~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kvm/pmu.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
  4  *
  5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
  6  *
  7  * Authors:
  8  *   Avi Kivity   <avi@redhat.com>
  9  *   Gleb Natapov <gleb@redhat.com>
 10  *   Wei Huang    <wei@redhat.com>
 11  */
 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 13 
 14 #include <linux/types.h>
 15 #include <linux/kvm_host.h>
 16 #include <linux/perf_event.h>
 17 #include <linux/bsearch.h>
 18 #include <linux/sort.h>
 19 #include <asm/perf_event.h>
 20 #include <asm/cpu_device_id.h>
 21 #include "x86.h"
 22 #include "cpuid.h"
 23 #include "lapic.h"
 24 #include "pmu.h"
 25 
 26 /* This is enough to filter the vast majority of currently defined events. */
 27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
 28 
 29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
 30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
 31 
 32 struct kvm_pmu_emulated_event_selectors __read_mostly kvm_pmu_eventsel;
 33 EXPORT_SYMBOL_GPL(kvm_pmu_eventsel);
 34 
 35 /* Precise Distribution of Instructions Retired (PDIR) */
 36 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
 37         X86_MATCH_VFM(INTEL_ICELAKE_D, NULL),
 38         X86_MATCH_VFM(INTEL_ICELAKE_X, NULL),
 39         /* Instruction-Accurate PDIR (PDIR++) */
 40         X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL),
 41         {}
 42 };
 43 
 44 /* Precise Distribution (PDist) */
 45 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
 46         X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL),
 47         {}
 48 };
 49 
 50 /* NOTE:
 51  * - Each perf counter is defined as "struct kvm_pmc";
 52  * - There are two types of perf counters: general purpose (gp) and fixed.
 53  *   gp counters are stored in gp_counters[] and fixed counters are stored
 54  *   in fixed_counters[] respectively. Both of them are part of "struct
 55  *   kvm_pmu";
 56  * - pmu.c understands the difference between gp counters and fixed counters.
 57  *   However AMD doesn't support fixed-counters;
 58  * - There are three types of index to access perf counters (PMC):
 59  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
 60  *        has MSR_K7_PERFCTRn and, for families 15H and later,
 61  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
 62  *        aliased to MSR_K7_PERFCTRn.
 63  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
 64  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
 65  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
 66  *        that it also supports fixed counters. idx can be used to as index to
 67  *        gp and fixed counters.
 68  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
 69  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
 70  *        all perf counters (both gp and fixed). The mapping relationship
 71  *        between pmc and perf counters is as the following:
 72  *        * Intel: [0 .. KVM_MAX_NR_INTEL_GP_COUNTERS-1] <=> gp counters
 73  *                 [KVM_FIXED_PMC_BASE_IDX .. KVM_FIXED_PMC_BASE_IDX + 2] <=> fixed
 74  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
 75  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
 76  */
 77 
 78 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
 79 
 80 #define KVM_X86_PMU_OP(func)                                         \
 81         DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,                          \
 82                                 *(((struct kvm_pmu_ops *)0)->func));
 83 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
 84 #include <asm/kvm-x86-pmu-ops.h>
 85 
 86 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
 87 {
 88         memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
 89 
 90 #define __KVM_X86_PMU_OP(func) \
 91         static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
 92 #define KVM_X86_PMU_OP(func) \
 93         WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
 94 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
 95 #include <asm/kvm-x86-pmu-ops.h>
 96 #undef __KVM_X86_PMU_OP
 97 }
 98 
 99 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
100 {
101         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
102         bool skip_pmi = false;
103 
104         if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
105                 if (!in_pmi) {
106                         /*
107                          * TODO: KVM is currently _choosing_ to not generate records
108                          * for emulated instructions, avoiding BUFFER_OVF PMI when
109                          * there are no records. Strictly speaking, it should be done
110                          * as well in the right context to improve sampling accuracy.
111                          */
112                         skip_pmi = true;
113                 } else {
114                         /* Indicate PEBS overflow PMI to guest. */
115                         skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
116                                                       (unsigned long *)&pmu->global_status);
117                 }
118         } else {
119                 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
120         }
121 
122         if (pmc->intr && !skip_pmi)
123                 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
124 }
125 
126 static void kvm_perf_overflow(struct perf_event *perf_event,
127                               struct perf_sample_data *data,
128                               struct pt_regs *regs)
129 {
130         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
131 
132         /*
133          * Ignore asynchronous overflow events for counters that are scheduled
134          * to be reprogrammed, e.g. if a PMI for the previous event races with
135          * KVM's handling of a related guest WRMSR.
136          */
137         if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
138                 return;
139 
140         __kvm_perf_overflow(pmc, true);
141 
142         kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
143 }
144 
145 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
146 {
147         /*
148          * For some model specific pebs counters with special capabilities
149          * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
150          * level to the maximum value (currently 3, backwards compatible)
151          * so that the perf subsystem would assign specific hardware counter
152          * with that capability for vPMC.
153          */
154         if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
155             (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
156                 return 3;
157 
158         /*
159          * The non-zero precision level of guest event makes the ordinary
160          * guest event becomes a guest PEBS event and triggers the host
161          * PEBS PMI handler to determine whether the PEBS overflow PMI
162          * comes from the host counters or the guest.
163          */
164         return 1;
165 }
166 
167 static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
168 {
169         u64 sample_period = (-counter_value) & pmc_bitmask(pmc);
170 
171         if (!sample_period)
172                 sample_period = pmc_bitmask(pmc) + 1;
173         return sample_period;
174 }
175 
176 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
177                                  bool exclude_user, bool exclude_kernel,
178                                  bool intr)
179 {
180         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
181         struct perf_event *event;
182         struct perf_event_attr attr = {
183                 .type = type,
184                 .size = sizeof(attr),
185                 .pinned = true,
186                 .exclude_idle = true,
187                 .exclude_host = 1,
188                 .exclude_user = exclude_user,
189                 .exclude_kernel = exclude_kernel,
190                 .config = config,
191         };
192         bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
193 
194         attr.sample_period = get_sample_period(pmc, pmc->counter);
195 
196         if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
197             (boot_cpu_has(X86_FEATURE_RTM) || boot_cpu_has(X86_FEATURE_HLE))) {
198                 /*
199                  * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
200                  * period. Just clear the sample period so at least
201                  * allocating the counter doesn't fail.
202                  */
203                 attr.sample_period = 0;
204         }
205         if (pebs) {
206                 /*
207                  * For most PEBS hardware events, the difference in the software
208                  * precision levels of guest and host PEBS events will not affect
209                  * the accuracy of the PEBS profiling result, because the "event IP"
210                  * in the PEBS record is calibrated on the guest side.
211                  */
212                 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
213         }
214 
215         event = perf_event_create_kernel_counter(&attr, -1, current,
216                                                  kvm_perf_overflow, pmc);
217         if (IS_ERR(event)) {
218                 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
219                             PTR_ERR(event), pmc->idx);
220                 return PTR_ERR(event);
221         }
222 
223         pmc->perf_event = event;
224         pmc_to_pmu(pmc)->event_count++;
225         pmc->is_paused = false;
226         pmc->intr = intr || pebs;
227         return 0;
228 }
229 
230 static bool pmc_pause_counter(struct kvm_pmc *pmc)
231 {
232         u64 counter = pmc->counter;
233         u64 prev_counter;
234 
235         /* update counter, reset event value to avoid redundant accumulation */
236         if (pmc->perf_event && !pmc->is_paused)
237                 counter += perf_event_pause(pmc->perf_event, true);
238 
239         /*
240          * Snapshot the previous counter *after* accumulating state from perf.
241          * If overflow already happened, hardware (via perf) is responsible for
242          * generating a PMI.  KVM just needs to detect overflow on emulated
243          * counter events that haven't yet been processed.
244          */
245         prev_counter = counter & pmc_bitmask(pmc);
246 
247         counter += pmc->emulated_counter;
248         pmc->counter = counter & pmc_bitmask(pmc);
249 
250         pmc->emulated_counter = 0;
251         pmc->is_paused = true;
252 
253         return pmc->counter < prev_counter;
254 }
255 
256 static bool pmc_resume_counter(struct kvm_pmc *pmc)
257 {
258         if (!pmc->perf_event)
259                 return false;
260 
261         /* recalibrate sample period and check if it's accepted by perf core */
262         if (is_sampling_event(pmc->perf_event) &&
263             perf_event_period(pmc->perf_event,
264                               get_sample_period(pmc, pmc->counter)))
265                 return false;
266 
267         if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
268             (!!pmc->perf_event->attr.precise_ip))
269                 return false;
270 
271         /* reuse perf_event to serve as pmc_reprogram_counter() does*/
272         perf_event_enable(pmc->perf_event);
273         pmc->is_paused = false;
274 
275         return true;
276 }
277 
278 static void pmc_release_perf_event(struct kvm_pmc *pmc)
279 {
280         if (pmc->perf_event) {
281                 perf_event_release_kernel(pmc->perf_event);
282                 pmc->perf_event = NULL;
283                 pmc->current_config = 0;
284                 pmc_to_pmu(pmc)->event_count--;
285         }
286 }
287 
288 static void pmc_stop_counter(struct kvm_pmc *pmc)
289 {
290         if (pmc->perf_event) {
291                 pmc->counter = pmc_read_counter(pmc);
292                 pmc_release_perf_event(pmc);
293         }
294 }
295 
296 static void pmc_update_sample_period(struct kvm_pmc *pmc)
297 {
298         if (!pmc->perf_event || pmc->is_paused ||
299             !is_sampling_event(pmc->perf_event))
300                 return;
301 
302         perf_event_period(pmc->perf_event,
303                           get_sample_period(pmc, pmc->counter));
304 }
305 
306 void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
307 {
308         /*
309          * Drop any unconsumed accumulated counts, the WRMSR is a write, not a
310          * read-modify-write.  Adjust the counter value so that its value is
311          * relative to the current count, as reading the current count from
312          * perf is faster than pausing and repgrogramming the event in order to
313          * reset it to ''.  Note, this very sneakily offsets the accumulated
314          * emulated count too, by using pmc_read_counter()!
315          */
316         pmc->emulated_counter = 0;
317         pmc->counter += val - pmc_read_counter(pmc);
318         pmc->counter &= pmc_bitmask(pmc);
319         pmc_update_sample_period(pmc);
320 }
321 EXPORT_SYMBOL_GPL(pmc_write_counter);
322 
323 static int filter_cmp(const void *pa, const void *pb, u64 mask)
324 {
325         u64 a = *(u64 *)pa & mask;
326         u64 b = *(u64 *)pb & mask;
327 
328         return (a > b) - (a < b);
329 }
330 
331 
332 static int filter_sort_cmp(const void *pa, const void *pb)
333 {
334         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
335                                    KVM_PMU_MASKED_ENTRY_EXCLUDE));
336 }
337 
338 /*
339  * For the event filter, searching is done on the 'includes' list and
340  * 'excludes' list separately rather than on the 'events' list (which
341  * has both).  As a result the exclude bit can be ignored.
342  */
343 static int filter_event_cmp(const void *pa, const void *pb)
344 {
345         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
346 }
347 
348 static int find_filter_index(u64 *events, u64 nevents, u64 key)
349 {
350         u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
351                           filter_event_cmp);
352 
353         if (!fe)
354                 return -1;
355 
356         return fe - events;
357 }
358 
359 static bool is_filter_entry_match(u64 filter_event, u64 umask)
360 {
361         u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
362         u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
363 
364         BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
365                      (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
366                      ARCH_PERFMON_EVENTSEL_UMASK);
367 
368         return (umask & mask) == match;
369 }
370 
371 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
372 {
373         u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
374         u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
375         int i, index;
376 
377         index = find_filter_index(events, nevents, event_select);
378         if (index < 0)
379                 return false;
380 
381         /*
382          * Entries are sorted by the event select.  Walk the list in both
383          * directions to process all entries with the targeted event select.
384          */
385         for (i = index; i < nevents; i++) {
386                 if (filter_event_cmp(&events[i], &event_select))
387                         break;
388 
389                 if (is_filter_entry_match(events[i], umask))
390                         return true;
391         }
392 
393         for (i = index - 1; i >= 0; i--) {
394                 if (filter_event_cmp(&events[i], &event_select))
395                         break;
396 
397                 if (is_filter_entry_match(events[i], umask))
398                         return true;
399         }
400 
401         return false;
402 }
403 
404 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
405                                 u64 eventsel)
406 {
407         if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
408             !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
409                 return f->action == KVM_PMU_EVENT_ALLOW;
410 
411         return f->action == KVM_PMU_EVENT_DENY;
412 }
413 
414 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
415                                    int idx)
416 {
417         int fixed_idx = idx - KVM_FIXED_PMC_BASE_IDX;
418 
419         if (filter->action == KVM_PMU_EVENT_DENY &&
420             test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
421                 return false;
422         if (filter->action == KVM_PMU_EVENT_ALLOW &&
423             !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
424                 return false;
425 
426         return true;
427 }
428 
429 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
430 {
431         struct kvm_x86_pmu_event_filter *filter;
432         struct kvm *kvm = pmc->vcpu->kvm;
433 
434         filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
435         if (!filter)
436                 return true;
437 
438         if (pmc_is_gp(pmc))
439                 return is_gp_event_allowed(filter, pmc->eventsel);
440 
441         return is_fixed_event_allowed(filter, pmc->idx);
442 }
443 
444 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
445 {
446         return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
447                check_pmu_event_filter(pmc);
448 }
449 
450 static int reprogram_counter(struct kvm_pmc *pmc)
451 {
452         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
453         u64 eventsel = pmc->eventsel;
454         u64 new_config = eventsel;
455         bool emulate_overflow;
456         u8 fixed_ctr_ctrl;
457 
458         emulate_overflow = pmc_pause_counter(pmc);
459 
460         if (!pmc_event_is_allowed(pmc))
461                 return 0;
462 
463         if (emulate_overflow)
464                 __kvm_perf_overflow(pmc, false);
465 
466         if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
467                 printk_once("kvm pmu: pin control bit is ignored\n");
468 
469         if (pmc_is_fixed(pmc)) {
470                 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
471                                                   pmc->idx - KVM_FIXED_PMC_BASE_IDX);
472                 if (fixed_ctr_ctrl & INTEL_FIXED_0_KERNEL)
473                         eventsel |= ARCH_PERFMON_EVENTSEL_OS;
474                 if (fixed_ctr_ctrl & INTEL_FIXED_0_USER)
475                         eventsel |= ARCH_PERFMON_EVENTSEL_USR;
476                 if (fixed_ctr_ctrl & INTEL_FIXED_0_ENABLE_PMI)
477                         eventsel |= ARCH_PERFMON_EVENTSEL_INT;
478                 new_config = (u64)fixed_ctr_ctrl;
479         }
480 
481         if (pmc->current_config == new_config && pmc_resume_counter(pmc))
482                 return 0;
483 
484         pmc_release_perf_event(pmc);
485 
486         pmc->current_config = new_config;
487 
488         return pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
489                                      (eventsel & pmu->raw_event_mask),
490                                      !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
491                                      !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
492                                      eventsel & ARCH_PERFMON_EVENTSEL_INT);
493 }
494 
495 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
496 {
497         DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
498         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
499         struct kvm_pmc *pmc;
500         int bit;
501 
502         bitmap_copy(bitmap, pmu->reprogram_pmi, X86_PMC_IDX_MAX);
503 
504         /*
505          * The reprogramming bitmap can be written asynchronously by something
506          * other than the task that holds vcpu->mutex, take care to clear only
507          * the bits that will actually processed.
508          */
509         BUILD_BUG_ON(sizeof(bitmap) != sizeof(atomic64_t));
510         atomic64_andnot(*(s64 *)bitmap, &pmu->__reprogram_pmi);
511 
512         kvm_for_each_pmc(pmu, pmc, bit, bitmap) {
513                 /*
514                  * If reprogramming fails, e.g. due to contention, re-set the
515                  * regprogram bit set, i.e. opportunistically try again on the
516                  * next PMU refresh.  Don't make a new request as doing so can
517                  * stall the guest if reprogramming repeatedly fails.
518                  */
519                 if (reprogram_counter(pmc))
520                         set_bit(pmc->idx, pmu->reprogram_pmi);
521         }
522 
523         /*
524          * Release unused perf_events if the corresponding guest MSRs weren't
525          * accessed during the last vCPU time slice (need_cleanup is set when
526          * the vCPU is scheduled back in).
527          */
528         if (unlikely(pmu->need_cleanup))
529                 kvm_pmu_cleanup(vcpu);
530 }
531 
532 int kvm_pmu_check_rdpmc_early(struct kvm_vcpu *vcpu, unsigned int idx)
533 {
534         /*
535          * On Intel, VMX interception has priority over RDPMC exceptions that
536          * aren't already handled by the emulator, i.e. there are no additional
537          * check needed for Intel PMUs.
538          *
539          * On AMD, _all_ exceptions on RDPMC have priority over SVM intercepts,
540          * i.e. an invalid PMC results in a #GP, not #VMEXIT.
541          */
542         if (!kvm_pmu_ops.check_rdpmc_early)
543                 return 0;
544 
545         return kvm_pmu_call(check_rdpmc_early)(vcpu, idx);
546 }
547 
548 bool is_vmware_backdoor_pmc(u32 pmc_idx)
549 {
550         switch (pmc_idx) {
551         case VMWARE_BACKDOOR_PMC_HOST_TSC:
552         case VMWARE_BACKDOOR_PMC_REAL_TIME:
553         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
554                 return true;
555         }
556         return false;
557 }
558 
559 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
560 {
561         u64 ctr_val;
562 
563         switch (idx) {
564         case VMWARE_BACKDOOR_PMC_HOST_TSC:
565                 ctr_val = rdtsc();
566                 break;
567         case VMWARE_BACKDOOR_PMC_REAL_TIME:
568                 ctr_val = ktime_get_boottime_ns();
569                 break;
570         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
571                 ctr_val = ktime_get_boottime_ns() +
572                         vcpu->kvm->arch.kvmclock_offset;
573                 break;
574         default:
575                 return 1;
576         }
577 
578         *data = ctr_val;
579         return 0;
580 }
581 
582 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
583 {
584         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
585         struct kvm_pmc *pmc;
586         u64 mask = ~0ull;
587 
588         if (!pmu->version)
589                 return 1;
590 
591         if (is_vmware_backdoor_pmc(idx))
592                 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
593 
594         pmc = kvm_pmu_call(rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
595         if (!pmc)
596                 return 1;
597 
598         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
599             (kvm_x86_call(get_cpl)(vcpu) != 0) &&
600             kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
601                 return 1;
602 
603         *data = pmc_read_counter(pmc) & mask;
604         return 0;
605 }
606 
607 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
608 {
609         if (lapic_in_kernel(vcpu)) {
610                 kvm_pmu_call(deliver_pmi)(vcpu);
611                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
612         }
613 }
614 
615 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
616 {
617         switch (msr) {
618         case MSR_CORE_PERF_GLOBAL_STATUS:
619         case MSR_CORE_PERF_GLOBAL_CTRL:
620         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
621                 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
622         default:
623                 break;
624         }
625         return kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr) ||
626                kvm_pmu_call(is_valid_msr)(vcpu, msr);
627 }
628 
629 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
630 {
631         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
632         struct kvm_pmc *pmc = kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr);
633 
634         if (pmc)
635                 __set_bit(pmc->idx, pmu->pmc_in_use);
636 }
637 
638 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
639 {
640         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
641         u32 msr = msr_info->index;
642 
643         switch (msr) {
644         case MSR_CORE_PERF_GLOBAL_STATUS:
645         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
646                 msr_info->data = pmu->global_status;
647                 break;
648         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
649         case MSR_CORE_PERF_GLOBAL_CTRL:
650                 msr_info->data = pmu->global_ctrl;
651                 break;
652         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
653         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
654                 msr_info->data = 0;
655                 break;
656         default:
657                 return kvm_pmu_call(get_msr)(vcpu, msr_info);
658         }
659 
660         return 0;
661 }
662 
663 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
664 {
665         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
666         u32 msr = msr_info->index;
667         u64 data = msr_info->data;
668         u64 diff;
669 
670         /*
671          * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
672          * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
673          */
674         switch (msr) {
675         case MSR_CORE_PERF_GLOBAL_STATUS:
676                 if (!msr_info->host_initiated)
677                         return 1; /* RO MSR */
678                 fallthrough;
679         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
680                 /* Per PPR, Read-only MSR. Writes are ignored. */
681                 if (!msr_info->host_initiated)
682                         break;
683 
684                 if (data & pmu->global_status_rsvd)
685                         return 1;
686 
687                 pmu->global_status = data;
688                 break;
689         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
690                 data &= ~pmu->global_ctrl_rsvd;
691                 fallthrough;
692         case MSR_CORE_PERF_GLOBAL_CTRL:
693                 if (!kvm_valid_perf_global_ctrl(pmu, data))
694                         return 1;
695 
696                 if (pmu->global_ctrl != data) {
697                         diff = pmu->global_ctrl ^ data;
698                         pmu->global_ctrl = data;
699                         reprogram_counters(pmu, diff);
700                 }
701                 break;
702         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
703                 /*
704                  * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
705                  * GLOBAL_STATUS, and so the set of reserved bits is the same.
706                  */
707                 if (data & pmu->global_status_rsvd)
708                         return 1;
709                 fallthrough;
710         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
711                 if (!msr_info->host_initiated)
712                         pmu->global_status &= ~data;
713                 break;
714         default:
715                 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
716                 return kvm_pmu_call(set_msr)(vcpu, msr_info);
717         }
718 
719         return 0;
720 }
721 
722 static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
723 {
724         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
725         struct kvm_pmc *pmc;
726         int i;
727 
728         pmu->need_cleanup = false;
729 
730         bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
731 
732         kvm_for_each_pmc(pmu, pmc, i, pmu->all_valid_pmc_idx) {
733                 pmc_stop_counter(pmc);
734                 pmc->counter = 0;
735                 pmc->emulated_counter = 0;
736 
737                 if (pmc_is_gp(pmc))
738                         pmc->eventsel = 0;
739         }
740 
741         pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
742 
743         kvm_pmu_call(reset)(vcpu);
744 }
745 
746 
747 /*
748  * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
749  * and/or PERF_CAPABILITIES.
750  */
751 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
752 {
753         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
754 
755         if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
756                 return;
757 
758         /*
759          * Stop/release all existing counters/events before realizing the new
760          * vPMU model.
761          */
762         kvm_pmu_reset(vcpu);
763 
764         pmu->version = 0;
765         pmu->nr_arch_gp_counters = 0;
766         pmu->nr_arch_fixed_counters = 0;
767         pmu->counter_bitmask[KVM_PMC_GP] = 0;
768         pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
769         pmu->reserved_bits = 0xffffffff00200000ull;
770         pmu->raw_event_mask = X86_RAW_EVENT_MASK;
771         pmu->global_ctrl_rsvd = ~0ull;
772         pmu->global_status_rsvd = ~0ull;
773         pmu->fixed_ctr_ctrl_rsvd = ~0ull;
774         pmu->pebs_enable_rsvd = ~0ull;
775         pmu->pebs_data_cfg_rsvd = ~0ull;
776         bitmap_zero(pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX);
777 
778         if (!vcpu->kvm->arch.enable_pmu)
779                 return;
780 
781         kvm_pmu_call(refresh)(vcpu);
782 
783         /*
784          * At RESET, both Intel and AMD CPUs set all enable bits for general
785          * purpose counters in IA32_PERF_GLOBAL_CTRL (so that software that
786          * was written for v1 PMUs don't unknowingly leave GP counters disabled
787          * in the global controls).  Emulate that behavior when refreshing the
788          * PMU so that userspace doesn't need to manually set PERF_GLOBAL_CTRL.
789          */
790         if (kvm_pmu_has_perf_global_ctrl(pmu) && pmu->nr_arch_gp_counters)
791                 pmu->global_ctrl = GENMASK_ULL(pmu->nr_arch_gp_counters - 1, 0);
792 }
793 
794 void kvm_pmu_init(struct kvm_vcpu *vcpu)
795 {
796         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
797 
798         memset(pmu, 0, sizeof(*pmu));
799         kvm_pmu_call(init)(vcpu);
800         kvm_pmu_refresh(vcpu);
801 }
802 
803 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
804 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
805 {
806         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
807         struct kvm_pmc *pmc = NULL;
808         DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
809         int i;
810 
811         pmu->need_cleanup = false;
812 
813         bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
814                       pmu->pmc_in_use, X86_PMC_IDX_MAX);
815 
816         kvm_for_each_pmc(pmu, pmc, i, bitmask) {
817                 if (pmc->perf_event && !pmc_speculative_in_use(pmc))
818                         pmc_stop_counter(pmc);
819         }
820 
821         kvm_pmu_call(cleanup)(vcpu);
822 
823         bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
824 }
825 
826 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
827 {
828         kvm_pmu_reset(vcpu);
829 }
830 
831 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
832 {
833         pmc->emulated_counter++;
834         kvm_pmu_request_counter_reprogram(pmc);
835 }
836 
837 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
838 {
839         bool select_os, select_user;
840         u64 config;
841 
842         if (pmc_is_gp(pmc)) {
843                 config = pmc->eventsel;
844                 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
845                 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
846         } else {
847                 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
848                                           pmc->idx - KVM_FIXED_PMC_BASE_IDX);
849                 select_os = config & INTEL_FIXED_0_KERNEL;
850                 select_user = config & INTEL_FIXED_0_USER;
851         }
852 
853         /*
854          * Skip the CPL lookup, which isn't free on Intel, if the result will
855          * be the same regardless of the CPL.
856          */
857         if (select_os == select_user)
858                 return select_os;
859 
860         return (kvm_x86_call(get_cpl)(pmc->vcpu) == 0) ? select_os :
861                                                          select_user;
862 }
863 
864 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 eventsel)
865 {
866         DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX);
867         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
868         struct kvm_pmc *pmc;
869         int i;
870 
871         BUILD_BUG_ON(sizeof(pmu->global_ctrl) * BITS_PER_BYTE != X86_PMC_IDX_MAX);
872 
873         if (!kvm_pmu_has_perf_global_ctrl(pmu))
874                 bitmap_copy(bitmap, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX);
875         else if (!bitmap_and(bitmap, pmu->all_valid_pmc_idx,
876                              (unsigned long *)&pmu->global_ctrl, X86_PMC_IDX_MAX))
877                 return;
878 
879         kvm_for_each_pmc(pmu, pmc, i, bitmap) {
880                 /*
881                  * Ignore checks for edge detect (all events currently emulated
882                  * but KVM are always rising edges), pin control (unsupported
883                  * by modern CPUs), and counter mask and its invert flag (KVM
884                  * doesn't emulate multiple events in a single clock cycle).
885                  *
886                  * Note, the uppermost nibble of AMD's mask overlaps Intel's
887                  * IN_TX (bit 32) and IN_TXCP (bit 33), as well as two reserved
888                  * bits (bits 35:34).  Checking the "in HLE/RTM transaction"
889                  * flags is correct as the vCPU can't be in a transaction if
890                  * KVM is emulating an instruction.  Checking the reserved bits
891                  * might be wrong if they are defined in the future, but so
892                  * could ignoring them, so do the simple thing for now.
893                  */
894                 if (((pmc->eventsel ^ eventsel) & AMD64_RAW_EVENT_MASK_NB) ||
895                     !pmc_event_is_allowed(pmc) || !cpl_is_matched(pmc))
896                         continue;
897 
898                 kvm_pmu_incr_counter(pmc);
899         }
900 }
901 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
902 
903 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
904 {
905         u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
906                    KVM_PMU_MASKED_ENTRY_UMASK_MASK |
907                    KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
908                    KVM_PMU_MASKED_ENTRY_EXCLUDE;
909         int i;
910 
911         for (i = 0; i < filter->nevents; i++) {
912                 if (filter->events[i] & ~mask)
913                         return false;
914         }
915 
916         return true;
917 }
918 
919 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
920 {
921         int i, j;
922 
923         for (i = 0, j = 0; i < filter->nevents; i++) {
924                 /*
925                  * Skip events that are impossible to match against a guest
926                  * event.  When filtering, only the event select + unit mask
927                  * of the guest event is used.  To maintain backwards
928                  * compatibility, impossible filters can't be rejected :-(
929                  */
930                 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
931                                           ARCH_PERFMON_EVENTSEL_UMASK))
932                         continue;
933                 /*
934                  * Convert userspace events to a common in-kernel event so
935                  * only one code path is needed to support both events.  For
936                  * the in-kernel events use masked events because they are
937                  * flexible enough to handle both cases.  To convert to masked
938                  * events all that's needed is to add an "all ones" umask_mask,
939                  * (unmasked filter events don't support EXCLUDE).
940                  */
941                 filter->events[j++] = filter->events[i] |
942                                       (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
943         }
944 
945         filter->nevents = j;
946 }
947 
948 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
949 {
950         int i;
951 
952         if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
953                 convert_to_masked_filter(filter);
954         else if (!is_masked_filter_valid(filter))
955                 return -EINVAL;
956 
957         /*
958          * Sort entries by event select and includes vs. excludes so that all
959          * entries for a given event select can be processed efficiently during
960          * filtering.  The EXCLUDE flag uses a more significant bit than the
961          * event select, and so the sorted list is also effectively split into
962          * includes and excludes sub-lists.
963          */
964         sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
965              filter_sort_cmp, NULL);
966 
967         i = filter->nevents;
968         /* Find the first EXCLUDE event (only supported for masked events). */
969         if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
970                 for (i = 0; i < filter->nevents; i++) {
971                         if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
972                                 break;
973                 }
974         }
975 
976         filter->nr_includes = i;
977         filter->nr_excludes = filter->nevents - filter->nr_includes;
978         filter->includes = filter->events;
979         filter->excludes = filter->events + filter->nr_includes;
980 
981         return 0;
982 }
983 
984 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
985 {
986         struct kvm_pmu_event_filter __user *user_filter = argp;
987         struct kvm_x86_pmu_event_filter *filter;
988         struct kvm_pmu_event_filter tmp;
989         struct kvm_vcpu *vcpu;
990         unsigned long i;
991         size_t size;
992         int r;
993 
994         if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
995                 return -EFAULT;
996 
997         if (tmp.action != KVM_PMU_EVENT_ALLOW &&
998             tmp.action != KVM_PMU_EVENT_DENY)
999                 return -EINVAL;
1000 
1001         if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
1002                 return -EINVAL;
1003 
1004         if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
1005                 return -E2BIG;
1006 
1007         size = struct_size(filter, events, tmp.nevents);
1008         filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
1009         if (!filter)
1010                 return -ENOMEM;
1011 
1012         filter->action = tmp.action;
1013         filter->nevents = tmp.nevents;
1014         filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
1015         filter->flags = tmp.flags;
1016 
1017         r = -EFAULT;
1018         if (copy_from_user(filter->events, user_filter->events,
1019                            sizeof(filter->events[0]) * filter->nevents))
1020                 goto cleanup;
1021 
1022         r = prepare_filter_lists(filter);
1023         if (r)
1024                 goto cleanup;
1025 
1026         mutex_lock(&kvm->lock);
1027         filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
1028                                      mutex_is_locked(&kvm->lock));
1029         mutex_unlock(&kvm->lock);
1030         synchronize_srcu_expedited(&kvm->srcu);
1031 
1032         BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
1033                      sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
1034 
1035         kvm_for_each_vcpu(i, vcpu, kvm)
1036                 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
1037 
1038         kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
1039 
1040         r = 0;
1041 cleanup:
1042         kfree(filter);
1043         return r;
1044 }
1045 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php