1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * User-space Probes (UProbes) for x86 4 * 5 * Copyright (C) IBM Corporation, 2008-2011 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 */ 10 #include <linux/kernel.h> 11 #include <linux/sched.h> 12 #include <linux/ptrace.h> 13 #include <linux/uprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/syscalls.h> 16 17 #include <linux/kdebug.h> 18 #include <asm/processor.h> 19 #include <asm/insn.h> 20 #include <asm/mmu_context.h> 21 22 /* Post-execution fixups. */ 23 24 /* Adjust IP back to vicinity of actual insn */ 25 #define UPROBE_FIX_IP 0x01 26 27 /* Adjust the return address of a call insn */ 28 #define UPROBE_FIX_CALL 0x02 29 30 /* Instruction will modify TF, don't change it */ 31 #define UPROBE_FIX_SETF 0x04 32 33 #define UPROBE_FIX_RIP_SI 0x08 34 #define UPROBE_FIX_RIP_DI 0x10 35 #define UPROBE_FIX_RIP_BX 0x20 36 #define UPROBE_FIX_RIP_MASK \ 37 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX) 38 39 #define UPROBE_TRAP_NR UINT_MAX 40 41 /* Adaptations for mhiramat x86 decoder v14. */ 42 #define OPCODE1(insn) ((insn)->opcode.bytes[0]) 43 #define OPCODE2(insn) ((insn)->opcode.bytes[1]) 44 #define OPCODE3(insn) ((insn)->opcode.bytes[2]) 45 #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value) 46 47 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ 48 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ 49 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ 50 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ 51 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ 52 << (row % 32)) 53 54 /* 55 * Good-instruction tables for 32-bit apps. This is non-const and volatile 56 * to keep gcc from statically optimizing it out, as variable_test_bit makes 57 * some versions of gcc to think only *(unsigned long*) is used. 58 * 59 * Opcodes we'll probably never support: 60 * 6c-6f - ins,outs. SEGVs if used in userspace 61 * e4-e7 - in,out imm. SEGVs if used in userspace 62 * ec-ef - in,out acc. SEGVs if used in userspace 63 * cc - int3. SIGTRAP if used in userspace 64 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs 65 * (why we support bound (62) then? it's similar, and similarly unused...) 66 * f1 - int1. SIGTRAP if used in userspace 67 * f4 - hlt. SEGVs if used in userspace 68 * fa - cli. SEGVs if used in userspace 69 * fb - sti. SEGVs if used in userspace 70 * 71 * Opcodes which need some work to be supported: 72 * 07,17,1f - pop es/ss/ds 73 * Normally not used in userspace, but would execute if used. 74 * Can cause GP or stack exception if tries to load wrong segment descriptor. 75 * We hesitate to run them under single step since kernel's handling 76 * of userspace single-stepping (TF flag) is fragile. 77 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e) 78 * on the same grounds that they are never used. 79 * cd - int N. 80 * Used by userspace for "int 80" syscall entry. (Other "int N" 81 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). 82 * Not supported since kernel's handling of userspace single-stepping 83 * (TF flag) is fragile. 84 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad 85 */ 86 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) 87 static volatile u32 good_insns_32[256 / 32] = { 88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 89 /* ---------------------------------------------- */ 90 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */ 91 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */ 92 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ 93 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ 94 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 95 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ 96 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ 97 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ 98 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ 99 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 100 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ 101 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ 102 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ 103 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ 104 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ 105 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ 106 /* ---------------------------------------------- */ 107 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 108 }; 109 #else 110 #define good_insns_32 NULL 111 #endif 112 113 /* Good-instruction tables for 64-bit apps. 114 * 115 * Genuinely invalid opcodes: 116 * 06,07 - formerly push/pop es 117 * 0e - formerly push cs 118 * 16,17 - formerly push/pop ss 119 * 1e,1f - formerly push/pop ds 120 * 27,2f,37,3f - formerly daa/das/aaa/aas 121 * 60,61 - formerly pusha/popa 122 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported) 123 * 82 - formerly redundant encoding of Group1 124 * 9a - formerly call seg:ofs 125 * ce - formerly into 126 * d4,d5 - formerly aam/aad 127 * d6 - formerly undocumented salc 128 * ea - formerly jmp seg:ofs 129 * 130 * Opcodes we'll probably never support: 131 * 6c-6f - ins,outs. SEGVs if used in userspace 132 * e4-e7 - in,out imm. SEGVs if used in userspace 133 * ec-ef - in,out acc. SEGVs if used in userspace 134 * cc - int3. SIGTRAP if used in userspace 135 * f1 - int1. SIGTRAP if used in userspace 136 * f4 - hlt. SEGVs if used in userspace 137 * fa - cli. SEGVs if used in userspace 138 * fb - sti. SEGVs if used in userspace 139 * 140 * Opcodes which need some work to be supported: 141 * cd - int N. 142 * Used by userspace for "int 80" syscall entry. (Other "int N" 143 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). 144 * Not supported since kernel's handling of userspace single-stepping 145 * (TF flag) is fragile. 146 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad 147 */ 148 #if defined(CONFIG_X86_64) 149 static volatile u32 good_insns_64[256 / 32] = { 150 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 151 /* ---------------------------------------------- */ 152 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */ 153 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */ 154 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */ 155 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */ 156 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 157 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ 158 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ 159 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ 160 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ 161 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */ 162 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ 163 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ 164 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ 165 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ 166 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */ 167 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ 168 /* ---------------------------------------------- */ 169 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 170 }; 171 #else 172 #define good_insns_64 NULL 173 #endif 174 175 /* Using this for both 64-bit and 32-bit apps. 176 * Opcodes we don't support: 177 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns 178 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group. 179 * Also encodes tons of other system insns if mod=11. 180 * Some are in fact non-system: xend, xtest, rdtscp, maybe more 181 * 0f 05 - syscall 182 * 0f 06 - clts (CPL0 insn) 183 * 0f 07 - sysret 184 * 0f 08 - invd (CPL0 insn) 185 * 0f 09 - wbinvd (CPL0 insn) 186 * 0f 0b - ud2 187 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?) 188 * 0f 34 - sysenter 189 * 0f 35 - sysexit 190 * 0f 37 - getsec 191 * 0f 78 - vmread (Intel VMX. CPL0 insn) 192 * 0f 79 - vmwrite (Intel VMX. CPL0 insn) 193 * Note: with prefixes, these two opcodes are 194 * extrq/insertq/AVX512 convert vector ops. 195 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt], 196 * {rd,wr}{fs,gs}base,{s,l,m}fence. 197 * Why? They are all user-executable. 198 */ 199 static volatile u32 good_2byte_insns[256 / 32] = { 200 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 201 /* ---------------------------------------------- */ 202 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */ 203 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */ 204 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ 205 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ 206 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ 207 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ 208 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */ 209 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */ 210 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ 211 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ 212 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */ 213 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ 214 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ 215 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ 216 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */ 217 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */ 218 /* ---------------------------------------------- */ 219 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ 220 }; 221 #undef W 222 223 /* 224 * opcodes we may need to refine support for: 225 * 226 * 0f - 2-byte instructions: For many of these instructions, the validity 227 * depends on the prefix and/or the reg field. On such instructions, we 228 * just consider the opcode combination valid if it corresponds to any 229 * valid instruction. 230 * 231 * 8f - Group 1 - only reg = 0 is OK 232 * c6-c7 - Group 11 - only reg = 0 is OK 233 * d9-df - fpu insns with some illegal encodings 234 * f2, f3 - repnz, repz prefixes. These are also the first byte for 235 * certain floating-point instructions, such as addsd. 236 * 237 * fe - Group 4 - only reg = 0 or 1 is OK 238 * ff - Group 5 - only reg = 0-6 is OK 239 * 240 * others -- Do we need to support these? 241 * 242 * 0f - (floating-point?) prefetch instructions 243 * 07, 17, 1f - pop es, pop ss, pop ds 244 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes -- 245 * but 64 and 65 (fs: and gs:) seem to be used, so we support them 246 * 67 - addr16 prefix 247 * ce - into 248 * f0 - lock prefix 249 */ 250 251 /* 252 * TODO: 253 * - Where necessary, examine the modrm byte and allow only valid instructions 254 * in the different Groups and fpu instructions. 255 */ 256 257 static bool is_prefix_bad(struct insn *insn) 258 { 259 insn_byte_t p; 260 int i; 261 262 for_each_insn_prefix(insn, i, p) { 263 insn_attr_t attr; 264 265 attr = inat_get_opcode_attribute(p); 266 switch (attr) { 267 case INAT_MAKE_PREFIX(INAT_PFX_ES): 268 case INAT_MAKE_PREFIX(INAT_PFX_CS): 269 case INAT_MAKE_PREFIX(INAT_PFX_DS): 270 case INAT_MAKE_PREFIX(INAT_PFX_SS): 271 case INAT_MAKE_PREFIX(INAT_PFX_LOCK): 272 return true; 273 } 274 } 275 return false; 276 } 277 278 static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64) 279 { 280 enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32; 281 u32 volatile *good_insns; 282 int ret; 283 284 ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m); 285 if (ret < 0) 286 return -ENOEXEC; 287 288 if (is_prefix_bad(insn)) 289 return -ENOTSUPP; 290 291 /* We should not singlestep on the exception masking instructions */ 292 if (insn_masking_exception(insn)) 293 return -ENOTSUPP; 294 295 if (x86_64) 296 good_insns = good_insns_64; 297 else 298 good_insns = good_insns_32; 299 300 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns)) 301 return 0; 302 303 if (insn->opcode.nbytes == 2) { 304 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) 305 return 0; 306 } 307 308 return -ENOTSUPP; 309 } 310 311 #ifdef CONFIG_X86_64 312 313 asm ( 314 ".pushsection .rodata\n" 315 ".global uretprobe_trampoline_entry\n" 316 "uretprobe_trampoline_entry:\n" 317 "pushq %rax\n" 318 "pushq %rcx\n" 319 "pushq %r11\n" 320 "movq $" __stringify(__NR_uretprobe) ", %rax\n" 321 "syscall\n" 322 ".global uretprobe_syscall_check\n" 323 "uretprobe_syscall_check:\n" 324 "popq %r11\n" 325 "popq %rcx\n" 326 327 /* The uretprobe syscall replaces stored %rax value with final 328 * return address, so we don't restore %rax in here and just 329 * call ret. 330 */ 331 "retq\n" 332 ".global uretprobe_trampoline_end\n" 333 "uretprobe_trampoline_end:\n" 334 ".popsection\n" 335 ); 336 337 extern u8 uretprobe_trampoline_entry[]; 338 extern u8 uretprobe_trampoline_end[]; 339 extern u8 uretprobe_syscall_check[]; 340 341 void *arch_uprobe_trampoline(unsigned long *psize) 342 { 343 static uprobe_opcode_t insn = UPROBE_SWBP_INSN; 344 struct pt_regs *regs = task_pt_regs(current); 345 346 /* 347 * At the moment the uretprobe syscall trampoline is supported 348 * only for native 64-bit process, the compat process still uses 349 * standard breakpoint. 350 */ 351 if (user_64bit_mode(regs)) { 352 *psize = uretprobe_trampoline_end - uretprobe_trampoline_entry; 353 return uretprobe_trampoline_entry; 354 } 355 356 *psize = UPROBE_SWBP_INSN_SIZE; 357 return &insn; 358 } 359 360 static unsigned long trampoline_check_ip(void) 361 { 362 unsigned long tramp = uprobe_get_trampoline_vaddr(); 363 364 return tramp + (uretprobe_syscall_check - uretprobe_trampoline_entry); 365 } 366 367 SYSCALL_DEFINE0(uretprobe) 368 { 369 struct pt_regs *regs = task_pt_regs(current); 370 unsigned long err, ip, sp, r11_cx_ax[3]; 371 372 if (regs->ip != trampoline_check_ip()) 373 goto sigill; 374 375 err = copy_from_user(r11_cx_ax, (void __user *)regs->sp, sizeof(r11_cx_ax)); 376 if (err) 377 goto sigill; 378 379 /* expose the "right" values of r11/cx/ax/sp to uprobe_consumer/s */ 380 regs->r11 = r11_cx_ax[0]; 381 regs->cx = r11_cx_ax[1]; 382 regs->ax = r11_cx_ax[2]; 383 regs->sp += sizeof(r11_cx_ax); 384 regs->orig_ax = -1; 385 386 ip = regs->ip; 387 sp = regs->sp; 388 389 uprobe_handle_trampoline(regs); 390 391 /* 392 * Some of the uprobe consumers has changed sp, we can do nothing, 393 * just return via iret. 394 * .. or shadow stack is enabled, in which case we need to skip 395 * return through the user space stack address. 396 */ 397 if (regs->sp != sp || shstk_is_enabled()) 398 return regs->ax; 399 regs->sp -= sizeof(r11_cx_ax); 400 401 /* for the case uprobe_consumer has changed r11/cx */ 402 r11_cx_ax[0] = regs->r11; 403 r11_cx_ax[1] = regs->cx; 404 405 /* 406 * ax register is passed through as return value, so we can use 407 * its space on stack for ip value and jump to it through the 408 * trampoline's ret instruction 409 */ 410 r11_cx_ax[2] = regs->ip; 411 regs->ip = ip; 412 413 err = copy_to_user((void __user *)regs->sp, r11_cx_ax, sizeof(r11_cx_ax)); 414 if (err) 415 goto sigill; 416 417 /* ensure sysret, see do_syscall_64() */ 418 regs->r11 = regs->flags; 419 regs->cx = regs->ip; 420 421 return regs->ax; 422 423 sigill: 424 force_sig(SIGILL); 425 return -1; 426 } 427 428 /* 429 * If arch_uprobe->insn doesn't use rip-relative addressing, return 430 * immediately. Otherwise, rewrite the instruction so that it accesses 431 * its memory operand indirectly through a scratch register. Set 432 * defparam->fixups accordingly. (The contents of the scratch register 433 * will be saved before we single-step the modified instruction, 434 * and restored afterward). 435 * 436 * We do this because a rip-relative instruction can access only a 437 * relatively small area (+/- 2 GB from the instruction), and the XOL 438 * area typically lies beyond that area. At least for instructions 439 * that store to memory, we can't execute the original instruction 440 * and "fix things up" later, because the misdirected store could be 441 * disastrous. 442 * 443 * Some useful facts about rip-relative instructions: 444 * 445 * - There's always a modrm byte with bit layout "00 reg 101". 446 * - There's never a SIB byte. 447 * - The displacement is always 4 bytes. 448 * - REX.B=1 bit in REX prefix, which normally extends r/m field, 449 * has no effect on rip-relative mode. It doesn't make modrm byte 450 * with r/m=101 refer to register 1101 = R13. 451 */ 452 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) 453 { 454 u8 *cursor; 455 u8 reg; 456 u8 reg2; 457 458 if (!insn_rip_relative(insn)) 459 return; 460 461 /* 462 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm. 463 * Clear REX.b bit (extension of MODRM.rm field): 464 * we want to encode low numbered reg, not r8+. 465 */ 466 if (insn->rex_prefix.nbytes) { 467 cursor = auprobe->insn + insn_offset_rex_prefix(insn); 468 /* REX byte has 0100wrxb layout, clearing REX.b bit */ 469 *cursor &= 0xfe; 470 } 471 /* 472 * Similar treatment for VEX3/EVEX prefix. 473 * TODO: add XOP treatment when insn decoder supports them 474 */ 475 if (insn->vex_prefix.nbytes >= 3) { 476 /* 477 * vex2: c5 rvvvvLpp (has no b bit) 478 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp 479 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa 480 * Setting VEX3.b (setting because it has inverted meaning). 481 * Setting EVEX.x since (in non-SIB encoding) EVEX.x 482 * is the 4th bit of MODRM.rm, and needs the same treatment. 483 * For VEX3-encoded insns, VEX3.x value has no effect in 484 * non-SIB encoding, the change is superfluous but harmless. 485 */ 486 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1; 487 *cursor |= 0x60; 488 } 489 490 /* 491 * Convert from rip-relative addressing to register-relative addressing 492 * via a scratch register. 493 * 494 * This is tricky since there are insns with modrm byte 495 * which also use registers not encoded in modrm byte: 496 * [i]div/[i]mul: implicitly use dx:ax 497 * shift ops: implicitly use cx 498 * cmpxchg: implicitly uses ax 499 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx 500 * Encoding: 0f c7/1 modrm 501 * The code below thinks that reg=1 (cx), chooses si as scratch. 502 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m. 503 * First appeared in Haswell (BMI2 insn). It is vex-encoded. 504 * Example where none of bx,cx,dx can be used as scratch reg: 505 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx 506 * [v]pcmpistri: implicitly uses cx, xmm0 507 * [v]pcmpistrm: implicitly uses xmm0 508 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0 509 * [v]pcmpestrm: implicitly uses ax, dx, xmm0 510 * Evil SSE4.2 string comparison ops from hell. 511 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination. 512 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm. 513 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi). 514 * AMD says it has no 3-operand form (vex.vvvv must be 1111) 515 * and that it can have only register operands, not mem 516 * (its modrm byte must have mode=11). 517 * If these restrictions will ever be lifted, 518 * we'll need code to prevent selection of di as scratch reg! 519 * 520 * Summary: I don't know any insns with modrm byte which 521 * use SI register implicitly. DI register is used only 522 * by one insn (maskmovq) and BX register is used 523 * only by one too (cmpxchg8b). 524 * BP is stack-segment based (may be a problem?). 525 * AX, DX, CX are off-limits (many implicit users). 526 * SP is unusable (it's stack pointer - think about "pop mem"; 527 * also, rsp+disp32 needs sib encoding -> insn length change). 528 */ 529 530 reg = MODRM_REG(insn); /* Fetch modrm.reg */ 531 reg2 = 0xff; /* Fetch vex.vvvv */ 532 if (insn->vex_prefix.nbytes) 533 reg2 = insn->vex_prefix.bytes[2]; 534 /* 535 * TODO: add XOP vvvv reading. 536 * 537 * vex.vvvv field is in bits 6-3, bits are inverted. 538 * But in 32-bit mode, high-order bit may be ignored. 539 * Therefore, let's consider only 3 low-order bits. 540 */ 541 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7; 542 /* 543 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15. 544 * 545 * Choose scratch reg. Order is important: must not select bx 546 * if we can use si (cmpxchg8b case!) 547 */ 548 if (reg != 6 && reg2 != 6) { 549 reg2 = 6; 550 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI; 551 } else if (reg != 7 && reg2 != 7) { 552 reg2 = 7; 553 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI; 554 /* TODO (paranoia): force maskmovq to not use di */ 555 } else { 556 reg2 = 3; 557 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX; 558 } 559 /* 560 * Point cursor at the modrm byte. The next 4 bytes are the 561 * displacement. Beyond the displacement, for some instructions, 562 * is the immediate operand. 563 */ 564 cursor = auprobe->insn + insn_offset_modrm(insn); 565 /* 566 * Change modrm from "00 reg 101" to "10 reg reg2". Example: 567 * 89 05 disp32 mov %eax,disp32(%rip) becomes 568 * 89 86 disp32 mov %eax,disp32(%rsi) 569 */ 570 *cursor = 0x80 | (reg << 3) | reg2; 571 } 572 573 static inline unsigned long * 574 scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs) 575 { 576 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI) 577 return ®s->si; 578 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI) 579 return ®s->di; 580 return ®s->bx; 581 } 582 583 /* 584 * If we're emulating a rip-relative instruction, save the contents 585 * of the scratch register and store the target address in that register. 586 */ 587 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 588 { 589 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { 590 struct uprobe_task *utask = current->utask; 591 unsigned long *sr = scratch_reg(auprobe, regs); 592 593 utask->autask.saved_scratch_register = *sr; 594 *sr = utask->vaddr + auprobe->defparam.ilen; 595 } 596 } 597 598 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 599 { 600 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { 601 struct uprobe_task *utask = current->utask; 602 unsigned long *sr = scratch_reg(auprobe, regs); 603 604 *sr = utask->autask.saved_scratch_register; 605 } 606 } 607 #else /* 32-bit: */ 608 /* 609 * No RIP-relative addressing on 32-bit 610 */ 611 static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) 612 { 613 } 614 static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 615 { 616 } 617 static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 618 { 619 } 620 #endif /* CONFIG_X86_64 */ 621 622 struct uprobe_xol_ops { 623 bool (*emulate)(struct arch_uprobe *, struct pt_regs *); 624 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *); 625 int (*post_xol)(struct arch_uprobe *, struct pt_regs *); 626 void (*abort)(struct arch_uprobe *, struct pt_regs *); 627 }; 628 629 static inline int sizeof_long(struct pt_regs *regs) 630 { 631 /* 632 * Check registers for mode as in_xxx_syscall() does not apply here. 633 */ 634 return user_64bit_mode(regs) ? 8 : 4; 635 } 636 637 static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 638 { 639 riprel_pre_xol(auprobe, regs); 640 return 0; 641 } 642 643 static int emulate_push_stack(struct pt_regs *regs, unsigned long val) 644 { 645 unsigned long new_sp = regs->sp - sizeof_long(regs); 646 647 if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs))) 648 return -EFAULT; 649 650 regs->sp = new_sp; 651 return 0; 652 } 653 654 /* 655 * We have to fix things up as follows: 656 * 657 * Typically, the new ip is relative to the copied instruction. We need 658 * to make it relative to the original instruction (FIX_IP). Exceptions 659 * are return instructions and absolute or indirect jump or call instructions. 660 * 661 * If the single-stepped instruction was a call, the return address that 662 * is atop the stack is the address following the copied instruction. We 663 * need to make it the address following the original instruction (FIX_CALL). 664 * 665 * If the original instruction was a rip-relative instruction such as 666 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent 667 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)". 668 * We need to restore the contents of the scratch register 669 * (FIX_RIP_reg). 670 */ 671 static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 672 { 673 struct uprobe_task *utask = current->utask; 674 675 riprel_post_xol(auprobe, regs); 676 if (auprobe->defparam.fixups & UPROBE_FIX_IP) { 677 long correction = utask->vaddr - utask->xol_vaddr; 678 regs->ip += correction; 679 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) { 680 regs->sp += sizeof_long(regs); /* Pop incorrect return address */ 681 if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen)) 682 return -ERESTART; 683 } 684 /* popf; tell the caller to not touch TF */ 685 if (auprobe->defparam.fixups & UPROBE_FIX_SETF) 686 utask->autask.saved_tf = true; 687 688 return 0; 689 } 690 691 static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 692 { 693 riprel_post_xol(auprobe, regs); 694 } 695 696 static const struct uprobe_xol_ops default_xol_ops = { 697 .pre_xol = default_pre_xol_op, 698 .post_xol = default_post_xol_op, 699 .abort = default_abort_op, 700 }; 701 702 static bool branch_is_call(struct arch_uprobe *auprobe) 703 { 704 return auprobe->branch.opc1 == 0xe8; 705 } 706 707 #define CASE_COND \ 708 COND(70, 71, XF(OF)) \ 709 COND(72, 73, XF(CF)) \ 710 COND(74, 75, XF(ZF)) \ 711 COND(78, 79, XF(SF)) \ 712 COND(7a, 7b, XF(PF)) \ 713 COND(76, 77, XF(CF) || XF(ZF)) \ 714 COND(7c, 7d, XF(SF) != XF(OF)) \ 715 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF)) 716 717 #define COND(op_y, op_n, expr) \ 718 case 0x ## op_y: DO((expr) != 0) \ 719 case 0x ## op_n: DO((expr) == 0) 720 721 #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf)) 722 723 static bool is_cond_jmp_opcode(u8 opcode) 724 { 725 switch (opcode) { 726 #define DO(expr) \ 727 return true; 728 CASE_COND 729 #undef DO 730 731 default: 732 return false; 733 } 734 } 735 736 static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs) 737 { 738 unsigned long flags = regs->flags; 739 740 switch (auprobe->branch.opc1) { 741 #define DO(expr) \ 742 return expr; 743 CASE_COND 744 #undef DO 745 746 default: /* not a conditional jmp */ 747 return true; 748 } 749 } 750 751 #undef XF 752 #undef COND 753 #undef CASE_COND 754 755 static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 756 { 757 unsigned long new_ip = regs->ip += auprobe->branch.ilen; 758 unsigned long offs = (long)auprobe->branch.offs; 759 760 if (branch_is_call(auprobe)) { 761 /* 762 * If it fails we execute this (mangled, see the comment in 763 * branch_clear_offset) insn out-of-line. In the likely case 764 * this should trigger the trap, and the probed application 765 * should die or restart the same insn after it handles the 766 * signal, arch_uprobe_post_xol() won't be even called. 767 * 768 * But there is corner case, see the comment in ->post_xol(). 769 */ 770 if (emulate_push_stack(regs, new_ip)) 771 return false; 772 } else if (!check_jmp_cond(auprobe, regs)) { 773 offs = 0; 774 } 775 776 regs->ip = new_ip + offs; 777 return true; 778 } 779 780 static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 781 { 782 unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset; 783 784 if (emulate_push_stack(regs, *src_ptr)) 785 return false; 786 regs->ip += auprobe->push.ilen; 787 return true; 788 } 789 790 static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) 791 { 792 BUG_ON(!branch_is_call(auprobe)); 793 /* 794 * We can only get here if branch_emulate_op() failed to push the ret 795 * address _and_ another thread expanded our stack before the (mangled) 796 * "call" insn was executed out-of-line. Just restore ->sp and restart. 797 * We could also restore ->ip and try to call branch_emulate_op() again. 798 */ 799 regs->sp += sizeof_long(regs); 800 return -ERESTART; 801 } 802 803 static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn) 804 { 805 /* 806 * Turn this insn into "call 1f; 1:", this is what we will execute 807 * out-of-line if ->emulate() fails. We only need this to generate 808 * a trap, so that the probed task receives the correct signal with 809 * the properly filled siginfo. 810 * 811 * But see the comment in ->post_xol(), in the unlikely case it can 812 * succeed. So we need to ensure that the new ->ip can not fall into 813 * the non-canonical area and trigger #GP. 814 * 815 * We could turn it into (say) "pushf", but then we would need to 816 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte 817 * of ->insn[] for set_orig_insn(). 818 */ 819 memset(auprobe->insn + insn_offset_immediate(insn), 820 0, insn->immediate.nbytes); 821 } 822 823 static const struct uprobe_xol_ops branch_xol_ops = { 824 .emulate = branch_emulate_op, 825 .post_xol = branch_post_xol_op, 826 }; 827 828 static const struct uprobe_xol_ops push_xol_ops = { 829 .emulate = push_emulate_op, 830 }; 831 832 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */ 833 static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) 834 { 835 u8 opc1 = OPCODE1(insn); 836 insn_byte_t p; 837 int i; 838 839 switch (opc1) { 840 case 0xeb: /* jmp 8 */ 841 case 0xe9: /* jmp 32 */ 842 break; 843 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */ 844 goto setup; 845 846 case 0xe8: /* call relative */ 847 branch_clear_offset(auprobe, insn); 848 break; 849 850 case 0x0f: 851 if (insn->opcode.nbytes != 2) 852 return -ENOSYS; 853 /* 854 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches 855 * OPCODE1() of the "short" jmp which checks the same condition. 856 */ 857 opc1 = OPCODE2(insn) - 0x10; 858 fallthrough; 859 default: 860 if (!is_cond_jmp_opcode(opc1)) 861 return -ENOSYS; 862 } 863 864 /* 865 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported. 866 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix. 867 * No one uses these insns, reject any branch insns with such prefix. 868 */ 869 for_each_insn_prefix(insn, i, p) { 870 if (p == 0x66) 871 return -ENOTSUPP; 872 } 873 874 setup: 875 auprobe->branch.opc1 = opc1; 876 auprobe->branch.ilen = insn->length; 877 auprobe->branch.offs = insn->immediate.value; 878 879 auprobe->ops = &branch_xol_ops; 880 return 0; 881 } 882 883 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */ 884 static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) 885 { 886 u8 opc1 = OPCODE1(insn), reg_offset = 0; 887 888 if (opc1 < 0x50 || opc1 > 0x57) 889 return -ENOSYS; 890 891 if (insn->length > 2) 892 return -ENOSYS; 893 if (insn->length == 2) { 894 /* only support rex_prefix 0x41 (x64 only) */ 895 #ifdef CONFIG_X86_64 896 if (insn->rex_prefix.nbytes != 1 || 897 insn->rex_prefix.bytes[0] != 0x41) 898 return -ENOSYS; 899 900 switch (opc1) { 901 case 0x50: 902 reg_offset = offsetof(struct pt_regs, r8); 903 break; 904 case 0x51: 905 reg_offset = offsetof(struct pt_regs, r9); 906 break; 907 case 0x52: 908 reg_offset = offsetof(struct pt_regs, r10); 909 break; 910 case 0x53: 911 reg_offset = offsetof(struct pt_regs, r11); 912 break; 913 case 0x54: 914 reg_offset = offsetof(struct pt_regs, r12); 915 break; 916 case 0x55: 917 reg_offset = offsetof(struct pt_regs, r13); 918 break; 919 case 0x56: 920 reg_offset = offsetof(struct pt_regs, r14); 921 break; 922 case 0x57: 923 reg_offset = offsetof(struct pt_regs, r15); 924 break; 925 } 926 #else 927 return -ENOSYS; 928 #endif 929 } else { 930 switch (opc1) { 931 case 0x50: 932 reg_offset = offsetof(struct pt_regs, ax); 933 break; 934 case 0x51: 935 reg_offset = offsetof(struct pt_regs, cx); 936 break; 937 case 0x52: 938 reg_offset = offsetof(struct pt_regs, dx); 939 break; 940 case 0x53: 941 reg_offset = offsetof(struct pt_regs, bx); 942 break; 943 case 0x54: 944 reg_offset = offsetof(struct pt_regs, sp); 945 break; 946 case 0x55: 947 reg_offset = offsetof(struct pt_regs, bp); 948 break; 949 case 0x56: 950 reg_offset = offsetof(struct pt_regs, si); 951 break; 952 case 0x57: 953 reg_offset = offsetof(struct pt_regs, di); 954 break; 955 } 956 } 957 958 auprobe->push.reg_offset = reg_offset; 959 auprobe->push.ilen = insn->length; 960 auprobe->ops = &push_xol_ops; 961 return 0; 962 } 963 964 /** 965 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups. 966 * @auprobe: the probepoint information. 967 * @mm: the probed address space. 968 * @addr: virtual address at which to install the probepoint 969 * Return 0 on success or a -ve number on error. 970 */ 971 int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr) 972 { 973 struct insn insn; 974 u8 fix_ip_or_call = UPROBE_FIX_IP; 975 int ret; 976 977 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm)); 978 if (ret) 979 return ret; 980 981 ret = branch_setup_xol_ops(auprobe, &insn); 982 if (ret != -ENOSYS) 983 return ret; 984 985 ret = push_setup_xol_ops(auprobe, &insn); 986 if (ret != -ENOSYS) 987 return ret; 988 989 /* 990 * Figure out which fixups default_post_xol_op() will need to perform, 991 * and annotate defparam->fixups accordingly. 992 */ 993 switch (OPCODE1(&insn)) { 994 case 0x9d: /* popf */ 995 auprobe->defparam.fixups |= UPROBE_FIX_SETF; 996 break; 997 case 0xc3: /* ret or lret -- ip is correct */ 998 case 0xcb: 999 case 0xc2: 1000 case 0xca: 1001 case 0xea: /* jmp absolute -- ip is correct */ 1002 fix_ip_or_call = 0; 1003 break; 1004 case 0x9a: /* call absolute - Fix return addr, not ip */ 1005 fix_ip_or_call = UPROBE_FIX_CALL; 1006 break; 1007 case 0xff: 1008 switch (MODRM_REG(&insn)) { 1009 case 2: case 3: /* call or lcall, indirect */ 1010 fix_ip_or_call = UPROBE_FIX_CALL; 1011 break; 1012 case 4: case 5: /* jmp or ljmp, indirect */ 1013 fix_ip_or_call = 0; 1014 break; 1015 } 1016 fallthrough; 1017 default: 1018 riprel_analyze(auprobe, &insn); 1019 } 1020 1021 auprobe->defparam.ilen = insn.length; 1022 auprobe->defparam.fixups |= fix_ip_or_call; 1023 1024 auprobe->ops = &default_xol_ops; 1025 return 0; 1026 } 1027 1028 /* 1029 * arch_uprobe_pre_xol - prepare to execute out of line. 1030 * @auprobe: the probepoint information. 1031 * @regs: reflects the saved user state of current task. 1032 */ 1033 int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 1034 { 1035 struct uprobe_task *utask = current->utask; 1036 1037 if (auprobe->ops->pre_xol) { 1038 int err = auprobe->ops->pre_xol(auprobe, regs); 1039 if (err) 1040 return err; 1041 } 1042 1043 regs->ip = utask->xol_vaddr; 1044 utask->autask.saved_trap_nr = current->thread.trap_nr; 1045 current->thread.trap_nr = UPROBE_TRAP_NR; 1046 1047 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF); 1048 regs->flags |= X86_EFLAGS_TF; 1049 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP)) 1050 set_task_blockstep(current, false); 1051 1052 return 0; 1053 } 1054 1055 /* 1056 * If xol insn itself traps and generates a signal(Say, 1057 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped 1058 * instruction jumps back to its own address. It is assumed that anything 1059 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1. 1060 * 1061 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr, 1062 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to 1063 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol(). 1064 */ 1065 bool arch_uprobe_xol_was_trapped(struct task_struct *t) 1066 { 1067 if (t->thread.trap_nr != UPROBE_TRAP_NR) 1068 return true; 1069 1070 return false; 1071 } 1072 1073 /* 1074 * Called after single-stepping. To avoid the SMP problems that can 1075 * occur when we temporarily put back the original opcode to 1076 * single-step, we single-stepped a copy of the instruction. 1077 * 1078 * This function prepares to resume execution after the single-step. 1079 */ 1080 int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 1081 { 1082 struct uprobe_task *utask = current->utask; 1083 bool send_sigtrap = utask->autask.saved_tf; 1084 int err = 0; 1085 1086 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR); 1087 current->thread.trap_nr = utask->autask.saved_trap_nr; 1088 1089 if (auprobe->ops->post_xol) { 1090 err = auprobe->ops->post_xol(auprobe, regs); 1091 if (err) { 1092 /* 1093 * Restore ->ip for restart or post mortem analysis. 1094 * ->post_xol() must not return -ERESTART unless this 1095 * is really possible. 1096 */ 1097 regs->ip = utask->vaddr; 1098 if (err == -ERESTART) 1099 err = 0; 1100 send_sigtrap = false; 1101 } 1102 } 1103 /* 1104 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP 1105 * so we can get an extra SIGTRAP if we do not clear TF. We need 1106 * to examine the opcode to make it right. 1107 */ 1108 if (send_sigtrap) 1109 send_sig(SIGTRAP, current, 0); 1110 1111 if (!utask->autask.saved_tf) 1112 regs->flags &= ~X86_EFLAGS_TF; 1113 1114 return err; 1115 } 1116 1117 /* callback routine for handling exceptions. */ 1118 int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data) 1119 { 1120 struct die_args *args = data; 1121 struct pt_regs *regs = args->regs; 1122 int ret = NOTIFY_DONE; 1123 1124 /* We are only interested in userspace traps */ 1125 if (regs && !user_mode(regs)) 1126 return NOTIFY_DONE; 1127 1128 switch (val) { 1129 case DIE_INT3: 1130 if (uprobe_pre_sstep_notifier(regs)) 1131 ret = NOTIFY_STOP; 1132 1133 break; 1134 1135 case DIE_DEBUG: 1136 if (uprobe_post_sstep_notifier(regs)) 1137 ret = NOTIFY_STOP; 1138 1139 break; 1140 1141 default: 1142 break; 1143 } 1144 1145 return ret; 1146 } 1147 1148 /* 1149 * This function gets called when XOL instruction either gets trapped or 1150 * the thread has a fatal signal. Reset the instruction pointer to its 1151 * probed address for the potential restart or for post mortem analysis. 1152 */ 1153 void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) 1154 { 1155 struct uprobe_task *utask = current->utask; 1156 1157 if (auprobe->ops->abort) 1158 auprobe->ops->abort(auprobe, regs); 1159 1160 current->thread.trap_nr = utask->autask.saved_trap_nr; 1161 regs->ip = utask->vaddr; 1162 /* clear TF if it was set by us in arch_uprobe_pre_xol() */ 1163 if (!utask->autask.saved_tf) 1164 regs->flags &= ~X86_EFLAGS_TF; 1165 } 1166 1167 static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) 1168 { 1169 if (auprobe->ops->emulate) 1170 return auprobe->ops->emulate(auprobe, regs); 1171 return false; 1172 } 1173 1174 bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) 1175 { 1176 bool ret = __skip_sstep(auprobe, regs); 1177 if (ret && (regs->flags & X86_EFLAGS_TF)) 1178 send_sig(SIGTRAP, current, 0); 1179 return ret; 1180 } 1181 1182 unsigned long 1183 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs) 1184 { 1185 int rasize = sizeof_long(regs), nleft; 1186 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */ 1187 1188 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize)) 1189 return -1; 1190 1191 /* check whether address has been already hijacked */ 1192 if (orig_ret_vaddr == trampoline_vaddr) 1193 return orig_ret_vaddr; 1194 1195 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize); 1196 if (likely(!nleft)) { 1197 if (shstk_update_last_frame(trampoline_vaddr)) { 1198 force_sig(SIGSEGV); 1199 return -1; 1200 } 1201 return orig_ret_vaddr; 1202 } 1203 1204 if (nleft != rasize) { 1205 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n", 1206 current->pid, regs->sp, regs->ip); 1207 1208 force_sig(SIGSEGV); 1209 } 1210 1211 return -1; 1212 } 1213 1214 bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 1215 struct pt_regs *regs) 1216 { 1217 if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */ 1218 return regs->sp < ret->stack; 1219 else 1220 return regs->sp <= ret->stack; 1221 } 1222
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.