~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kvm/cpuid.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Kernel-based Virtual Machine driver for Linux
  4  * cpuid support routines
  5  *
  6  * derived from arch/x86/kvm/x86.c
  7  *
  8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
  9  * Copyright IBM Corporation, 2008
 10  */
 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12 
 13 #include <linux/kvm_host.h>
 14 #include "linux/lockdep.h"
 15 #include <linux/export.h>
 16 #include <linux/vmalloc.h>
 17 #include <linux/uaccess.h>
 18 #include <linux/sched/stat.h>
 19 
 20 #include <asm/processor.h>
 21 #include <asm/user.h>
 22 #include <asm/fpu/xstate.h>
 23 #include <asm/sgx.h>
 24 #include <asm/cpuid.h>
 25 #include "cpuid.h"
 26 #include "lapic.h"
 27 #include "mmu.h"
 28 #include "trace.h"
 29 #include "pmu.h"
 30 #include "xen.h"
 31 
 32 /*
 33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
 34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
 35  */
 36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
 37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
 38 
 39 u32 xstate_required_size(u64 xstate_bv, bool compacted)
 40 {
 41         int feature_bit = 0;
 42         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 43 
 44         xstate_bv &= XFEATURE_MASK_EXTEND;
 45         while (xstate_bv) {
 46                 if (xstate_bv & 0x1) {
 47                         u32 eax, ebx, ecx, edx, offset;
 48                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
 49                         /* ECX[1]: 64B alignment in compacted form */
 50                         if (compacted)
 51                                 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
 52                         else
 53                                 offset = ebx;
 54                         ret = max(ret, offset + eax);
 55                 }
 56 
 57                 xstate_bv >>= 1;
 58                 feature_bit++;
 59         }
 60 
 61         return ret;
 62 }
 63 
 64 #define F feature_bit
 65 
 66 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
 67 #define SF(name)                                                \
 68 ({                                                              \
 69         BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);   \
 70         (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);       \
 71 })
 72 
 73 /*
 74  * Magic value used by KVM when querying userspace-provided CPUID entries and
 75  * doesn't care about the CPIUD index because the index of the function in
 76  * question is not significant.  Note, this magic value must have at least one
 77  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
 78  * to avoid false positives when processing guest CPUID input.
 79  */
 80 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
 81 
 82 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
 83         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
 84 {
 85         struct kvm_cpuid_entry2 *e;
 86         int i;
 87 
 88         /*
 89          * KVM has a semi-arbitrary rule that querying the guest's CPUID model
 90          * with IRQs disabled is disallowed.  The CPUID model can legitimately
 91          * have over one hundred entries, i.e. the lookup is slow, and IRQs are
 92          * typically disabled in KVM only when KVM is in a performance critical
 93          * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
 94          * if this rule is violated, this assertion is purely to flag potential
 95          * performance issues.  If this fires, consider moving the lookup out
 96          * of the hotpath, e.g. by caching information during CPUID updates.
 97          */
 98         lockdep_assert_irqs_enabled();
 99 
100         for (i = 0; i < nent; i++) {
101                 e = &entries[i];
102 
103                 if (e->function != function)
104                         continue;
105 
106                 /*
107                  * If the index isn't significant, use the first entry with a
108                  * matching function.  It's userspace's responsibility to not
109                  * provide "duplicate" entries in all cases.
110                  */
111                 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112                         return e;
113 
114 
115                 /*
116                  * Similarly, use the first matching entry if KVM is doing a
117                  * lookup (as opposed to emulating CPUID) for a function that's
118                  * architecturally defined as not having a significant index.
119                  */
120                 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121                         /*
122                          * Direct lookups from KVM should not diverge from what
123                          * KVM defines internally (the architectural behavior).
124                          */
125                         WARN_ON_ONCE(cpuid_function_is_indexed(function));
126                         return e;
127                 }
128         }
129 
130         return NULL;
131 }
132 
133 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134                            struct kvm_cpuid_entry2 *entries,
135                            int nent)
136 {
137         struct kvm_cpuid_entry2 *best;
138         u64 xfeatures;
139 
140         /*
141          * The existing code assumes virtual address is 48-bit or 57-bit in the
142          * canonical address checks; exit if it is ever changed.
143          */
144         best = cpuid_entry2_find(entries, nent, 0x80000008,
145                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146         if (best) {
147                 int vaddr_bits = (best->eax & 0xff00) >> 8;
148 
149                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150                         return -EINVAL;
151         }
152 
153         /*
154          * Exposing dynamic xfeatures to the guest requires additional
155          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156          */
157         best = cpuid_entry2_find(entries, nent, 0xd, 0);
158         if (!best)
159                 return 0;
160 
161         xfeatures = best->eax | ((u64)best->edx << 32);
162         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163         if (!xfeatures)
164                 return 0;
165 
166         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168 
169 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171                                  int nent)
172 {
173         struct kvm_cpuid_entry2 *orig;
174         int i;
175 
176         if (nent != vcpu->arch.cpuid_nent)
177                 return -EINVAL;
178 
179         for (i = 0; i < nent; i++) {
180                 orig = &vcpu->arch.cpuid_entries[i];
181                 if (e2[i].function != orig->function ||
182                     e2[i].index != orig->index ||
183                     e2[i].flags != orig->flags ||
184                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186                         return -EINVAL;
187         }
188 
189         return 0;
190 }
191 
192 static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
193                                                               int nent, const char *sig)
194 {
195         struct kvm_hypervisor_cpuid cpuid = {};
196         struct kvm_cpuid_entry2 *entry;
197         u32 base;
198 
199         for_each_possible_hypervisor_cpuid_base(base) {
200                 entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
201 
202                 if (entry) {
203                         u32 signature[3];
204 
205                         signature[0] = entry->ebx;
206                         signature[1] = entry->ecx;
207                         signature[2] = entry->edx;
208 
209                         if (!memcmp(signature, sig, sizeof(signature))) {
210                                 cpuid.base = base;
211                                 cpuid.limit = entry->eax;
212                                 break;
213                         }
214                 }
215         }
216 
217         return cpuid;
218 }
219 
220 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
221                                                             const char *sig)
222 {
223         return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
224                                           vcpu->arch.cpuid_nent, sig);
225 }
226 
227 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
228                                                               int nent, u32 kvm_cpuid_base)
229 {
230         return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
231                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
232 }
233 
234 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
235 {
236         u32 base = vcpu->arch.kvm_cpuid.base;
237 
238         if (!base)
239                 return NULL;
240 
241         return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
242                                              vcpu->arch.cpuid_nent, base);
243 }
244 
245 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
246 {
247         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
248 
249         /*
250          * save the feature bitmap to avoid cpuid lookup for every PV
251          * operation
252          */
253         if (best)
254                 vcpu->arch.pv_cpuid.features = best->eax;
255 }
256 
257 /*
258  * Calculate guest's supported XCR0 taking into account guest CPUID data and
259  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
260  */
261 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
262 {
263         struct kvm_cpuid_entry2 *best;
264 
265         best = cpuid_entry2_find(entries, nent, 0xd, 0);
266         if (!best)
267                 return 0;
268 
269         return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
270 }
271 
272 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
273                                        int nent)
274 {
275         struct kvm_cpuid_entry2 *best;
276         struct kvm_hypervisor_cpuid kvm_cpuid;
277 
278         best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
279         if (best) {
280                 /* Update OSXSAVE bit */
281                 if (boot_cpu_has(X86_FEATURE_XSAVE))
282                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
283                                            kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
284 
285                 cpuid_entry_change(best, X86_FEATURE_APIC,
286                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
287         }
288 
289         best = cpuid_entry2_find(entries, nent, 7, 0);
290         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
291                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
292                                    kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
293 
294         best = cpuid_entry2_find(entries, nent, 0xD, 0);
295         if (best)
296                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
297 
298         best = cpuid_entry2_find(entries, nent, 0xD, 1);
299         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
300                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
301                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
302 
303         kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
304         if (kvm_cpuid.base) {
305                 best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
306                 if (kvm_hlt_in_guest(vcpu->kvm) && best)
307                         best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
308         }
309 
310         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
311                 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
312                 if (best)
313                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
314                                            vcpu->arch.ia32_misc_enable_msr &
315                                            MSR_IA32_MISC_ENABLE_MWAIT);
316         }
317 }
318 
319 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
320 {
321         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
322 }
323 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
324 
325 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
326 {
327 #ifdef CONFIG_KVM_HYPERV
328         struct kvm_cpuid_entry2 *entry;
329 
330         entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
331                                   KVM_CPUID_INDEX_NOT_SIGNIFICANT);
332         return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
333 #else
334         return false;
335 #endif
336 }
337 
338 static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
339 {
340         struct kvm_cpuid_entry2 *entry;
341 
342         entry = kvm_find_cpuid_entry(vcpu, 0);
343         if (!entry)
344                 return false;
345 
346         return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
347                is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
348 }
349 
350 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
351 {
352         struct kvm_lapic *apic = vcpu->arch.apic;
353         struct kvm_cpuid_entry2 *best;
354         bool allow_gbpages;
355 
356         BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
357         bitmap_zero(vcpu->arch.governed_features.enabled,
358                     KVM_MAX_NR_GOVERNED_FEATURES);
359 
360         /*
361          * If TDP is enabled, let the guest use GBPAGES if they're supported in
362          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
363          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
364          * walk for performance and complexity reasons.  Not to mention KVM
365          * _can't_ solve the problem because GVA->GPA walks aren't visible to
366          * KVM once a TDP translation is installed.  Mimic hardware behavior so
367          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
368          * If TDP is disabled, honor *only* guest CPUID as KVM has full control
369          * and can install smaller shadow pages if the host lacks 1GiB support.
370          */
371         allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
372                                       guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
373         if (allow_gbpages)
374                 kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
375 
376         best = kvm_find_cpuid_entry(vcpu, 1);
377         if (best && apic) {
378                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
379                         apic->lapic_timer.timer_mode_mask = 3 << 17;
380                 else
381                         apic->lapic_timer.timer_mode_mask = 1 << 17;
382 
383                 kvm_apic_set_version(vcpu);
384         }
385 
386         vcpu->arch.guest_supported_xcr0 =
387                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
388 
389         kvm_update_pv_runtime(vcpu);
390 
391         vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
392         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
393         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
394 
395         kvm_pmu_refresh(vcpu);
396         vcpu->arch.cr4_guest_rsvd_bits =
397             __cr4_reserved_bits(guest_cpuid_has, vcpu);
398 
399         kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
400                                                     vcpu->arch.cpuid_nent));
401 
402         /* Invoke the vendor callback only after the above state is updated. */
403         kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
404 
405         /*
406          * Except for the MMU, which needs to do its thing any vendor specific
407          * adjustments to the reserved GPA bits.
408          */
409         kvm_mmu_after_set_cpuid(vcpu);
410 }
411 
412 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
413 {
414         struct kvm_cpuid_entry2 *best;
415 
416         best = kvm_find_cpuid_entry(vcpu, 0x80000000);
417         if (!best || best->eax < 0x80000008)
418                 goto not_found;
419         best = kvm_find_cpuid_entry(vcpu, 0x80000008);
420         if (best)
421                 return best->eax & 0xff;
422 not_found:
423         return 36;
424 }
425 
426 /*
427  * This "raw" version returns the reserved GPA bits without any adjustments for
428  * encryption technologies that usurp bits.  The raw mask should be used if and
429  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
430  */
431 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
432 {
433         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
434 }
435 
436 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
437                         int nent)
438 {
439         int r;
440 
441         __kvm_update_cpuid_runtime(vcpu, e2, nent);
442 
443         /*
444          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
445          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
446          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
447          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
448          * the core vCPU model on the fly. It would've been better to forbid any
449          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
450          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
451          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
452          * whether the supplied CPUID data is equal to what's already set.
453          */
454         if (kvm_vcpu_has_run(vcpu)) {
455                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
456                 if (r)
457                         return r;
458 
459                 kvfree(e2);
460                 return 0;
461         }
462 
463 #ifdef CONFIG_KVM_HYPERV
464         if (kvm_cpuid_has_hyperv(e2, nent)) {
465                 r = kvm_hv_vcpu_init(vcpu);
466                 if (r)
467                         return r;
468         }
469 #endif
470 
471         r = kvm_check_cpuid(vcpu, e2, nent);
472         if (r)
473                 return r;
474 
475         kvfree(vcpu->arch.cpuid_entries);
476         vcpu->arch.cpuid_entries = e2;
477         vcpu->arch.cpuid_nent = nent;
478 
479         vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
480 #ifdef CONFIG_KVM_XEN
481         vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
482 #endif
483         kvm_vcpu_after_set_cpuid(vcpu);
484 
485         return 0;
486 }
487 
488 /* when an old userspace process fills a new kernel module */
489 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
490                              struct kvm_cpuid *cpuid,
491                              struct kvm_cpuid_entry __user *entries)
492 {
493         int r, i;
494         struct kvm_cpuid_entry *e = NULL;
495         struct kvm_cpuid_entry2 *e2 = NULL;
496 
497         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
498                 return -E2BIG;
499 
500         if (cpuid->nent) {
501                 e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
502                 if (IS_ERR(e))
503                         return PTR_ERR(e);
504 
505                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
506                 if (!e2) {
507                         r = -ENOMEM;
508                         goto out_free_cpuid;
509                 }
510         }
511         for (i = 0; i < cpuid->nent; i++) {
512                 e2[i].function = e[i].function;
513                 e2[i].eax = e[i].eax;
514                 e2[i].ebx = e[i].ebx;
515                 e2[i].ecx = e[i].ecx;
516                 e2[i].edx = e[i].edx;
517                 e2[i].index = 0;
518                 e2[i].flags = 0;
519                 e2[i].padding[0] = 0;
520                 e2[i].padding[1] = 0;
521                 e2[i].padding[2] = 0;
522         }
523 
524         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
525         if (r)
526                 kvfree(e2);
527 
528 out_free_cpuid:
529         kvfree(e);
530 
531         return r;
532 }
533 
534 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
535                               struct kvm_cpuid2 *cpuid,
536                               struct kvm_cpuid_entry2 __user *entries)
537 {
538         struct kvm_cpuid_entry2 *e2 = NULL;
539         int r;
540 
541         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
542                 return -E2BIG;
543 
544         if (cpuid->nent) {
545                 e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
546                 if (IS_ERR(e2))
547                         return PTR_ERR(e2);
548         }
549 
550         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
551         if (r)
552                 kvfree(e2);
553 
554         return r;
555 }
556 
557 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
558                               struct kvm_cpuid2 *cpuid,
559                               struct kvm_cpuid_entry2 __user *entries)
560 {
561         if (cpuid->nent < vcpu->arch.cpuid_nent)
562                 return -E2BIG;
563 
564         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
565                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
566                 return -EFAULT;
567 
568         cpuid->nent = vcpu->arch.cpuid_nent;
569         return 0;
570 }
571 
572 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
573 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
574 {
575         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
576         struct kvm_cpuid_entry2 entry;
577 
578         reverse_cpuid_check(leaf);
579 
580         cpuid_count(cpuid.function, cpuid.index,
581                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
582 
583         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
584 }
585 
586 static __always_inline
587 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
588 {
589         /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
590         BUILD_BUG_ON(leaf < NCAPINTS);
591 
592         kvm_cpu_caps[leaf] = mask;
593 
594         __kvm_cpu_cap_mask(leaf);
595 }
596 
597 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
598 {
599         /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
600         BUILD_BUG_ON(leaf >= NCAPINTS);
601 
602         kvm_cpu_caps[leaf] &= mask;
603 
604         __kvm_cpu_cap_mask(leaf);
605 }
606 
607 void kvm_set_cpu_caps(void)
608 {
609 #ifdef CONFIG_X86_64
610         unsigned int f_gbpages = F(GBPAGES);
611         unsigned int f_lm = F(LM);
612         unsigned int f_xfd = F(XFD);
613 #else
614         unsigned int f_gbpages = 0;
615         unsigned int f_lm = 0;
616         unsigned int f_xfd = 0;
617 #endif
618         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
619 
620         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
621                      sizeof(boot_cpu_data.x86_capability));
622 
623         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
624                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
625 
626         kvm_cpu_cap_mask(CPUID_1_ECX,
627                 /*
628                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
629                  * advertised to guests via CPUID!
630                  */
631                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
632                 0 /* DS-CPL, VMX, SMX, EST */ |
633                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
634                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
635                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
636                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
637                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
638                 F(F16C) | F(RDRAND)
639         );
640         /* KVM emulates x2apic in software irrespective of host support. */
641         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
642 
643         kvm_cpu_cap_mask(CPUID_1_EDX,
644                 F(FPU) | F(VME) | F(DE) | F(PSE) |
645                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
646                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
647                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
648                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
649                 0 /* Reserved, DS, ACPI */ | F(MMX) |
650                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
651                 0 /* HTT, TM, Reserved, PBE */
652         );
653 
654         kvm_cpu_cap_mask(CPUID_7_0_EBX,
655                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
656                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
657                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
658                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
659                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
660                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
661                 F(AVX512VL));
662 
663         kvm_cpu_cap_mask(CPUID_7_ECX,
664                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
665                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
666                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
667                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
668                 F(SGX_LC) | F(BUS_LOCK_DETECT)
669         );
670         /* Set LA57 based on hardware capability. */
671         if (cpuid_ecx(7) & F(LA57))
672                 kvm_cpu_cap_set(X86_FEATURE_LA57);
673 
674         /*
675          * PKU not yet implemented for shadow paging and requires OSPKE
676          * to be set on the host. Clear it if that is not the case
677          */
678         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
679                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
680 
681         kvm_cpu_cap_mask(CPUID_7_EDX,
682                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
683                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
684                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
685                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
686                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
687         );
688 
689         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
690         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
691         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
692 
693         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
694                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
695         if (boot_cpu_has(X86_FEATURE_STIBP))
696                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
697         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
698                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
699 
700         kvm_cpu_cap_mask(CPUID_7_1_EAX,
701                 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
702                 F(FZRM) | F(FSRS) | F(FSRC) |
703                 F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
704         );
705 
706         kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
707                 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
708                 F(AMX_COMPLEX)
709         );
710 
711         kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
712                 F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
713                 F(BHI_CTRL) | F(MCDT_NO)
714         );
715 
716         kvm_cpu_cap_mask(CPUID_D_1_EAX,
717                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
718         );
719 
720         kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
721                 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
722         );
723 
724         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
725                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
726                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
727                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
728                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
729                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
730         );
731 
732         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
733                 F(FPU) | F(VME) | F(DE) | F(PSE) |
734                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
735                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
736                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
737                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
738                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
739                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
740                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
741         );
742 
743         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
744                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
745 
746         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
747                 SF(CONSTANT_TSC)
748         );
749 
750         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
751                 F(CLZERO) | F(XSAVEERPTR) |
752                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
753                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
754                 F(AMD_PSFD)
755         );
756 
757         /*
758          * AMD has separate bits for each SPEC_CTRL bit.
759          * arch/x86/kernel/cpu/bugs.c is kind enough to
760          * record that in cpufeatures so use them.
761          */
762         if (boot_cpu_has(X86_FEATURE_IBPB))
763                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
764         if (boot_cpu_has(X86_FEATURE_IBRS))
765                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
766         if (boot_cpu_has(X86_FEATURE_STIBP))
767                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
768         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
769                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
770         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
771                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
772         /*
773          * The preference is to use SPEC CTRL MSR instead of the
774          * VIRT_SPEC MSR.
775          */
776         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
777             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
778                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
779 
780         /*
781          * Hide all SVM features by default, SVM will set the cap bits for
782          * features it emulates and/or exposes for L1.
783          */
784         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
785 
786         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
787                 0 /* SME */ | 0 /* SEV */ | 0 /* VM_PAGE_FLUSH */ | 0 /* SEV_ES */ |
788                 F(SME_COHERENT));
789 
790         kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
791                 F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
792                 F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
793                 F(WRMSR_XX_BASE_NS)
794         );
795 
796         kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
797         kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
798         kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
799 
800         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
801                 F(PERFMON_V2)
802         );
803 
804         /*
805          * Synthesize "LFENCE is serializing" into the AMD-defined entry in
806          * KVM's supported CPUID if the feature is reported as supported by the
807          * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
808          * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
809          * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
810          * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
811          * the mask with the raw host CPUID, and reporting support in AMD's
812          * leaf can make it easier for userspace to detect the feature.
813          */
814         if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
815                 kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
816         if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
817                 kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
818         kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
819 
820         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
821                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
822                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
823                 F(PMM) | F(PMM_EN)
824         );
825 
826         /*
827          * Hide RDTSCP and RDPID if either feature is reported as supported but
828          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
829          * should never happen, but the guest will likely crash if RDTSCP or
830          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
831          * the past.  For example, the sanity check may fire if this instance of
832          * KVM is running as L1 on top of an older, broken KVM.
833          */
834         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
835                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
836                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
837                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
838                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
839         }
840 }
841 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
842 
843 struct kvm_cpuid_array {
844         struct kvm_cpuid_entry2 *entries;
845         int maxnent;
846         int nent;
847 };
848 
849 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
850 {
851         if (array->nent >= array->maxnent)
852                 return NULL;
853 
854         return &array->entries[array->nent++];
855 }
856 
857 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
858                                               u32 function, u32 index)
859 {
860         struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
861 
862         if (!entry)
863                 return NULL;
864 
865         memset(entry, 0, sizeof(*entry));
866         entry->function = function;
867         entry->index = index;
868         switch (function & 0xC0000000) {
869         case 0x40000000:
870                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
871                 return entry;
872 
873         case 0x80000000:
874                 /*
875                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
876                  * would result in out-of-bounds calls to do_host_cpuid.
877                  */
878                 {
879                         static int max_cpuid_80000000;
880                         if (!READ_ONCE(max_cpuid_80000000))
881                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
882                         if (function > READ_ONCE(max_cpuid_80000000))
883                                 return entry;
884                 }
885                 break;
886 
887         default:
888                 break;
889         }
890 
891         cpuid_count(entry->function, entry->index,
892                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
893 
894         if (cpuid_function_is_indexed(function))
895                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
896 
897         return entry;
898 }
899 
900 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
901 {
902         struct kvm_cpuid_entry2 *entry;
903 
904         if (array->nent >= array->maxnent)
905                 return -E2BIG;
906 
907         entry = &array->entries[array->nent];
908         entry->function = func;
909         entry->index = 0;
910         entry->flags = 0;
911 
912         switch (func) {
913         case 0:
914                 entry->eax = 7;
915                 ++array->nent;
916                 break;
917         case 1:
918                 entry->ecx = F(MOVBE);
919                 ++array->nent;
920                 break;
921         case 7:
922                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
923                 entry->eax = 0;
924                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
925                         entry->ecx = F(RDPID);
926                 ++array->nent;
927                 break;
928         default:
929                 break;
930         }
931 
932         return 0;
933 }
934 
935 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
936 {
937         struct kvm_cpuid_entry2 *entry;
938         int r, i, max_idx;
939 
940         /* all calls to cpuid_count() should be made on the same cpu */
941         get_cpu();
942 
943         r = -E2BIG;
944 
945         entry = do_host_cpuid(array, function, 0);
946         if (!entry)
947                 goto out;
948 
949         switch (function) {
950         case 0:
951                 /* Limited to the highest leaf implemented in KVM. */
952                 entry->eax = min(entry->eax, 0x1fU);
953                 break;
954         case 1:
955                 cpuid_entry_override(entry, CPUID_1_EDX);
956                 cpuid_entry_override(entry, CPUID_1_ECX);
957                 break;
958         case 2:
959                 /*
960                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
961                  * CPUID(function=2, index=0) may return different results each
962                  * time, with the least-significant byte in EAX enumerating the
963                  * number of times software should do CPUID(2, 0).
964                  *
965                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
966                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
967                  * return 01H. Software should ignore this value and not
968                  * interpret it as an informational descriptor", while AMD's
969                  * APM states that CPUID(2) is reserved.
970                  *
971                  * WARN if a frankenstein CPU that supports virtualization and
972                  * a stateful CPUID.0x2 is encountered.
973                  */
974                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
975                 break;
976         /* functions 4 and 0x8000001d have additional index. */
977         case 4:
978         case 0x8000001d:
979                 /*
980                  * Read entries until the cache type in the previous entry is
981                  * zero, i.e. indicates an invalid entry.
982                  */
983                 for (i = 1; entry->eax & 0x1f; ++i) {
984                         entry = do_host_cpuid(array, function, i);
985                         if (!entry)
986                                 goto out;
987                 }
988                 break;
989         case 6: /* Thermal management */
990                 entry->eax = 0x4; /* allow ARAT */
991                 entry->ebx = 0;
992                 entry->ecx = 0;
993                 entry->edx = 0;
994                 break;
995         /* function 7 has additional index. */
996         case 7:
997                 max_idx = entry->eax = min(entry->eax, 2u);
998                 cpuid_entry_override(entry, CPUID_7_0_EBX);
999                 cpuid_entry_override(entry, CPUID_7_ECX);
1000                 cpuid_entry_override(entry, CPUID_7_EDX);
1001 
1002                 /* KVM only supports up to 0x7.2, capped above via min(). */
1003                 if (max_idx >= 1) {
1004                         entry = do_host_cpuid(array, function, 1);
1005                         if (!entry)
1006                                 goto out;
1007 
1008                         cpuid_entry_override(entry, CPUID_7_1_EAX);
1009                         cpuid_entry_override(entry, CPUID_7_1_EDX);
1010                         entry->ebx = 0;
1011                         entry->ecx = 0;
1012                 }
1013                 if (max_idx >= 2) {
1014                         entry = do_host_cpuid(array, function, 2);
1015                         if (!entry)
1016                                 goto out;
1017 
1018                         cpuid_entry_override(entry, CPUID_7_2_EDX);
1019                         entry->ecx = 0;
1020                         entry->ebx = 0;
1021                         entry->eax = 0;
1022                 }
1023                 break;
1024         case 0xa: { /* Architectural Performance Monitoring */
1025                 union cpuid10_eax eax;
1026                 union cpuid10_edx edx;
1027 
1028                 if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1029                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1030                         break;
1031                 }
1032 
1033                 eax.split.version_id = kvm_pmu_cap.version;
1034                 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1035                 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1036                 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1037                 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1038                 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1039 
1040                 if (kvm_pmu_cap.version)
1041                         edx.split.anythread_deprecated = 1;
1042                 edx.split.reserved1 = 0;
1043                 edx.split.reserved2 = 0;
1044 
1045                 entry->eax = eax.full;
1046                 entry->ebx = kvm_pmu_cap.events_mask;
1047                 entry->ecx = 0;
1048                 entry->edx = edx.full;
1049                 break;
1050         }
1051         case 0x1f:
1052         case 0xb:
1053                 /*
1054                  * No topology; a valid topology is indicated by the presence
1055                  * of subleaf 1.
1056                  */
1057                 entry->eax = entry->ebx = entry->ecx = 0;
1058                 break;
1059         case 0xd: {
1060                 u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1061                 u64 permitted_xss = kvm_caps.supported_xss;
1062 
1063                 entry->eax &= permitted_xcr0;
1064                 entry->ebx = xstate_required_size(permitted_xcr0, false);
1065                 entry->ecx = entry->ebx;
1066                 entry->edx &= permitted_xcr0 >> 32;
1067                 if (!permitted_xcr0)
1068                         break;
1069 
1070                 entry = do_host_cpuid(array, function, 1);
1071                 if (!entry)
1072                         goto out;
1073 
1074                 cpuid_entry_override(entry, CPUID_D_1_EAX);
1075                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1076                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1077                                                           true);
1078                 else {
1079                         WARN_ON_ONCE(permitted_xss != 0);
1080                         entry->ebx = 0;
1081                 }
1082                 entry->ecx &= permitted_xss;
1083                 entry->edx &= permitted_xss >> 32;
1084 
1085                 for (i = 2; i < 64; ++i) {
1086                         bool s_state;
1087                         if (permitted_xcr0 & BIT_ULL(i))
1088                                 s_state = false;
1089                         else if (permitted_xss & BIT_ULL(i))
1090                                 s_state = true;
1091                         else
1092                                 continue;
1093 
1094                         entry = do_host_cpuid(array, function, i);
1095                         if (!entry)
1096                                 goto out;
1097 
1098                         /*
1099                          * The supported check above should have filtered out
1100                          * invalid sub-leafs.  Only valid sub-leafs should
1101                          * reach this point, and they should have a non-zero
1102                          * save state size.  Furthermore, check whether the
1103                          * processor agrees with permitted_xcr0/permitted_xss
1104                          * on whether this is an XCR0- or IA32_XSS-managed area.
1105                          */
1106                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1107                                 --array->nent;
1108                                 continue;
1109                         }
1110 
1111                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1112                                 entry->ecx &= ~BIT_ULL(2);
1113                         entry->edx = 0;
1114                 }
1115                 break;
1116         }
1117         case 0x12:
1118                 /* Intel SGX */
1119                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1120                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1121                         break;
1122                 }
1123 
1124                 /*
1125                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1126                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
1127                  * are restricted by kernel and KVM capabilities (like most
1128                  * feature flags), while enclave size is unrestricted.
1129                  */
1130                 cpuid_entry_override(entry, CPUID_12_EAX);
1131                 entry->ebx &= SGX_MISC_EXINFO;
1132 
1133                 entry = do_host_cpuid(array, function, 1);
1134                 if (!entry)
1135                         goto out;
1136 
1137                 /*
1138                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1139                  * feature flags.  Advertise all supported flags, including
1140                  * privileged attributes that require explicit opt-in from
1141                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1142                  * expected to derive it from supported XCR0.
1143                  */
1144                 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1145                 entry->ebx &= 0;
1146                 break;
1147         /* Intel PT */
1148         case 0x14:
1149                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1150                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1151                         break;
1152                 }
1153 
1154                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1155                         if (!do_host_cpuid(array, function, i))
1156                                 goto out;
1157                 }
1158                 break;
1159         /* Intel AMX TILE */
1160         case 0x1d:
1161                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1162                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1163                         break;
1164                 }
1165 
1166                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1167                         if (!do_host_cpuid(array, function, i))
1168                                 goto out;
1169                 }
1170                 break;
1171         case 0x1e: /* TMUL information */
1172                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1173                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1174                         break;
1175                 }
1176                 break;
1177         case KVM_CPUID_SIGNATURE: {
1178                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1179                 entry->eax = KVM_CPUID_FEATURES;
1180                 entry->ebx = sigptr[0];
1181                 entry->ecx = sigptr[1];
1182                 entry->edx = sigptr[2];
1183                 break;
1184         }
1185         case KVM_CPUID_FEATURES:
1186                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1187                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1188                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1189                              (1 << KVM_FEATURE_ASYNC_PF) |
1190                              (1 << KVM_FEATURE_PV_EOI) |
1191                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1192                              (1 << KVM_FEATURE_PV_UNHALT) |
1193                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1194                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1195                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1196                              (1 << KVM_FEATURE_POLL_CONTROL) |
1197                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1198                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1199 
1200                 if (sched_info_on())
1201                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1202 
1203                 entry->ebx = 0;
1204                 entry->ecx = 0;
1205                 entry->edx = 0;
1206                 break;
1207         case 0x80000000:
1208                 entry->eax = min(entry->eax, 0x80000022);
1209                 /*
1210                  * Serializing LFENCE is reported in a multitude of ways, and
1211                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1212                  * userspace by providing the CPUID leaf ourselves.
1213                  *
1214                  * However, only do it if the host has CPUID leaf 0x8000001d.
1215                  * QEMU thinks that it can query the host blindly for that
1216                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1217                  * above.  The processor merrily returns values from the
1218                  * highest Intel leaf which QEMU tries to use as the guest's
1219                  * 0x8000001d.  Even worse, this can result in an infinite
1220                  * loop if said highest leaf has no subleaves indexed by ECX.
1221                  */
1222                 if (entry->eax >= 0x8000001d &&
1223                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1224                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1225                         entry->eax = max(entry->eax, 0x80000021);
1226                 break;
1227         case 0x80000001:
1228                 entry->ebx &= ~GENMASK(27, 16);
1229                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1230                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1231                 break;
1232         case 0x80000005:
1233                 /*  Pass host L1 cache and TLB info. */
1234                 break;
1235         case 0x80000006:
1236                 /* Drop reserved bits, pass host L2 cache and TLB info. */
1237                 entry->edx &= ~GENMASK(17, 16);
1238                 break;
1239         case 0x80000007: /* Advanced power management */
1240                 cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1241 
1242                 /* mask against host */
1243                 entry->edx &= boot_cpu_data.x86_power;
1244                 entry->eax = entry->ebx = entry->ecx = 0;
1245                 break;
1246         case 0x80000008: {
1247                 /*
1248                  * GuestPhysAddrSize (EAX[23:16]) is intended for software
1249                  * use.
1250                  *
1251                  * KVM's ABI is to report the effective MAXPHYADDR for the
1252                  * guest in PhysAddrSize (phys_as), and the maximum
1253                  * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1254                  *
1255                  * GuestPhysAddrSize is valid if and only if TDP is enabled,
1256                  * in which case the max GPA that can be addressed by KVM may
1257                  * be less than the max GPA that can be legally generated by
1258                  * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1259                  * support 5-level TDP.
1260                  */
1261                 unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1262                 unsigned int phys_as, g_phys_as;
1263 
1264                 /*
1265                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1266                  * the guest operates in the same PA space as the host, i.e.
1267                  * reductions in MAXPHYADDR for memory encryption affect shadow
1268                  * paging, too.
1269                  *
1270                  * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1271                  * reductions to the HPAs do not affect GPAs.  The max
1272                  * addressable GPA is the same as the max effective GPA, except
1273                  * that it's capped at 48 bits if 5-level TDP isn't supported
1274                  * (hardware processes bits 51:48 only when walking the fifth
1275                  * level page table).
1276                  */
1277                 if (!tdp_enabled) {
1278                         phys_as = boot_cpu_data.x86_phys_bits;
1279                         g_phys_as = 0;
1280                 } else {
1281                         phys_as = entry->eax & 0xff;
1282                         g_phys_as = phys_as;
1283                         if (kvm_mmu_get_max_tdp_level() < 5)
1284                                 g_phys_as = min(g_phys_as, 48);
1285                 }
1286 
1287                 entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1288                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1289                 entry->edx = 0;
1290                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1291                 break;
1292         }
1293         case 0x8000000A:
1294                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1295                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1296                         break;
1297                 }
1298                 entry->eax = 1; /* SVM revision 1 */
1299                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1300                                    ASID emulation to nested SVM */
1301                 entry->ecx = 0; /* Reserved */
1302                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1303                 break;
1304         case 0x80000019:
1305                 entry->ecx = entry->edx = 0;
1306                 break;
1307         case 0x8000001a:
1308                 entry->eax &= GENMASK(2, 0);
1309                 entry->ebx = entry->ecx = entry->edx = 0;
1310                 break;
1311         case 0x8000001e:
1312                 /* Do not return host topology information.  */
1313                 entry->eax = entry->ebx = entry->ecx = 0;
1314                 entry->edx = 0; /* reserved */
1315                 break;
1316         case 0x8000001F:
1317                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1318                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1319                 } else {
1320                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1321                         /* Clear NumVMPL since KVM does not support VMPL.  */
1322                         entry->ebx &= ~GENMASK(31, 12);
1323                         /*
1324                          * Enumerate '' for "PA bits reduction", the adjusted
1325                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1326                          */
1327                         entry->ebx &= ~GENMASK(11, 6);
1328                 }
1329                 break;
1330         case 0x80000020:
1331                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1332                 break;
1333         case 0x80000021:
1334                 entry->ebx = entry->ecx = entry->edx = 0;
1335                 cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1336                 break;
1337         /* AMD Extended Performance Monitoring and Debug */
1338         case 0x80000022: {
1339                 union cpuid_0x80000022_ebx ebx;
1340 
1341                 entry->ecx = entry->edx = 0;
1342                 if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1343                         entry->eax = entry->ebx;
1344                         break;
1345                 }
1346 
1347                 cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1348 
1349                 if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1350                         ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1351                 else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1352                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1353                 else
1354                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1355 
1356                 entry->ebx = ebx.full;
1357                 break;
1358         }
1359         /*Add support for Centaur's CPUID instruction*/
1360         case 0xC0000000:
1361                 /*Just support up to 0xC0000004 now*/
1362                 entry->eax = min(entry->eax, 0xC0000004);
1363                 break;
1364         case 0xC0000001:
1365                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1366                 break;
1367         case 3: /* Processor serial number */
1368         case 5: /* MONITOR/MWAIT */
1369         case 0xC0000002:
1370         case 0xC0000003:
1371         case 0xC0000004:
1372         default:
1373                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1374                 break;
1375         }
1376 
1377         r = 0;
1378 
1379 out:
1380         put_cpu();
1381 
1382         return r;
1383 }
1384 
1385 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1386                          unsigned int type)
1387 {
1388         if (type == KVM_GET_EMULATED_CPUID)
1389                 return __do_cpuid_func_emulated(array, func);
1390 
1391         return __do_cpuid_func(array, func);
1392 }
1393 
1394 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1395 
1396 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1397                           unsigned int type)
1398 {
1399         u32 limit;
1400         int r;
1401 
1402         if (func == CENTAUR_CPUID_SIGNATURE &&
1403             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1404                 return 0;
1405 
1406         r = do_cpuid_func(array, func, type);
1407         if (r)
1408                 return r;
1409 
1410         limit = array->entries[array->nent - 1].eax;
1411         for (func = func + 1; func <= limit; ++func) {
1412                 r = do_cpuid_func(array, func, type);
1413                 if (r)
1414                         break;
1415         }
1416 
1417         return r;
1418 }
1419 
1420 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1421                                  __u32 num_entries, unsigned int ioctl_type)
1422 {
1423         int i;
1424         __u32 pad[3];
1425 
1426         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1427                 return false;
1428 
1429         /*
1430          * We want to make sure that ->padding is being passed clean from
1431          * userspace in case we want to use it for something in the future.
1432          *
1433          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1434          * have to give ourselves satisfied only with the emulated side. /me
1435          * sheds a tear.
1436          */
1437         for (i = 0; i < num_entries; i++) {
1438                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1439                         return true;
1440 
1441                 if (pad[0] || pad[1] || pad[2])
1442                         return true;
1443         }
1444         return false;
1445 }
1446 
1447 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1448                             struct kvm_cpuid_entry2 __user *entries,
1449                             unsigned int type)
1450 {
1451         static const u32 funcs[] = {
1452                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1453         };
1454 
1455         struct kvm_cpuid_array array = {
1456                 .nent = 0,
1457         };
1458         int r, i;
1459 
1460         if (cpuid->nent < 1)
1461                 return -E2BIG;
1462         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1463                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1464 
1465         if (sanity_check_entries(entries, cpuid->nent, type))
1466                 return -EINVAL;
1467 
1468         array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1469         if (!array.entries)
1470                 return -ENOMEM;
1471 
1472         array.maxnent = cpuid->nent;
1473 
1474         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1475                 r = get_cpuid_func(&array, funcs[i], type);
1476                 if (r)
1477                         goto out_free;
1478         }
1479         cpuid->nent = array.nent;
1480 
1481         if (copy_to_user(entries, array.entries,
1482                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1483                 r = -EFAULT;
1484 
1485 out_free:
1486         kvfree(array.entries);
1487         return r;
1488 }
1489 
1490 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1491                                                     u32 function, u32 index)
1492 {
1493         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1494                                  function, index);
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1497 
1498 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1499                                               u32 function)
1500 {
1501         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1502                                  function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1503 }
1504 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1505 
1506 /*
1507  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1508  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1509  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1510  * range.  Centaur/VIA follows Intel semantics.
1511  *
1512  * A leaf is considered out-of-range if its function is higher than the maximum
1513  * supported leaf of its associated class or if its associated class does not
1514  * exist.
1515  *
1516  * There are three primary classes to be considered, with their respective
1517  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1518  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1519  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1520  *
1521  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1522  *  - Hypervisor: 0x40000000 - 0x4fffffff
1523  *  - Extended:   0x80000000 - 0xbfffffff
1524  *  - Centaur:    0xc0000000 - 0xcfffffff
1525  *
1526  * The Hypervisor class is further subdivided into sub-classes that each act as
1527  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1528  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1529  * CPUID sub-classes are:
1530  *
1531  *  - HyperV:     0x40000000 - 0x400000ff
1532  *  - KVM:        0x40000100 - 0x400001ff
1533  */
1534 static struct kvm_cpuid_entry2 *
1535 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1536 {
1537         struct kvm_cpuid_entry2 *basic, *class;
1538         u32 function = *fn_ptr;
1539 
1540         basic = kvm_find_cpuid_entry(vcpu, 0);
1541         if (!basic)
1542                 return NULL;
1543 
1544         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1545             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1546                 return NULL;
1547 
1548         if (function >= 0x40000000 && function <= 0x4fffffff)
1549                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1550         else if (function >= 0xc0000000)
1551                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1552         else
1553                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1554 
1555         if (class && function <= class->eax)
1556                 return NULL;
1557 
1558         /*
1559          * Leaf specific adjustments are also applied when redirecting to the
1560          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1561          * entry for CPUID.0xb.index (see below), then the output value for EDX
1562          * needs to be pulled from CPUID.0xb.1.
1563          */
1564         *fn_ptr = basic->eax;
1565 
1566         /*
1567          * The class does not exist or the requested function is out of range;
1568          * the effective CPUID entry is the max basic leaf.  Note, the index of
1569          * the original requested leaf is observed!
1570          */
1571         return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1572 }
1573 
1574 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1575                u32 *ecx, u32 *edx, bool exact_only)
1576 {
1577         u32 orig_function = *eax, function = *eax, index = *ecx;
1578         struct kvm_cpuid_entry2 *entry;
1579         bool exact, used_max_basic = false;
1580 
1581         entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1582         exact = !!entry;
1583 
1584         if (!entry && !exact_only) {
1585                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1586                 used_max_basic = !!entry;
1587         }
1588 
1589         if (entry) {
1590                 *eax = entry->eax;
1591                 *ebx = entry->ebx;
1592                 *ecx = entry->ecx;
1593                 *edx = entry->edx;
1594                 if (function == 7 && index == 0) {
1595                         u64 data;
1596                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1597                             (data & TSX_CTRL_CPUID_CLEAR))
1598                                 *ebx &= ~(F(RTM) | F(HLE));
1599                 } else if (function == 0x80000007) {
1600                         if (kvm_hv_invtsc_suppressed(vcpu))
1601                                 *edx &= ~SF(CONSTANT_TSC);
1602                 }
1603         } else {
1604                 *eax = *ebx = *ecx = *edx = 0;
1605                 /*
1606                  * When leaf 0BH or 1FH is defined, CL is pass-through
1607                  * and EDX is always the x2APIC ID, even for undefined
1608                  * subleaves. Index 1 will exist iff the leaf is
1609                  * implemented, so we pass through CL iff leaf 1
1610                  * exists. EDX can be copied from any existing index.
1611                  */
1612                 if (function == 0xb || function == 0x1f) {
1613                         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1614                         if (entry) {
1615                                 *ecx = index & 0xff;
1616                                 *edx = entry->edx;
1617                         }
1618                 }
1619         }
1620         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1621                         used_max_basic);
1622         return exact;
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_cpuid);
1625 
1626 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1627 {
1628         u32 eax, ebx, ecx, edx;
1629 
1630         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1631                 return 1;
1632 
1633         eax = kvm_rax_read(vcpu);
1634         ecx = kvm_rcx_read(vcpu);
1635         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1636         kvm_rax_write(vcpu, eax);
1637         kvm_rbx_write(vcpu, ebx);
1638         kvm_rcx_write(vcpu, ecx);
1639         kvm_rdx_write(vcpu, edx);
1640         return kvm_skip_emulated_instruction(vcpu);
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1643 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php