~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kernel/uprobes.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * User-space Probes (UProbes) for x86
  4  *
  5  * Copyright (C) IBM Corporation, 2008-2011
  6  * Authors:
  7  *      Srikar Dronamraju
  8  *      Jim Keniston
  9  */
 10 #include <linux/kernel.h>
 11 #include <linux/sched.h>
 12 #include <linux/ptrace.h>
 13 #include <linux/uprobes.h>
 14 #include <linux/uaccess.h>
 15 #include <linux/syscalls.h>
 16 
 17 #include <linux/kdebug.h>
 18 #include <asm/processor.h>
 19 #include <asm/insn.h>
 20 #include <asm/mmu_context.h>
 21 
 22 /* Post-execution fixups. */
 23 
 24 /* Adjust IP back to vicinity of actual insn */
 25 #define UPROBE_FIX_IP           0x01
 26 
 27 /* Adjust the return address of a call insn */
 28 #define UPROBE_FIX_CALL         0x02
 29 
 30 /* Instruction will modify TF, don't change it */
 31 #define UPROBE_FIX_SETF         0x04
 32 
 33 #define UPROBE_FIX_RIP_SI       0x08
 34 #define UPROBE_FIX_RIP_DI       0x10
 35 #define UPROBE_FIX_RIP_BX       0x20
 36 #define UPROBE_FIX_RIP_MASK     \
 37         (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
 38 
 39 #define UPROBE_TRAP_NR          UINT_MAX
 40 
 41 /* Adaptations for mhiramat x86 decoder v14. */
 42 #define OPCODE1(insn)           ((insn)->opcode.bytes[0])
 43 #define OPCODE2(insn)           ((insn)->opcode.bytes[1])
 44 #define OPCODE3(insn)           ((insn)->opcode.bytes[2])
 45 #define MODRM_REG(insn)         X86_MODRM_REG((insn)->modrm.value)
 46 
 47 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
 48         (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
 49           (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
 50           (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
 51           (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
 52          << (row % 32))
 53 
 54 /*
 55  * Good-instruction tables for 32-bit apps.  This is non-const and volatile
 56  * to keep gcc from statically optimizing it out, as variable_test_bit makes
 57  * some versions of gcc to think only *(unsigned long*) is used.
 58  *
 59  * Opcodes we'll probably never support:
 60  * 6c-6f - ins,outs. SEGVs if used in userspace
 61  * e4-e7 - in,out imm. SEGVs if used in userspace
 62  * ec-ef - in,out acc. SEGVs if used in userspace
 63  * cc - int3. SIGTRAP if used in userspace
 64  * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
 65  *      (why we support bound (62) then? it's similar, and similarly unused...)
 66  * f1 - int1. SIGTRAP if used in userspace
 67  * f4 - hlt. SEGVs if used in userspace
 68  * fa - cli. SEGVs if used in userspace
 69  * fb - sti. SEGVs if used in userspace
 70  *
 71  * Opcodes which need some work to be supported:
 72  * 07,17,1f - pop es/ss/ds
 73  *      Normally not used in userspace, but would execute if used.
 74  *      Can cause GP or stack exception if tries to load wrong segment descriptor.
 75  *      We hesitate to run them under single step since kernel's handling
 76  *      of userspace single-stepping (TF flag) is fragile.
 77  *      We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
 78  *      on the same grounds that they are never used.
 79  * cd - int N.
 80  *      Used by userspace for "int 80" syscall entry. (Other "int N"
 81  *      cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 82  *      Not supported since kernel's handling of userspace single-stepping
 83  *      (TF flag) is fragile.
 84  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 85  */
 86 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
 87 static volatile u32 good_insns_32[256 / 32] = {
 88         /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 89         /*      ----------------------------------------------         */
 90         W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
 91         W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
 92         W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 93         W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 94         W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 95         W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 96         W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 97         W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 98         W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 99         W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100         W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
101         W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
102         W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
103         W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
104         W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
105         W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
106         /*      ----------------------------------------------         */
107         /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
108 };
109 #else
110 #define good_insns_32   NULL
111 #endif
112 
113 /* Good-instruction tables for 64-bit apps.
114  *
115  * Genuinely invalid opcodes:
116  * 06,07 - formerly push/pop es
117  * 0e - formerly push cs
118  * 16,17 - formerly push/pop ss
119  * 1e,1f - formerly push/pop ds
120  * 27,2f,37,3f - formerly daa/das/aaa/aas
121  * 60,61 - formerly pusha/popa
122  * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
123  * 82 - formerly redundant encoding of Group1
124  * 9a - formerly call seg:ofs
125  * ce - formerly into
126  * d4,d5 - formerly aam/aad
127  * d6 - formerly undocumented salc
128  * ea - formerly jmp seg:ofs
129  *
130  * Opcodes we'll probably never support:
131  * 6c-6f - ins,outs. SEGVs if used in userspace
132  * e4-e7 - in,out imm. SEGVs if used in userspace
133  * ec-ef - in,out acc. SEGVs if used in userspace
134  * cc - int3. SIGTRAP if used in userspace
135  * f1 - int1. SIGTRAP if used in userspace
136  * f4 - hlt. SEGVs if used in userspace
137  * fa - cli. SEGVs if used in userspace
138  * fb - sti. SEGVs if used in userspace
139  *
140  * Opcodes which need some work to be supported:
141  * cd - int N.
142  *      Used by userspace for "int 80" syscall entry. (Other "int N"
143  *      cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
144  *      Not supported since kernel's handling of userspace single-stepping
145  *      (TF flag) is fragile.
146  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
147  */
148 #if defined(CONFIG_X86_64)
149 static volatile u32 good_insns_64[256 / 32] = {
150         /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
151         /*      ----------------------------------------------         */
152         W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
153         W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
154         W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
155         W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
156         W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
157         W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
158         W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
159         W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
160         W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
161         W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
162         W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
163         W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
164         W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
165         W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
166         W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
167         W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
168         /*      ----------------------------------------------         */
169         /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
170 };
171 #else
172 #define good_insns_64   NULL
173 #endif
174 
175 /* Using this for both 64-bit and 32-bit apps.
176  * Opcodes we don't support:
177  * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
178  * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
179  *      Also encodes tons of other system insns if mod=11.
180  *      Some are in fact non-system: xend, xtest, rdtscp, maybe more
181  * 0f 05 - syscall
182  * 0f 06 - clts (CPL0 insn)
183  * 0f 07 - sysret
184  * 0f 08 - invd (CPL0 insn)
185  * 0f 09 - wbinvd (CPL0 insn)
186  * 0f 0b - ud2
187  * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
188  * 0f 34 - sysenter
189  * 0f 35 - sysexit
190  * 0f 37 - getsec
191  * 0f 78 - vmread (Intel VMX. CPL0 insn)
192  * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
193  *      Note: with prefixes, these two opcodes are
194  *      extrq/insertq/AVX512 convert vector ops.
195  * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
196  *      {rd,wr}{fs,gs}base,{s,l,m}fence.
197  *      Why? They are all user-executable.
198  */
199 static volatile u32 good_2byte_insns[256 / 32] = {
200         /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
201         /*      ----------------------------------------------         */
202         W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
203         W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
204         W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
205         W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
206         W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
207         W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
208         W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
209         W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
210         W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
211         W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
212         W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
213         W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
214         W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
215         W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
216         W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
217         W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
218         /*      ----------------------------------------------         */
219         /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
220 };
221 #undef W
222 
223 /*
224  * opcodes we may need to refine support for:
225  *
226  *  0f - 2-byte instructions: For many of these instructions, the validity
227  *  depends on the prefix and/or the reg field.  On such instructions, we
228  *  just consider the opcode combination valid if it corresponds to any
229  *  valid instruction.
230  *
231  *  8f - Group 1 - only reg = 0 is OK
232  *  c6-c7 - Group 11 - only reg = 0 is OK
233  *  d9-df - fpu insns with some illegal encodings
234  *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
235  *  certain floating-point instructions, such as addsd.
236  *
237  *  fe - Group 4 - only reg = 0 or 1 is OK
238  *  ff - Group 5 - only reg = 0-6 is OK
239  *
240  * others -- Do we need to support these?
241  *
242  *  0f - (floating-point?) prefetch instructions
243  *  07, 17, 1f - pop es, pop ss, pop ds
244  *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
245  *      but 64 and 65 (fs: and gs:) seem to be used, so we support them
246  *  67 - addr16 prefix
247  *  ce - into
248  *  f0 - lock prefix
249  */
250 
251 /*
252  * TODO:
253  * - Where necessary, examine the modrm byte and allow only valid instructions
254  * in the different Groups and fpu instructions.
255  */
256 
257 static bool is_prefix_bad(struct insn *insn)
258 {
259         insn_byte_t p;
260         int i;
261 
262         for_each_insn_prefix(insn, i, p) {
263                 insn_attr_t attr;
264 
265                 attr = inat_get_opcode_attribute(p);
266                 switch (attr) {
267                 case INAT_MAKE_PREFIX(INAT_PFX_ES):
268                 case INAT_MAKE_PREFIX(INAT_PFX_CS):
269                 case INAT_MAKE_PREFIX(INAT_PFX_DS):
270                 case INAT_MAKE_PREFIX(INAT_PFX_SS):
271                 case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
272                         return true;
273                 }
274         }
275         return false;
276 }
277 
278 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
279 {
280         enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
281         u32 volatile *good_insns;
282         int ret;
283 
284         ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
285         if (ret < 0)
286                 return -ENOEXEC;
287 
288         if (is_prefix_bad(insn))
289                 return -ENOTSUPP;
290 
291         /* We should not singlestep on the exception masking instructions */
292         if (insn_masking_exception(insn))
293                 return -ENOTSUPP;
294 
295         if (x86_64)
296                 good_insns = good_insns_64;
297         else
298                 good_insns = good_insns_32;
299 
300         if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
301                 return 0;
302 
303         if (insn->opcode.nbytes == 2) {
304                 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
305                         return 0;
306         }
307 
308         return -ENOTSUPP;
309 }
310 
311 #ifdef CONFIG_X86_64
312 
313 asm (
314         ".pushsection .rodata\n"
315         ".global uretprobe_trampoline_entry\n"
316         "uretprobe_trampoline_entry:\n"
317         "pushq %rax\n"
318         "pushq %rcx\n"
319         "pushq %r11\n"
320         "movq $" __stringify(__NR_uretprobe) ", %rax\n"
321         "syscall\n"
322         ".global uretprobe_syscall_check\n"
323         "uretprobe_syscall_check:\n"
324         "popq %r11\n"
325         "popq %rcx\n"
326 
327         /* The uretprobe syscall replaces stored %rax value with final
328          * return address, so we don't restore %rax in here and just
329          * call ret.
330          */
331         "retq\n"
332         ".global uretprobe_trampoline_end\n"
333         "uretprobe_trampoline_end:\n"
334         ".popsection\n"
335 );
336 
337 extern u8 uretprobe_trampoline_entry[];
338 extern u8 uretprobe_trampoline_end[];
339 extern u8 uretprobe_syscall_check[];
340 
341 void *arch_uprobe_trampoline(unsigned long *psize)
342 {
343         static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
344         struct pt_regs *regs = task_pt_regs(current);
345 
346         /*
347          * At the moment the uretprobe syscall trampoline is supported
348          * only for native 64-bit process, the compat process still uses
349          * standard breakpoint.
350          */
351         if (user_64bit_mode(regs)) {
352                 *psize = uretprobe_trampoline_end - uretprobe_trampoline_entry;
353                 return uretprobe_trampoline_entry;
354         }
355 
356         *psize = UPROBE_SWBP_INSN_SIZE;
357         return &insn;
358 }
359 
360 static unsigned long trampoline_check_ip(void)
361 {
362         unsigned long tramp = uprobe_get_trampoline_vaddr();
363 
364         return tramp + (uretprobe_syscall_check - uretprobe_trampoline_entry);
365 }
366 
367 SYSCALL_DEFINE0(uretprobe)
368 {
369         struct pt_regs *regs = task_pt_regs(current);
370         unsigned long err, ip, sp, r11_cx_ax[3];
371 
372         if (regs->ip != trampoline_check_ip())
373                 goto sigill;
374 
375         err = copy_from_user(r11_cx_ax, (void __user *)regs->sp, sizeof(r11_cx_ax));
376         if (err)
377                 goto sigill;
378 
379         /* expose the "right" values of r11/cx/ax/sp to uprobe_consumer/s */
380         regs->r11 = r11_cx_ax[0];
381         regs->cx  = r11_cx_ax[1];
382         regs->ax  = r11_cx_ax[2];
383         regs->sp += sizeof(r11_cx_ax);
384         regs->orig_ax = -1;
385 
386         ip = regs->ip;
387         sp = regs->sp;
388 
389         uprobe_handle_trampoline(regs);
390 
391         /*
392          * Some of the uprobe consumers has changed sp, we can do nothing,
393          * just return via iret.
394          * .. or shadow stack is enabled, in which case we need to skip
395          * return through the user space stack address.
396          */
397         if (regs->sp != sp || shstk_is_enabled())
398                 return regs->ax;
399         regs->sp -= sizeof(r11_cx_ax);
400 
401         /* for the case uprobe_consumer has changed r11/cx */
402         r11_cx_ax[0] = regs->r11;
403         r11_cx_ax[1] = regs->cx;
404 
405         /*
406          * ax register is passed through as return value, so we can use
407          * its space on stack for ip value and jump to it through the
408          * trampoline's ret instruction
409          */
410         r11_cx_ax[2] = regs->ip;
411         regs->ip = ip;
412 
413         err = copy_to_user((void __user *)regs->sp, r11_cx_ax, sizeof(r11_cx_ax));
414         if (err)
415                 goto sigill;
416 
417         /* ensure sysret, see do_syscall_64() */
418         regs->r11 = regs->flags;
419         regs->cx  = regs->ip;
420 
421         return regs->ax;
422 
423 sigill:
424         force_sig(SIGILL);
425         return -1;
426 }
427 
428 /*
429  * If arch_uprobe->insn doesn't use rip-relative addressing, return
430  * immediately.  Otherwise, rewrite the instruction so that it accesses
431  * its memory operand indirectly through a scratch register.  Set
432  * defparam->fixups accordingly. (The contents of the scratch register
433  * will be saved before we single-step the modified instruction,
434  * and restored afterward).
435  *
436  * We do this because a rip-relative instruction can access only a
437  * relatively small area (+/- 2 GB from the instruction), and the XOL
438  * area typically lies beyond that area.  At least for instructions
439  * that store to memory, we can't execute the original instruction
440  * and "fix things up" later, because the misdirected store could be
441  * disastrous.
442  *
443  * Some useful facts about rip-relative instructions:
444  *
445  *  - There's always a modrm byte with bit layout "00 reg 101".
446  *  - There's never a SIB byte.
447  *  - The displacement is always 4 bytes.
448  *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
449  *    has no effect on rip-relative mode. It doesn't make modrm byte
450  *    with r/m=101 refer to register 1101 = R13.
451  */
452 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
453 {
454         u8 *cursor;
455         u8 reg;
456         u8 reg2;
457 
458         if (!insn_rip_relative(insn))
459                 return;
460 
461         /*
462          * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
463          * Clear REX.b bit (extension of MODRM.rm field):
464          * we want to encode low numbered reg, not r8+.
465          */
466         if (insn->rex_prefix.nbytes) {
467                 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
468                 /* REX byte has 0100wrxb layout, clearing REX.b bit */
469                 *cursor &= 0xfe;
470         }
471         /*
472          * Similar treatment for VEX3/EVEX prefix.
473          * TODO: add XOP treatment when insn decoder supports them
474          */
475         if (insn->vex_prefix.nbytes >= 3) {
476                 /*
477                  * vex2:     c5    rvvvvLpp   (has no b bit)
478                  * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
479                  * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
480                  * Setting VEX3.b (setting because it has inverted meaning).
481                  * Setting EVEX.x since (in non-SIB encoding) EVEX.x
482                  * is the 4th bit of MODRM.rm, and needs the same treatment.
483                  * For VEX3-encoded insns, VEX3.x value has no effect in
484                  * non-SIB encoding, the change is superfluous but harmless.
485                  */
486                 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
487                 *cursor |= 0x60;
488         }
489 
490         /*
491          * Convert from rip-relative addressing to register-relative addressing
492          * via a scratch register.
493          *
494          * This is tricky since there are insns with modrm byte
495          * which also use registers not encoded in modrm byte:
496          * [i]div/[i]mul: implicitly use dx:ax
497          * shift ops: implicitly use cx
498          * cmpxchg: implicitly uses ax
499          * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
500          *   Encoding: 0f c7/1 modrm
501          *   The code below thinks that reg=1 (cx), chooses si as scratch.
502          * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
503          *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
504          *   Example where none of bx,cx,dx can be used as scratch reg:
505          *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
506          * [v]pcmpistri: implicitly uses cx, xmm0
507          * [v]pcmpistrm: implicitly uses xmm0
508          * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
509          * [v]pcmpestrm: implicitly uses ax, dx, xmm0
510          *   Evil SSE4.2 string comparison ops from hell.
511          * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
512          *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
513          *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
514          *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
515          *   and that it can have only register operands, not mem
516          *   (its modrm byte must have mode=11).
517          *   If these restrictions will ever be lifted,
518          *   we'll need code to prevent selection of di as scratch reg!
519          *
520          * Summary: I don't know any insns with modrm byte which
521          * use SI register implicitly. DI register is used only
522          * by one insn (maskmovq) and BX register is used
523          * only by one too (cmpxchg8b).
524          * BP is stack-segment based (may be a problem?).
525          * AX, DX, CX are off-limits (many implicit users).
526          * SP is unusable (it's stack pointer - think about "pop mem";
527          * also, rsp+disp32 needs sib encoding -> insn length change).
528          */
529 
530         reg = MODRM_REG(insn);  /* Fetch modrm.reg */
531         reg2 = 0xff;            /* Fetch vex.vvvv */
532         if (insn->vex_prefix.nbytes)
533                 reg2 = insn->vex_prefix.bytes[2];
534         /*
535          * TODO: add XOP vvvv reading.
536          *
537          * vex.vvvv field is in bits 6-3, bits are inverted.
538          * But in 32-bit mode, high-order bit may be ignored.
539          * Therefore, let's consider only 3 low-order bits.
540          */
541         reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
542         /*
543          * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
544          *
545          * Choose scratch reg. Order is important: must not select bx
546          * if we can use si (cmpxchg8b case!)
547          */
548         if (reg != 6 && reg2 != 6) {
549                 reg2 = 6;
550                 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
551         } else if (reg != 7 && reg2 != 7) {
552                 reg2 = 7;
553                 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
554                 /* TODO (paranoia): force maskmovq to not use di */
555         } else {
556                 reg2 = 3;
557                 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
558         }
559         /*
560          * Point cursor at the modrm byte.  The next 4 bytes are the
561          * displacement.  Beyond the displacement, for some instructions,
562          * is the immediate operand.
563          */
564         cursor = auprobe->insn + insn_offset_modrm(insn);
565         /*
566          * Change modrm from "00 reg 101" to "10 reg reg2". Example:
567          * 89 05 disp32  mov %eax,disp32(%rip) becomes
568          * 89 86 disp32  mov %eax,disp32(%rsi)
569          */
570         *cursor = 0x80 | (reg << 3) | reg2;
571 }
572 
573 static inline unsigned long *
574 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
575 {
576         if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
577                 return &regs->si;
578         if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
579                 return &regs->di;
580         return &regs->bx;
581 }
582 
583 /*
584  * If we're emulating a rip-relative instruction, save the contents
585  * of the scratch register and store the target address in that register.
586  */
587 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
588 {
589         if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
590                 struct uprobe_task *utask = current->utask;
591                 unsigned long *sr = scratch_reg(auprobe, regs);
592 
593                 utask->autask.saved_scratch_register = *sr;
594                 *sr = utask->vaddr + auprobe->defparam.ilen;
595         }
596 }
597 
598 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
599 {
600         if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
601                 struct uprobe_task *utask = current->utask;
602                 unsigned long *sr = scratch_reg(auprobe, regs);
603 
604                 *sr = utask->autask.saved_scratch_register;
605         }
606 }
607 #else /* 32-bit: */
608 /*
609  * No RIP-relative addressing on 32-bit
610  */
611 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
612 {
613 }
614 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
615 {
616 }
617 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
618 {
619 }
620 #endif /* CONFIG_X86_64 */
621 
622 struct uprobe_xol_ops {
623         bool    (*emulate)(struct arch_uprobe *, struct pt_regs *);
624         int     (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
625         int     (*post_xol)(struct arch_uprobe *, struct pt_regs *);
626         void    (*abort)(struct arch_uprobe *, struct pt_regs *);
627 };
628 
629 static inline int sizeof_long(struct pt_regs *regs)
630 {
631         /*
632          * Check registers for mode as in_xxx_syscall() does not apply here.
633          */
634         return user_64bit_mode(regs) ? 8 : 4;
635 }
636 
637 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
638 {
639         riprel_pre_xol(auprobe, regs);
640         return 0;
641 }
642 
643 static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
644 {
645         unsigned long new_sp = regs->sp - sizeof_long(regs);
646 
647         if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
648                 return -EFAULT;
649 
650         regs->sp = new_sp;
651         return 0;
652 }
653 
654 /*
655  * We have to fix things up as follows:
656  *
657  * Typically, the new ip is relative to the copied instruction.  We need
658  * to make it relative to the original instruction (FIX_IP).  Exceptions
659  * are return instructions and absolute or indirect jump or call instructions.
660  *
661  * If the single-stepped instruction was a call, the return address that
662  * is atop the stack is the address following the copied instruction.  We
663  * need to make it the address following the original instruction (FIX_CALL).
664  *
665  * If the original instruction was a rip-relative instruction such as
666  * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
667  * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
668  * We need to restore the contents of the scratch register
669  * (FIX_RIP_reg).
670  */
671 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
672 {
673         struct uprobe_task *utask = current->utask;
674 
675         riprel_post_xol(auprobe, regs);
676         if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
677                 long correction = utask->vaddr - utask->xol_vaddr;
678                 regs->ip += correction;
679         } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
680                 regs->sp += sizeof_long(regs); /* Pop incorrect return address */
681                 if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
682                         return -ERESTART;
683         }
684         /* popf; tell the caller to not touch TF */
685         if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
686                 utask->autask.saved_tf = true;
687 
688         return 0;
689 }
690 
691 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
692 {
693         riprel_post_xol(auprobe, regs);
694 }
695 
696 static const struct uprobe_xol_ops default_xol_ops = {
697         .pre_xol  = default_pre_xol_op,
698         .post_xol = default_post_xol_op,
699         .abort    = default_abort_op,
700 };
701 
702 static bool branch_is_call(struct arch_uprobe *auprobe)
703 {
704         return auprobe->branch.opc1 == 0xe8;
705 }
706 
707 #define CASE_COND                                       \
708         COND(70, 71, XF(OF))                            \
709         COND(72, 73, XF(CF))                            \
710         COND(74, 75, XF(ZF))                            \
711         COND(78, 79, XF(SF))                            \
712         COND(7a, 7b, XF(PF))                            \
713         COND(76, 77, XF(CF) || XF(ZF))                  \
714         COND(7c, 7d, XF(SF) != XF(OF))                  \
715         COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
716 
717 #define COND(op_y, op_n, expr)                          \
718         case 0x ## op_y: DO((expr) != 0)                \
719         case 0x ## op_n: DO((expr) == 0)
720 
721 #define XF(xf)  (!!(flags & X86_EFLAGS_ ## xf))
722 
723 static bool is_cond_jmp_opcode(u8 opcode)
724 {
725         switch (opcode) {
726         #define DO(expr)        \
727                 return true;
728         CASE_COND
729         #undef  DO
730 
731         default:
732                 return false;
733         }
734 }
735 
736 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
737 {
738         unsigned long flags = regs->flags;
739 
740         switch (auprobe->branch.opc1) {
741         #define DO(expr)        \
742                 return expr;
743         CASE_COND
744         #undef  DO
745 
746         default:        /* not a conditional jmp */
747                 return true;
748         }
749 }
750 
751 #undef  XF
752 #undef  COND
753 #undef  CASE_COND
754 
755 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
756 {
757         unsigned long new_ip = regs->ip += auprobe->branch.ilen;
758         unsigned long offs = (long)auprobe->branch.offs;
759 
760         if (branch_is_call(auprobe)) {
761                 /*
762                  * If it fails we execute this (mangled, see the comment in
763                  * branch_clear_offset) insn out-of-line. In the likely case
764                  * this should trigger the trap, and the probed application
765                  * should die or restart the same insn after it handles the
766                  * signal, arch_uprobe_post_xol() won't be even called.
767                  *
768                  * But there is corner case, see the comment in ->post_xol().
769                  */
770                 if (emulate_push_stack(regs, new_ip))
771                         return false;
772         } else if (!check_jmp_cond(auprobe, regs)) {
773                 offs = 0;
774         }
775 
776         regs->ip = new_ip + offs;
777         return true;
778 }
779 
780 static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
781 {
782         unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
783 
784         if (emulate_push_stack(regs, *src_ptr))
785                 return false;
786         regs->ip += auprobe->push.ilen;
787         return true;
788 }
789 
790 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
791 {
792         BUG_ON(!branch_is_call(auprobe));
793         /*
794          * We can only get here if branch_emulate_op() failed to push the ret
795          * address _and_ another thread expanded our stack before the (mangled)
796          * "call" insn was executed out-of-line. Just restore ->sp and restart.
797          * We could also restore ->ip and try to call branch_emulate_op() again.
798          */
799         regs->sp += sizeof_long(regs);
800         return -ERESTART;
801 }
802 
803 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
804 {
805         /*
806          * Turn this insn into "call 1f; 1:", this is what we will execute
807          * out-of-line if ->emulate() fails. We only need this to generate
808          * a trap, so that the probed task receives the correct signal with
809          * the properly filled siginfo.
810          *
811          * But see the comment in ->post_xol(), in the unlikely case it can
812          * succeed. So we need to ensure that the new ->ip can not fall into
813          * the non-canonical area and trigger #GP.
814          *
815          * We could turn it into (say) "pushf", but then we would need to
816          * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
817          * of ->insn[] for set_orig_insn().
818          */
819         memset(auprobe->insn + insn_offset_immediate(insn),
820                 0, insn->immediate.nbytes);
821 }
822 
823 static const struct uprobe_xol_ops branch_xol_ops = {
824         .emulate  = branch_emulate_op,
825         .post_xol = branch_post_xol_op,
826 };
827 
828 static const struct uprobe_xol_ops push_xol_ops = {
829         .emulate  = push_emulate_op,
830 };
831 
832 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
833 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
834 {
835         u8 opc1 = OPCODE1(insn);
836         insn_byte_t p;
837         int i;
838 
839         switch (opc1) {
840         case 0xeb:      /* jmp 8 */
841         case 0xe9:      /* jmp 32 */
842                 break;
843         case 0x90:      /* prefix* + nop; same as jmp with .offs = 0 */
844                 goto setup;
845 
846         case 0xe8:      /* call relative */
847                 branch_clear_offset(auprobe, insn);
848                 break;
849 
850         case 0x0f:
851                 if (insn->opcode.nbytes != 2)
852                         return -ENOSYS;
853                 /*
854                  * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
855                  * OPCODE1() of the "short" jmp which checks the same condition.
856                  */
857                 opc1 = OPCODE2(insn) - 0x10;
858                 fallthrough;
859         default:
860                 if (!is_cond_jmp_opcode(opc1))
861                         return -ENOSYS;
862         }
863 
864         /*
865          * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
866          * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
867          * No one uses these insns, reject any branch insns with such prefix.
868          */
869         for_each_insn_prefix(insn, i, p) {
870                 if (p == 0x66)
871                         return -ENOTSUPP;
872         }
873 
874 setup:
875         auprobe->branch.opc1 = opc1;
876         auprobe->branch.ilen = insn->length;
877         auprobe->branch.offs = insn->immediate.value;
878 
879         auprobe->ops = &branch_xol_ops;
880         return 0;
881 }
882 
883 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
884 static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
885 {
886         u8 opc1 = OPCODE1(insn), reg_offset = 0;
887 
888         if (opc1 < 0x50 || opc1 > 0x57)
889                 return -ENOSYS;
890 
891         if (insn->length > 2)
892                 return -ENOSYS;
893         if (insn->length == 2) {
894                 /* only support rex_prefix 0x41 (x64 only) */
895 #ifdef CONFIG_X86_64
896                 if (insn->rex_prefix.nbytes != 1 ||
897                     insn->rex_prefix.bytes[0] != 0x41)
898                         return -ENOSYS;
899 
900                 switch (opc1) {
901                 case 0x50:
902                         reg_offset = offsetof(struct pt_regs, r8);
903                         break;
904                 case 0x51:
905                         reg_offset = offsetof(struct pt_regs, r9);
906                         break;
907                 case 0x52:
908                         reg_offset = offsetof(struct pt_regs, r10);
909                         break;
910                 case 0x53:
911                         reg_offset = offsetof(struct pt_regs, r11);
912                         break;
913                 case 0x54:
914                         reg_offset = offsetof(struct pt_regs, r12);
915                         break;
916                 case 0x55:
917                         reg_offset = offsetof(struct pt_regs, r13);
918                         break;
919                 case 0x56:
920                         reg_offset = offsetof(struct pt_regs, r14);
921                         break;
922                 case 0x57:
923                         reg_offset = offsetof(struct pt_regs, r15);
924                         break;
925                 }
926 #else
927                 return -ENOSYS;
928 #endif
929         } else {
930                 switch (opc1) {
931                 case 0x50:
932                         reg_offset = offsetof(struct pt_regs, ax);
933                         break;
934                 case 0x51:
935                         reg_offset = offsetof(struct pt_regs, cx);
936                         break;
937                 case 0x52:
938                         reg_offset = offsetof(struct pt_regs, dx);
939                         break;
940                 case 0x53:
941                         reg_offset = offsetof(struct pt_regs, bx);
942                         break;
943                 case 0x54:
944                         reg_offset = offsetof(struct pt_regs, sp);
945                         break;
946                 case 0x55:
947                         reg_offset = offsetof(struct pt_regs, bp);
948                         break;
949                 case 0x56:
950                         reg_offset = offsetof(struct pt_regs, si);
951                         break;
952                 case 0x57:
953                         reg_offset = offsetof(struct pt_regs, di);
954                         break;
955                 }
956         }
957 
958         auprobe->push.reg_offset = reg_offset;
959         auprobe->push.ilen = insn->length;
960         auprobe->ops = &push_xol_ops;
961         return 0;
962 }
963 
964 /**
965  * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
966  * @auprobe: the probepoint information.
967  * @mm: the probed address space.
968  * @addr: virtual address at which to install the probepoint
969  * Return 0 on success or a -ve number on error.
970  */
971 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
972 {
973         struct insn insn;
974         u8 fix_ip_or_call = UPROBE_FIX_IP;
975         int ret;
976 
977         ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
978         if (ret)
979                 return ret;
980 
981         ret = branch_setup_xol_ops(auprobe, &insn);
982         if (ret != -ENOSYS)
983                 return ret;
984 
985         ret = push_setup_xol_ops(auprobe, &insn);
986         if (ret != -ENOSYS)
987                 return ret;
988 
989         /*
990          * Figure out which fixups default_post_xol_op() will need to perform,
991          * and annotate defparam->fixups accordingly.
992          */
993         switch (OPCODE1(&insn)) {
994         case 0x9d:              /* popf */
995                 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
996                 break;
997         case 0xc3:              /* ret or lret -- ip is correct */
998         case 0xcb:
999         case 0xc2:
1000         case 0xca:
1001         case 0xea:              /* jmp absolute -- ip is correct */
1002                 fix_ip_or_call = 0;
1003                 break;
1004         case 0x9a:              /* call absolute - Fix return addr, not ip */
1005                 fix_ip_or_call = UPROBE_FIX_CALL;
1006                 break;
1007         case 0xff:
1008                 switch (MODRM_REG(&insn)) {
1009                 case 2: case 3:                 /* call or lcall, indirect */
1010                         fix_ip_or_call = UPROBE_FIX_CALL;
1011                         break;
1012                 case 4: case 5:                 /* jmp or ljmp, indirect */
1013                         fix_ip_or_call = 0;
1014                         break;
1015                 }
1016                 fallthrough;
1017         default:
1018                 riprel_analyze(auprobe, &insn);
1019         }
1020 
1021         auprobe->defparam.ilen = insn.length;
1022         auprobe->defparam.fixups |= fix_ip_or_call;
1023 
1024         auprobe->ops = &default_xol_ops;
1025         return 0;
1026 }
1027 
1028 /*
1029  * arch_uprobe_pre_xol - prepare to execute out of line.
1030  * @auprobe: the probepoint information.
1031  * @regs: reflects the saved user state of current task.
1032  */
1033 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1034 {
1035         struct uprobe_task *utask = current->utask;
1036 
1037         if (auprobe->ops->pre_xol) {
1038                 int err = auprobe->ops->pre_xol(auprobe, regs);
1039                 if (err)
1040                         return err;
1041         }
1042 
1043         regs->ip = utask->xol_vaddr;
1044         utask->autask.saved_trap_nr = current->thread.trap_nr;
1045         current->thread.trap_nr = UPROBE_TRAP_NR;
1046 
1047         utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
1048         regs->flags |= X86_EFLAGS_TF;
1049         if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
1050                 set_task_blockstep(current, false);
1051 
1052         return 0;
1053 }
1054 
1055 /*
1056  * If xol insn itself traps and generates a signal(Say,
1057  * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
1058  * instruction jumps back to its own address. It is assumed that anything
1059  * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
1060  *
1061  * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
1062  * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
1063  * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
1064  */
1065 bool arch_uprobe_xol_was_trapped(struct task_struct *t)
1066 {
1067         if (t->thread.trap_nr != UPROBE_TRAP_NR)
1068                 return true;
1069 
1070         return false;
1071 }
1072 
1073 /*
1074  * Called after single-stepping. To avoid the SMP problems that can
1075  * occur when we temporarily put back the original opcode to
1076  * single-step, we single-stepped a copy of the instruction.
1077  *
1078  * This function prepares to resume execution after the single-step.
1079  */
1080 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1081 {
1082         struct uprobe_task *utask = current->utask;
1083         bool send_sigtrap = utask->autask.saved_tf;
1084         int err = 0;
1085 
1086         WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
1087         current->thread.trap_nr = utask->autask.saved_trap_nr;
1088 
1089         if (auprobe->ops->post_xol) {
1090                 err = auprobe->ops->post_xol(auprobe, regs);
1091                 if (err) {
1092                         /*
1093                          * Restore ->ip for restart or post mortem analysis.
1094                          * ->post_xol() must not return -ERESTART unless this
1095                          * is really possible.
1096                          */
1097                         regs->ip = utask->vaddr;
1098                         if (err == -ERESTART)
1099                                 err = 0;
1100                         send_sigtrap = false;
1101                 }
1102         }
1103         /*
1104          * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
1105          * so we can get an extra SIGTRAP if we do not clear TF. We need
1106          * to examine the opcode to make it right.
1107          */
1108         if (send_sigtrap)
1109                 send_sig(SIGTRAP, current, 0);
1110 
1111         if (!utask->autask.saved_tf)
1112                 regs->flags &= ~X86_EFLAGS_TF;
1113 
1114         return err;
1115 }
1116 
1117 /* callback routine for handling exceptions. */
1118 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1119 {
1120         struct die_args *args = data;
1121         struct pt_regs *regs = args->regs;
1122         int ret = NOTIFY_DONE;
1123 
1124         /* We are only interested in userspace traps */
1125         if (regs && !user_mode(regs))
1126                 return NOTIFY_DONE;
1127 
1128         switch (val) {
1129         case DIE_INT3:
1130                 if (uprobe_pre_sstep_notifier(regs))
1131                         ret = NOTIFY_STOP;
1132 
1133                 break;
1134 
1135         case DIE_DEBUG:
1136                 if (uprobe_post_sstep_notifier(regs))
1137                         ret = NOTIFY_STOP;
1138 
1139                 break;
1140 
1141         default:
1142                 break;
1143         }
1144 
1145         return ret;
1146 }
1147 
1148 /*
1149  * This function gets called when XOL instruction either gets trapped or
1150  * the thread has a fatal signal. Reset the instruction pointer to its
1151  * probed address for the potential restart or for post mortem analysis.
1152  */
1153 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1154 {
1155         struct uprobe_task *utask = current->utask;
1156 
1157         if (auprobe->ops->abort)
1158                 auprobe->ops->abort(auprobe, regs);
1159 
1160         current->thread.trap_nr = utask->autask.saved_trap_nr;
1161         regs->ip = utask->vaddr;
1162         /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1163         if (!utask->autask.saved_tf)
1164                 regs->flags &= ~X86_EFLAGS_TF;
1165 }
1166 
1167 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1168 {
1169         if (auprobe->ops->emulate)
1170                 return auprobe->ops->emulate(auprobe, regs);
1171         return false;
1172 }
1173 
1174 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1175 {
1176         bool ret = __skip_sstep(auprobe, regs);
1177         if (ret && (regs->flags & X86_EFLAGS_TF))
1178                 send_sig(SIGTRAP, current, 0);
1179         return ret;
1180 }
1181 
1182 unsigned long
1183 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1184 {
1185         int rasize = sizeof_long(regs), nleft;
1186         unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1187 
1188         if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1189                 return -1;
1190 
1191         /* check whether address has been already hijacked */
1192         if (orig_ret_vaddr == trampoline_vaddr)
1193                 return orig_ret_vaddr;
1194 
1195         nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1196         if (likely(!nleft)) {
1197                 if (shstk_update_last_frame(trampoline_vaddr)) {
1198                         force_sig(SIGSEGV);
1199                         return -1;
1200                 }
1201                 return orig_ret_vaddr;
1202         }
1203 
1204         if (nleft != rasize) {
1205                 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1206                        current->pid, regs->sp, regs->ip);
1207 
1208                 force_sig(SIGSEGV);
1209         }
1210 
1211         return -1;
1212 }
1213 
1214 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1215                                 struct pt_regs *regs)
1216 {
1217         if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1218                 return regs->sp < ret->stack;
1219         else
1220                 return regs->sp <= ret->stack;
1221 }
1222 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php