at %p in %s:%d has bad value %p\n",
363                         state->bp, state->task->comm,
364                         state->task->pid, next_bp);
365                 unwind_dump(state);
366         }
367 the_end:
368         state->stack_info.type = STACK_TYPE_UNKNOWN;
369         return false;
370 }
371 EXPORT_SYMBOL_GPL(unwind_next_frame);
372 
373 void __unwind_start(struct unwind_state *state, struct task_struct *task,
374                     struct pt_regs *regs, unsigned long *first_frame)
375 {
376         unsigned long *bp;
377 
378         memset(state, 0, sizeof(*state));
379         state->task = task;
380         state->got_irq = (regs);
381 
382         /* Don't even attempt to start from user mode regs: */
383         if (regs && user_mode(regs)) {
384                 state->stack_info.type = STACK_TYPE_UNKNOWN;
385                 return;
386         }
387 
388         bp = get_frame_pointer(task, regs);
389 
390         /*
391          * If we crash with IP==0, the last successfully executed instruction
392          * was probably an indirect function call with a NULL function pointer.
393          * That means that SP points into the middle of an incomplete frame:
394          * *SP is a return pointer, and *(SP-sizeof(unsigned long)) is where we
395          * would have written a frame pointer if we hadn't crashed.
396          * Pretend that the frame is complete and that BP points to it, but save
397          * the real BP so that we can use it when looking for the next frame.
398          */
399         if (regs && regs->ip == 0 && (unsigned long *)regs->sp >= first_frame) {
400                 state->next_bp = bp;
401                 bp = ((unsigned long *)regs->sp) - 1;
402         }
403 
404         /* Initialize stack info and make sure the frame data is accessible: */
405         get_stack_info(bp, state->task, &state->stack_info,
406                        &state->stack_mask);
407         update_stack_state(state, bp);
408 
409         /*
410          * The caller can provide the address of the first frame directly
411          * (first_frame) or indirectly (regs->sp) to indicate which stack frame
412          * to start unwinding at.  Skip ahead until we reach it.
413          */
414         while (!unwind_done(state) &&
415                (!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
416                         (state->next_bp == NULL && state->bp < first_frame)))
417                 unwind_next_frame(state);
418 }
419 EXPORT_SYMBOL_GPL(__unwind_start);
420 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php