1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * KVM Microsoft Hyper-V emulation 4 * 5 * derived from arch/x86/kvm/x86.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com> 12 * 13 * Authors: 14 * Avi Kivity <avi@qumranet.com> 15 * Yaniv Kamay <yaniv@qumranet.com> 16 * Amit Shah <amit.shah@qumranet.com> 17 * Ben-Ami Yassour <benami@il.ibm.com> 18 * Andrey Smetanin <asmetanin@virtuozzo.com> 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include "x86.h" 23 #include "lapic.h" 24 #include "ioapic.h" 25 #include "cpuid.h" 26 #include "hyperv.h" 27 #include "mmu.h" 28 #include "xen.h" 29 30 #include <linux/cpu.h> 31 #include <linux/kvm_host.h> 32 #include <linux/highmem.h> 33 #include <linux/sched/cputime.h> 34 #include <linux/spinlock.h> 35 #include <linux/eventfd.h> 36 37 #include <asm/apicdef.h> 38 #include <asm/mshyperv.h> 39 #include <trace/events/kvm.h> 40 41 #include "trace.h" 42 #include "irq.h" 43 #include "fpu.h" 44 45 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK) 46 47 /* 48 * As per Hyper-V TLFS, extended hypercalls start from 0x8001 49 * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value 50 * where each bit tells which extended hypercall is available besides 51 * HvExtCallQueryCapabilities. 52 * 53 * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit 54 * assigned. 55 * 56 * 0x8002 - Bit 0 57 * 0x8003 - Bit 1 58 * .. 59 * 0x8041 - Bit 63 60 * 61 * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64 62 */ 63 #define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64) 64 65 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, 66 bool vcpu_kick); 67 68 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint) 69 { 70 return atomic64_read(&synic->sint[sint]); 71 } 72 73 static inline int synic_get_sint_vector(u64 sint_value) 74 { 75 if (sint_value & HV_SYNIC_SINT_MASKED) 76 return -1; 77 return sint_value & HV_SYNIC_SINT_VECTOR_MASK; 78 } 79 80 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic, 81 int vector) 82 { 83 int i; 84 85 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 86 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) 87 return true; 88 } 89 return false; 90 } 91 92 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic, 93 int vector) 94 { 95 int i; 96 u64 sint_value; 97 98 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 99 sint_value = synic_read_sint(synic, i); 100 if (synic_get_sint_vector(sint_value) == vector && 101 sint_value & HV_SYNIC_SINT_AUTO_EOI) 102 return true; 103 } 104 return false; 105 } 106 107 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic, 108 int vector) 109 { 110 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 111 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 112 bool auto_eoi_old, auto_eoi_new; 113 114 if (vector < HV_SYNIC_FIRST_VALID_VECTOR) 115 return; 116 117 if (synic_has_vector_connected(synic, vector)) 118 __set_bit(vector, synic->vec_bitmap); 119 else 120 __clear_bit(vector, synic->vec_bitmap); 121 122 auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256); 123 124 if (synic_has_vector_auto_eoi(synic, vector)) 125 __set_bit(vector, synic->auto_eoi_bitmap); 126 else 127 __clear_bit(vector, synic->auto_eoi_bitmap); 128 129 auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256); 130 131 if (auto_eoi_old == auto_eoi_new) 132 return; 133 134 if (!enable_apicv) 135 return; 136 137 down_write(&vcpu->kvm->arch.apicv_update_lock); 138 139 if (auto_eoi_new) 140 hv->synic_auto_eoi_used++; 141 else 142 hv->synic_auto_eoi_used--; 143 144 /* 145 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on 146 * the hypervisor to manually inject IRQs. 147 */ 148 __kvm_set_or_clear_apicv_inhibit(vcpu->kvm, 149 APICV_INHIBIT_REASON_HYPERV, 150 !!hv->synic_auto_eoi_used); 151 152 up_write(&vcpu->kvm->arch.apicv_update_lock); 153 } 154 155 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint, 156 u64 data, bool host) 157 { 158 int vector, old_vector; 159 bool masked; 160 161 vector = data & HV_SYNIC_SINT_VECTOR_MASK; 162 masked = data & HV_SYNIC_SINT_MASKED; 163 164 /* 165 * Valid vectors are 16-255, however, nested Hyper-V attempts to write 166 * default '0x10000' value on boot and this should not #GP. We need to 167 * allow zero-initing the register from host as well. 168 */ 169 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked) 170 return 1; 171 /* 172 * Guest may configure multiple SINTs to use the same vector, so 173 * we maintain a bitmap of vectors handled by synic, and a 174 * bitmap of vectors with auto-eoi behavior. The bitmaps are 175 * updated here, and atomically queried on fast paths. 176 */ 177 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK; 178 179 atomic64_set(&synic->sint[sint], data); 180 181 synic_update_vector(synic, old_vector); 182 183 synic_update_vector(synic, vector); 184 185 /* Load SynIC vectors into EOI exit bitmap */ 186 kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic)); 187 return 0; 188 } 189 190 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx) 191 { 192 struct kvm_vcpu *vcpu = NULL; 193 unsigned long i; 194 195 if (vpidx >= KVM_MAX_VCPUS) 196 return NULL; 197 198 vcpu = kvm_get_vcpu(kvm, vpidx); 199 if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx) 200 return vcpu; 201 kvm_for_each_vcpu(i, vcpu, kvm) 202 if (kvm_hv_get_vpindex(vcpu) == vpidx) 203 return vcpu; 204 return NULL; 205 } 206 207 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx) 208 { 209 struct kvm_vcpu *vcpu; 210 struct kvm_vcpu_hv_synic *synic; 211 212 vcpu = get_vcpu_by_vpidx(kvm, vpidx); 213 if (!vcpu || !to_hv_vcpu(vcpu)) 214 return NULL; 215 synic = to_hv_synic(vcpu); 216 return (synic->active) ? synic : NULL; 217 } 218 219 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint) 220 { 221 struct kvm *kvm = vcpu->kvm; 222 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 223 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 224 struct kvm_vcpu_hv_stimer *stimer; 225 int gsi, idx; 226 227 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint); 228 229 /* Try to deliver pending Hyper-V SynIC timers messages */ 230 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) { 231 stimer = &hv_vcpu->stimer[idx]; 232 if (stimer->msg_pending && stimer->config.enable && 233 !stimer->config.direct_mode && 234 stimer->config.sintx == sint) 235 stimer_mark_pending(stimer, false); 236 } 237 238 idx = srcu_read_lock(&kvm->irq_srcu); 239 gsi = atomic_read(&synic->sint_to_gsi[sint]); 240 if (gsi != -1) 241 kvm_notify_acked_gsi(kvm, gsi); 242 srcu_read_unlock(&kvm->irq_srcu, idx); 243 } 244 245 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr) 246 { 247 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 248 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 249 250 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC; 251 hv_vcpu->exit.u.synic.msr = msr; 252 hv_vcpu->exit.u.synic.control = synic->control; 253 hv_vcpu->exit.u.synic.evt_page = synic->evt_page; 254 hv_vcpu->exit.u.synic.msg_page = synic->msg_page; 255 256 kvm_make_request(KVM_REQ_HV_EXIT, vcpu); 257 } 258 259 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic, 260 u32 msr, u64 data, bool host) 261 { 262 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 263 int ret; 264 265 if (!synic->active && (!host || data)) 266 return 1; 267 268 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host); 269 270 ret = 0; 271 switch (msr) { 272 case HV_X64_MSR_SCONTROL: 273 synic->control = data; 274 if (!host) 275 synic_exit(synic, msr); 276 break; 277 case HV_X64_MSR_SVERSION: 278 if (!host) { 279 ret = 1; 280 break; 281 } 282 synic->version = data; 283 break; 284 case HV_X64_MSR_SIEFP: 285 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host && 286 !synic->dont_zero_synic_pages) 287 if (kvm_clear_guest(vcpu->kvm, 288 data & PAGE_MASK, PAGE_SIZE)) { 289 ret = 1; 290 break; 291 } 292 synic->evt_page = data; 293 if (!host) 294 synic_exit(synic, msr); 295 break; 296 case HV_X64_MSR_SIMP: 297 if ((data & HV_SYNIC_SIMP_ENABLE) && !host && 298 !synic->dont_zero_synic_pages) 299 if (kvm_clear_guest(vcpu->kvm, 300 data & PAGE_MASK, PAGE_SIZE)) { 301 ret = 1; 302 break; 303 } 304 synic->msg_page = data; 305 if (!host) 306 synic_exit(synic, msr); 307 break; 308 case HV_X64_MSR_EOM: { 309 int i; 310 311 if (!synic->active) 312 break; 313 314 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) 315 kvm_hv_notify_acked_sint(vcpu, i); 316 break; 317 } 318 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 319 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host); 320 break; 321 default: 322 ret = 1; 323 break; 324 } 325 return ret; 326 } 327 328 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu) 329 { 330 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 331 332 return hv_vcpu->cpuid_cache.syndbg_cap_eax & 333 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 334 } 335 336 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu) 337 { 338 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 339 340 if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL) 341 hv->hv_syndbg.control.status = 342 vcpu->run->hyperv.u.syndbg.status; 343 return 1; 344 } 345 346 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr) 347 { 348 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 349 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 350 351 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG; 352 hv_vcpu->exit.u.syndbg.msr = msr; 353 hv_vcpu->exit.u.syndbg.control = syndbg->control.control; 354 hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page; 355 hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page; 356 hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page; 357 vcpu->arch.complete_userspace_io = 358 kvm_hv_syndbg_complete_userspace; 359 360 kvm_make_request(KVM_REQ_HV_EXIT, vcpu); 361 } 362 363 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) 364 { 365 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 366 367 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host) 368 return 1; 369 370 trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id, 371 to_hv_vcpu(vcpu)->vp_index, msr, data); 372 switch (msr) { 373 case HV_X64_MSR_SYNDBG_CONTROL: 374 syndbg->control.control = data; 375 if (!host) 376 syndbg_exit(vcpu, msr); 377 break; 378 case HV_X64_MSR_SYNDBG_STATUS: 379 syndbg->control.status = data; 380 break; 381 case HV_X64_MSR_SYNDBG_SEND_BUFFER: 382 syndbg->control.send_page = data; 383 break; 384 case HV_X64_MSR_SYNDBG_RECV_BUFFER: 385 syndbg->control.recv_page = data; 386 break; 387 case HV_X64_MSR_SYNDBG_PENDING_BUFFER: 388 syndbg->control.pending_page = data; 389 if (!host) 390 syndbg_exit(vcpu, msr); 391 break; 392 case HV_X64_MSR_SYNDBG_OPTIONS: 393 syndbg->options = data; 394 break; 395 default: 396 break; 397 } 398 399 return 0; 400 } 401 402 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 403 { 404 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 405 406 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host) 407 return 1; 408 409 switch (msr) { 410 case HV_X64_MSR_SYNDBG_CONTROL: 411 *pdata = syndbg->control.control; 412 break; 413 case HV_X64_MSR_SYNDBG_STATUS: 414 *pdata = syndbg->control.status; 415 break; 416 case HV_X64_MSR_SYNDBG_SEND_BUFFER: 417 *pdata = syndbg->control.send_page; 418 break; 419 case HV_X64_MSR_SYNDBG_RECV_BUFFER: 420 *pdata = syndbg->control.recv_page; 421 break; 422 case HV_X64_MSR_SYNDBG_PENDING_BUFFER: 423 *pdata = syndbg->control.pending_page; 424 break; 425 case HV_X64_MSR_SYNDBG_OPTIONS: 426 *pdata = syndbg->options; 427 break; 428 default: 429 break; 430 } 431 432 trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata); 433 434 return 0; 435 } 436 437 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata, 438 bool host) 439 { 440 int ret; 441 442 if (!synic->active && !host) 443 return 1; 444 445 ret = 0; 446 switch (msr) { 447 case HV_X64_MSR_SCONTROL: 448 *pdata = synic->control; 449 break; 450 case HV_X64_MSR_SVERSION: 451 *pdata = synic->version; 452 break; 453 case HV_X64_MSR_SIEFP: 454 *pdata = synic->evt_page; 455 break; 456 case HV_X64_MSR_SIMP: 457 *pdata = synic->msg_page; 458 break; 459 case HV_X64_MSR_EOM: 460 *pdata = 0; 461 break; 462 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 463 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]); 464 break; 465 default: 466 ret = 1; 467 break; 468 } 469 return ret; 470 } 471 472 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint) 473 { 474 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 475 struct kvm_lapic_irq irq; 476 int ret, vector; 477 478 if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm)) 479 return -EINVAL; 480 481 if (sint >= ARRAY_SIZE(synic->sint)) 482 return -EINVAL; 483 484 vector = synic_get_sint_vector(synic_read_sint(synic, sint)); 485 if (vector < 0) 486 return -ENOENT; 487 488 memset(&irq, 0, sizeof(irq)); 489 irq.shorthand = APIC_DEST_SELF; 490 irq.dest_mode = APIC_DEST_PHYSICAL; 491 irq.delivery_mode = APIC_DM_FIXED; 492 irq.vector = vector; 493 irq.level = 1; 494 495 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL); 496 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret); 497 return ret; 498 } 499 500 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint) 501 { 502 struct kvm_vcpu_hv_synic *synic; 503 504 synic = synic_get(kvm, vpidx); 505 if (!synic) 506 return -EINVAL; 507 508 return synic_set_irq(synic, sint); 509 } 510 511 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector) 512 { 513 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 514 int i; 515 516 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector); 517 518 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) 519 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) 520 kvm_hv_notify_acked_sint(vcpu, i); 521 } 522 523 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi) 524 { 525 struct kvm_vcpu_hv_synic *synic; 526 527 synic = synic_get(kvm, vpidx); 528 if (!synic) 529 return -EINVAL; 530 531 if (sint >= ARRAY_SIZE(synic->sint_to_gsi)) 532 return -EINVAL; 533 534 atomic_set(&synic->sint_to_gsi[sint], gsi); 535 return 0; 536 } 537 538 void kvm_hv_irq_routing_update(struct kvm *kvm) 539 { 540 struct kvm_irq_routing_table *irq_rt; 541 struct kvm_kernel_irq_routing_entry *e; 542 u32 gsi; 543 544 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu, 545 lockdep_is_held(&kvm->irq_lock)); 546 547 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) { 548 hlist_for_each_entry(e, &irq_rt->map[gsi], link) { 549 if (e->type == KVM_IRQ_ROUTING_HV_SINT) 550 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu, 551 e->hv_sint.sint, gsi); 552 } 553 } 554 } 555 556 static void synic_init(struct kvm_vcpu_hv_synic *synic) 557 { 558 int i; 559 560 memset(synic, 0, sizeof(*synic)); 561 synic->version = HV_SYNIC_VERSION_1; 562 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 563 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED); 564 atomic_set(&synic->sint_to_gsi[i], -1); 565 } 566 } 567 568 static u64 get_time_ref_counter(struct kvm *kvm) 569 { 570 struct kvm_hv *hv = to_kvm_hv(kvm); 571 struct kvm_vcpu *vcpu; 572 u64 tsc; 573 574 /* 575 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up, 576 * is broken, disabled or being updated. 577 */ 578 if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET) 579 return div_u64(get_kvmclock_ns(kvm), 100); 580 581 vcpu = kvm_get_vcpu(kvm, 0); 582 tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 583 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64) 584 + hv->tsc_ref.tsc_offset; 585 } 586 587 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, 588 bool vcpu_kick) 589 { 590 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 591 592 set_bit(stimer->index, 593 to_hv_vcpu(vcpu)->stimer_pending_bitmap); 594 kvm_make_request(KVM_REQ_HV_STIMER, vcpu); 595 if (vcpu_kick) 596 kvm_vcpu_kick(vcpu); 597 } 598 599 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer) 600 { 601 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 602 603 trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id, 604 stimer->index); 605 606 hrtimer_cancel(&stimer->timer); 607 clear_bit(stimer->index, 608 to_hv_vcpu(vcpu)->stimer_pending_bitmap); 609 stimer->msg_pending = false; 610 stimer->exp_time = 0; 611 } 612 613 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer) 614 { 615 struct kvm_vcpu_hv_stimer *stimer; 616 617 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer); 618 trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id, 619 stimer->index); 620 stimer_mark_pending(stimer, true); 621 622 return HRTIMER_NORESTART; 623 } 624 625 /* 626 * stimer_start() assumptions: 627 * a) stimer->count is not equal to 0 628 * b) stimer->config has HV_STIMER_ENABLE flag 629 */ 630 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer) 631 { 632 u64 time_now; 633 ktime_t ktime_now; 634 635 time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm); 636 ktime_now = ktime_get(); 637 638 if (stimer->config.periodic) { 639 if (stimer->exp_time) { 640 if (time_now >= stimer->exp_time) { 641 u64 remainder; 642 643 div64_u64_rem(time_now - stimer->exp_time, 644 stimer->count, &remainder); 645 stimer->exp_time = 646 time_now + (stimer->count - remainder); 647 } 648 } else 649 stimer->exp_time = time_now + stimer->count; 650 651 trace_kvm_hv_stimer_start_periodic( 652 hv_stimer_to_vcpu(stimer)->vcpu_id, 653 stimer->index, 654 time_now, stimer->exp_time); 655 656 hrtimer_start(&stimer->timer, 657 ktime_add_ns(ktime_now, 658 100 * (stimer->exp_time - time_now)), 659 HRTIMER_MODE_ABS); 660 return 0; 661 } 662 stimer->exp_time = stimer->count; 663 if (time_now >= stimer->count) { 664 /* 665 * Expire timer according to Hypervisor Top-Level Functional 666 * specification v4(15.3.1): 667 * "If a one shot is enabled and the specified count is in 668 * the past, it will expire immediately." 669 */ 670 stimer_mark_pending(stimer, false); 671 return 0; 672 } 673 674 trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id, 675 stimer->index, 676 time_now, stimer->count); 677 678 hrtimer_start(&stimer->timer, 679 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)), 680 HRTIMER_MODE_ABS); 681 return 0; 682 } 683 684 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config, 685 bool host) 686 { 687 union hv_stimer_config new_config = {.as_uint64 = config}, 688 old_config = {.as_uint64 = stimer->config.as_uint64}; 689 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 690 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 691 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 692 693 if (!synic->active && (!host || config)) 694 return 1; 695 696 if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode && 697 !(hv_vcpu->cpuid_cache.features_edx & 698 HV_STIMER_DIRECT_MODE_AVAILABLE))) 699 return 1; 700 701 trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id, 702 stimer->index, config, host); 703 704 stimer_cleanup(stimer); 705 if (old_config.enable && 706 !new_config.direct_mode && new_config.sintx == 0) 707 new_config.enable = 0; 708 stimer->config.as_uint64 = new_config.as_uint64; 709 710 if (stimer->config.enable) 711 stimer_mark_pending(stimer, false); 712 713 return 0; 714 } 715 716 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count, 717 bool host) 718 { 719 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 720 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 721 722 if (!synic->active && (!host || count)) 723 return 1; 724 725 trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id, 726 stimer->index, count, host); 727 728 stimer_cleanup(stimer); 729 stimer->count = count; 730 if (!host) { 731 if (stimer->count == 0) 732 stimer->config.enable = 0; 733 else if (stimer->config.auto_enable) 734 stimer->config.enable = 1; 735 } 736 737 if (stimer->config.enable) 738 stimer_mark_pending(stimer, false); 739 740 return 0; 741 } 742 743 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig) 744 { 745 *pconfig = stimer->config.as_uint64; 746 return 0; 747 } 748 749 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount) 750 { 751 *pcount = stimer->count; 752 return 0; 753 } 754 755 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint, 756 struct hv_message *src_msg, bool no_retry) 757 { 758 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 759 int msg_off = offsetof(struct hv_message_page, sint_message[sint]); 760 gfn_t msg_page_gfn; 761 struct hv_message_header hv_hdr; 762 int r; 763 764 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE)) 765 return -ENOENT; 766 767 msg_page_gfn = synic->msg_page >> PAGE_SHIFT; 768 769 /* 770 * Strictly following the spec-mandated ordering would assume setting 771 * .msg_pending before checking .message_type. However, this function 772 * is only called in vcpu context so the entire update is atomic from 773 * guest POV and thus the exact order here doesn't matter. 774 */ 775 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type, 776 msg_off + offsetof(struct hv_message, 777 header.message_type), 778 sizeof(hv_hdr.message_type)); 779 if (r < 0) 780 return r; 781 782 if (hv_hdr.message_type != HVMSG_NONE) { 783 if (no_retry) 784 return 0; 785 786 hv_hdr.message_flags.msg_pending = 1; 787 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, 788 &hv_hdr.message_flags, 789 msg_off + 790 offsetof(struct hv_message, 791 header.message_flags), 792 sizeof(hv_hdr.message_flags)); 793 if (r < 0) 794 return r; 795 return -EAGAIN; 796 } 797 798 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off, 799 sizeof(src_msg->header) + 800 src_msg->header.payload_size); 801 if (r < 0) 802 return r; 803 804 r = synic_set_irq(synic, sint); 805 if (r < 0) 806 return r; 807 if (r == 0) 808 return -EFAULT; 809 return 0; 810 } 811 812 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer) 813 { 814 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 815 struct hv_message *msg = &stimer->msg; 816 struct hv_timer_message_payload *payload = 817 (struct hv_timer_message_payload *)&msg->u.payload; 818 819 /* 820 * To avoid piling up periodic ticks, don't retry message 821 * delivery for them (within "lazy" lost ticks policy). 822 */ 823 bool no_retry = stimer->config.periodic; 824 825 payload->expiration_time = stimer->exp_time; 826 payload->delivery_time = get_time_ref_counter(vcpu->kvm); 827 return synic_deliver_msg(to_hv_synic(vcpu), 828 stimer->config.sintx, msg, 829 no_retry); 830 } 831 832 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer) 833 { 834 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 835 struct kvm_lapic_irq irq = { 836 .delivery_mode = APIC_DM_FIXED, 837 .vector = stimer->config.apic_vector 838 }; 839 840 if (lapic_in_kernel(vcpu)) 841 return !kvm_apic_set_irq(vcpu, &irq, NULL); 842 return 0; 843 } 844 845 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer) 846 { 847 int r, direct = stimer->config.direct_mode; 848 849 stimer->msg_pending = true; 850 if (!direct) 851 r = stimer_send_msg(stimer); 852 else 853 r = stimer_notify_direct(stimer); 854 trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id, 855 stimer->index, direct, r); 856 if (!r) { 857 stimer->msg_pending = false; 858 if (!(stimer->config.periodic)) 859 stimer->config.enable = 0; 860 } 861 } 862 863 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu) 864 { 865 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 866 struct kvm_vcpu_hv_stimer *stimer; 867 u64 time_now, exp_time; 868 int i; 869 870 if (!hv_vcpu) 871 return; 872 873 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 874 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) { 875 stimer = &hv_vcpu->stimer[i]; 876 if (stimer->config.enable) { 877 exp_time = stimer->exp_time; 878 879 if (exp_time) { 880 time_now = 881 get_time_ref_counter(vcpu->kvm); 882 if (time_now >= exp_time) 883 stimer_expiration(stimer); 884 } 885 886 if ((stimer->config.enable) && 887 stimer->count) { 888 if (!stimer->msg_pending) 889 stimer_start(stimer); 890 } else 891 stimer_cleanup(stimer); 892 } 893 } 894 } 895 896 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu) 897 { 898 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 899 int i; 900 901 if (!hv_vcpu) 902 return; 903 904 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 905 stimer_cleanup(&hv_vcpu->stimer[i]); 906 907 kfree(hv_vcpu); 908 vcpu->arch.hyperv = NULL; 909 } 910 911 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu) 912 { 913 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 914 915 if (!hv_vcpu) 916 return false; 917 918 if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) 919 return false; 920 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 921 } 922 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled); 923 924 int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu) 925 { 926 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 927 928 if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu)) 929 return -EFAULT; 930 931 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, 932 &hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page)); 933 } 934 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page); 935 936 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer) 937 { 938 struct hv_message *msg = &stimer->msg; 939 struct hv_timer_message_payload *payload = 940 (struct hv_timer_message_payload *)&msg->u.payload; 941 942 memset(&msg->header, 0, sizeof(msg->header)); 943 msg->header.message_type = HVMSG_TIMER_EXPIRED; 944 msg->header.payload_size = sizeof(*payload); 945 946 payload->timer_index = stimer->index; 947 payload->expiration_time = 0; 948 payload->delivery_time = 0; 949 } 950 951 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index) 952 { 953 memset(stimer, 0, sizeof(*stimer)); 954 stimer->index = timer_index; 955 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 956 stimer->timer.function = stimer_timer_callback; 957 stimer_prepare_msg(stimer); 958 } 959 960 int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu) 961 { 962 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 963 int i; 964 965 if (hv_vcpu) 966 return 0; 967 968 hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT); 969 if (!hv_vcpu) 970 return -ENOMEM; 971 972 vcpu->arch.hyperv = hv_vcpu; 973 hv_vcpu->vcpu = vcpu; 974 975 synic_init(&hv_vcpu->synic); 976 977 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 978 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 979 stimer_init(&hv_vcpu->stimer[i], i); 980 981 hv_vcpu->vp_index = vcpu->vcpu_idx; 982 983 for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) { 984 INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries); 985 spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock); 986 } 987 988 return 0; 989 } 990 991 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages) 992 { 993 struct kvm_vcpu_hv_synic *synic; 994 int r; 995 996 r = kvm_hv_vcpu_init(vcpu); 997 if (r) 998 return r; 999 1000 synic = to_hv_synic(vcpu); 1001 1002 synic->active = true; 1003 synic->dont_zero_synic_pages = dont_zero_synic_pages; 1004 synic->control = HV_SYNIC_CONTROL_ENABLE; 1005 return 0; 1006 } 1007 1008 static bool kvm_hv_msr_partition_wide(u32 msr) 1009 { 1010 bool r = false; 1011 1012 switch (msr) { 1013 case HV_X64_MSR_GUEST_OS_ID: 1014 case HV_X64_MSR_HYPERCALL: 1015 case HV_X64_MSR_REFERENCE_TSC: 1016 case HV_X64_MSR_TIME_REF_COUNT: 1017 case HV_X64_MSR_CRASH_CTL: 1018 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1019 case HV_X64_MSR_RESET: 1020 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1021 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1022 case HV_X64_MSR_TSC_EMULATION_STATUS: 1023 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 1024 case HV_X64_MSR_SYNDBG_OPTIONS: 1025 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 1026 r = true; 1027 break; 1028 } 1029 1030 return r; 1031 } 1032 1033 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata) 1034 { 1035 struct kvm_hv *hv = to_kvm_hv(kvm); 1036 size_t size = ARRAY_SIZE(hv->hv_crash_param); 1037 1038 if (WARN_ON_ONCE(index >= size)) 1039 return -EINVAL; 1040 1041 *pdata = hv->hv_crash_param[array_index_nospec(index, size)]; 1042 return 0; 1043 } 1044 1045 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata) 1046 { 1047 struct kvm_hv *hv = to_kvm_hv(kvm); 1048 1049 *pdata = hv->hv_crash_ctl; 1050 return 0; 1051 } 1052 1053 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data) 1054 { 1055 struct kvm_hv *hv = to_kvm_hv(kvm); 1056 1057 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY; 1058 1059 return 0; 1060 } 1061 1062 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data) 1063 { 1064 struct kvm_hv *hv = to_kvm_hv(kvm); 1065 size_t size = ARRAY_SIZE(hv->hv_crash_param); 1066 1067 if (WARN_ON_ONCE(index >= size)) 1068 return -EINVAL; 1069 1070 hv->hv_crash_param[array_index_nospec(index, size)] = data; 1071 return 0; 1072 } 1073 1074 /* 1075 * The kvmclock and Hyper-V TSC page use similar formulas, and converting 1076 * between them is possible: 1077 * 1078 * kvmclock formula: 1079 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32) 1080 * + system_time 1081 * 1082 * Hyper-V formula: 1083 * nsec/100 = ticks * scale / 2^64 + offset 1084 * 1085 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula. 1086 * By dividing the kvmclock formula by 100 and equating what's left we get: 1087 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 1088 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100 1089 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100 1090 * 1091 * Now expand the kvmclock formula and divide by 100: 1092 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32) 1093 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) 1094 * + system_time 1095 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 1096 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100 1097 * + system_time / 100 1098 * 1099 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64: 1100 * nsec/100 = ticks * scale / 2^64 1101 * - tsc_timestamp * scale / 2^64 1102 * + system_time / 100 1103 * 1104 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out: 1105 * offset = system_time / 100 - tsc_timestamp * scale / 2^64 1106 * 1107 * These two equivalencies are implemented in this function. 1108 */ 1109 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock, 1110 struct ms_hyperv_tsc_page *tsc_ref) 1111 { 1112 u64 max_mul; 1113 1114 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT)) 1115 return false; 1116 1117 /* 1118 * check if scale would overflow, if so we use the time ref counter 1119 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64 1120 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift) 1121 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift) 1122 */ 1123 max_mul = 100ull << (32 - hv_clock->tsc_shift); 1124 if (hv_clock->tsc_to_system_mul >= max_mul) 1125 return false; 1126 1127 /* 1128 * Otherwise compute the scale and offset according to the formulas 1129 * derived above. 1130 */ 1131 tsc_ref->tsc_scale = 1132 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift), 1133 hv_clock->tsc_to_system_mul, 1134 100); 1135 1136 tsc_ref->tsc_offset = hv_clock->system_time; 1137 do_div(tsc_ref->tsc_offset, 100); 1138 tsc_ref->tsc_offset -= 1139 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64); 1140 return true; 1141 } 1142 1143 /* 1144 * Don't touch TSC page values if the guest has opted for TSC emulation after 1145 * migration. KVM doesn't fully support reenlightenment notifications and TSC 1146 * access emulation and Hyper-V is known to expect the values in TSC page to 1147 * stay constant before TSC access emulation is disabled from guest side 1148 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC 1149 * frequency and guest visible TSC value across migration (and prevent it when 1150 * TSC scaling is unsupported). 1151 */ 1152 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv) 1153 { 1154 return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) && 1155 hv->hv_tsc_emulation_control; 1156 } 1157 1158 void kvm_hv_setup_tsc_page(struct kvm *kvm, 1159 struct pvclock_vcpu_time_info *hv_clock) 1160 { 1161 struct kvm_hv *hv = to_kvm_hv(kvm); 1162 u32 tsc_seq; 1163 u64 gfn; 1164 1165 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence)); 1166 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0); 1167 1168 mutex_lock(&hv->hv_lock); 1169 1170 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN || 1171 hv->hv_tsc_page_status == HV_TSC_PAGE_SET || 1172 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET) 1173 goto out_unlock; 1174 1175 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)) 1176 goto out_unlock; 1177 1178 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; 1179 /* 1180 * Because the TSC parameters only vary when there is a 1181 * change in the master clock, do not bother with caching. 1182 */ 1183 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn), 1184 &tsc_seq, sizeof(tsc_seq)))) 1185 goto out_err; 1186 1187 if (tsc_seq && tsc_page_update_unsafe(hv)) { 1188 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) 1189 goto out_err; 1190 1191 hv->hv_tsc_page_status = HV_TSC_PAGE_SET; 1192 goto out_unlock; 1193 } 1194 1195 /* 1196 * While we're computing and writing the parameters, force the 1197 * guest to use the time reference count MSR. 1198 */ 1199 hv->tsc_ref.tsc_sequence = 0; 1200 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), 1201 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) 1202 goto out_err; 1203 1204 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref)) 1205 goto out_err; 1206 1207 /* Ensure sequence is zero before writing the rest of the struct. */ 1208 smp_wmb(); 1209 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) 1210 goto out_err; 1211 1212 /* 1213 * Now switch to the TSC page mechanism by writing the sequence. 1214 */ 1215 tsc_seq++; 1216 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0) 1217 tsc_seq = 1; 1218 1219 /* Write the struct entirely before the non-zero sequence. */ 1220 smp_wmb(); 1221 1222 hv->tsc_ref.tsc_sequence = tsc_seq; 1223 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), 1224 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) 1225 goto out_err; 1226 1227 hv->hv_tsc_page_status = HV_TSC_PAGE_SET; 1228 goto out_unlock; 1229 1230 out_err: 1231 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN; 1232 out_unlock: 1233 mutex_unlock(&hv->hv_lock); 1234 } 1235 1236 void kvm_hv_request_tsc_page_update(struct kvm *kvm) 1237 { 1238 struct kvm_hv *hv = to_kvm_hv(kvm); 1239 1240 mutex_lock(&hv->hv_lock); 1241 1242 if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET && 1243 !tsc_page_update_unsafe(hv)) 1244 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED; 1245 1246 mutex_unlock(&hv->hv_lock); 1247 } 1248 1249 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr) 1250 { 1251 if (!hv_vcpu->enforce_cpuid) 1252 return true; 1253 1254 switch (msr) { 1255 case HV_X64_MSR_GUEST_OS_ID: 1256 case HV_X64_MSR_HYPERCALL: 1257 return hv_vcpu->cpuid_cache.features_eax & 1258 HV_MSR_HYPERCALL_AVAILABLE; 1259 case HV_X64_MSR_VP_RUNTIME: 1260 return hv_vcpu->cpuid_cache.features_eax & 1261 HV_MSR_VP_RUNTIME_AVAILABLE; 1262 case HV_X64_MSR_TIME_REF_COUNT: 1263 return hv_vcpu->cpuid_cache.features_eax & 1264 HV_MSR_TIME_REF_COUNT_AVAILABLE; 1265 case HV_X64_MSR_VP_INDEX: 1266 return hv_vcpu->cpuid_cache.features_eax & 1267 HV_MSR_VP_INDEX_AVAILABLE; 1268 case HV_X64_MSR_RESET: 1269 return hv_vcpu->cpuid_cache.features_eax & 1270 HV_MSR_RESET_AVAILABLE; 1271 case HV_X64_MSR_REFERENCE_TSC: 1272 return hv_vcpu->cpuid_cache.features_eax & 1273 HV_MSR_REFERENCE_TSC_AVAILABLE; 1274 case HV_X64_MSR_SCONTROL: 1275 case HV_X64_MSR_SVERSION: 1276 case HV_X64_MSR_SIEFP: 1277 case HV_X64_MSR_SIMP: 1278 case HV_X64_MSR_EOM: 1279 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 1280 return hv_vcpu->cpuid_cache.features_eax & 1281 HV_MSR_SYNIC_AVAILABLE; 1282 case HV_X64_MSR_STIMER0_CONFIG: 1283 case HV_X64_MSR_STIMER1_CONFIG: 1284 case HV_X64_MSR_STIMER2_CONFIG: 1285 case HV_X64_MSR_STIMER3_CONFIG: 1286 case HV_X64_MSR_STIMER0_COUNT: 1287 case HV_X64_MSR_STIMER1_COUNT: 1288 case HV_X64_MSR_STIMER2_COUNT: 1289 case HV_X64_MSR_STIMER3_COUNT: 1290 return hv_vcpu->cpuid_cache.features_eax & 1291 HV_MSR_SYNTIMER_AVAILABLE; 1292 case HV_X64_MSR_EOI: 1293 case HV_X64_MSR_ICR: 1294 case HV_X64_MSR_TPR: 1295 case HV_X64_MSR_VP_ASSIST_PAGE: 1296 return hv_vcpu->cpuid_cache.features_eax & 1297 HV_MSR_APIC_ACCESS_AVAILABLE; 1298 case HV_X64_MSR_TSC_FREQUENCY: 1299 case HV_X64_MSR_APIC_FREQUENCY: 1300 return hv_vcpu->cpuid_cache.features_eax & 1301 HV_ACCESS_FREQUENCY_MSRS; 1302 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1303 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1304 case HV_X64_MSR_TSC_EMULATION_STATUS: 1305 return hv_vcpu->cpuid_cache.features_eax & 1306 HV_ACCESS_REENLIGHTENMENT; 1307 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 1308 return hv_vcpu->cpuid_cache.features_eax & 1309 HV_ACCESS_TSC_INVARIANT; 1310 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1311 case HV_X64_MSR_CRASH_CTL: 1312 return hv_vcpu->cpuid_cache.features_edx & 1313 HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; 1314 case HV_X64_MSR_SYNDBG_OPTIONS: 1315 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 1316 return hv_vcpu->cpuid_cache.features_edx & 1317 HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1318 default: 1319 break; 1320 } 1321 1322 return false; 1323 } 1324 1325 #define KVM_HV_WIN2016_GUEST_ID 0x1040a00003839 1326 #define KVM_HV_WIN2016_GUEST_ID_MASK (~GENMASK_ULL(23, 16)) /* mask out the service version */ 1327 1328 /* 1329 * Hyper-V enabled Windows Server 2016 SMP VMs fail to boot in !XSAVES && XSAVEC 1330 * configuration. 1331 * Such configuration can result from, for example, AMD Erratum 1386 workaround. 1332 * 1333 * Print a notice so users aren't left wondering what's suddenly gone wrong. 1334 */ 1335 static void __kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu) 1336 { 1337 struct kvm *kvm = vcpu->kvm; 1338 struct kvm_hv *hv = to_kvm_hv(kvm); 1339 1340 /* Check again under the hv_lock. */ 1341 if (hv->xsaves_xsavec_checked) 1342 return; 1343 1344 if ((hv->hv_guest_os_id & KVM_HV_WIN2016_GUEST_ID_MASK) != 1345 KVM_HV_WIN2016_GUEST_ID) 1346 return; 1347 1348 hv->xsaves_xsavec_checked = true; 1349 1350 /* UP configurations aren't affected */ 1351 if (atomic_read(&kvm->online_vcpus) < 2) 1352 return; 1353 1354 if (guest_cpuid_has(vcpu, X86_FEATURE_XSAVES) || 1355 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVEC)) 1356 return; 1357 1358 pr_notice_ratelimited("Booting SMP Windows KVM VM with !XSAVES && XSAVEC. " 1359 "If it fails to boot try disabling XSAVEC in the VM config.\n"); 1360 } 1361 1362 void kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu) 1363 { 1364 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 1365 1366 if (!vcpu->arch.hyperv_enabled || 1367 hv->xsaves_xsavec_checked) 1368 return; 1369 1370 mutex_lock(&hv->hv_lock); 1371 __kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1372 mutex_unlock(&hv->hv_lock); 1373 } 1374 1375 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data, 1376 bool host) 1377 { 1378 struct kvm *kvm = vcpu->kvm; 1379 struct kvm_hv *hv = to_kvm_hv(kvm); 1380 1381 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr))) 1382 return 1; 1383 1384 switch (msr) { 1385 case HV_X64_MSR_GUEST_OS_ID: 1386 hv->hv_guest_os_id = data; 1387 /* setting guest os id to zero disables hypercall page */ 1388 if (!hv->hv_guest_os_id) 1389 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1390 break; 1391 case HV_X64_MSR_HYPERCALL: { 1392 u8 instructions[9]; 1393 int i = 0; 1394 u64 addr; 1395 1396 /* if guest os id is not set hypercall should remain disabled */ 1397 if (!hv->hv_guest_os_id) 1398 break; 1399 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1400 hv->hv_hypercall = data; 1401 break; 1402 } 1403 1404 /* 1405 * If Xen and Hyper-V hypercalls are both enabled, disambiguate 1406 * the same way Xen itself does, by setting the bit 31 of EAX 1407 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just 1408 * going to be clobbered on 64-bit. 1409 */ 1410 if (kvm_xen_hypercall_enabled(kvm)) { 1411 /* orl $0x80000000, %eax */ 1412 instructions[i++] = 0x0d; 1413 instructions[i++] = 0x00; 1414 instructions[i++] = 0x00; 1415 instructions[i++] = 0x00; 1416 instructions[i++] = 0x80; 1417 } 1418 1419 /* vmcall/vmmcall */ 1420 kvm_x86_call(patch_hypercall)(vcpu, instructions + i); 1421 i += 3; 1422 1423 /* ret */ 1424 ((unsigned char *)instructions)[i++] = 0xc3; 1425 1426 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK; 1427 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i)) 1428 return 1; 1429 hv->hv_hypercall = data; 1430 break; 1431 } 1432 case HV_X64_MSR_REFERENCE_TSC: 1433 hv->hv_tsc_page = data; 1434 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) { 1435 if (!host) 1436 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED; 1437 else 1438 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED; 1439 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1440 } else { 1441 hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET; 1442 } 1443 break; 1444 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1445 return kvm_hv_msr_set_crash_data(kvm, 1446 msr - HV_X64_MSR_CRASH_P0, 1447 data); 1448 case HV_X64_MSR_CRASH_CTL: 1449 if (host) 1450 return kvm_hv_msr_set_crash_ctl(kvm, data); 1451 1452 if (data & HV_CRASH_CTL_CRASH_NOTIFY) { 1453 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n", 1454 hv->hv_crash_param[0], 1455 hv->hv_crash_param[1], 1456 hv->hv_crash_param[2], 1457 hv->hv_crash_param[3], 1458 hv->hv_crash_param[4]); 1459 1460 /* Send notification about crash to user space */ 1461 kvm_make_request(KVM_REQ_HV_CRASH, vcpu); 1462 } 1463 break; 1464 case HV_X64_MSR_RESET: 1465 if (data == 1) { 1466 vcpu_debug(vcpu, "hyper-v reset requested\n"); 1467 kvm_make_request(KVM_REQ_HV_RESET, vcpu); 1468 } 1469 break; 1470 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1471 hv->hv_reenlightenment_control = data; 1472 break; 1473 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1474 hv->hv_tsc_emulation_control = data; 1475 break; 1476 case HV_X64_MSR_TSC_EMULATION_STATUS: 1477 if (data && !host) 1478 return 1; 1479 1480 hv->hv_tsc_emulation_status = data; 1481 break; 1482 case HV_X64_MSR_TIME_REF_COUNT: 1483 /* read-only, but still ignore it if host-initiated */ 1484 if (!host) 1485 return 1; 1486 break; 1487 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 1488 /* Only bit 0 is supported */ 1489 if (data & ~HV_EXPOSE_INVARIANT_TSC) 1490 return 1; 1491 1492 /* The feature can't be disabled from the guest */ 1493 if (!host && hv->hv_invtsc_control && !data) 1494 return 1; 1495 1496 hv->hv_invtsc_control = data; 1497 break; 1498 case HV_X64_MSR_SYNDBG_OPTIONS: 1499 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 1500 return syndbg_set_msr(vcpu, msr, data, host); 1501 default: 1502 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 1503 return 1; 1504 } 1505 return 0; 1506 } 1507 1508 /* Calculate cpu time spent by current task in 100ns units */ 1509 static u64 current_task_runtime_100ns(void) 1510 { 1511 u64 utime, stime; 1512 1513 task_cputime_adjusted(current, &utime, &stime); 1514 1515 return div_u64(utime + stime, 100); 1516 } 1517 1518 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) 1519 { 1520 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 1521 1522 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr))) 1523 return 1; 1524 1525 switch (msr) { 1526 case HV_X64_MSR_VP_INDEX: { 1527 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 1528 u32 new_vp_index = (u32)data; 1529 1530 if (!host || new_vp_index >= KVM_MAX_VCPUS) 1531 return 1; 1532 1533 if (new_vp_index == hv_vcpu->vp_index) 1534 return 0; 1535 1536 /* 1537 * The VP index is initialized to vcpu_index by 1538 * kvm_hv_vcpu_postcreate so they initially match. Now the 1539 * VP index is changing, adjust num_mismatched_vp_indexes if 1540 * it now matches or no longer matches vcpu_idx. 1541 */ 1542 if (hv_vcpu->vp_index == vcpu->vcpu_idx) 1543 atomic_inc(&hv->num_mismatched_vp_indexes); 1544 else if (new_vp_index == vcpu->vcpu_idx) 1545 atomic_dec(&hv->num_mismatched_vp_indexes); 1546 1547 hv_vcpu->vp_index = new_vp_index; 1548 break; 1549 } 1550 case HV_X64_MSR_VP_ASSIST_PAGE: { 1551 u64 gfn; 1552 unsigned long addr; 1553 1554 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) { 1555 hv_vcpu->hv_vapic = data; 1556 if (kvm_lapic_set_pv_eoi(vcpu, 0, 0)) 1557 return 1; 1558 break; 1559 } 1560 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT; 1561 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn); 1562 if (kvm_is_error_hva(addr)) 1563 return 1; 1564 1565 /* 1566 * Clear apic_assist portion of struct hv_vp_assist_page 1567 * only, there can be valuable data in the rest which needs 1568 * to be preserved e.g. on migration. 1569 */ 1570 if (__put_user(0, (u32 __user *)addr)) 1571 return 1; 1572 hv_vcpu->hv_vapic = data; 1573 kvm_vcpu_mark_page_dirty(vcpu, gfn); 1574 if (kvm_lapic_set_pv_eoi(vcpu, 1575 gfn_to_gpa(gfn) | KVM_MSR_ENABLED, 1576 sizeof(struct hv_vp_assist_page))) 1577 return 1; 1578 break; 1579 } 1580 case HV_X64_MSR_EOI: 1581 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1582 case HV_X64_MSR_ICR: 1583 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1584 case HV_X64_MSR_TPR: 1585 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1586 case HV_X64_MSR_VP_RUNTIME: 1587 if (!host) 1588 return 1; 1589 hv_vcpu->runtime_offset = data - current_task_runtime_100ns(); 1590 break; 1591 case HV_X64_MSR_SCONTROL: 1592 case HV_X64_MSR_SVERSION: 1593 case HV_X64_MSR_SIEFP: 1594 case HV_X64_MSR_SIMP: 1595 case HV_X64_MSR_EOM: 1596 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 1597 return synic_set_msr(to_hv_synic(vcpu), msr, data, host); 1598 case HV_X64_MSR_STIMER0_CONFIG: 1599 case HV_X64_MSR_STIMER1_CONFIG: 1600 case HV_X64_MSR_STIMER2_CONFIG: 1601 case HV_X64_MSR_STIMER3_CONFIG: { 1602 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; 1603 1604 return stimer_set_config(to_hv_stimer(vcpu, timer_index), 1605 data, host); 1606 } 1607 case HV_X64_MSR_STIMER0_COUNT: 1608 case HV_X64_MSR_STIMER1_COUNT: 1609 case HV_X64_MSR_STIMER2_COUNT: 1610 case HV_X64_MSR_STIMER3_COUNT: { 1611 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; 1612 1613 return stimer_set_count(to_hv_stimer(vcpu, timer_index), 1614 data, host); 1615 } 1616 case HV_X64_MSR_TSC_FREQUENCY: 1617 case HV_X64_MSR_APIC_FREQUENCY: 1618 /* read-only, but still ignore it if host-initiated */ 1619 if (!host) 1620 return 1; 1621 break; 1622 default: 1623 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 1624 return 1; 1625 } 1626 1627 return 0; 1628 } 1629 1630 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, 1631 bool host) 1632 { 1633 u64 data = 0; 1634 struct kvm *kvm = vcpu->kvm; 1635 struct kvm_hv *hv = to_kvm_hv(kvm); 1636 1637 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr))) 1638 return 1; 1639 1640 switch (msr) { 1641 case HV_X64_MSR_GUEST_OS_ID: 1642 data = hv->hv_guest_os_id; 1643 break; 1644 case HV_X64_MSR_HYPERCALL: 1645 data = hv->hv_hypercall; 1646 break; 1647 case HV_X64_MSR_TIME_REF_COUNT: 1648 data = get_time_ref_counter(kvm); 1649 break; 1650 case HV_X64_MSR_REFERENCE_TSC: 1651 data = hv->hv_tsc_page; 1652 break; 1653 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1654 return kvm_hv_msr_get_crash_data(kvm, 1655 msr - HV_X64_MSR_CRASH_P0, 1656 pdata); 1657 case HV_X64_MSR_CRASH_CTL: 1658 return kvm_hv_msr_get_crash_ctl(kvm, pdata); 1659 case HV_X64_MSR_RESET: 1660 data = 0; 1661 break; 1662 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1663 data = hv->hv_reenlightenment_control; 1664 break; 1665 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1666 data = hv->hv_tsc_emulation_control; 1667 break; 1668 case HV_X64_MSR_TSC_EMULATION_STATUS: 1669 data = hv->hv_tsc_emulation_status; 1670 break; 1671 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 1672 data = hv->hv_invtsc_control; 1673 break; 1674 case HV_X64_MSR_SYNDBG_OPTIONS: 1675 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 1676 return syndbg_get_msr(vcpu, msr, pdata, host); 1677 default: 1678 kvm_pr_unimpl_rdmsr(vcpu, msr); 1679 return 1; 1680 } 1681 1682 *pdata = data; 1683 return 0; 1684 } 1685 1686 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, 1687 bool host) 1688 { 1689 u64 data = 0; 1690 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 1691 1692 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr))) 1693 return 1; 1694 1695 switch (msr) { 1696 case HV_X64_MSR_VP_INDEX: 1697 data = hv_vcpu->vp_index; 1698 break; 1699 case HV_X64_MSR_EOI: 1700 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 1701 case HV_X64_MSR_ICR: 1702 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 1703 case HV_X64_MSR_TPR: 1704 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 1705 case HV_X64_MSR_VP_ASSIST_PAGE: 1706 data = hv_vcpu->hv_vapic; 1707 break; 1708 case HV_X64_MSR_VP_RUNTIME: 1709 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset; 1710 break; 1711 case HV_X64_MSR_SCONTROL: 1712 case HV_X64_MSR_SVERSION: 1713 case HV_X64_MSR_SIEFP: 1714 case HV_X64_MSR_SIMP: 1715 case HV_X64_MSR_EOM: 1716 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 1717 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host); 1718 case HV_X64_MSR_STIMER0_CONFIG: 1719 case HV_X64_MSR_STIMER1_CONFIG: 1720 case HV_X64_MSR_STIMER2_CONFIG: 1721 case HV_X64_MSR_STIMER3_CONFIG: { 1722 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; 1723 1724 return stimer_get_config(to_hv_stimer(vcpu, timer_index), 1725 pdata); 1726 } 1727 case HV_X64_MSR_STIMER0_COUNT: 1728 case HV_X64_MSR_STIMER1_COUNT: 1729 case HV_X64_MSR_STIMER2_COUNT: 1730 case HV_X64_MSR_STIMER3_COUNT: { 1731 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; 1732 1733 return stimer_get_count(to_hv_stimer(vcpu, timer_index), 1734 pdata); 1735 } 1736 case HV_X64_MSR_TSC_FREQUENCY: 1737 data = (u64)vcpu->arch.virtual_tsc_khz * 1000; 1738 break; 1739 case HV_X64_MSR_APIC_FREQUENCY: 1740 data = div64_u64(1000000000ULL, 1741 vcpu->kvm->arch.apic_bus_cycle_ns); 1742 break; 1743 default: 1744 kvm_pr_unimpl_rdmsr(vcpu, msr); 1745 return 1; 1746 } 1747 *pdata = data; 1748 return 0; 1749 } 1750 1751 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) 1752 { 1753 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 1754 1755 if (!host && !vcpu->arch.hyperv_enabled) 1756 return 1; 1757 1758 if (kvm_hv_vcpu_init(vcpu)) 1759 return 1; 1760 1761 if (kvm_hv_msr_partition_wide(msr)) { 1762 int r; 1763 1764 mutex_lock(&hv->hv_lock); 1765 r = kvm_hv_set_msr_pw(vcpu, msr, data, host); 1766 mutex_unlock(&hv->hv_lock); 1767 return r; 1768 } else 1769 return kvm_hv_set_msr(vcpu, msr, data, host); 1770 } 1771 1772 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 1773 { 1774 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 1775 1776 if (!host && !vcpu->arch.hyperv_enabled) 1777 return 1; 1778 1779 if (kvm_hv_vcpu_init(vcpu)) 1780 return 1; 1781 1782 if (kvm_hv_msr_partition_wide(msr)) { 1783 int r; 1784 1785 mutex_lock(&hv->hv_lock); 1786 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host); 1787 mutex_unlock(&hv->hv_lock); 1788 return r; 1789 } else 1790 return kvm_hv_get_msr(vcpu, msr, pdata, host); 1791 } 1792 1793 static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks, 1794 u64 valid_bank_mask, unsigned long *vcpu_mask) 1795 { 1796 struct kvm_hv *hv = to_kvm_hv(kvm); 1797 bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes); 1798 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS]; 1799 struct kvm_vcpu *vcpu; 1800 int bank, sbank = 0; 1801 unsigned long i; 1802 u64 *bitmap; 1803 1804 BUILD_BUG_ON(sizeof(vp_bitmap) > 1805 sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS)); 1806 1807 /* 1808 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else 1809 * fill a temporary buffer and manually test each vCPU's VP index. 1810 */ 1811 if (likely(!has_mismatch)) 1812 bitmap = (u64 *)vcpu_mask; 1813 else 1814 bitmap = vp_bitmap; 1815 1816 /* 1817 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask 1818 * having a '1' for each bank that exists in sparse_banks. Sets must 1819 * be in ascending order, i.e. bank0..bankN. 1820 */ 1821 memset(bitmap, 0, sizeof(vp_bitmap)); 1822 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask, 1823 KVM_HV_MAX_SPARSE_VCPU_SET_BITS) 1824 bitmap[bank] = sparse_banks[sbank++]; 1825 1826 if (likely(!has_mismatch)) 1827 return; 1828 1829 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS); 1830 kvm_for_each_vcpu(i, vcpu, kvm) { 1831 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap)) 1832 __set_bit(i, vcpu_mask); 1833 } 1834 } 1835 1836 static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[]) 1837 { 1838 int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK; 1839 unsigned long sbank; 1840 1841 if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask)) 1842 return false; 1843 1844 /* 1845 * The index into the sparse bank is the number of preceding bits in 1846 * the valid mask. Optimize for VMs with <64 vCPUs by skipping the 1847 * fancy math if there can't possibly be preceding bits. 1848 */ 1849 if (valid_bit_nr) 1850 sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0)); 1851 else 1852 sbank = 0; 1853 1854 return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK, 1855 (unsigned long *)&sparse_banks[sbank]); 1856 } 1857 1858 struct kvm_hv_hcall { 1859 /* Hypercall input data */ 1860 u64 param; 1861 u64 ingpa; 1862 u64 outgpa; 1863 u16 code; 1864 u16 var_cnt; 1865 u16 rep_cnt; 1866 u16 rep_idx; 1867 bool fast; 1868 bool rep; 1869 sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS]; 1870 1871 /* 1872 * Current read offset when KVM reads hypercall input data gradually, 1873 * either offset in bytes from 'ingpa' for regular hypercalls or the 1874 * number of already consumed 'XMM halves' for 'fast' hypercalls. 1875 */ 1876 union { 1877 gpa_t data_offset; 1878 int consumed_xmm_halves; 1879 }; 1880 }; 1881 1882 1883 static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc, 1884 u16 orig_cnt, u16 cnt_cap, u64 *data) 1885 { 1886 /* 1887 * Preserve the original count when ignoring entries via a "cap", KVM 1888 * still needs to validate the guest input (though the non-XMM path 1889 * punts on the checks). 1890 */ 1891 u16 cnt = min(orig_cnt, cnt_cap); 1892 int i, j; 1893 1894 if (hc->fast) { 1895 /* 1896 * Each XMM holds two sparse banks, but do not count halves that 1897 * have already been consumed for hypercall parameters. 1898 */ 1899 if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves) 1900 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1901 1902 for (i = 0; i < cnt; i++) { 1903 j = i + hc->consumed_xmm_halves; 1904 if (j % 2) 1905 data[i] = sse128_hi(hc->xmm[j / 2]); 1906 else 1907 data[i] = sse128_lo(hc->xmm[j / 2]); 1908 } 1909 return 0; 1910 } 1911 1912 return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data, 1913 cnt * sizeof(*data)); 1914 } 1915 1916 static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc, 1917 u64 *sparse_banks) 1918 { 1919 if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS) 1920 return -EINVAL; 1921 1922 /* Cap var_cnt to ignore banks that cannot contain a legal VP index. */ 1923 return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS, 1924 sparse_banks); 1925 } 1926 1927 static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[]) 1928 { 1929 return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries); 1930 } 1931 1932 static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu, 1933 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo, 1934 u64 *entries, int count) 1935 { 1936 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 1937 u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY; 1938 1939 if (!hv_vcpu) 1940 return; 1941 1942 spin_lock(&tlb_flush_fifo->write_lock); 1943 1944 /* 1945 * All entries should fit on the fifo leaving one free for 'flush all' 1946 * entry in case another request comes in. In case there's not enough 1947 * space, just put 'flush all' entry there. 1948 */ 1949 if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) { 1950 WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count); 1951 goto out_unlock; 1952 } 1953 1954 /* 1955 * Note: full fifo always contains 'flush all' entry, no need to check the 1956 * return value. 1957 */ 1958 kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1); 1959 1960 out_unlock: 1961 spin_unlock(&tlb_flush_fifo->write_lock); 1962 } 1963 1964 int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu) 1965 { 1966 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo; 1967 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 1968 u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE]; 1969 int i, j, count; 1970 gva_t gva; 1971 1972 if (!tdp_enabled || !hv_vcpu) 1973 return -EINVAL; 1974 1975 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu)); 1976 1977 count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE); 1978 1979 for (i = 0; i < count; i++) { 1980 if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY) 1981 goto out_flush_all; 1982 1983 /* 1984 * Lower 12 bits of 'address' encode the number of additional 1985 * pages to flush. 1986 */ 1987 gva = entries[i] & PAGE_MASK; 1988 for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++) 1989 kvm_x86_call(flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE); 1990 1991 ++vcpu->stat.tlb_flush; 1992 } 1993 return 0; 1994 1995 out_flush_all: 1996 kfifo_reset_out(&tlb_flush_fifo->entries); 1997 1998 /* Fall back to full flush. */ 1999 return -ENOSPC; 2000 } 2001 2002 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) 2003 { 2004 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 2005 u64 *sparse_banks = hv_vcpu->sparse_banks; 2006 struct kvm *kvm = vcpu->kvm; 2007 struct hv_tlb_flush_ex flush_ex; 2008 struct hv_tlb_flush flush; 2009 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS); 2010 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo; 2011 /* 2012 * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE' 2013 * entries on the TLB flush fifo. The last entry, however, needs to be 2014 * always left free for 'flush all' entry which gets placed when 2015 * there is not enough space to put all the requested entries. 2016 */ 2017 u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1]; 2018 u64 *tlb_flush_entries; 2019 u64 valid_bank_mask; 2020 struct kvm_vcpu *v; 2021 unsigned long i; 2022 bool all_cpus; 2023 2024 /* 2025 * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS 2026 * sparse banks. Fail the build if KVM's max allowed number of 2027 * vCPUs (>4096) exceeds this limit. 2028 */ 2029 BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS); 2030 2031 /* 2032 * 'Slow' hypercall's first parameter is the address in guest's memory 2033 * where hypercall parameters are placed. This is either a GPA or a 2034 * nested GPA when KVM is handling the call from L2 ('direct' TLB 2035 * flush). Translate the address here so the memory can be uniformly 2036 * read with kvm_read_guest(). 2037 */ 2038 if (!hc->fast && is_guest_mode(vcpu)) { 2039 hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL); 2040 if (unlikely(hc->ingpa == INVALID_GPA)) 2041 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2042 } 2043 2044 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST || 2045 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) { 2046 if (hc->fast) { 2047 flush.address_space = hc->ingpa; 2048 flush.flags = hc->outgpa; 2049 flush.processor_mask = sse128_lo(hc->xmm[0]); 2050 hc->consumed_xmm_halves = 1; 2051 } else { 2052 if (unlikely(kvm_read_guest(kvm, hc->ingpa, 2053 &flush, sizeof(flush)))) 2054 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2055 hc->data_offset = sizeof(flush); 2056 } 2057 2058 trace_kvm_hv_flush_tlb(flush.processor_mask, 2059 flush.address_space, flush.flags, 2060 is_guest_mode(vcpu)); 2061 2062 valid_bank_mask = BIT_ULL(0); 2063 sparse_banks[0] = flush.processor_mask; 2064 2065 /* 2066 * Work around possible WS2012 bug: it sends hypercalls 2067 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear, 2068 * while also expecting us to flush something and crashing if 2069 * we don't. Let's treat processor_mask == 0 same as 2070 * HV_FLUSH_ALL_PROCESSORS. 2071 */ 2072 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) || 2073 flush.processor_mask == 0; 2074 } else { 2075 if (hc->fast) { 2076 flush_ex.address_space = hc->ingpa; 2077 flush_ex.flags = hc->outgpa; 2078 memcpy(&flush_ex.hv_vp_set, 2079 &hc->xmm[0], sizeof(hc->xmm[0])); 2080 hc->consumed_xmm_halves = 2; 2081 } else { 2082 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex, 2083 sizeof(flush_ex)))) 2084 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2085 hc->data_offset = sizeof(flush_ex); 2086 } 2087 2088 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask, 2089 flush_ex.hv_vp_set.format, 2090 flush_ex.address_space, 2091 flush_ex.flags, is_guest_mode(vcpu)); 2092 2093 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask; 2094 all_cpus = flush_ex.hv_vp_set.format != 2095 HV_GENERIC_SET_SPARSE_4K; 2096 2097 if (hc->var_cnt != hweight64(valid_bank_mask)) 2098 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2099 2100 if (!all_cpus) { 2101 if (!hc->var_cnt) 2102 goto ret_success; 2103 2104 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks)) 2105 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2106 } 2107 2108 /* 2109 * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU 2110 * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs' 2111 * case (HV_GENERIC_SET_ALL). Always adjust data_offset and 2112 * consumed_xmm_halves to make sure TLB flush entries are read 2113 * from the correct offset. 2114 */ 2115 if (hc->fast) 2116 hc->consumed_xmm_halves += hc->var_cnt; 2117 else 2118 hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]); 2119 } 2120 2121 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE || 2122 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX || 2123 hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) { 2124 tlb_flush_entries = NULL; 2125 } else { 2126 if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries)) 2127 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2128 tlb_flush_entries = __tlb_flush_entries; 2129 } 2130 2131 /* 2132 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't 2133 * analyze it here, flush TLB regardless of the specified address space. 2134 */ 2135 if (all_cpus && !is_guest_mode(vcpu)) { 2136 kvm_for_each_vcpu(i, v, kvm) { 2137 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false); 2138 hv_tlb_flush_enqueue(v, tlb_flush_fifo, 2139 tlb_flush_entries, hc->rep_cnt); 2140 } 2141 2142 kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH); 2143 } else if (!is_guest_mode(vcpu)) { 2144 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask); 2145 2146 for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) { 2147 v = kvm_get_vcpu(kvm, i); 2148 if (!v) 2149 continue; 2150 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false); 2151 hv_tlb_flush_enqueue(v, tlb_flush_fifo, 2152 tlb_flush_entries, hc->rep_cnt); 2153 } 2154 2155 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask); 2156 } else { 2157 struct kvm_vcpu_hv *hv_v; 2158 2159 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS); 2160 2161 kvm_for_each_vcpu(i, v, kvm) { 2162 hv_v = to_hv_vcpu(v); 2163 2164 /* 2165 * The following check races with nested vCPUs entering/exiting 2166 * and/or migrating between L1's vCPUs, however the only case when 2167 * KVM *must* flush the TLB is when the target L2 vCPU keeps 2168 * running on the same L1 vCPU from the moment of the request until 2169 * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other 2170 * cases, e.g. when the target L2 vCPU migrates to a different L1 2171 * vCPU or when the corresponding L1 vCPU temporary switches to a 2172 * different L2 vCPU while the request is being processed. 2173 */ 2174 if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id) 2175 continue; 2176 2177 if (!all_cpus && 2178 !hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask, 2179 sparse_banks)) 2180 continue; 2181 2182 __set_bit(i, vcpu_mask); 2183 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true); 2184 hv_tlb_flush_enqueue(v, tlb_flush_fifo, 2185 tlb_flush_entries, hc->rep_cnt); 2186 } 2187 2188 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask); 2189 } 2190 2191 ret_success: 2192 /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */ 2193 return (u64)HV_STATUS_SUCCESS | 2194 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET); 2195 } 2196 2197 static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector, 2198 u64 *sparse_banks, u64 valid_bank_mask) 2199 { 2200 struct kvm_lapic_irq irq = { 2201 .delivery_mode = APIC_DM_FIXED, 2202 .vector = vector 2203 }; 2204 struct kvm_vcpu *vcpu; 2205 unsigned long i; 2206 2207 kvm_for_each_vcpu(i, vcpu, kvm) { 2208 if (sparse_banks && 2209 !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu), 2210 valid_bank_mask, sparse_banks)) 2211 continue; 2212 2213 /* We fail only when APIC is disabled */ 2214 kvm_apic_set_irq(vcpu, &irq, NULL); 2215 } 2216 } 2217 2218 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) 2219 { 2220 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 2221 u64 *sparse_banks = hv_vcpu->sparse_banks; 2222 struct kvm *kvm = vcpu->kvm; 2223 struct hv_send_ipi_ex send_ipi_ex; 2224 struct hv_send_ipi send_ipi; 2225 u64 valid_bank_mask; 2226 u32 vector; 2227 bool all_cpus; 2228 2229 if (hc->code == HVCALL_SEND_IPI) { 2230 if (!hc->fast) { 2231 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi, 2232 sizeof(send_ipi)))) 2233 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2234 sparse_banks[0] = send_ipi.cpu_mask; 2235 vector = send_ipi.vector; 2236 } else { 2237 /* 'reserved' part of hv_send_ipi should be 0 */ 2238 if (unlikely(hc->ingpa >> 32 != 0)) 2239 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2240 sparse_banks[0] = hc->outgpa; 2241 vector = (u32)hc->ingpa; 2242 } 2243 all_cpus = false; 2244 valid_bank_mask = BIT_ULL(0); 2245 2246 trace_kvm_hv_send_ipi(vector, sparse_banks[0]); 2247 } else { 2248 if (!hc->fast) { 2249 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex, 2250 sizeof(send_ipi_ex)))) 2251 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2252 } else { 2253 send_ipi_ex.vector = (u32)hc->ingpa; 2254 send_ipi_ex.vp_set.format = hc->outgpa; 2255 send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]); 2256 } 2257 2258 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector, 2259 send_ipi_ex.vp_set.format, 2260 send_ipi_ex.vp_set.valid_bank_mask); 2261 2262 vector = send_ipi_ex.vector; 2263 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask; 2264 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL; 2265 2266 if (hc->var_cnt != hweight64(valid_bank_mask)) 2267 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2268 2269 if (all_cpus) 2270 goto check_and_send_ipi; 2271 2272 if (!hc->var_cnt) 2273 goto ret_success; 2274 2275 if (!hc->fast) 2276 hc->data_offset = offsetof(struct hv_send_ipi_ex, 2277 vp_set.bank_contents); 2278 else 2279 hc->consumed_xmm_halves = 1; 2280 2281 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks)) 2282 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2283 } 2284 2285 check_and_send_ipi: 2286 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR)) 2287 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2288 2289 if (all_cpus) 2290 kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0); 2291 else 2292 kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask); 2293 2294 ret_success: 2295 return HV_STATUS_SUCCESS; 2296 } 2297 2298 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled) 2299 { 2300 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 2301 struct kvm_cpuid_entry2 *entry; 2302 2303 vcpu->arch.hyperv_enabled = hyperv_enabled; 2304 2305 if (!hv_vcpu) { 2306 /* 2307 * KVM should have already allocated kvm_vcpu_hv if Hyper-V is 2308 * enabled in CPUID. 2309 */ 2310 WARN_ON_ONCE(vcpu->arch.hyperv_enabled); 2311 return; 2312 } 2313 2314 memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache)); 2315 2316 if (!vcpu->arch.hyperv_enabled) 2317 return; 2318 2319 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES); 2320 if (entry) { 2321 hv_vcpu->cpuid_cache.features_eax = entry->eax; 2322 hv_vcpu->cpuid_cache.features_ebx = entry->ebx; 2323 hv_vcpu->cpuid_cache.features_edx = entry->edx; 2324 } 2325 2326 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO); 2327 if (entry) { 2328 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax; 2329 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx; 2330 } 2331 2332 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 2333 if (entry) 2334 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax; 2335 2336 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES); 2337 if (entry) { 2338 hv_vcpu->cpuid_cache.nested_eax = entry->eax; 2339 hv_vcpu->cpuid_cache.nested_ebx = entry->ebx; 2340 } 2341 } 2342 2343 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce) 2344 { 2345 struct kvm_vcpu_hv *hv_vcpu; 2346 int ret = 0; 2347 2348 if (!to_hv_vcpu(vcpu)) { 2349 if (enforce) { 2350 ret = kvm_hv_vcpu_init(vcpu); 2351 if (ret) 2352 return ret; 2353 } else { 2354 return 0; 2355 } 2356 } 2357 2358 hv_vcpu = to_hv_vcpu(vcpu); 2359 hv_vcpu->enforce_cpuid = enforce; 2360 2361 return ret; 2362 } 2363 2364 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 2365 { 2366 bool longmode; 2367 2368 longmode = is_64_bit_hypercall(vcpu); 2369 if (longmode) 2370 kvm_rax_write(vcpu, result); 2371 else { 2372 kvm_rdx_write(vcpu, result >> 32); 2373 kvm_rax_write(vcpu, result & 0xffffffff); 2374 } 2375 } 2376 2377 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result) 2378 { 2379 u32 tlb_lock_count = 0; 2380 int ret; 2381 2382 if (hv_result_success(result) && is_guest_mode(vcpu) && 2383 kvm_hv_is_tlb_flush_hcall(vcpu) && 2384 kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa, 2385 &tlb_lock_count, sizeof(tlb_lock_count))) 2386 result = HV_STATUS_INVALID_HYPERCALL_INPUT; 2387 2388 trace_kvm_hv_hypercall_done(result); 2389 kvm_hv_hypercall_set_result(vcpu, result); 2390 ++vcpu->stat.hypercalls; 2391 2392 ret = kvm_skip_emulated_instruction(vcpu); 2393 2394 if (tlb_lock_count) 2395 kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu); 2396 2397 return ret; 2398 } 2399 2400 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 2401 { 2402 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result); 2403 } 2404 2405 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) 2406 { 2407 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 2408 struct eventfd_ctx *eventfd; 2409 2410 if (unlikely(!hc->fast)) { 2411 int ret; 2412 gpa_t gpa = hc->ingpa; 2413 2414 if ((gpa & (__alignof__(hc->ingpa) - 1)) || 2415 offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE) 2416 return HV_STATUS_INVALID_ALIGNMENT; 2417 2418 ret = kvm_vcpu_read_guest(vcpu, gpa, 2419 &hc->ingpa, sizeof(hc->ingpa)); 2420 if (ret < 0) 2421 return HV_STATUS_INVALID_ALIGNMENT; 2422 } 2423 2424 /* 2425 * Per spec, bits 32-47 contain the extra "flag number". However, we 2426 * have no use for it, and in all known usecases it is zero, so just 2427 * report lookup failure if it isn't. 2428 */ 2429 if (hc->ingpa & 0xffff00000000ULL) 2430 return HV_STATUS_INVALID_PORT_ID; 2431 /* remaining bits are reserved-zero */ 2432 if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK) 2433 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2434 2435 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */ 2436 rcu_read_lock(); 2437 eventfd = idr_find(&hv->conn_to_evt, hc->ingpa); 2438 rcu_read_unlock(); 2439 if (!eventfd) 2440 return HV_STATUS_INVALID_PORT_ID; 2441 2442 eventfd_signal(eventfd); 2443 return HV_STATUS_SUCCESS; 2444 } 2445 2446 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc) 2447 { 2448 switch (hc->code) { 2449 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: 2450 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: 2451 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: 2452 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: 2453 case HVCALL_SEND_IPI_EX: 2454 return true; 2455 } 2456 2457 return false; 2458 } 2459 2460 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc) 2461 { 2462 int reg; 2463 2464 kvm_fpu_get(); 2465 for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++) 2466 _kvm_read_sse_reg(reg, &hc->xmm[reg]); 2467 kvm_fpu_put(); 2468 } 2469 2470 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code) 2471 { 2472 if (!hv_vcpu->enforce_cpuid) 2473 return true; 2474 2475 switch (code) { 2476 case HVCALL_NOTIFY_LONG_SPIN_WAIT: 2477 return hv_vcpu->cpuid_cache.enlightenments_ebx && 2478 hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX; 2479 case HVCALL_POST_MESSAGE: 2480 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES; 2481 case HVCALL_SIGNAL_EVENT: 2482 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS; 2483 case HVCALL_POST_DEBUG_DATA: 2484 case HVCALL_RETRIEVE_DEBUG_DATA: 2485 case HVCALL_RESET_DEBUG_SESSION: 2486 /* 2487 * Return 'true' when SynDBG is disabled so the resulting code 2488 * will be HV_STATUS_INVALID_HYPERCALL_CODE. 2489 */ 2490 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) || 2491 hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING; 2492 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: 2493 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: 2494 if (!(hv_vcpu->cpuid_cache.enlightenments_eax & 2495 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) 2496 return false; 2497 fallthrough; 2498 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: 2499 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: 2500 return hv_vcpu->cpuid_cache.enlightenments_eax & 2501 HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; 2502 case HVCALL_SEND_IPI_EX: 2503 if (!(hv_vcpu->cpuid_cache.enlightenments_eax & 2504 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) 2505 return false; 2506 fallthrough; 2507 case HVCALL_SEND_IPI: 2508 return hv_vcpu->cpuid_cache.enlightenments_eax & 2509 HV_X64_CLUSTER_IPI_RECOMMENDED; 2510 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX: 2511 return hv_vcpu->cpuid_cache.features_ebx & 2512 HV_ENABLE_EXTENDED_HYPERCALLS; 2513 default: 2514 break; 2515 } 2516 2517 return true; 2518 } 2519 2520 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 2521 { 2522 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 2523 struct kvm_hv_hcall hc; 2524 u64 ret = HV_STATUS_SUCCESS; 2525 2526 /* 2527 * hypercall generates UD from non zero cpl and real mode 2528 * per HYPER-V spec 2529 */ 2530 if (kvm_x86_call(get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) { 2531 kvm_queue_exception(vcpu, UD_VECTOR); 2532 return 1; 2533 } 2534 2535 #ifdef CONFIG_X86_64 2536 if (is_64_bit_hypercall(vcpu)) { 2537 hc.param = kvm_rcx_read(vcpu); 2538 hc.ingpa = kvm_rdx_read(vcpu); 2539 hc.outgpa = kvm_r8_read(vcpu); 2540 } else 2541 #endif 2542 { 2543 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) | 2544 (kvm_rax_read(vcpu) & 0xffffffff); 2545 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) | 2546 (kvm_rcx_read(vcpu) & 0xffffffff); 2547 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) | 2548 (kvm_rsi_read(vcpu) & 0xffffffff); 2549 } 2550 2551 hc.code = hc.param & 0xffff; 2552 hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET; 2553 hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT); 2554 hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff; 2555 hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff; 2556 hc.rep = !!(hc.rep_cnt || hc.rep_idx); 2557 2558 trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt, 2559 hc.rep_idx, hc.ingpa, hc.outgpa); 2560 2561 if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) { 2562 ret = HV_STATUS_ACCESS_DENIED; 2563 goto hypercall_complete; 2564 } 2565 2566 if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) { 2567 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2568 goto hypercall_complete; 2569 } 2570 2571 if (hc.fast && is_xmm_fast_hypercall(&hc)) { 2572 if (unlikely(hv_vcpu->enforce_cpuid && 2573 !(hv_vcpu->cpuid_cache.features_edx & 2574 HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) { 2575 kvm_queue_exception(vcpu, UD_VECTOR); 2576 return 1; 2577 } 2578 2579 kvm_hv_hypercall_read_xmm(&hc); 2580 } 2581 2582 switch (hc.code) { 2583 case HVCALL_NOTIFY_LONG_SPIN_WAIT: 2584 if (unlikely(hc.rep || hc.var_cnt)) { 2585 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2586 break; 2587 } 2588 kvm_vcpu_on_spin(vcpu, true); 2589 break; 2590 case HVCALL_SIGNAL_EVENT: 2591 if (unlikely(hc.rep || hc.var_cnt)) { 2592 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2593 break; 2594 } 2595 ret = kvm_hvcall_signal_event(vcpu, &hc); 2596 if (ret != HV_STATUS_INVALID_PORT_ID) 2597 break; 2598 fallthrough; /* maybe userspace knows this conn_id */ 2599 case HVCALL_POST_MESSAGE: 2600 /* don't bother userspace if it has no way to handle it */ 2601 if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) { 2602 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2603 break; 2604 } 2605 goto hypercall_userspace_exit; 2606 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: 2607 if (unlikely(hc.var_cnt)) { 2608 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2609 break; 2610 } 2611 fallthrough; 2612 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: 2613 if (unlikely(!hc.rep_cnt || hc.rep_idx)) { 2614 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2615 break; 2616 } 2617 ret = kvm_hv_flush_tlb(vcpu, &hc); 2618 break; 2619 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: 2620 if (unlikely(hc.var_cnt)) { 2621 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2622 break; 2623 } 2624 fallthrough; 2625 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: 2626 if (unlikely(hc.rep)) { 2627 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2628 break; 2629 } 2630 ret = kvm_hv_flush_tlb(vcpu, &hc); 2631 break; 2632 case HVCALL_SEND_IPI: 2633 if (unlikely(hc.var_cnt)) { 2634 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2635 break; 2636 } 2637 fallthrough; 2638 case HVCALL_SEND_IPI_EX: 2639 if (unlikely(hc.rep)) { 2640 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2641 break; 2642 } 2643 ret = kvm_hv_send_ipi(vcpu, &hc); 2644 break; 2645 case HVCALL_POST_DEBUG_DATA: 2646 case HVCALL_RETRIEVE_DEBUG_DATA: 2647 if (unlikely(hc.fast)) { 2648 ret = HV_STATUS_INVALID_PARAMETER; 2649 break; 2650 } 2651 fallthrough; 2652 case HVCALL_RESET_DEBUG_SESSION: { 2653 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 2654 2655 if (!kvm_hv_is_syndbg_enabled(vcpu)) { 2656 ret = HV_STATUS_INVALID_HYPERCALL_CODE; 2657 break; 2658 } 2659 2660 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) { 2661 ret = HV_STATUS_OPERATION_DENIED; 2662 break; 2663 } 2664 goto hypercall_userspace_exit; 2665 } 2666 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX: 2667 if (unlikely(hc.fast)) { 2668 ret = HV_STATUS_INVALID_PARAMETER; 2669 break; 2670 } 2671 goto hypercall_userspace_exit; 2672 default: 2673 ret = HV_STATUS_INVALID_HYPERCALL_CODE; 2674 break; 2675 } 2676 2677 hypercall_complete: 2678 return kvm_hv_hypercall_complete(vcpu, ret); 2679 2680 hypercall_userspace_exit: 2681 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 2682 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL; 2683 vcpu->run->hyperv.u.hcall.input = hc.param; 2684 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa; 2685 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa; 2686 vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace; 2687 return 0; 2688 } 2689 2690 void kvm_hv_init_vm(struct kvm *kvm) 2691 { 2692 struct kvm_hv *hv = to_kvm_hv(kvm); 2693 2694 mutex_init(&hv->hv_lock); 2695 idr_init(&hv->conn_to_evt); 2696 } 2697 2698 void kvm_hv_destroy_vm(struct kvm *kvm) 2699 { 2700 struct kvm_hv *hv = to_kvm_hv(kvm); 2701 struct eventfd_ctx *eventfd; 2702 int i; 2703 2704 idr_for_each_entry(&hv->conn_to_evt, eventfd, i) 2705 eventfd_ctx_put(eventfd); 2706 idr_destroy(&hv->conn_to_evt); 2707 } 2708 2709 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd) 2710 { 2711 struct kvm_hv *hv = to_kvm_hv(kvm); 2712 struct eventfd_ctx *eventfd; 2713 int ret; 2714 2715 eventfd = eventfd_ctx_fdget(fd); 2716 if (IS_ERR(eventfd)) 2717 return PTR_ERR(eventfd); 2718 2719 mutex_lock(&hv->hv_lock); 2720 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1, 2721 GFP_KERNEL_ACCOUNT); 2722 mutex_unlock(&hv->hv_lock); 2723 2724 if (ret >= 0) 2725 return 0; 2726 2727 if (ret == -ENOSPC) 2728 ret = -EEXIST; 2729 eventfd_ctx_put(eventfd); 2730 return ret; 2731 } 2732 2733 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id) 2734 { 2735 struct kvm_hv *hv = to_kvm_hv(kvm); 2736 struct eventfd_ctx *eventfd; 2737 2738 mutex_lock(&hv->hv_lock); 2739 eventfd = idr_remove(&hv->conn_to_evt, conn_id); 2740 mutex_unlock(&hv->hv_lock); 2741 2742 if (!eventfd) 2743 return -ENOENT; 2744 2745 synchronize_srcu(&kvm->srcu); 2746 eventfd_ctx_put(eventfd); 2747 return 0; 2748 } 2749 2750 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args) 2751 { 2752 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) || 2753 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK)) 2754 return -EINVAL; 2755 2756 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN) 2757 return kvm_hv_eventfd_deassign(kvm, args->conn_id); 2758 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd); 2759 } 2760 2761 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, 2762 struct kvm_cpuid_entry2 __user *entries) 2763 { 2764 uint16_t evmcs_ver = 0; 2765 struct kvm_cpuid_entry2 cpuid_entries[] = { 2766 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS }, 2767 { .function = HYPERV_CPUID_INTERFACE }, 2768 { .function = HYPERV_CPUID_VERSION }, 2769 { .function = HYPERV_CPUID_FEATURES }, 2770 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO }, 2771 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS }, 2772 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS }, 2773 { .function = HYPERV_CPUID_SYNDBG_INTERFACE }, 2774 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES }, 2775 { .function = HYPERV_CPUID_NESTED_FEATURES }, 2776 }; 2777 int i, nent = ARRAY_SIZE(cpuid_entries); 2778 2779 if (kvm_x86_ops.nested_ops->get_evmcs_version) 2780 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu); 2781 2782 if (cpuid->nent < nent) 2783 return -E2BIG; 2784 2785 if (cpuid->nent > nent) 2786 cpuid->nent = nent; 2787 2788 for (i = 0; i < nent; i++) { 2789 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i]; 2790 u32 signature[3]; 2791 2792 switch (ent->function) { 2793 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS: 2794 memcpy(signature, "Linux KVM Hv", 12); 2795 2796 ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 2797 ent->ebx = signature[0]; 2798 ent->ecx = signature[1]; 2799 ent->edx = signature[2]; 2800 break; 2801 2802 case HYPERV_CPUID_INTERFACE: 2803 ent->eax = HYPERV_CPUID_SIGNATURE_EAX; 2804 break; 2805 2806 case HYPERV_CPUID_VERSION: 2807 /* 2808 * We implement some Hyper-V 2016 functions so let's use 2809 * this version. 2810 */ 2811 ent->eax = 0x00003839; 2812 ent->ebx = 0x000A0000; 2813 break; 2814 2815 case HYPERV_CPUID_FEATURES: 2816 ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE; 2817 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE; 2818 ent->eax |= HV_MSR_SYNIC_AVAILABLE; 2819 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE; 2820 ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE; 2821 ent->eax |= HV_MSR_HYPERCALL_AVAILABLE; 2822 ent->eax |= HV_MSR_VP_INDEX_AVAILABLE; 2823 ent->eax |= HV_MSR_RESET_AVAILABLE; 2824 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE; 2825 ent->eax |= HV_ACCESS_FREQUENCY_MSRS; 2826 ent->eax |= HV_ACCESS_REENLIGHTENMENT; 2827 ent->eax |= HV_ACCESS_TSC_INVARIANT; 2828 2829 ent->ebx |= HV_POST_MESSAGES; 2830 ent->ebx |= HV_SIGNAL_EVENTS; 2831 ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS; 2832 2833 ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE; 2834 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE; 2835 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; 2836 2837 ent->ebx |= HV_DEBUGGING; 2838 ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE; 2839 ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 2840 ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH; 2841 2842 /* 2843 * Direct Synthetic timers only make sense with in-kernel 2844 * LAPIC 2845 */ 2846 if (!vcpu || lapic_in_kernel(vcpu)) 2847 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE; 2848 2849 break; 2850 2851 case HYPERV_CPUID_ENLIGHTMENT_INFO: 2852 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; 2853 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; 2854 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; 2855 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED; 2856 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED; 2857 if (evmcs_ver) 2858 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; 2859 if (!cpu_smt_possible()) 2860 ent->eax |= HV_X64_NO_NONARCH_CORESHARING; 2861 2862 ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED; 2863 /* 2864 * Default number of spinlock retry attempts, matches 2865 * HyperV 2016. 2866 */ 2867 ent->ebx = 0x00000FFF; 2868 2869 break; 2870 2871 case HYPERV_CPUID_IMPLEMENT_LIMITS: 2872 /* Maximum number of virtual processors */ 2873 ent->eax = KVM_MAX_VCPUS; 2874 /* 2875 * Maximum number of logical processors, matches 2876 * HyperV 2016. 2877 */ 2878 ent->ebx = 64; 2879 2880 break; 2881 2882 case HYPERV_CPUID_NESTED_FEATURES: 2883 ent->eax = evmcs_ver; 2884 ent->eax |= HV_X64_NESTED_DIRECT_FLUSH; 2885 ent->eax |= HV_X64_NESTED_MSR_BITMAP; 2886 ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL; 2887 break; 2888 2889 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS: 2890 memcpy(signature, "Linux KVM Hv", 12); 2891 2892 ent->eax = 0; 2893 ent->ebx = signature[0]; 2894 ent->ecx = signature[1]; 2895 ent->edx = signature[2]; 2896 break; 2897 2898 case HYPERV_CPUID_SYNDBG_INTERFACE: 2899 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 2900 ent->eax = signature[0]; 2901 break; 2902 2903 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES: 2904 ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 2905 break; 2906 2907 default: 2908 break; 2909 } 2910 } 2911 2912 if (copy_to_user(entries, cpuid_entries, 2913 nent * sizeof(struct kvm_cpuid_entry2))) 2914 return -EFAULT; 2915 2916 return 0; 2917 } 2918
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.