~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kvm/mmu/mmu_internal.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef __KVM_X86_MMU_INTERNAL_H
  3 #define __KVM_X86_MMU_INTERNAL_H
  4 
  5 #include <linux/types.h>
  6 #include <linux/kvm_host.h>
  7 #include <asm/kvm_host.h>
  8 
  9 #ifdef CONFIG_KVM_PROVE_MMU
 10 #define KVM_MMU_WARN_ON(x) WARN_ON_ONCE(x)
 11 #else
 12 #define KVM_MMU_WARN_ON(x) BUILD_BUG_ON_INVALID(x)
 13 #endif
 14 
 15 /* Page table builder macros common to shadow (host) PTEs and guest PTEs. */
 16 #define __PT_BASE_ADDR_MASK GENMASK_ULL(51, 12)
 17 #define __PT_LEVEL_SHIFT(level, bits_per_level) \
 18         (PAGE_SHIFT + ((level) - 1) * (bits_per_level))
 19 #define __PT_INDEX(address, level, bits_per_level) \
 20         (((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1))
 21 
 22 #define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \
 23         ((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
 24 
 25 #define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \
 26         ((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
 27 
 28 #define __PT_ENT_PER_PAGE(bits_per_level)  (1 << (bits_per_level))
 29 
 30 /*
 31  * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT
 32  * bit, and thus are guaranteed to be non-zero when valid.  And, when a guest
 33  * PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE,
 34  * as the CPU would treat that as PRESENT PDPTR with reserved bits set.  Use
 35  * '' instead of INVALID_PAGE to indicate an invalid PAE root.
 36  */
 37 #define INVALID_PAE_ROOT        0
 38 #define IS_VALID_PAE_ROOT(x)    (!!(x))
 39 
 40 static inline hpa_t kvm_mmu_get_dummy_root(void)
 41 {
 42         return my_zero_pfn(0) << PAGE_SHIFT;
 43 }
 44 
 45 static inline bool kvm_mmu_is_dummy_root(hpa_t shadow_page)
 46 {
 47         return is_zero_pfn(shadow_page >> PAGE_SHIFT);
 48 }
 49 
 50 typedef u64 __rcu *tdp_ptep_t;
 51 
 52 struct kvm_mmu_page {
 53         /*
 54          * Note, "link" through "spt" fit in a single 64 byte cache line on
 55          * 64-bit kernels, keep it that way unless there's a reason not to.
 56          */
 57         struct list_head link;
 58         struct hlist_node hash_link;
 59 
 60         bool tdp_mmu_page;
 61         bool unsync;
 62         union {
 63                 u8 mmu_valid_gen;
 64 
 65                 /* Only accessed under slots_lock.  */
 66                 bool tdp_mmu_scheduled_root_to_zap;
 67         };
 68 
 69          /*
 70           * The shadow page can't be replaced by an equivalent huge page
 71           * because it is being used to map an executable page in the guest
 72           * and the NX huge page mitigation is enabled.
 73           */
 74         bool nx_huge_page_disallowed;
 75 
 76         /*
 77          * The following two entries are used to key the shadow page in the
 78          * hash table.
 79          */
 80         union kvm_mmu_page_role role;
 81         gfn_t gfn;
 82 
 83         u64 *spt;
 84 
 85         /*
 86          * Stores the result of the guest translation being shadowed by each
 87          * SPTE.  KVM shadows two types of guest translations: nGPA -> GPA
 88          * (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both
 89          * cases the result of the translation is a GPA and a set of access
 90          * constraints.
 91          *
 92          * The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed
 93          * access permissions are stored in the lower bits. Note, for
 94          * convenience and uniformity across guests, the access permissions are
 95          * stored in KVM format (e.g.  ACC_EXEC_MASK) not the raw guest format.
 96          */
 97         u64 *shadowed_translation;
 98 
 99         /* Currently serving as active root */
100         union {
101                 int root_count;
102                 refcount_t tdp_mmu_root_count;
103         };
104         unsigned int unsync_children;
105         union {
106                 struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
107                 tdp_ptep_t ptep;
108         };
109         DECLARE_BITMAP(unsync_child_bitmap, 512);
110 
111         /*
112          * Tracks shadow pages that, if zapped, would allow KVM to create an NX
113          * huge page.  A shadow page will have nx_huge_page_disallowed set but
114          * not be on the list if a huge page is disallowed for other reasons,
115          * e.g. because KVM is shadowing a PTE at the same gfn, the memslot
116          * isn't properly aligned, etc...
117          */
118         struct list_head possible_nx_huge_page_link;
119 #ifdef CONFIG_X86_32
120         /*
121          * Used out of the mmu-lock to avoid reading spte values while an
122          * update is in progress; see the comments in __get_spte_lockless().
123          */
124         int clear_spte_count;
125 #endif
126 
127         /* Number of writes since the last time traversal visited this page.  */
128         atomic_t write_flooding_count;
129 
130 #ifdef CONFIG_X86_64
131         /* Used for freeing the page asynchronously if it is a TDP MMU page. */
132         struct rcu_head rcu_head;
133 #endif
134 };
135 
136 extern struct kmem_cache *mmu_page_header_cache;
137 
138 static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role)
139 {
140         return role.smm ? 1 : 0;
141 }
142 
143 static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
144 {
145         return kvm_mmu_role_as_id(sp->role);
146 }
147 
148 static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm_mmu_page *sp)
149 {
150         /*
151          * When using the EPT page-modification log, the GPAs in the CPU dirty
152          * log would come from L2 rather than L1.  Therefore, we need to rely
153          * on write protection to record dirty pages, which bypasses PML, since
154          * writes now result in a vmexit.  Note, the check on CPU dirty logging
155          * being enabled is mandatory as the bits used to denote WP-only SPTEs
156          * are reserved for PAE paging (32-bit KVM).
157          */
158         return kvm_x86_ops.cpu_dirty_log_size && sp->role.guest_mode;
159 }
160 
161 static inline gfn_t gfn_round_for_level(gfn_t gfn, int level)
162 {
163         return gfn & -KVM_PAGES_PER_HPAGE(level);
164 }
165 
166 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
167                             gfn_t gfn, bool can_unsync, bool prefetch);
168 
169 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
170 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
171 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
172                                     struct kvm_memory_slot *slot, u64 gfn,
173                                     int min_level);
174 
175 /* Flush the given page (huge or not) of guest memory. */
176 static inline void kvm_flush_remote_tlbs_gfn(struct kvm *kvm, gfn_t gfn, int level)
177 {
178         kvm_flush_remote_tlbs_range(kvm, gfn_round_for_level(gfn, level),
179                                     KVM_PAGES_PER_HPAGE(level));
180 }
181 
182 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
183 
184 extern int nx_huge_pages;
185 static inline bool is_nx_huge_page_enabled(struct kvm *kvm)
186 {
187         return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages;
188 }
189 
190 struct kvm_page_fault {
191         /* arguments to kvm_mmu_do_page_fault.  */
192         const gpa_t addr;
193         const u64 error_code;
194         const bool prefetch;
195 
196         /* Derived from error_code.  */
197         const bool exec;
198         const bool write;
199         const bool present;
200         const bool rsvd;
201         const bool user;
202 
203         /* Derived from mmu and global state.  */
204         const bool is_tdp;
205         const bool is_private;
206         const bool nx_huge_page_workaround_enabled;
207 
208         /*
209          * Whether a >4KB mapping can be created or is forbidden due to NX
210          * hugepages.
211          */
212         bool huge_page_disallowed;
213 
214         /*
215          * Maximum page size that can be created for this fault; input to
216          * FNAME(fetch), direct_map() and kvm_tdp_mmu_map().
217          */
218         u8 max_level;
219 
220         /*
221          * Page size that can be created based on the max_level and the
222          * page size used by the host mapping.
223          */
224         u8 req_level;
225 
226         /*
227          * Page size that will be created based on the req_level and
228          * huge_page_disallowed.
229          */
230         u8 goal_level;
231 
232         /* Shifted addr, or result of guest page table walk if addr is a gva.  */
233         gfn_t gfn;
234 
235         /* The memslot containing gfn. May be NULL. */
236         struct kvm_memory_slot *slot;
237 
238         /* Outputs of kvm_faultin_pfn.  */
239         unsigned long mmu_seq;
240         kvm_pfn_t pfn;
241         hva_t hva;
242         bool map_writable;
243 
244         /*
245          * Indicates the guest is trying to write a gfn that contains one or
246          * more of the PTEs used to translate the write itself, i.e. the access
247          * is changing its own translation in the guest page tables.
248          */
249         bool write_fault_to_shadow_pgtable;
250 };
251 
252 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
253 
254 /*
255  * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(),
256  * and of course kvm_mmu_do_page_fault().
257  *
258  * RET_PF_CONTINUE: So far, so good, keep handling the page fault.
259  * RET_PF_RETRY: let CPU fault again on the address.
260  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
261  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
262  * RET_PF_FIXED: The faulting entry has been fixed.
263  * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
264  *
265  * Any names added to this enum should be exported to userspace for use in
266  * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h
267  *
268  * Note, all values must be greater than or equal to zero so as not to encroach
269  * on -errno return values.  Somewhat arbitrarily use '' for CONTINUE, which
270  * will allow for efficient machine code when checking for CONTINUE, e.g.
271  * "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero.
272  */
273 enum {
274         RET_PF_CONTINUE = 0,
275         RET_PF_RETRY,
276         RET_PF_EMULATE,
277         RET_PF_INVALID,
278         RET_PF_FIXED,
279         RET_PF_SPURIOUS,
280 };
281 
282 static inline void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
283                                                      struct kvm_page_fault *fault)
284 {
285         kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
286                                       PAGE_SIZE, fault->write, fault->exec,
287                                       fault->is_private);
288 }
289 
290 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
291                                         u64 err, bool prefetch,
292                                         int *emulation_type, u8 *level)
293 {
294         struct kvm_page_fault fault = {
295                 .addr = cr2_or_gpa,
296                 .error_code = err,
297                 .exec = err & PFERR_FETCH_MASK,
298                 .write = err & PFERR_WRITE_MASK,
299                 .present = err & PFERR_PRESENT_MASK,
300                 .rsvd = err & PFERR_RSVD_MASK,
301                 .user = err & PFERR_USER_MASK,
302                 .prefetch = prefetch,
303                 .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
304                 .nx_huge_page_workaround_enabled =
305                         is_nx_huge_page_enabled(vcpu->kvm),
306 
307                 .max_level = KVM_MAX_HUGEPAGE_LEVEL,
308                 .req_level = PG_LEVEL_4K,
309                 .goal_level = PG_LEVEL_4K,
310                 .is_private = err & PFERR_PRIVATE_ACCESS,
311 
312                 .pfn = KVM_PFN_ERR_FAULT,
313                 .hva = KVM_HVA_ERR_BAD,
314         };
315         int r;
316 
317         if (vcpu->arch.mmu->root_role.direct) {
318                 fault.gfn = fault.addr >> PAGE_SHIFT;
319                 fault.slot = kvm_vcpu_gfn_to_memslot(vcpu, fault.gfn);
320         }
321 
322         if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && fault.is_tdp)
323                 r = kvm_tdp_page_fault(vcpu, &fault);
324         else
325                 r = vcpu->arch.mmu->page_fault(vcpu, &fault);
326 
327         /*
328          * Not sure what's happening, but punt to userspace and hope that
329          * they can fix it by changing memory to shared, or they can
330          * provide a better error.
331          */
332         if (r == RET_PF_EMULATE && fault.is_private) {
333                 pr_warn_ratelimited("kvm: unexpected emulation request on private memory\n");
334                 kvm_mmu_prepare_memory_fault_exit(vcpu, &fault);
335                 return -EFAULT;
336         }
337 
338         if (fault.write_fault_to_shadow_pgtable && emulation_type)
339                 *emulation_type |= EMULTYPE_WRITE_PF_TO_SP;
340         if (level)
341                 *level = fault.goal_level;
342 
343         return r;
344 }
345 
346 int kvm_mmu_max_mapping_level(struct kvm *kvm,
347                               const struct kvm_memory_slot *slot, gfn_t gfn,
348                               int max_level);
349 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
350 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level);
351 
352 void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
353 
354 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
355 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
356 
357 #endif /* __KVM_X86_MMU_INTERNAL_H */
358 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php