~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kvm/svm/sev.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Kernel-based Virtual Machine driver for Linux
  4  *
  5  * AMD SVM-SEV support
  6  *
  7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  8  */
  9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10 
 11 #include <linux/kvm_types.h>
 12 #include <linux/kvm_host.h>
 13 #include <linux/kernel.h>
 14 #include <linux/highmem.h>
 15 #include <linux/psp.h>
 16 #include <linux/psp-sev.h>
 17 #include <linux/pagemap.h>
 18 #include <linux/swap.h>
 19 #include <linux/misc_cgroup.h>
 20 #include <linux/processor.h>
 21 #include <linux/trace_events.h>
 22 #include <uapi/linux/sev-guest.h>
 23 
 24 #include <asm/pkru.h>
 25 #include <asm/trapnr.h>
 26 #include <asm/fpu/xcr.h>
 27 #include <asm/fpu/xstate.h>
 28 #include <asm/debugreg.h>
 29 #include <asm/sev.h>
 30 
 31 #include "mmu.h"
 32 #include "x86.h"
 33 #include "svm.h"
 34 #include "svm_ops.h"
 35 #include "cpuid.h"
 36 #include "trace.h"
 37 
 38 #define GHCB_VERSION_MAX        2ULL
 39 #define GHCB_VERSION_DEFAULT    2ULL
 40 #define GHCB_VERSION_MIN        1ULL
 41 
 42 #define GHCB_HV_FT_SUPPORTED    (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
 43 
 44 /* enable/disable SEV support */
 45 static bool sev_enabled = true;
 46 module_param_named(sev, sev_enabled, bool, 0444);
 47 
 48 /* enable/disable SEV-ES support */
 49 static bool sev_es_enabled = true;
 50 module_param_named(sev_es, sev_es_enabled, bool, 0444);
 51 
 52 /* enable/disable SEV-SNP support */
 53 static bool sev_snp_enabled = true;
 54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
 55 
 56 /* enable/disable SEV-ES DebugSwap support */
 57 static bool sev_es_debug_swap_enabled = true;
 58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
 59 static u64 sev_supported_vmsa_features;
 60 
 61 #define AP_RESET_HOLD_NONE              0
 62 #define AP_RESET_HOLD_NAE_EVENT         1
 63 #define AP_RESET_HOLD_MSR_PROTO         2
 64 
 65 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
 66 #define SNP_POLICY_MASK_API_MINOR       GENMASK_ULL(7, 0)
 67 #define SNP_POLICY_MASK_API_MAJOR       GENMASK_ULL(15, 8)
 68 #define SNP_POLICY_MASK_SMT             BIT_ULL(16)
 69 #define SNP_POLICY_MASK_RSVD_MBO        BIT_ULL(17)
 70 #define SNP_POLICY_MASK_DEBUG           BIT_ULL(19)
 71 #define SNP_POLICY_MASK_SINGLE_SOCKET   BIT_ULL(20)
 72 
 73 #define SNP_POLICY_MASK_VALID           (SNP_POLICY_MASK_API_MINOR      | \
 74                                          SNP_POLICY_MASK_API_MAJOR      | \
 75                                          SNP_POLICY_MASK_SMT            | \
 76                                          SNP_POLICY_MASK_RSVD_MBO       | \
 77                                          SNP_POLICY_MASK_DEBUG          | \
 78                                          SNP_POLICY_MASK_SINGLE_SOCKET)
 79 
 80 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
 81 
 82 static u8 sev_enc_bit;
 83 static DECLARE_RWSEM(sev_deactivate_lock);
 84 static DEFINE_MUTEX(sev_bitmap_lock);
 85 unsigned int max_sev_asid;
 86 static unsigned int min_sev_asid;
 87 static unsigned long sev_me_mask;
 88 static unsigned int nr_asids;
 89 static unsigned long *sev_asid_bitmap;
 90 static unsigned long *sev_reclaim_asid_bitmap;
 91 
 92 static int snp_decommission_context(struct kvm *kvm);
 93 
 94 struct enc_region {
 95         struct list_head list;
 96         unsigned long npages;
 97         struct page **pages;
 98         unsigned long uaddr;
 99         unsigned long size;
100 };
101 
102 /* Called with the sev_bitmap_lock held, or on shutdown  */
103 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
104 {
105         int ret, error = 0;
106         unsigned int asid;
107 
108         /* Check if there are any ASIDs to reclaim before performing a flush */
109         asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
110         if (asid > max_asid)
111                 return -EBUSY;
112 
113         /*
114          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
115          * so it must be guarded.
116          */
117         down_write(&sev_deactivate_lock);
118 
119         wbinvd_on_all_cpus();
120 
121         if (sev_snp_enabled)
122                 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
123         else
124                 ret = sev_guest_df_flush(&error);
125 
126         up_write(&sev_deactivate_lock);
127 
128         if (ret)
129                 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
130                        sev_snp_enabled ? "-SNP" : "", ret, error);
131 
132         return ret;
133 }
134 
135 static inline bool is_mirroring_enc_context(struct kvm *kvm)
136 {
137         return !!to_kvm_sev_info(kvm)->enc_context_owner;
138 }
139 
140 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
141 {
142         struct kvm_vcpu *vcpu = &svm->vcpu;
143         struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
144 
145         return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
146 }
147 
148 /* Must be called with the sev_bitmap_lock held */
149 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
150 {
151         if (sev_flush_asids(min_asid, max_asid))
152                 return false;
153 
154         /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
155         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
156                    nr_asids);
157         bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
158 
159         return true;
160 }
161 
162 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
163 {
164         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
165         return misc_cg_try_charge(type, sev->misc_cg, 1);
166 }
167 
168 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
169 {
170         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
171         misc_cg_uncharge(type, sev->misc_cg, 1);
172 }
173 
174 static int sev_asid_new(struct kvm_sev_info *sev)
175 {
176         /*
177          * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
178          * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
179          * Note: min ASID can end up larger than the max if basic SEV support is
180          * effectively disabled by disallowing use of ASIDs for SEV guests.
181          */
182         unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
183         unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
184         unsigned int asid;
185         bool retry = true;
186         int ret;
187 
188         if (min_asid > max_asid)
189                 return -ENOTTY;
190 
191         WARN_ON(sev->misc_cg);
192         sev->misc_cg = get_current_misc_cg();
193         ret = sev_misc_cg_try_charge(sev);
194         if (ret) {
195                 put_misc_cg(sev->misc_cg);
196                 sev->misc_cg = NULL;
197                 return ret;
198         }
199 
200         mutex_lock(&sev_bitmap_lock);
201 
202 again:
203         asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
204         if (asid > max_asid) {
205                 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
206                         retry = false;
207                         goto again;
208                 }
209                 mutex_unlock(&sev_bitmap_lock);
210                 ret = -EBUSY;
211                 goto e_uncharge;
212         }
213 
214         __set_bit(asid, sev_asid_bitmap);
215 
216         mutex_unlock(&sev_bitmap_lock);
217 
218         sev->asid = asid;
219         return 0;
220 e_uncharge:
221         sev_misc_cg_uncharge(sev);
222         put_misc_cg(sev->misc_cg);
223         sev->misc_cg = NULL;
224         return ret;
225 }
226 
227 static unsigned int sev_get_asid(struct kvm *kvm)
228 {
229         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
230 
231         return sev->asid;
232 }
233 
234 static void sev_asid_free(struct kvm_sev_info *sev)
235 {
236         struct svm_cpu_data *sd;
237         int cpu;
238 
239         mutex_lock(&sev_bitmap_lock);
240 
241         __set_bit(sev->asid, sev_reclaim_asid_bitmap);
242 
243         for_each_possible_cpu(cpu) {
244                 sd = per_cpu_ptr(&svm_data, cpu);
245                 sd->sev_vmcbs[sev->asid] = NULL;
246         }
247 
248         mutex_unlock(&sev_bitmap_lock);
249 
250         sev_misc_cg_uncharge(sev);
251         put_misc_cg(sev->misc_cg);
252         sev->misc_cg = NULL;
253 }
254 
255 static void sev_decommission(unsigned int handle)
256 {
257         struct sev_data_decommission decommission;
258 
259         if (!handle)
260                 return;
261 
262         decommission.handle = handle;
263         sev_guest_decommission(&decommission, NULL);
264 }
265 
266 /*
267  * Transition a page to hypervisor-owned/shared state in the RMP table. This
268  * should not fail under normal conditions, but leak the page should that
269  * happen since it will no longer be usable by the host due to RMP protections.
270  */
271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
272 {
273         if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
274                 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
275                 return -EIO;
276         }
277 
278         return 0;
279 }
280 
281 /*
282  * Certain page-states, such as Pre-Guest and Firmware pages (as documented
283  * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
284  * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
285  * unless they are reclaimed first.
286  *
287  * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
288  * might not be usable by the host due to being set as immutable or still
289  * being associated with a guest ASID.
290  *
291  * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
292  * converted back to shared, as the page is no longer usable due to RMP
293  * protections, and it's infeasible for the guest to continue on.
294  */
295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
296 {
297         struct sev_data_snp_page_reclaim data = {0};
298         int fw_err, rc;
299 
300         data.paddr = __sme_set(pfn << PAGE_SHIFT);
301         rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
302         if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
303                 snp_leak_pages(pfn, 1);
304                 return -EIO;
305         }
306 
307         if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
308                 return -EIO;
309 
310         return rc;
311 }
312 
313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
314 {
315         struct sev_data_deactivate deactivate;
316 
317         if (!handle)
318                 return;
319 
320         deactivate.handle = handle;
321 
322         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
323         down_read(&sev_deactivate_lock);
324         sev_guest_deactivate(&deactivate, NULL);
325         up_read(&sev_deactivate_lock);
326 
327         sev_decommission(handle);
328 }
329 
330 /*
331  * This sets up bounce buffers/firmware pages to handle SNP Guest Request
332  * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
333  * 2.0 specification for more details.
334  *
335  * Technically, when an SNP Guest Request is issued, the guest will provide its
336  * own request/response pages, which could in theory be passed along directly
337  * to firmware rather than using bounce pages. However, these pages would need
338  * special care:
339  *
340  *   - Both pages are from shared guest memory, so they need to be protected
341  *     from migration/etc. occurring while firmware reads/writes to them. At a
342  *     minimum, this requires elevating the ref counts and potentially needing
343  *     an explicit pinning of the memory. This places additional restrictions
344  *     on what type of memory backends userspace can use for shared guest
345  *     memory since there is some reliance on using refcounted pages.
346  *
347  *   - The response page needs to be switched to Firmware-owned[1] state
348  *     before the firmware can write to it, which can lead to potential
349  *     host RMP #PFs if the guest is misbehaved and hands the host a
350  *     guest page that KVM might write to for other reasons (e.g. virtio
351  *     buffers/etc.).
352  *
353  * Both of these issues can be avoided completely by using separately-allocated
354  * bounce pages for both the request/response pages and passing those to
355  * firmware instead. So that's what is being set up here.
356  *
357  * Guest requests rely on message sequence numbers to ensure requests are
358  * issued to firmware in the order the guest issues them, so concurrent guest
359  * requests generally shouldn't happen. But a misbehaved guest could issue
360  * concurrent guest requests in theory, so a mutex is used to serialize
361  * access to the bounce buffers.
362  *
363  * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
364  *     details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
365  *     in the APM for details on the related RMP restrictions.
366  */
367 static int snp_guest_req_init(struct kvm *kvm)
368 {
369         struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
370         struct page *req_page;
371 
372         req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
373         if (!req_page)
374                 return -ENOMEM;
375 
376         sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
377         if (!sev->guest_resp_buf) {
378                 __free_page(req_page);
379                 return -EIO;
380         }
381 
382         sev->guest_req_buf = page_address(req_page);
383         mutex_init(&sev->guest_req_mutex);
384 
385         return 0;
386 }
387 
388 static void snp_guest_req_cleanup(struct kvm *kvm)
389 {
390         struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
391 
392         if (sev->guest_resp_buf)
393                 snp_free_firmware_page(sev->guest_resp_buf);
394 
395         if (sev->guest_req_buf)
396                 __free_page(virt_to_page(sev->guest_req_buf));
397 
398         sev->guest_req_buf = NULL;
399         sev->guest_resp_buf = NULL;
400 }
401 
402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
403                             struct kvm_sev_init *data,
404                             unsigned long vm_type)
405 {
406         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
407         struct sev_platform_init_args init_args = {0};
408         bool es_active = vm_type != KVM_X86_SEV_VM;
409         u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
410         int ret;
411 
412         if (kvm->created_vcpus)
413                 return -EINVAL;
414 
415         if (data->flags)
416                 return -EINVAL;
417 
418         if (data->vmsa_features & ~valid_vmsa_features)
419                 return -EINVAL;
420 
421         if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
422                 return -EINVAL;
423 
424         if (unlikely(sev->active))
425                 return -EINVAL;
426 
427         sev->active = true;
428         sev->es_active = es_active;
429         sev->vmsa_features = data->vmsa_features;
430         sev->ghcb_version = data->ghcb_version;
431 
432         /*
433          * Currently KVM supports the full range of mandatory features defined
434          * by version 2 of the GHCB protocol, so default to that for SEV-ES
435          * guests created via KVM_SEV_INIT2.
436          */
437         if (sev->es_active && !sev->ghcb_version)
438                 sev->ghcb_version = GHCB_VERSION_DEFAULT;
439 
440         if (vm_type == KVM_X86_SNP_VM)
441                 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
442 
443         ret = sev_asid_new(sev);
444         if (ret)
445                 goto e_no_asid;
446 
447         init_args.probe = false;
448         ret = sev_platform_init(&init_args);
449         if (ret)
450                 goto e_free;
451 
452         /* This needs to happen after SEV/SNP firmware initialization. */
453         if (vm_type == KVM_X86_SNP_VM && snp_guest_req_init(kvm))
454                 goto e_free;
455 
456         INIT_LIST_HEAD(&sev->regions_list);
457         INIT_LIST_HEAD(&sev->mirror_vms);
458         sev->need_init = false;
459 
460         kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
461 
462         return 0;
463 
464 e_free:
465         argp->error = init_args.error;
466         sev_asid_free(sev);
467         sev->asid = 0;
468 e_no_asid:
469         sev->vmsa_features = 0;
470         sev->es_active = false;
471         sev->active = false;
472         return ret;
473 }
474 
475 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
476 {
477         struct kvm_sev_init data = {
478                 .vmsa_features = 0,
479                 .ghcb_version = 0,
480         };
481         unsigned long vm_type;
482 
483         if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
484                 return -EINVAL;
485 
486         vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
487 
488         /*
489          * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
490          * continue to only ever support the minimal GHCB protocol version.
491          */
492         if (vm_type == KVM_X86_SEV_ES_VM)
493                 data.ghcb_version = GHCB_VERSION_MIN;
494 
495         return __sev_guest_init(kvm, argp, &data, vm_type);
496 }
497 
498 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
499 {
500         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
501         struct kvm_sev_init data;
502 
503         if (!sev->need_init)
504                 return -EINVAL;
505 
506         if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
507             kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
508             kvm->arch.vm_type != KVM_X86_SNP_VM)
509                 return -EINVAL;
510 
511         if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
512                 return -EFAULT;
513 
514         return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
515 }
516 
517 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
518 {
519         unsigned int asid = sev_get_asid(kvm);
520         struct sev_data_activate activate;
521         int ret;
522 
523         /* activate ASID on the given handle */
524         activate.handle = handle;
525         activate.asid   = asid;
526         ret = sev_guest_activate(&activate, error);
527 
528         return ret;
529 }
530 
531 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
532 {
533         struct fd f;
534         int ret;
535 
536         f = fdget(fd);
537         if (!f.file)
538                 return -EBADF;
539 
540         ret = sev_issue_cmd_external_user(f.file, id, data, error);
541 
542         fdput(f);
543         return ret;
544 }
545 
546 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
547 {
548         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
549 
550         return __sev_issue_cmd(sev->fd, id, data, error);
551 }
552 
553 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
554 {
555         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
556         struct sev_data_launch_start start;
557         struct kvm_sev_launch_start params;
558         void *dh_blob, *session_blob;
559         int *error = &argp->error;
560         int ret;
561 
562         if (!sev_guest(kvm))
563                 return -ENOTTY;
564 
565         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
566                 return -EFAULT;
567 
568         memset(&start, 0, sizeof(start));
569 
570         dh_blob = NULL;
571         if (params.dh_uaddr) {
572                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
573                 if (IS_ERR(dh_blob))
574                         return PTR_ERR(dh_blob);
575 
576                 start.dh_cert_address = __sme_set(__pa(dh_blob));
577                 start.dh_cert_len = params.dh_len;
578         }
579 
580         session_blob = NULL;
581         if (params.session_uaddr) {
582                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
583                 if (IS_ERR(session_blob)) {
584                         ret = PTR_ERR(session_blob);
585                         goto e_free_dh;
586                 }
587 
588                 start.session_address = __sme_set(__pa(session_blob));
589                 start.session_len = params.session_len;
590         }
591 
592         start.handle = params.handle;
593         start.policy = params.policy;
594 
595         /* create memory encryption context */
596         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
597         if (ret)
598                 goto e_free_session;
599 
600         /* Bind ASID to this guest */
601         ret = sev_bind_asid(kvm, start.handle, error);
602         if (ret) {
603                 sev_decommission(start.handle);
604                 goto e_free_session;
605         }
606 
607         /* return handle to userspace */
608         params.handle = start.handle;
609         if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params))) {
610                 sev_unbind_asid(kvm, start.handle);
611                 ret = -EFAULT;
612                 goto e_free_session;
613         }
614 
615         sev->handle = start.handle;
616         sev->fd = argp->sev_fd;
617 
618 e_free_session:
619         kfree(session_blob);
620 e_free_dh:
621         kfree(dh_blob);
622         return ret;
623 }
624 
625 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
626                                     unsigned long ulen, unsigned long *n,
627                                     int write)
628 {
629         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
630         unsigned long npages, size;
631         int npinned;
632         unsigned long locked, lock_limit;
633         struct page **pages;
634         unsigned long first, last;
635         int ret;
636 
637         lockdep_assert_held(&kvm->lock);
638 
639         if (ulen == 0 || uaddr + ulen < uaddr)
640                 return ERR_PTR(-EINVAL);
641 
642         /* Calculate number of pages. */
643         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
644         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
645         npages = (last - first + 1);
646 
647         locked = sev->pages_locked + npages;
648         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
649         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
650                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
651                 return ERR_PTR(-ENOMEM);
652         }
653 
654         if (WARN_ON_ONCE(npages > INT_MAX))
655                 return ERR_PTR(-EINVAL);
656 
657         /* Avoid using vmalloc for smaller buffers. */
658         size = npages * sizeof(struct page *);
659         if (size > PAGE_SIZE)
660                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
661         else
662                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
663 
664         if (!pages)
665                 return ERR_PTR(-ENOMEM);
666 
667         /* Pin the user virtual address. */
668         npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
669         if (npinned != npages) {
670                 pr_err("SEV: Failure locking %lu pages.\n", npages);
671                 ret = -ENOMEM;
672                 goto err;
673         }
674 
675         *n = npages;
676         sev->pages_locked = locked;
677 
678         return pages;
679 
680 err:
681         if (npinned > 0)
682                 unpin_user_pages(pages, npinned);
683 
684         kvfree(pages);
685         return ERR_PTR(ret);
686 }
687 
688 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
689                              unsigned long npages)
690 {
691         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
692 
693         unpin_user_pages(pages, npages);
694         kvfree(pages);
695         sev->pages_locked -= npages;
696 }
697 
698 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
699 {
700         uint8_t *page_virtual;
701         unsigned long i;
702 
703         if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
704             pages == NULL)
705                 return;
706 
707         for (i = 0; i < npages; i++) {
708                 page_virtual = kmap_local_page(pages[i]);
709                 clflush_cache_range(page_virtual, PAGE_SIZE);
710                 kunmap_local(page_virtual);
711                 cond_resched();
712         }
713 }
714 
715 static unsigned long get_num_contig_pages(unsigned long idx,
716                                 struct page **inpages, unsigned long npages)
717 {
718         unsigned long paddr, next_paddr;
719         unsigned long i = idx + 1, pages = 1;
720 
721         /* find the number of contiguous pages starting from idx */
722         paddr = __sme_page_pa(inpages[idx]);
723         while (i < npages) {
724                 next_paddr = __sme_page_pa(inpages[i++]);
725                 if ((paddr + PAGE_SIZE) == next_paddr) {
726                         pages++;
727                         paddr = next_paddr;
728                         continue;
729                 }
730                 break;
731         }
732 
733         return pages;
734 }
735 
736 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
737 {
738         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
739         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
740         struct kvm_sev_launch_update_data params;
741         struct sev_data_launch_update_data data;
742         struct page **inpages;
743         int ret;
744 
745         if (!sev_guest(kvm))
746                 return -ENOTTY;
747 
748         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
749                 return -EFAULT;
750 
751         vaddr = params.uaddr;
752         size = params.len;
753         vaddr_end = vaddr + size;
754 
755         /* Lock the user memory. */
756         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
757         if (IS_ERR(inpages))
758                 return PTR_ERR(inpages);
759 
760         /*
761          * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
762          * place; the cache may contain the data that was written unencrypted.
763          */
764         sev_clflush_pages(inpages, npages);
765 
766         data.reserved = 0;
767         data.handle = sev->handle;
768 
769         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
770                 int offset, len;
771 
772                 /*
773                  * If the user buffer is not page-aligned, calculate the offset
774                  * within the page.
775                  */
776                 offset = vaddr & (PAGE_SIZE - 1);
777 
778                 /* Calculate the number of pages that can be encrypted in one go. */
779                 pages = get_num_contig_pages(i, inpages, npages);
780 
781                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
782 
783                 data.len = len;
784                 data.address = __sme_page_pa(inpages[i]) + offset;
785                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
786                 if (ret)
787                         goto e_unpin;
788 
789                 size -= len;
790                 next_vaddr = vaddr + len;
791         }
792 
793 e_unpin:
794         /* content of memory is updated, mark pages dirty */
795         for (i = 0; i < npages; i++) {
796                 set_page_dirty_lock(inpages[i]);
797                 mark_page_accessed(inpages[i]);
798         }
799         /* unlock the user pages */
800         sev_unpin_memory(kvm, inpages, npages);
801         return ret;
802 }
803 
804 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
805 {
806         struct kvm_vcpu *vcpu = &svm->vcpu;
807         struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
808         struct sev_es_save_area *save = svm->sev_es.vmsa;
809         struct xregs_state *xsave;
810         const u8 *s;
811         u8 *d;
812         int i;
813 
814         /* Check some debug related fields before encrypting the VMSA */
815         if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
816                 return -EINVAL;
817 
818         /*
819          * SEV-ES will use a VMSA that is pointed to by the VMCB, not
820          * the traditional VMSA that is part of the VMCB. Copy the
821          * traditional VMSA as it has been built so far (in prep
822          * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
823          */
824         memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
825 
826         /* Sync registgers */
827         save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
828         save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
829         save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
830         save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
831         save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
832         save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
833         save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
834         save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
835 #ifdef CONFIG_X86_64
836         save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
837         save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
838         save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
839         save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
840         save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
841         save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
842         save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
843         save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
844 #endif
845         save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
846 
847         /* Sync some non-GPR registers before encrypting */
848         save->xcr0 = svm->vcpu.arch.xcr0;
849         save->pkru = svm->vcpu.arch.pkru;
850         save->xss  = svm->vcpu.arch.ia32_xss;
851         save->dr6  = svm->vcpu.arch.dr6;
852 
853         save->sev_features = sev->vmsa_features;
854 
855         /*
856          * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
857          * breaking older measurements.
858          */
859         if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
860                 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
861                 save->x87_dp = xsave->i387.rdp;
862                 save->mxcsr = xsave->i387.mxcsr;
863                 save->x87_ftw = xsave->i387.twd;
864                 save->x87_fsw = xsave->i387.swd;
865                 save->x87_fcw = xsave->i387.cwd;
866                 save->x87_fop = xsave->i387.fop;
867                 save->x87_ds = 0;
868                 save->x87_cs = 0;
869                 save->x87_rip = xsave->i387.rip;
870 
871                 for (i = 0; i < 8; i++) {
872                         /*
873                          * The format of the x87 save area is undocumented and
874                          * definitely not what you would expect.  It consists of
875                          * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
876                          * area with bytes 8-9 of each register.
877                          */
878                         d = save->fpreg_x87 + i * 8;
879                         s = ((u8 *)xsave->i387.st_space) + i * 16;
880                         memcpy(d, s, 8);
881                         save->fpreg_x87[64 + i * 2] = s[8];
882                         save->fpreg_x87[64 + i * 2 + 1] = s[9];
883                 }
884                 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
885 
886                 s = get_xsave_addr(xsave, XFEATURE_YMM);
887                 if (s)
888                         memcpy(save->fpreg_ymm, s, 256);
889                 else
890                         memset(save->fpreg_ymm, 0, 256);
891         }
892 
893         pr_debug("Virtual Machine Save Area (VMSA):\n");
894         print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
895 
896         return 0;
897 }
898 
899 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
900                                     int *error)
901 {
902         struct sev_data_launch_update_vmsa vmsa;
903         struct vcpu_svm *svm = to_svm(vcpu);
904         int ret;
905 
906         if (vcpu->guest_debug) {
907                 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
908                 return -EINVAL;
909         }
910 
911         /* Perform some pre-encryption checks against the VMSA */
912         ret = sev_es_sync_vmsa(svm);
913         if (ret)
914                 return ret;
915 
916         /*
917          * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
918          * the VMSA memory content (i.e it will write the same memory region
919          * with the guest's key), so invalidate it first.
920          */
921         clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
922 
923         vmsa.reserved = 0;
924         vmsa.handle = to_kvm_sev_info(kvm)->handle;
925         vmsa.address = __sme_pa(svm->sev_es.vmsa);
926         vmsa.len = PAGE_SIZE;
927         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
928         if (ret)
929           return ret;
930 
931         /*
932          * SEV-ES guests maintain an encrypted version of their FPU
933          * state which is restored and saved on VMRUN and VMEXIT.
934          * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
935          * do xsave/xrstor on it.
936          */
937         fpstate_set_confidential(&vcpu->arch.guest_fpu);
938         vcpu->arch.guest_state_protected = true;
939 
940         /*
941          * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
942          * only after setting guest_state_protected because KVM_SET_MSRS allows
943          * dynamic toggling of LBRV (for performance reason) on write access to
944          * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
945          */
946         svm_enable_lbrv(vcpu);
947         return 0;
948 }
949 
950 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
951 {
952         struct kvm_vcpu *vcpu;
953         unsigned long i;
954         int ret;
955 
956         if (!sev_es_guest(kvm))
957                 return -ENOTTY;
958 
959         kvm_for_each_vcpu(i, vcpu, kvm) {
960                 ret = mutex_lock_killable(&vcpu->mutex);
961                 if (ret)
962                         return ret;
963 
964                 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
965 
966                 mutex_unlock(&vcpu->mutex);
967                 if (ret)
968                         return ret;
969         }
970 
971         return 0;
972 }
973 
974 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
975 {
976         void __user *measure = u64_to_user_ptr(argp->data);
977         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
978         struct sev_data_launch_measure data;
979         struct kvm_sev_launch_measure params;
980         void __user *p = NULL;
981         void *blob = NULL;
982         int ret;
983 
984         if (!sev_guest(kvm))
985                 return -ENOTTY;
986 
987         if (copy_from_user(&params, measure, sizeof(params)))
988                 return -EFAULT;
989 
990         memset(&data, 0, sizeof(data));
991 
992         /* User wants to query the blob length */
993         if (!params.len)
994                 goto cmd;
995 
996         p = u64_to_user_ptr(params.uaddr);
997         if (p) {
998                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
999                         return -EINVAL;
1000 
1001                 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1002                 if (!blob)
1003                         return -ENOMEM;
1004 
1005                 data.address = __psp_pa(blob);
1006                 data.len = params.len;
1007         }
1008 
1009 cmd:
1010         data.handle = sev->handle;
1011         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1012 
1013         /*
1014          * If we query the session length, FW responded with expected data.
1015          */
1016         if (!params.len)
1017                 goto done;
1018 
1019         if (ret)
1020                 goto e_free_blob;
1021 
1022         if (blob) {
1023                 if (copy_to_user(p, blob, params.len))
1024                         ret = -EFAULT;
1025         }
1026 
1027 done:
1028         params.len = data.len;
1029         if (copy_to_user(measure, &params, sizeof(params)))
1030                 ret = -EFAULT;
1031 e_free_blob:
1032         kfree(blob);
1033         return ret;
1034 }
1035 
1036 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1037 {
1038         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1039         struct sev_data_launch_finish data;
1040 
1041         if (!sev_guest(kvm))
1042                 return -ENOTTY;
1043 
1044         data.handle = sev->handle;
1045         return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1046 }
1047 
1048 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1049 {
1050         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1051         struct kvm_sev_guest_status params;
1052         struct sev_data_guest_status data;
1053         int ret;
1054 
1055         if (!sev_guest(kvm))
1056                 return -ENOTTY;
1057 
1058         memset(&data, 0, sizeof(data));
1059 
1060         data.handle = sev->handle;
1061         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1062         if (ret)
1063                 return ret;
1064 
1065         params.policy = data.policy;
1066         params.state = data.state;
1067         params.handle = data.handle;
1068 
1069         if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
1070                 ret = -EFAULT;
1071 
1072         return ret;
1073 }
1074 
1075 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1076                                unsigned long dst, int size,
1077                                int *error, bool enc)
1078 {
1079         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1080         struct sev_data_dbg data;
1081 
1082         data.reserved = 0;
1083         data.handle = sev->handle;
1084         data.dst_addr = dst;
1085         data.src_addr = src;
1086         data.len = size;
1087 
1088         return sev_issue_cmd(kvm,
1089                              enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1090                              &data, error);
1091 }
1092 
1093 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1094                              unsigned long dst_paddr, int sz, int *err)
1095 {
1096         int offset;
1097 
1098         /*
1099          * Its safe to read more than we are asked, caller should ensure that
1100          * destination has enough space.
1101          */
1102         offset = src_paddr & 15;
1103         src_paddr = round_down(src_paddr, 16);
1104         sz = round_up(sz + offset, 16);
1105 
1106         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1107 }
1108 
1109 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1110                                   void __user *dst_uaddr,
1111                                   unsigned long dst_paddr,
1112                                   int size, int *err)
1113 {
1114         struct page *tpage = NULL;
1115         int ret, offset;
1116 
1117         /* if inputs are not 16-byte then use intermediate buffer */
1118         if (!IS_ALIGNED(dst_paddr, 16) ||
1119             !IS_ALIGNED(paddr,     16) ||
1120             !IS_ALIGNED(size,      16)) {
1121                 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1122                 if (!tpage)
1123                         return -ENOMEM;
1124 
1125                 dst_paddr = __sme_page_pa(tpage);
1126         }
1127 
1128         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1129         if (ret)
1130                 goto e_free;
1131 
1132         if (tpage) {
1133                 offset = paddr & 15;
1134                 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1135                         ret = -EFAULT;
1136         }
1137 
1138 e_free:
1139         if (tpage)
1140                 __free_page(tpage);
1141 
1142         return ret;
1143 }
1144 
1145 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1146                                   void __user *vaddr,
1147                                   unsigned long dst_paddr,
1148                                   void __user *dst_vaddr,
1149                                   int size, int *error)
1150 {
1151         struct page *src_tpage = NULL;
1152         struct page *dst_tpage = NULL;
1153         int ret, len = size;
1154 
1155         /* If source buffer is not aligned then use an intermediate buffer */
1156         if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1157                 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1158                 if (!src_tpage)
1159                         return -ENOMEM;
1160 
1161                 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1162                         __free_page(src_tpage);
1163                         return -EFAULT;
1164                 }
1165 
1166                 paddr = __sme_page_pa(src_tpage);
1167         }
1168 
1169         /*
1170          *  If destination buffer or length is not aligned then do read-modify-write:
1171          *   - decrypt destination in an intermediate buffer
1172          *   - copy the source buffer in an intermediate buffer
1173          *   - use the intermediate buffer as source buffer
1174          */
1175         if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1176                 int dst_offset;
1177 
1178                 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1179                 if (!dst_tpage) {
1180                         ret = -ENOMEM;
1181                         goto e_free;
1182                 }
1183 
1184                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
1185                                         __sme_page_pa(dst_tpage), size, error);
1186                 if (ret)
1187                         goto e_free;
1188 
1189                 /*
1190                  *  If source is kernel buffer then use memcpy() otherwise
1191                  *  copy_from_user().
1192                  */
1193                 dst_offset = dst_paddr & 15;
1194 
1195                 if (src_tpage)
1196                         memcpy(page_address(dst_tpage) + dst_offset,
1197                                page_address(src_tpage), size);
1198                 else {
1199                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
1200                                            vaddr, size)) {
1201                                 ret = -EFAULT;
1202                                 goto e_free;
1203                         }
1204                 }
1205 
1206                 paddr = __sme_page_pa(dst_tpage);
1207                 dst_paddr = round_down(dst_paddr, 16);
1208                 len = round_up(size, 16);
1209         }
1210 
1211         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1212 
1213 e_free:
1214         if (src_tpage)
1215                 __free_page(src_tpage);
1216         if (dst_tpage)
1217                 __free_page(dst_tpage);
1218         return ret;
1219 }
1220 
1221 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1222 {
1223         unsigned long vaddr, vaddr_end, next_vaddr;
1224         unsigned long dst_vaddr;
1225         struct page **src_p, **dst_p;
1226         struct kvm_sev_dbg debug;
1227         unsigned long n;
1228         unsigned int size;
1229         int ret;
1230 
1231         if (!sev_guest(kvm))
1232                 return -ENOTTY;
1233 
1234         if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1235                 return -EFAULT;
1236 
1237         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1238                 return -EINVAL;
1239         if (!debug.dst_uaddr)
1240                 return -EINVAL;
1241 
1242         vaddr = debug.src_uaddr;
1243         size = debug.len;
1244         vaddr_end = vaddr + size;
1245         dst_vaddr = debug.dst_uaddr;
1246 
1247         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1248                 int len, s_off, d_off;
1249 
1250                 /* lock userspace source and destination page */
1251                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1252                 if (IS_ERR(src_p))
1253                         return PTR_ERR(src_p);
1254 
1255                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
1256                 if (IS_ERR(dst_p)) {
1257                         sev_unpin_memory(kvm, src_p, n);
1258                         return PTR_ERR(dst_p);
1259                 }
1260 
1261                 /*
1262                  * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1263                  * the pages; flush the destination too so that future accesses do not
1264                  * see stale data.
1265                  */
1266                 sev_clflush_pages(src_p, 1);
1267                 sev_clflush_pages(dst_p, 1);
1268 
1269                 /*
1270                  * Since user buffer may not be page aligned, calculate the
1271                  * offset within the page.
1272                  */
1273                 s_off = vaddr & ~PAGE_MASK;
1274                 d_off = dst_vaddr & ~PAGE_MASK;
1275                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
1276 
1277                 if (dec)
1278                         ret = __sev_dbg_decrypt_user(kvm,
1279                                                      __sme_page_pa(src_p[0]) + s_off,
1280                                                      (void __user *)dst_vaddr,
1281                                                      __sme_page_pa(dst_p[0]) + d_off,
1282                                                      len, &argp->error);
1283                 else
1284                         ret = __sev_dbg_encrypt_user(kvm,
1285                                                      __sme_page_pa(src_p[0]) + s_off,
1286                                                      (void __user *)vaddr,
1287                                                      __sme_page_pa(dst_p[0]) + d_off,
1288                                                      (void __user *)dst_vaddr,
1289                                                      len, &argp->error);
1290 
1291                 sev_unpin_memory(kvm, src_p, n);
1292                 sev_unpin_memory(kvm, dst_p, n);
1293 
1294                 if (ret)
1295                         goto err;
1296 
1297                 next_vaddr = vaddr + len;
1298                 dst_vaddr = dst_vaddr + len;
1299                 size -= len;
1300         }
1301 err:
1302         return ret;
1303 }
1304 
1305 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1306 {
1307         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1308         struct sev_data_launch_secret data;
1309         struct kvm_sev_launch_secret params;
1310         struct page **pages;
1311         void *blob, *hdr;
1312         unsigned long n, i;
1313         int ret, offset;
1314 
1315         if (!sev_guest(kvm))
1316                 return -ENOTTY;
1317 
1318         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1319                 return -EFAULT;
1320 
1321         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1322         if (IS_ERR(pages))
1323                 return PTR_ERR(pages);
1324 
1325         /*
1326          * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1327          * place; the cache may contain the data that was written unencrypted.
1328          */
1329         sev_clflush_pages(pages, n);
1330 
1331         /*
1332          * The secret must be copied into contiguous memory region, lets verify
1333          * that userspace memory pages are contiguous before we issue command.
1334          */
1335         if (get_num_contig_pages(0, pages, n) != n) {
1336                 ret = -EINVAL;
1337                 goto e_unpin_memory;
1338         }
1339 
1340         memset(&data, 0, sizeof(data));
1341 
1342         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1343         data.guest_address = __sme_page_pa(pages[0]) + offset;
1344         data.guest_len = params.guest_len;
1345 
1346         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1347         if (IS_ERR(blob)) {
1348                 ret = PTR_ERR(blob);
1349                 goto e_unpin_memory;
1350         }
1351 
1352         data.trans_address = __psp_pa(blob);
1353         data.trans_len = params.trans_len;
1354 
1355         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1356         if (IS_ERR(hdr)) {
1357                 ret = PTR_ERR(hdr);
1358                 goto e_free_blob;
1359         }
1360         data.hdr_address = __psp_pa(hdr);
1361         data.hdr_len = params.hdr_len;
1362 
1363         data.handle = sev->handle;
1364         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1365 
1366         kfree(hdr);
1367 
1368 e_free_blob:
1369         kfree(blob);
1370 e_unpin_memory:
1371         /* content of memory is updated, mark pages dirty */
1372         for (i = 0; i < n; i++) {
1373                 set_page_dirty_lock(pages[i]);
1374                 mark_page_accessed(pages[i]);
1375         }
1376         sev_unpin_memory(kvm, pages, n);
1377         return ret;
1378 }
1379 
1380 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1381 {
1382         void __user *report = u64_to_user_ptr(argp->data);
1383         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1384         struct sev_data_attestation_report data;
1385         struct kvm_sev_attestation_report params;
1386         void __user *p;
1387         void *blob = NULL;
1388         int ret;
1389 
1390         if (!sev_guest(kvm))
1391                 return -ENOTTY;
1392 
1393         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1394                 return -EFAULT;
1395 
1396         memset(&data, 0, sizeof(data));
1397 
1398         /* User wants to query the blob length */
1399         if (!params.len)
1400                 goto cmd;
1401 
1402         p = u64_to_user_ptr(params.uaddr);
1403         if (p) {
1404                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1405                         return -EINVAL;
1406 
1407                 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1408                 if (!blob)
1409                         return -ENOMEM;
1410 
1411                 data.address = __psp_pa(blob);
1412                 data.len = params.len;
1413                 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1414         }
1415 cmd:
1416         data.handle = sev->handle;
1417         ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1418         /*
1419          * If we query the session length, FW responded with expected data.
1420          */
1421         if (!params.len)
1422                 goto done;
1423 
1424         if (ret)
1425                 goto e_free_blob;
1426 
1427         if (blob) {
1428                 if (copy_to_user(p, blob, params.len))
1429                         ret = -EFAULT;
1430         }
1431 
1432 done:
1433         params.len = data.len;
1434         if (copy_to_user(report, &params, sizeof(params)))
1435                 ret = -EFAULT;
1436 e_free_blob:
1437         kfree(blob);
1438         return ret;
1439 }
1440 
1441 /* Userspace wants to query session length. */
1442 static int
1443 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1444                                       struct kvm_sev_send_start *params)
1445 {
1446         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1447         struct sev_data_send_start data;
1448         int ret;
1449 
1450         memset(&data, 0, sizeof(data));
1451         data.handle = sev->handle;
1452         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1453 
1454         params->session_len = data.session_len;
1455         if (copy_to_user(u64_to_user_ptr(argp->data), params,
1456                                 sizeof(struct kvm_sev_send_start)))
1457                 ret = -EFAULT;
1458 
1459         return ret;
1460 }
1461 
1462 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1463 {
1464         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1465         struct sev_data_send_start data;
1466         struct kvm_sev_send_start params;
1467         void *amd_certs, *session_data;
1468         void *pdh_cert, *plat_certs;
1469         int ret;
1470 
1471         if (!sev_guest(kvm))
1472                 return -ENOTTY;
1473 
1474         if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1475                                 sizeof(struct kvm_sev_send_start)))
1476                 return -EFAULT;
1477 
1478         /* if session_len is zero, userspace wants to query the session length */
1479         if (!params.session_len)
1480                 return __sev_send_start_query_session_length(kvm, argp,
1481                                 &params);
1482 
1483         /* some sanity checks */
1484         if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1485             !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1486                 return -EINVAL;
1487 
1488         /* allocate the memory to hold the session data blob */
1489         session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1490         if (!session_data)
1491                 return -ENOMEM;
1492 
1493         /* copy the certificate blobs from userspace */
1494         pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1495                                 params.pdh_cert_len);
1496         if (IS_ERR(pdh_cert)) {
1497                 ret = PTR_ERR(pdh_cert);
1498                 goto e_free_session;
1499         }
1500 
1501         plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1502                                 params.plat_certs_len);
1503         if (IS_ERR(plat_certs)) {
1504                 ret = PTR_ERR(plat_certs);
1505                 goto e_free_pdh;
1506         }
1507 
1508         amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1509                                 params.amd_certs_len);
1510         if (IS_ERR(amd_certs)) {
1511                 ret = PTR_ERR(amd_certs);
1512                 goto e_free_plat_cert;
1513         }
1514 
1515         /* populate the FW SEND_START field with system physical address */
1516         memset(&data, 0, sizeof(data));
1517         data.pdh_cert_address = __psp_pa(pdh_cert);
1518         data.pdh_cert_len = params.pdh_cert_len;
1519         data.plat_certs_address = __psp_pa(plat_certs);
1520         data.plat_certs_len = params.plat_certs_len;
1521         data.amd_certs_address = __psp_pa(amd_certs);
1522         data.amd_certs_len = params.amd_certs_len;
1523         data.session_address = __psp_pa(session_data);
1524         data.session_len = params.session_len;
1525         data.handle = sev->handle;
1526 
1527         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1528 
1529         if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1530                         session_data, params.session_len)) {
1531                 ret = -EFAULT;
1532                 goto e_free_amd_cert;
1533         }
1534 
1535         params.policy = data.policy;
1536         params.session_len = data.session_len;
1537         if (copy_to_user(u64_to_user_ptr(argp->data), &params,
1538                                 sizeof(struct kvm_sev_send_start)))
1539                 ret = -EFAULT;
1540 
1541 e_free_amd_cert:
1542         kfree(amd_certs);
1543 e_free_plat_cert:
1544         kfree(plat_certs);
1545 e_free_pdh:
1546         kfree(pdh_cert);
1547 e_free_session:
1548         kfree(session_data);
1549         return ret;
1550 }
1551 
1552 /* Userspace wants to query either header or trans length. */
1553 static int
1554 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1555                                      struct kvm_sev_send_update_data *params)
1556 {
1557         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1558         struct sev_data_send_update_data data;
1559         int ret;
1560 
1561         memset(&data, 0, sizeof(data));
1562         data.handle = sev->handle;
1563         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1564 
1565         params->hdr_len = data.hdr_len;
1566         params->trans_len = data.trans_len;
1567 
1568         if (copy_to_user(u64_to_user_ptr(argp->data), params,
1569                          sizeof(struct kvm_sev_send_update_data)))
1570                 ret = -EFAULT;
1571 
1572         return ret;
1573 }
1574 
1575 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1576 {
1577         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1578         struct sev_data_send_update_data data;
1579         struct kvm_sev_send_update_data params;
1580         void *hdr, *trans_data;
1581         struct page **guest_page;
1582         unsigned long n;
1583         int ret, offset;
1584 
1585         if (!sev_guest(kvm))
1586                 return -ENOTTY;
1587 
1588         if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1589                         sizeof(struct kvm_sev_send_update_data)))
1590                 return -EFAULT;
1591 
1592         /* userspace wants to query either header or trans length */
1593         if (!params.trans_len || !params.hdr_len)
1594                 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1595 
1596         if (!params.trans_uaddr || !params.guest_uaddr ||
1597             !params.guest_len || !params.hdr_uaddr)
1598                 return -EINVAL;
1599 
1600         /* Check if we are crossing the page boundary */
1601         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1602         if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1603                 return -EINVAL;
1604 
1605         /* Pin guest memory */
1606         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1607                                     PAGE_SIZE, &n, 0);
1608         if (IS_ERR(guest_page))
1609                 return PTR_ERR(guest_page);
1610 
1611         /* allocate memory for header and transport buffer */
1612         ret = -ENOMEM;
1613         hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1614         if (!hdr)
1615                 goto e_unpin;
1616 
1617         trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1618         if (!trans_data)
1619                 goto e_free_hdr;
1620 
1621         memset(&data, 0, sizeof(data));
1622         data.hdr_address = __psp_pa(hdr);
1623         data.hdr_len = params.hdr_len;
1624         data.trans_address = __psp_pa(trans_data);
1625         data.trans_len = params.trans_len;
1626 
1627         /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1628         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1629         data.guest_address |= sev_me_mask;
1630         data.guest_len = params.guest_len;
1631         data.handle = sev->handle;
1632 
1633         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1634 
1635         if (ret)
1636                 goto e_free_trans_data;
1637 
1638         /* copy transport buffer to user space */
1639         if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1640                          trans_data, params.trans_len)) {
1641                 ret = -EFAULT;
1642                 goto e_free_trans_data;
1643         }
1644 
1645         /* Copy packet header to userspace. */
1646         if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1647                          params.hdr_len))
1648                 ret = -EFAULT;
1649 
1650 e_free_trans_data:
1651         kfree(trans_data);
1652 e_free_hdr:
1653         kfree(hdr);
1654 e_unpin:
1655         sev_unpin_memory(kvm, guest_page, n);
1656 
1657         return ret;
1658 }
1659 
1660 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1661 {
1662         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1663         struct sev_data_send_finish data;
1664 
1665         if (!sev_guest(kvm))
1666                 return -ENOTTY;
1667 
1668         data.handle = sev->handle;
1669         return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1670 }
1671 
1672 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1673 {
1674         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1675         struct sev_data_send_cancel data;
1676 
1677         if (!sev_guest(kvm))
1678                 return -ENOTTY;
1679 
1680         data.handle = sev->handle;
1681         return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1682 }
1683 
1684 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1685 {
1686         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1687         struct sev_data_receive_start start;
1688         struct kvm_sev_receive_start params;
1689         int *error = &argp->error;
1690         void *session_data;
1691         void *pdh_data;
1692         int ret;
1693 
1694         if (!sev_guest(kvm))
1695                 return -ENOTTY;
1696 
1697         /* Get parameter from the userspace */
1698         if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1699                         sizeof(struct kvm_sev_receive_start)))
1700                 return -EFAULT;
1701 
1702         /* some sanity checks */
1703         if (!params.pdh_uaddr || !params.pdh_len ||
1704             !params.session_uaddr || !params.session_len)
1705                 return -EINVAL;
1706 
1707         pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1708         if (IS_ERR(pdh_data))
1709                 return PTR_ERR(pdh_data);
1710 
1711         session_data = psp_copy_user_blob(params.session_uaddr,
1712                         params.session_len);
1713         if (IS_ERR(session_data)) {
1714                 ret = PTR_ERR(session_data);
1715                 goto e_free_pdh;
1716         }
1717 
1718         memset(&start, 0, sizeof(start));
1719         start.handle = params.handle;
1720         start.policy = params.policy;
1721         start.pdh_cert_address = __psp_pa(pdh_data);
1722         start.pdh_cert_len = params.pdh_len;
1723         start.session_address = __psp_pa(session_data);
1724         start.session_len = params.session_len;
1725 
1726         /* create memory encryption context */
1727         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1728                                 error);
1729         if (ret)
1730                 goto e_free_session;
1731 
1732         /* Bind ASID to this guest */
1733         ret = sev_bind_asid(kvm, start.handle, error);
1734         if (ret) {
1735                 sev_decommission(start.handle);
1736                 goto e_free_session;
1737         }
1738 
1739         params.handle = start.handle;
1740         if (copy_to_user(u64_to_user_ptr(argp->data),
1741                          &params, sizeof(struct kvm_sev_receive_start))) {
1742                 ret = -EFAULT;
1743                 sev_unbind_asid(kvm, start.handle);
1744                 goto e_free_session;
1745         }
1746 
1747         sev->handle = start.handle;
1748         sev->fd = argp->sev_fd;
1749 
1750 e_free_session:
1751         kfree(session_data);
1752 e_free_pdh:
1753         kfree(pdh_data);
1754 
1755         return ret;
1756 }
1757 
1758 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1759 {
1760         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1761         struct kvm_sev_receive_update_data params;
1762         struct sev_data_receive_update_data data;
1763         void *hdr = NULL, *trans = NULL;
1764         struct page **guest_page;
1765         unsigned long n;
1766         int ret, offset;
1767 
1768         if (!sev_guest(kvm))
1769                 return -EINVAL;
1770 
1771         if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1772                         sizeof(struct kvm_sev_receive_update_data)))
1773                 return -EFAULT;
1774 
1775         if (!params.hdr_uaddr || !params.hdr_len ||
1776             !params.guest_uaddr || !params.guest_len ||
1777             !params.trans_uaddr || !params.trans_len)
1778                 return -EINVAL;
1779 
1780         /* Check if we are crossing the page boundary */
1781         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1782         if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1783                 return -EINVAL;
1784 
1785         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1786         if (IS_ERR(hdr))
1787                 return PTR_ERR(hdr);
1788 
1789         trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1790         if (IS_ERR(trans)) {
1791                 ret = PTR_ERR(trans);
1792                 goto e_free_hdr;
1793         }
1794 
1795         memset(&data, 0, sizeof(data));
1796         data.hdr_address = __psp_pa(hdr);
1797         data.hdr_len = params.hdr_len;
1798         data.trans_address = __psp_pa(trans);
1799         data.trans_len = params.trans_len;
1800 
1801         /* Pin guest memory */
1802         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1803                                     PAGE_SIZE, &n, 1);
1804         if (IS_ERR(guest_page)) {
1805                 ret = PTR_ERR(guest_page);
1806                 goto e_free_trans;
1807         }
1808 
1809         /*
1810          * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1811          * encrypts the written data with the guest's key, and the cache may
1812          * contain dirty, unencrypted data.
1813          */
1814         sev_clflush_pages(guest_page, n);
1815 
1816         /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1817         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1818         data.guest_address |= sev_me_mask;
1819         data.guest_len = params.guest_len;
1820         data.handle = sev->handle;
1821 
1822         ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1823                                 &argp->error);
1824 
1825         sev_unpin_memory(kvm, guest_page, n);
1826 
1827 e_free_trans:
1828         kfree(trans);
1829 e_free_hdr:
1830         kfree(hdr);
1831 
1832         return ret;
1833 }
1834 
1835 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1836 {
1837         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1838         struct sev_data_receive_finish data;
1839 
1840         if (!sev_guest(kvm))
1841                 return -ENOTTY;
1842 
1843         data.handle = sev->handle;
1844         return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1845 }
1846 
1847 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1848 {
1849         /*
1850          * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1851          * active mirror VMs. Also allow the debugging and status commands.
1852          */
1853         if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1854             cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1855             cmd_id == KVM_SEV_DBG_ENCRYPT)
1856                 return true;
1857 
1858         return false;
1859 }
1860 
1861 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1862 {
1863         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1864         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1865         int r = -EBUSY;
1866 
1867         if (dst_kvm == src_kvm)
1868                 return -EINVAL;
1869 
1870         /*
1871          * Bail if these VMs are already involved in a migration to avoid
1872          * deadlock between two VMs trying to migrate to/from each other.
1873          */
1874         if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1875                 return -EBUSY;
1876 
1877         if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1878                 goto release_dst;
1879 
1880         r = -EINTR;
1881         if (mutex_lock_killable(&dst_kvm->lock))
1882                 goto release_src;
1883         if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1884                 goto unlock_dst;
1885         return 0;
1886 
1887 unlock_dst:
1888         mutex_unlock(&dst_kvm->lock);
1889 release_src:
1890         atomic_set_release(&src_sev->migration_in_progress, 0);
1891 release_dst:
1892         atomic_set_release(&dst_sev->migration_in_progress, 0);
1893         return r;
1894 }
1895 
1896 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1897 {
1898         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1899         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1900 
1901         mutex_unlock(&dst_kvm->lock);
1902         mutex_unlock(&src_kvm->lock);
1903         atomic_set_release(&dst_sev->migration_in_progress, 0);
1904         atomic_set_release(&src_sev->migration_in_progress, 0);
1905 }
1906 
1907 /* vCPU mutex subclasses.  */
1908 enum sev_migration_role {
1909         SEV_MIGRATION_SOURCE = 0,
1910         SEV_MIGRATION_TARGET,
1911         SEV_NR_MIGRATION_ROLES,
1912 };
1913 
1914 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1915                                         enum sev_migration_role role)
1916 {
1917         struct kvm_vcpu *vcpu;
1918         unsigned long i, j;
1919 
1920         kvm_for_each_vcpu(i, vcpu, kvm) {
1921                 if (mutex_lock_killable_nested(&vcpu->mutex, role))
1922                         goto out_unlock;
1923 
1924 #ifdef CONFIG_PROVE_LOCKING
1925                 if (!i)
1926                         /*
1927                          * Reset the role to one that avoids colliding with
1928                          * the role used for the first vcpu mutex.
1929                          */
1930                         role = SEV_NR_MIGRATION_ROLES;
1931                 else
1932                         mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1933 #endif
1934         }
1935 
1936         return 0;
1937 
1938 out_unlock:
1939 
1940         kvm_for_each_vcpu(j, vcpu, kvm) {
1941                 if (i == j)
1942                         break;
1943 
1944 #ifdef CONFIG_PROVE_LOCKING
1945                 if (j)
1946                         mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1947 #endif
1948 
1949                 mutex_unlock(&vcpu->mutex);
1950         }
1951         return -EINTR;
1952 }
1953 
1954 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1955 {
1956         struct kvm_vcpu *vcpu;
1957         unsigned long i;
1958         bool first = true;
1959 
1960         kvm_for_each_vcpu(i, vcpu, kvm) {
1961                 if (first)
1962                         first = false;
1963                 else
1964                         mutex_acquire(&vcpu->mutex.dep_map,
1965                                       SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1966 
1967                 mutex_unlock(&vcpu->mutex);
1968         }
1969 }
1970 
1971 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1972 {
1973         struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1974         struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1975         struct kvm_vcpu *dst_vcpu, *src_vcpu;
1976         struct vcpu_svm *dst_svm, *src_svm;
1977         struct kvm_sev_info *mirror;
1978         unsigned long i;
1979 
1980         dst->active = true;
1981         dst->asid = src->asid;
1982         dst->handle = src->handle;
1983         dst->pages_locked = src->pages_locked;
1984         dst->enc_context_owner = src->enc_context_owner;
1985         dst->es_active = src->es_active;
1986         dst->vmsa_features = src->vmsa_features;
1987 
1988         src->asid = 0;
1989         src->active = false;
1990         src->handle = 0;
1991         src->pages_locked = 0;
1992         src->enc_context_owner = NULL;
1993         src->es_active = false;
1994 
1995         list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1996 
1997         /*
1998          * If this VM has mirrors, "transfer" each mirror's refcount of the
1999          * source to the destination (this KVM).  The caller holds a reference
2000          * to the source, so there's no danger of use-after-free.
2001          */
2002         list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
2003         list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
2004                 kvm_get_kvm(dst_kvm);
2005                 kvm_put_kvm(src_kvm);
2006                 mirror->enc_context_owner = dst_kvm;
2007         }
2008 
2009         /*
2010          * If this VM is a mirror, remove the old mirror from the owners list
2011          * and add the new mirror to the list.
2012          */
2013         if (is_mirroring_enc_context(dst_kvm)) {
2014                 struct kvm_sev_info *owner_sev_info =
2015                         &to_kvm_svm(dst->enc_context_owner)->sev_info;
2016 
2017                 list_del(&src->mirror_entry);
2018                 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
2019         }
2020 
2021         kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
2022                 dst_svm = to_svm(dst_vcpu);
2023 
2024                 sev_init_vmcb(dst_svm);
2025 
2026                 if (!dst->es_active)
2027                         continue;
2028 
2029                 /*
2030                  * Note, the source is not required to have the same number of
2031                  * vCPUs as the destination when migrating a vanilla SEV VM.
2032                  */
2033                 src_vcpu = kvm_get_vcpu(src_kvm, i);
2034                 src_svm = to_svm(src_vcpu);
2035 
2036                 /*
2037                  * Transfer VMSA and GHCB state to the destination.  Nullify and
2038                  * clear source fields as appropriate, the state now belongs to
2039                  * the destination.
2040                  */
2041                 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
2042                 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
2043                 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
2044                 dst_vcpu->arch.guest_state_protected = true;
2045 
2046                 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
2047                 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
2048                 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
2049                 src_vcpu->arch.guest_state_protected = false;
2050         }
2051 }
2052 
2053 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2054 {
2055         struct kvm_vcpu *src_vcpu;
2056         unsigned long i;
2057 
2058         if (!sev_es_guest(src))
2059                 return 0;
2060 
2061         if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2062                 return -EINVAL;
2063 
2064         kvm_for_each_vcpu(i, src_vcpu, src) {
2065                 if (!src_vcpu->arch.guest_state_protected)
2066                         return -EINVAL;
2067         }
2068 
2069         return 0;
2070 }
2071 
2072 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2073 {
2074         struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
2075         struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2076         struct fd f = fdget(source_fd);
2077         struct kvm *source_kvm;
2078         bool charged = false;
2079         int ret;
2080 
2081         if (!f.file)
2082                 return -EBADF;
2083 
2084         if (!file_is_kvm(f.file)) {
2085                 ret = -EBADF;
2086                 goto out_fput;
2087         }
2088 
2089         source_kvm = f.file->private_data;
2090         ret = sev_lock_two_vms(kvm, source_kvm);
2091         if (ret)
2092                 goto out_fput;
2093 
2094         if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2095             sev_guest(kvm) || !sev_guest(source_kvm)) {
2096                 ret = -EINVAL;
2097                 goto out_unlock;
2098         }
2099 
2100         src_sev = &to_kvm_svm(source_kvm)->sev_info;
2101 
2102         dst_sev->misc_cg = get_current_misc_cg();
2103         cg_cleanup_sev = dst_sev;
2104         if (dst_sev->misc_cg != src_sev->misc_cg) {
2105                 ret = sev_misc_cg_try_charge(dst_sev);
2106                 if (ret)
2107                         goto out_dst_cgroup;
2108                 charged = true;
2109         }
2110 
2111         ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
2112         if (ret)
2113                 goto out_dst_cgroup;
2114         ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
2115         if (ret)
2116                 goto out_dst_vcpu;
2117 
2118         ret = sev_check_source_vcpus(kvm, source_kvm);
2119         if (ret)
2120                 goto out_source_vcpu;
2121 
2122         sev_migrate_from(kvm, source_kvm);
2123         kvm_vm_dead(source_kvm);
2124         cg_cleanup_sev = src_sev;
2125         ret = 0;
2126 
2127 out_source_vcpu:
2128         sev_unlock_vcpus_for_migration(source_kvm);
2129 out_dst_vcpu:
2130         sev_unlock_vcpus_for_migration(kvm);
2131 out_dst_cgroup:
2132         /* Operates on the source on success, on the destination on failure.  */
2133         if (charged)
2134                 sev_misc_cg_uncharge(cg_cleanup_sev);
2135         put_misc_cg(cg_cleanup_sev->misc_cg);
2136         cg_cleanup_sev->misc_cg = NULL;
2137 out_unlock:
2138         sev_unlock_two_vms(kvm, source_kvm);
2139 out_fput:
2140         fdput(f);
2141         return ret;
2142 }
2143 
2144 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2145 {
2146         if (group != KVM_X86_GRP_SEV)
2147                 return -ENXIO;
2148 
2149         switch (attr) {
2150         case KVM_X86_SEV_VMSA_FEATURES:
2151                 *val = sev_supported_vmsa_features;
2152                 return 0;
2153 
2154         default:
2155                 return -ENXIO;
2156         }
2157 }
2158 
2159 /*
2160  * The guest context contains all the information, keys and metadata
2161  * associated with the guest that the firmware tracks to implement SEV
2162  * and SNP features. The firmware stores the guest context in hypervisor
2163  * provide page via the SNP_GCTX_CREATE command.
2164  */
2165 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2166 {
2167         struct sev_data_snp_addr data = {};
2168         void *context;
2169         int rc;
2170 
2171         /* Allocate memory for context page */
2172         context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2173         if (!context)
2174                 return NULL;
2175 
2176         data.address = __psp_pa(context);
2177         rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2178         if (rc) {
2179                 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2180                         rc, argp->error);
2181                 snp_free_firmware_page(context);
2182                 return NULL;
2183         }
2184 
2185         return context;
2186 }
2187 
2188 static int snp_bind_asid(struct kvm *kvm, int *error)
2189 {
2190         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2191         struct sev_data_snp_activate data = {0};
2192 
2193         data.gctx_paddr = __psp_pa(sev->snp_context);
2194         data.asid = sev_get_asid(kvm);
2195         return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2196 }
2197 
2198 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2199 {
2200         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2201         struct sev_data_snp_launch_start start = {0};
2202         struct kvm_sev_snp_launch_start params;
2203         int rc;
2204 
2205         if (!sev_snp_guest(kvm))
2206                 return -ENOTTY;
2207 
2208         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2209                 return -EFAULT;
2210 
2211         /* Don't allow userspace to allocate memory for more than 1 SNP context. */
2212         if (sev->snp_context)
2213                 return -EINVAL;
2214 
2215         sev->snp_context = snp_context_create(kvm, argp);
2216         if (!sev->snp_context)
2217                 return -ENOTTY;
2218 
2219         if (params.flags)
2220                 return -EINVAL;
2221 
2222         if (params.policy & ~SNP_POLICY_MASK_VALID)
2223                 return -EINVAL;
2224 
2225         /* Check for policy bits that must be set */
2226         if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) ||
2227             !(params.policy & SNP_POLICY_MASK_SMT))
2228                 return -EINVAL;
2229 
2230         if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET)
2231                 return -EINVAL;
2232 
2233         start.gctx_paddr = __psp_pa(sev->snp_context);
2234         start.policy = params.policy;
2235         memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2236         rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2237         if (rc) {
2238                 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2239                          __func__, rc);
2240                 goto e_free_context;
2241         }
2242 
2243         sev->fd = argp->sev_fd;
2244         rc = snp_bind_asid(kvm, &argp->error);
2245         if (rc) {
2246                 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2247                          __func__, rc);
2248                 goto e_free_context;
2249         }
2250 
2251         return 0;
2252 
2253 e_free_context:
2254         snp_decommission_context(kvm);
2255 
2256         return rc;
2257 }
2258 
2259 struct sev_gmem_populate_args {
2260         __u8 type;
2261         int sev_fd;
2262         int fw_error;
2263 };
2264 
2265 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2266                                   void __user *src, int order, void *opaque)
2267 {
2268         struct sev_gmem_populate_args *sev_populate_args = opaque;
2269         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2270         int n_private = 0, ret, i;
2271         int npages = (1 << order);
2272         gfn_t gfn;
2273 
2274         if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2275                 return -EINVAL;
2276 
2277         for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2278                 struct sev_data_snp_launch_update fw_args = {0};
2279                 bool assigned = false;
2280                 int level;
2281 
2282                 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2283                 if (ret || assigned) {
2284                         pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2285                                  __func__, gfn, ret, assigned);
2286                         ret = ret ? -EINVAL : -EEXIST;
2287                         goto err;
2288                 }
2289 
2290                 if (src) {
2291                         void *vaddr = kmap_local_pfn(pfn + i);
2292 
2293                         if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2294                                 ret = -EFAULT;
2295                                 goto err;
2296                         }
2297                         kunmap_local(vaddr);
2298                 }
2299 
2300                 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2301                                        sev_get_asid(kvm), true);
2302                 if (ret)
2303                         goto err;
2304 
2305                 n_private++;
2306 
2307                 fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2308                 fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2309                 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2310                 fw_args.page_type = sev_populate_args->type;
2311 
2312                 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2313                                       &fw_args, &sev_populate_args->fw_error);
2314                 if (ret)
2315                         goto fw_err;
2316         }
2317 
2318         return 0;
2319 
2320 fw_err:
2321         /*
2322          * If the firmware command failed handle the reclaim and cleanup of that
2323          * PFN specially vs. prior pages which can be cleaned up below without
2324          * needing to reclaim in advance.
2325          *
2326          * Additionally, when invalid CPUID function entries are detected,
2327          * firmware writes the expected values into the page and leaves it
2328          * unencrypted so it can be used for debugging and error-reporting.
2329          *
2330          * Copy this page back into the source buffer so userspace can use this
2331          * information to provide information on which CPUID leaves/fields
2332          * failed CPUID validation.
2333          */
2334         if (!snp_page_reclaim(kvm, pfn + i) &&
2335             sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2336             sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2337                 void *vaddr = kmap_local_pfn(pfn + i);
2338 
2339                 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2340                         pr_debug("Failed to write CPUID page back to userspace\n");
2341 
2342                 kunmap_local(vaddr);
2343         }
2344 
2345         /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2346         n_private--;
2347 
2348 err:
2349         pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2350                  __func__, ret, sev_populate_args->fw_error, n_private);
2351         for (i = 0; i < n_private; i++)
2352                 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2353 
2354         return ret;
2355 }
2356 
2357 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2358 {
2359         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2360         struct sev_gmem_populate_args sev_populate_args = {0};
2361         struct kvm_sev_snp_launch_update params;
2362         struct kvm_memory_slot *memslot;
2363         long npages, count;
2364         void __user *src;
2365         int ret = 0;
2366 
2367         if (!sev_snp_guest(kvm) || !sev->snp_context)
2368                 return -EINVAL;
2369 
2370         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2371                 return -EFAULT;
2372 
2373         pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2374                  params.gfn_start, params.len, params.type, params.flags);
2375 
2376         if (!PAGE_ALIGNED(params.len) || params.flags ||
2377             (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2378              params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2379              params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2380              params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2381              params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2382                 return -EINVAL;
2383 
2384         npages = params.len / PAGE_SIZE;
2385 
2386         /*
2387          * For each GFN that's being prepared as part of the initial guest
2388          * state, the following pre-conditions are verified:
2389          *
2390          *   1) The backing memslot is a valid private memslot.
2391          *   2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2392          *      beforehand.
2393          *   3) The PFN of the guest_memfd has not already been set to private
2394          *      in the RMP table.
2395          *
2396          * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2397          * faults if there's a race between a fault and an attribute update via
2398          * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2399          * here. However, kvm->slots_lock guards against both this as well as
2400          * concurrent memslot updates occurring while these checks are being
2401          * performed, so use that here to make it easier to reason about the
2402          * initial expected state and better guard against unexpected
2403          * situations.
2404          */
2405         mutex_lock(&kvm->slots_lock);
2406 
2407         memslot = gfn_to_memslot(kvm, params.gfn_start);
2408         if (!kvm_slot_can_be_private(memslot)) {
2409                 ret = -EINVAL;
2410                 goto out;
2411         }
2412 
2413         sev_populate_args.sev_fd = argp->sev_fd;
2414         sev_populate_args.type = params.type;
2415         src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2416 
2417         count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2418                                   sev_gmem_post_populate, &sev_populate_args);
2419         if (count < 0) {
2420                 argp->error = sev_populate_args.fw_error;
2421                 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2422                          __func__, count, argp->error);
2423                 ret = -EIO;
2424         } else {
2425                 params.gfn_start += count;
2426                 params.len -= count * PAGE_SIZE;
2427                 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2428                         params.uaddr += count * PAGE_SIZE;
2429 
2430                 ret = 0;
2431                 if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
2432                         ret = -EFAULT;
2433         }
2434 
2435 out:
2436         mutex_unlock(&kvm->slots_lock);
2437 
2438         return ret;
2439 }
2440 
2441 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2442 {
2443         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2444         struct sev_data_snp_launch_update data = {};
2445         struct kvm_vcpu *vcpu;
2446         unsigned long i;
2447         int ret;
2448 
2449         data.gctx_paddr = __psp_pa(sev->snp_context);
2450         data.page_type = SNP_PAGE_TYPE_VMSA;
2451 
2452         kvm_for_each_vcpu(i, vcpu, kvm) {
2453                 struct vcpu_svm *svm = to_svm(vcpu);
2454                 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2455 
2456                 ret = sev_es_sync_vmsa(svm);
2457                 if (ret)
2458                         return ret;
2459 
2460                 /* Transition the VMSA page to a firmware state. */
2461                 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2462                 if (ret)
2463                         return ret;
2464 
2465                 /* Issue the SNP command to encrypt the VMSA */
2466                 data.address = __sme_pa(svm->sev_es.vmsa);
2467                 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2468                                       &data, &argp->error);
2469                 if (ret) {
2470                         snp_page_reclaim(kvm, pfn);
2471 
2472                         return ret;
2473                 }
2474 
2475                 svm->vcpu.arch.guest_state_protected = true;
2476                 /*
2477                  * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2478                  * be _always_ ON. Enable it only after setting
2479                  * guest_state_protected because KVM_SET_MSRS allows dynamic
2480                  * toggling of LBRV (for performance reason) on write access to
2481                  * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2482                  */
2483                 svm_enable_lbrv(vcpu);
2484         }
2485 
2486         return 0;
2487 }
2488 
2489 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2490 {
2491         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2492         struct kvm_sev_snp_launch_finish params;
2493         struct sev_data_snp_launch_finish *data;
2494         void *id_block = NULL, *id_auth = NULL;
2495         int ret;
2496 
2497         if (!sev_snp_guest(kvm))
2498                 return -ENOTTY;
2499 
2500         if (!sev->snp_context)
2501                 return -EINVAL;
2502 
2503         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2504                 return -EFAULT;
2505 
2506         if (params.flags)
2507                 return -EINVAL;
2508 
2509         /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2510         ret = snp_launch_update_vmsa(kvm, argp);
2511         if (ret)
2512                 return ret;
2513 
2514         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2515         if (!data)
2516                 return -ENOMEM;
2517 
2518         if (params.id_block_en) {
2519                 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2520                 if (IS_ERR(id_block)) {
2521                         ret = PTR_ERR(id_block);
2522                         goto e_free;
2523                 }
2524 
2525                 data->id_block_en = 1;
2526                 data->id_block_paddr = __sme_pa(id_block);
2527 
2528                 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2529                 if (IS_ERR(id_auth)) {
2530                         ret = PTR_ERR(id_auth);
2531                         goto e_free_id_block;
2532                 }
2533 
2534                 data->id_auth_paddr = __sme_pa(id_auth);
2535 
2536                 if (params.auth_key_en)
2537                         data->auth_key_en = 1;
2538         }
2539 
2540         data->vcek_disabled = params.vcek_disabled;
2541 
2542         memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2543         data->gctx_paddr = __psp_pa(sev->snp_context);
2544         ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2545 
2546         /*
2547          * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2548          * can be given to the guest simply by marking the RMP entry as private.
2549          * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2550          */
2551         if (!ret)
2552                 kvm->arch.pre_fault_allowed = true;
2553 
2554         kfree(id_auth);
2555 
2556 e_free_id_block:
2557         kfree(id_block);
2558 
2559 e_free:
2560         kfree(data);
2561 
2562         return ret;
2563 }
2564 
2565 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2566 {
2567         struct kvm_sev_cmd sev_cmd;
2568         int r;
2569 
2570         if (!sev_enabled)
2571                 return -ENOTTY;
2572 
2573         if (!argp)
2574                 return 0;
2575 
2576         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2577                 return -EFAULT;
2578 
2579         mutex_lock(&kvm->lock);
2580 
2581         /* Only the enc_context_owner handles some memory enc operations. */
2582         if (is_mirroring_enc_context(kvm) &&
2583             !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2584                 r = -EINVAL;
2585                 goto out;
2586         }
2587 
2588         /*
2589          * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2590          * allow the use of SNP-specific commands.
2591          */
2592         if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2593                 r = -EPERM;
2594                 goto out;
2595         }
2596 
2597         switch (sev_cmd.id) {
2598         case KVM_SEV_ES_INIT:
2599                 if (!sev_es_enabled) {
2600                         r = -ENOTTY;
2601                         goto out;
2602                 }
2603                 fallthrough;
2604         case KVM_SEV_INIT:
2605                 r = sev_guest_init(kvm, &sev_cmd);
2606                 break;
2607         case KVM_SEV_INIT2:
2608                 r = sev_guest_init2(kvm, &sev_cmd);
2609                 break;
2610         case KVM_SEV_LAUNCH_START:
2611                 r = sev_launch_start(kvm, &sev_cmd);
2612                 break;
2613         case KVM_SEV_LAUNCH_UPDATE_DATA:
2614                 r = sev_launch_update_data(kvm, &sev_cmd);
2615                 break;
2616         case KVM_SEV_LAUNCH_UPDATE_VMSA:
2617                 r = sev_launch_update_vmsa(kvm, &sev_cmd);
2618                 break;
2619         case KVM_SEV_LAUNCH_MEASURE:
2620                 r = sev_launch_measure(kvm, &sev_cmd);
2621                 break;
2622         case KVM_SEV_LAUNCH_FINISH:
2623                 r = sev_launch_finish(kvm, &sev_cmd);
2624                 break;
2625         case KVM_SEV_GUEST_STATUS:
2626                 r = sev_guest_status(kvm, &sev_cmd);
2627                 break;
2628         case KVM_SEV_DBG_DECRYPT:
2629                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
2630                 break;
2631         case KVM_SEV_DBG_ENCRYPT:
2632                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
2633                 break;
2634         case KVM_SEV_LAUNCH_SECRET:
2635                 r = sev_launch_secret(kvm, &sev_cmd);
2636                 break;
2637         case KVM_SEV_GET_ATTESTATION_REPORT:
2638                 r = sev_get_attestation_report(kvm, &sev_cmd);
2639                 break;
2640         case KVM_SEV_SEND_START:
2641                 r = sev_send_start(kvm, &sev_cmd);
2642                 break;
2643         case KVM_SEV_SEND_UPDATE_DATA:
2644                 r = sev_send_update_data(kvm, &sev_cmd);
2645                 break;
2646         case KVM_SEV_SEND_FINISH:
2647                 r = sev_send_finish(kvm, &sev_cmd);
2648                 break;
2649         case KVM_SEV_SEND_CANCEL:
2650                 r = sev_send_cancel(kvm, &sev_cmd);
2651                 break;
2652         case KVM_SEV_RECEIVE_START:
2653                 r = sev_receive_start(kvm, &sev_cmd);
2654                 break;
2655         case KVM_SEV_RECEIVE_UPDATE_DATA:
2656                 r = sev_receive_update_data(kvm, &sev_cmd);
2657                 break;
2658         case KVM_SEV_RECEIVE_FINISH:
2659                 r = sev_receive_finish(kvm, &sev_cmd);
2660                 break;
2661         case KVM_SEV_SNP_LAUNCH_START:
2662                 r = snp_launch_start(kvm, &sev_cmd);
2663                 break;
2664         case KVM_SEV_SNP_LAUNCH_UPDATE:
2665                 r = snp_launch_update(kvm, &sev_cmd);
2666                 break;
2667         case KVM_SEV_SNP_LAUNCH_FINISH:
2668                 r = snp_launch_finish(kvm, &sev_cmd);
2669                 break;
2670         default:
2671                 r = -EINVAL;
2672                 goto out;
2673         }
2674 
2675         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2676                 r = -EFAULT;
2677 
2678 out:
2679         mutex_unlock(&kvm->lock);
2680         return r;
2681 }
2682 
2683 int sev_mem_enc_register_region(struct kvm *kvm,
2684                                 struct kvm_enc_region *range)
2685 {
2686         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2687         struct enc_region *region;
2688         int ret = 0;
2689 
2690         if (!sev_guest(kvm))
2691                 return -ENOTTY;
2692 
2693         /* If kvm is mirroring encryption context it isn't responsible for it */
2694         if (is_mirroring_enc_context(kvm))
2695                 return -EINVAL;
2696 
2697         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2698                 return -EINVAL;
2699 
2700         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2701         if (!region)
2702                 return -ENOMEM;
2703 
2704         mutex_lock(&kvm->lock);
2705         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
2706         if (IS_ERR(region->pages)) {
2707                 ret = PTR_ERR(region->pages);
2708                 mutex_unlock(&kvm->lock);
2709                 goto e_free;
2710         }
2711 
2712         /*
2713          * The guest may change the memory encryption attribute from C=0 -> C=1
2714          * or vice versa for this memory range. Lets make sure caches are
2715          * flushed to ensure that guest data gets written into memory with
2716          * correct C-bit.  Note, this must be done before dropping kvm->lock,
2717          * as region and its array of pages can be freed by a different task
2718          * once kvm->lock is released.
2719          */
2720         sev_clflush_pages(region->pages, region->npages);
2721 
2722         region->uaddr = range->addr;
2723         region->size = range->size;
2724 
2725         list_add_tail(&region->list, &sev->regions_list);
2726         mutex_unlock(&kvm->lock);
2727 
2728         return ret;
2729 
2730 e_free:
2731         kfree(region);
2732         return ret;
2733 }
2734 
2735 static struct enc_region *
2736 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2737 {
2738         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2739         struct list_head *head = &sev->regions_list;
2740         struct enc_region *i;
2741 
2742         list_for_each_entry(i, head, list) {
2743                 if (i->uaddr == range->addr &&
2744                     i->size == range->size)
2745                         return i;
2746         }
2747 
2748         return NULL;
2749 }
2750 
2751 static void __unregister_enc_region_locked(struct kvm *kvm,
2752                                            struct enc_region *region)
2753 {
2754         sev_unpin_memory(kvm, region->pages, region->npages);
2755         list_del(&region->list);
2756         kfree(region);
2757 }
2758 
2759 int sev_mem_enc_unregister_region(struct kvm *kvm,
2760                                   struct kvm_enc_region *range)
2761 {
2762         struct enc_region *region;
2763         int ret;
2764 
2765         /* If kvm is mirroring encryption context it isn't responsible for it */
2766         if (is_mirroring_enc_context(kvm))
2767                 return -EINVAL;
2768 
2769         mutex_lock(&kvm->lock);
2770 
2771         if (!sev_guest(kvm)) {
2772                 ret = -ENOTTY;
2773                 goto failed;
2774         }
2775 
2776         region = find_enc_region(kvm, range);
2777         if (!region) {
2778                 ret = -EINVAL;
2779                 goto failed;
2780         }
2781 
2782         /*
2783          * Ensure that all guest tagged cache entries are flushed before
2784          * releasing the pages back to the system for use. CLFLUSH will
2785          * not do this, so issue a WBINVD.
2786          */
2787         wbinvd_on_all_cpus();
2788 
2789         __unregister_enc_region_locked(kvm, region);
2790 
2791         mutex_unlock(&kvm->lock);
2792         return 0;
2793 
2794 failed:
2795         mutex_unlock(&kvm->lock);
2796         return ret;
2797 }
2798 
2799 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2800 {
2801         struct fd f = fdget(source_fd);
2802         struct kvm *source_kvm;
2803         struct kvm_sev_info *source_sev, *mirror_sev;
2804         int ret;
2805 
2806         if (!f.file)
2807                 return -EBADF;
2808 
2809         if (!file_is_kvm(f.file)) {
2810                 ret = -EBADF;
2811                 goto e_source_fput;
2812         }
2813 
2814         source_kvm = f.file->private_data;
2815         ret = sev_lock_two_vms(kvm, source_kvm);
2816         if (ret)
2817                 goto e_source_fput;
2818 
2819         /*
2820          * Mirrors of mirrors should work, but let's not get silly.  Also
2821          * disallow out-of-band SEV/SEV-ES init if the target is already an
2822          * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2823          * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2824          */
2825         if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2826             is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2827                 ret = -EINVAL;
2828                 goto e_unlock;
2829         }
2830 
2831         /*
2832          * The mirror kvm holds an enc_context_owner ref so its asid can't
2833          * disappear until we're done with it
2834          */
2835         source_sev = &to_kvm_svm(source_kvm)->sev_info;
2836         kvm_get_kvm(source_kvm);
2837         mirror_sev = &to_kvm_svm(kvm)->sev_info;
2838         list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2839 
2840         /* Set enc_context_owner and copy its encryption context over */
2841         mirror_sev->enc_context_owner = source_kvm;
2842         mirror_sev->active = true;
2843         mirror_sev->asid = source_sev->asid;
2844         mirror_sev->fd = source_sev->fd;
2845         mirror_sev->es_active = source_sev->es_active;
2846         mirror_sev->need_init = false;
2847         mirror_sev->handle = source_sev->handle;
2848         INIT_LIST_HEAD(&mirror_sev->regions_list);
2849         INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2850         ret = 0;
2851 
2852         /*
2853          * Do not copy ap_jump_table. Since the mirror does not share the same
2854          * KVM contexts as the original, and they may have different
2855          * memory-views.
2856          */
2857 
2858 e_unlock:
2859         sev_unlock_two_vms(kvm, source_kvm);
2860 e_source_fput:
2861         fdput(f);
2862         return ret;
2863 }
2864 
2865 static int snp_decommission_context(struct kvm *kvm)
2866 {
2867         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2868         struct sev_data_snp_addr data = {};
2869         int ret;
2870 
2871         /* If context is not created then do nothing */
2872         if (!sev->snp_context)
2873                 return 0;
2874 
2875         /* Do the decommision, which will unbind the ASID from the SNP context */
2876         data.address = __sme_pa(sev->snp_context);
2877         down_write(&sev_deactivate_lock);
2878         ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2879         up_write(&sev_deactivate_lock);
2880 
2881         if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2882                 return ret;
2883 
2884         snp_free_firmware_page(sev->snp_context);
2885         sev->snp_context = NULL;
2886 
2887         return 0;
2888 }
2889 
2890 void sev_vm_destroy(struct kvm *kvm)
2891 {
2892         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2893         struct list_head *head = &sev->regions_list;
2894         struct list_head *pos, *q;
2895 
2896         if (!sev_guest(kvm))
2897                 return;
2898 
2899         WARN_ON(!list_empty(&sev->mirror_vms));
2900 
2901         /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2902         if (is_mirroring_enc_context(kvm)) {
2903                 struct kvm *owner_kvm = sev->enc_context_owner;
2904 
2905                 mutex_lock(&owner_kvm->lock);
2906                 list_del(&sev->mirror_entry);
2907                 mutex_unlock(&owner_kvm->lock);
2908                 kvm_put_kvm(owner_kvm);
2909                 return;
2910         }
2911 
2912         /*
2913          * Ensure that all guest tagged cache entries are flushed before
2914          * releasing the pages back to the system for use. CLFLUSH will
2915          * not do this, so issue a WBINVD.
2916          */
2917         wbinvd_on_all_cpus();
2918 
2919         /*
2920          * if userspace was terminated before unregistering the memory regions
2921          * then lets unpin all the registered memory.
2922          */
2923         if (!list_empty(head)) {
2924                 list_for_each_safe(pos, q, head) {
2925                         __unregister_enc_region_locked(kvm,
2926                                 list_entry(pos, struct enc_region, list));
2927                         cond_resched();
2928                 }
2929         }
2930 
2931         if (sev_snp_guest(kvm)) {
2932                 snp_guest_req_cleanup(kvm);
2933 
2934                 /*
2935                  * Decomission handles unbinding of the ASID. If it fails for
2936                  * some unexpected reason, just leak the ASID.
2937                  */
2938                 if (snp_decommission_context(kvm))
2939                         return;
2940         } else {
2941                 sev_unbind_asid(kvm, sev->handle);
2942         }
2943 
2944         sev_asid_free(sev);
2945 }
2946 
2947 void __init sev_set_cpu_caps(void)
2948 {
2949         if (sev_enabled) {
2950                 kvm_cpu_cap_set(X86_FEATURE_SEV);
2951                 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2952         }
2953         if (sev_es_enabled) {
2954                 kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2955                 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2956         }
2957         if (sev_snp_enabled) {
2958                 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2959                 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2960         }
2961 }
2962 
2963 void __init sev_hardware_setup(void)
2964 {
2965         unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2966         bool sev_snp_supported = false;
2967         bool sev_es_supported = false;
2968         bool sev_supported = false;
2969 
2970         if (!sev_enabled || !npt_enabled || !nrips)
2971                 goto out;
2972 
2973         /*
2974          * SEV must obviously be supported in hardware.  Sanity check that the
2975          * CPU supports decode assists, which is mandatory for SEV guests to
2976          * support instruction emulation.  Ditto for flushing by ASID, as SEV
2977          * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2978          * ASID to effect a TLB flush.
2979          */
2980         if (!boot_cpu_has(X86_FEATURE_SEV) ||
2981             WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2982             WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2983                 goto out;
2984 
2985         /* Retrieve SEV CPUID information */
2986         cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2987 
2988         /* Set encryption bit location for SEV-ES guests */
2989         sev_enc_bit = ebx & 0x3f;
2990 
2991         /* Maximum number of encrypted guests supported simultaneously */
2992         max_sev_asid = ecx;
2993         if (!max_sev_asid)
2994                 goto out;
2995 
2996         /* Minimum ASID value that should be used for SEV guest */
2997         min_sev_asid = edx;
2998         sev_me_mask = 1UL << (ebx & 0x3f);
2999 
3000         /*
3001          * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
3002          * even though it's never used, so that the bitmap is indexed by the
3003          * actual ASID.
3004          */
3005         nr_asids = max_sev_asid + 1;
3006         sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3007         if (!sev_asid_bitmap)
3008                 goto out;
3009 
3010         sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3011         if (!sev_reclaim_asid_bitmap) {
3012                 bitmap_free(sev_asid_bitmap);
3013                 sev_asid_bitmap = NULL;
3014                 goto out;
3015         }
3016 
3017         if (min_sev_asid <= max_sev_asid) {
3018                 sev_asid_count = max_sev_asid - min_sev_asid + 1;
3019                 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3020         }
3021         sev_supported = true;
3022 
3023         /* SEV-ES support requested? */
3024         if (!sev_es_enabled)
3025                 goto out;
3026 
3027         /*
3028          * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3029          * instruction stream, i.e. can't emulate in response to a #NPF and
3030          * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3031          * (the guest can then do a #VMGEXIT to request MMIO emulation).
3032          */
3033         if (!enable_mmio_caching)
3034                 goto out;
3035 
3036         /* Does the CPU support SEV-ES? */
3037         if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3038                 goto out;
3039 
3040         if (!lbrv) {
3041                 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3042                           "LBRV must be present for SEV-ES support");
3043                 goto out;
3044         }
3045 
3046         /* Has the system been allocated ASIDs for SEV-ES? */
3047         if (min_sev_asid == 1)
3048                 goto out;
3049 
3050         sev_es_asid_count = min_sev_asid - 1;
3051         WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3052         sev_es_supported = true;
3053         sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3054 
3055 out:
3056         if (boot_cpu_has(X86_FEATURE_SEV))
3057                 pr_info("SEV %s (ASIDs %u - %u)\n",
3058                         sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3059                                                                        "unusable" :
3060                                                                        "disabled",
3061                         min_sev_asid, max_sev_asid);
3062         if (boot_cpu_has(X86_FEATURE_SEV_ES))
3063                 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3064                         sev_es_supported ? "enabled" : "disabled",
3065                         min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3066         if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3067                 pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3068                         sev_snp_supported ? "enabled" : "disabled",
3069                         min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3070 
3071         sev_enabled = sev_supported;
3072         sev_es_enabled = sev_es_supported;
3073         sev_snp_enabled = sev_snp_supported;
3074 
3075         if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3076             !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3077                 sev_es_debug_swap_enabled = false;
3078 
3079         sev_supported_vmsa_features = 0;
3080         if (sev_es_debug_swap_enabled)
3081                 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3082 }
3083 
3084 void sev_hardware_unsetup(void)
3085 {
3086         if (!sev_enabled)
3087                 return;
3088 
3089         /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3090         sev_flush_asids(1, max_sev_asid);
3091 
3092         bitmap_free(sev_asid_bitmap);
3093         bitmap_free(sev_reclaim_asid_bitmap);
3094 
3095         misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3096         misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3097 }
3098 
3099 int sev_cpu_init(struct svm_cpu_data *sd)
3100 {
3101         if (!sev_enabled)
3102                 return 0;
3103 
3104         sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3105         if (!sd->sev_vmcbs)
3106                 return -ENOMEM;
3107 
3108         return 0;
3109 }
3110 
3111 /*
3112  * Pages used by hardware to hold guest encrypted state must be flushed before
3113  * returning them to the system.
3114  */
3115 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3116 {
3117         unsigned int asid = sev_get_asid(vcpu->kvm);
3118 
3119         /*
3120          * Note!  The address must be a kernel address, as regular page walk
3121          * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3122          * address is non-deterministic and unsafe.  This function deliberately
3123          * takes a pointer to deter passing in a user address.
3124          */
3125         unsigned long addr = (unsigned long)va;
3126 
3127         /*
3128          * If CPU enforced cache coherency for encrypted mappings of the
3129          * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3130          * flush is still needed in order to work properly with DMA devices.
3131          */
3132         if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3133                 clflush_cache_range(va, PAGE_SIZE);
3134                 return;
3135         }
3136 
3137         /*
3138          * VM Page Flush takes a host virtual address and a guest ASID.  Fall
3139          * back to WBINVD if this faults so as not to make any problems worse
3140          * by leaving stale encrypted data in the cache.
3141          */
3142         if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3143                 goto do_wbinvd;
3144 
3145         return;
3146 
3147 do_wbinvd:
3148         wbinvd_on_all_cpus();
3149 }
3150 
3151 void sev_guest_memory_reclaimed(struct kvm *kvm)
3152 {
3153         /*
3154          * With SNP+gmem, private/encrypted memory is unreachable via the
3155          * hva-based mmu notifiers, so these events are only actually
3156          * pertaining to shared pages where there is no need to perform
3157          * the WBINVD to flush associated caches.
3158          */
3159         if (!sev_guest(kvm) || sev_snp_guest(kvm))
3160                 return;
3161 
3162         wbinvd_on_all_cpus();
3163 }
3164 
3165 void sev_free_vcpu(struct kvm_vcpu *vcpu)
3166 {
3167         struct vcpu_svm *svm;
3168 
3169         if (!sev_es_guest(vcpu->kvm))
3170                 return;
3171 
3172         svm = to_svm(vcpu);
3173 
3174         /*
3175          * If it's an SNP guest, then the VMSA was marked in the RMP table as
3176          * a guest-owned page. Transition the page to hypervisor state before
3177          * releasing it back to the system.
3178          */
3179         if (sev_snp_guest(vcpu->kvm)) {
3180                 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3181 
3182                 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3183                         goto skip_vmsa_free;
3184         }
3185 
3186         if (vcpu->arch.guest_state_protected)
3187                 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3188 
3189         __free_page(virt_to_page(svm->sev_es.vmsa));
3190 
3191 skip_vmsa_free:
3192         if (svm->sev_es.ghcb_sa_free)
3193                 kvfree(svm->sev_es.ghcb_sa);
3194 }
3195 
3196 static void dump_ghcb(struct vcpu_svm *svm)
3197 {
3198         struct ghcb *ghcb = svm->sev_es.ghcb;
3199         unsigned int nbits;
3200 
3201         /* Re-use the dump_invalid_vmcb module parameter */
3202         if (!dump_invalid_vmcb) {
3203                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3204                 return;
3205         }
3206 
3207         nbits = sizeof(ghcb->save.valid_bitmap) * 8;
3208 
3209         pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
3210         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3211                ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
3212         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3213                ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
3214         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3215                ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
3216         pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3217                ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
3218         pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
3219 }
3220 
3221 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3222 {
3223         struct kvm_vcpu *vcpu = &svm->vcpu;
3224         struct ghcb *ghcb = svm->sev_es.ghcb;
3225 
3226         /*
3227          * The GHCB protocol so far allows for the following data
3228          * to be returned:
3229          *   GPRs RAX, RBX, RCX, RDX
3230          *
3231          * Copy their values, even if they may not have been written during the
3232          * VM-Exit.  It's the guest's responsibility to not consume random data.
3233          */
3234         ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3235         ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3236         ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3237         ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3238 }
3239 
3240 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3241 {
3242         struct vmcb_control_area *control = &svm->vmcb->control;
3243         struct kvm_vcpu *vcpu = &svm->vcpu;
3244         struct ghcb *ghcb = svm->sev_es.ghcb;
3245         u64 exit_code;
3246 
3247         /*
3248          * The GHCB protocol so far allows for the following data
3249          * to be supplied:
3250          *   GPRs RAX, RBX, RCX, RDX
3251          *   XCR0
3252          *   CPL
3253          *
3254          * VMMCALL allows the guest to provide extra registers. KVM also
3255          * expects RSI for hypercalls, so include that, too.
3256          *
3257          * Copy their values to the appropriate location if supplied.
3258          */
3259         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3260 
3261         BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3262         memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3263 
3264         vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
3265         vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
3266         vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
3267         vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
3268         vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
3269 
3270         svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
3271 
3272         if (kvm_ghcb_xcr0_is_valid(svm)) {
3273                 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
3274                 kvm_update_cpuid_runtime(vcpu);
3275         }
3276 
3277         /* Copy the GHCB exit information into the VMCB fields */
3278         exit_code = ghcb_get_sw_exit_code(ghcb);
3279         control->exit_code = lower_32_bits(exit_code);
3280         control->exit_code_hi = upper_32_bits(exit_code);
3281         control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
3282         control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
3283         svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
3284 
3285         /* Clear the valid entries fields */
3286         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3287 }
3288 
3289 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
3290 {
3291         return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3292 }
3293 
3294 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3295 {
3296         struct vmcb_control_area *control = &svm->vmcb->control;
3297         struct kvm_vcpu *vcpu = &svm->vcpu;
3298         u64 exit_code;
3299         u64 reason;
3300 
3301         /*
3302          * Retrieve the exit code now even though it may not be marked valid
3303          * as it could help with debugging.
3304          */
3305         exit_code = kvm_ghcb_get_sw_exit_code(control);
3306 
3307         /* Only GHCB Usage code 0 is supported */
3308         if (svm->sev_es.ghcb->ghcb_usage) {
3309                 reason = GHCB_ERR_INVALID_USAGE;
3310                 goto vmgexit_err;
3311         }
3312 
3313         reason = GHCB_ERR_MISSING_INPUT;
3314 
3315         if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3316             !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3317             !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3318                 goto vmgexit_err;
3319 
3320         switch (exit_code) {
3321         case SVM_EXIT_READ_DR7:
3322                 break;
3323         case SVM_EXIT_WRITE_DR7:
3324                 if (!kvm_ghcb_rax_is_valid(svm))
3325                         goto vmgexit_err;
3326                 break;
3327         case SVM_EXIT_RDTSC:
3328                 break;
3329         case SVM_EXIT_RDPMC:
3330                 if (!kvm_ghcb_rcx_is_valid(svm))
3331                         goto vmgexit_err;
3332                 break;
3333         case SVM_EXIT_CPUID:
3334                 if (!kvm_ghcb_rax_is_valid(svm) ||
3335                     !kvm_ghcb_rcx_is_valid(svm))
3336                         goto vmgexit_err;
3337                 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3338                         if (!kvm_ghcb_xcr0_is_valid(svm))
3339                                 goto vmgexit_err;
3340                 break;
3341         case SVM_EXIT_INVD:
3342                 break;
3343         case SVM_EXIT_IOIO:
3344                 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3345                         if (!kvm_ghcb_sw_scratch_is_valid(svm))
3346                                 goto vmgexit_err;
3347                 } else {
3348                         if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3349                                 if (!kvm_ghcb_rax_is_valid(svm))
3350                                         goto vmgexit_err;
3351                 }
3352                 break;
3353         case SVM_EXIT_MSR:
3354                 if (!kvm_ghcb_rcx_is_valid(svm))
3355                         goto vmgexit_err;
3356                 if (control->exit_info_1) {
3357                         if (!kvm_ghcb_rax_is_valid(svm) ||
3358                             !kvm_ghcb_rdx_is_valid(svm))
3359                                 goto vmgexit_err;
3360                 }
3361                 break;
3362         case SVM_EXIT_VMMCALL:
3363                 if (!kvm_ghcb_rax_is_valid(svm) ||
3364                     !kvm_ghcb_cpl_is_valid(svm))
3365                         goto vmgexit_err;
3366                 break;
3367         case SVM_EXIT_RDTSCP:
3368                 break;
3369         case SVM_EXIT_WBINVD:
3370                 break;
3371         case SVM_EXIT_MONITOR:
3372                 if (!kvm_ghcb_rax_is_valid(svm) ||
3373                     !kvm_ghcb_rcx_is_valid(svm) ||
3374                     !kvm_ghcb_rdx_is_valid(svm))
3375                         goto vmgexit_err;
3376                 break;
3377         case SVM_EXIT_MWAIT:
3378                 if (!kvm_ghcb_rax_is_valid(svm) ||
3379                     !kvm_ghcb_rcx_is_valid(svm))
3380                         goto vmgexit_err;
3381                 break;
3382         case SVM_VMGEXIT_MMIO_READ:
3383         case SVM_VMGEXIT_MMIO_WRITE:
3384                 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3385                         goto vmgexit_err;
3386                 break;
3387         case SVM_VMGEXIT_AP_CREATION:
3388                 if (!sev_snp_guest(vcpu->kvm))
3389                         goto vmgexit_err;
3390                 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3391                         if (!kvm_ghcb_rax_is_valid(svm))
3392                                 goto vmgexit_err;
3393                 break;
3394         case SVM_VMGEXIT_NMI_COMPLETE:
3395         case SVM_VMGEXIT_AP_HLT_LOOP:
3396         case SVM_VMGEXIT_AP_JUMP_TABLE:
3397         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3398         case SVM_VMGEXIT_HV_FEATURES:
3399         case SVM_VMGEXIT_TERM_REQUEST:
3400                 break;
3401         case SVM_VMGEXIT_PSC:
3402                 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3403                         goto vmgexit_err;
3404                 break;
3405         case SVM_VMGEXIT_GUEST_REQUEST:
3406         case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3407                 if (!sev_snp_guest(vcpu->kvm) ||
3408                     !PAGE_ALIGNED(control->exit_info_1) ||
3409                     !PAGE_ALIGNED(control->exit_info_2) ||
3410                     control->exit_info_1 == control->exit_info_2)
3411                         goto vmgexit_err;
3412                 break;
3413         default:
3414                 reason = GHCB_ERR_INVALID_EVENT;
3415                 goto vmgexit_err;
3416         }
3417 
3418         return 0;
3419 
3420 vmgexit_err:
3421         if (reason == GHCB_ERR_INVALID_USAGE) {
3422                 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3423                             svm->sev_es.ghcb->ghcb_usage);
3424         } else if (reason == GHCB_ERR_INVALID_EVENT) {
3425                 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3426                             exit_code);
3427         } else {
3428                 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3429                             exit_code);
3430                 dump_ghcb(svm);
3431         }
3432 
3433         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
3434         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
3435 
3436         /* Resume the guest to "return" the error code. */
3437         return 1;
3438 }
3439 
3440 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3441 {
3442         /* Clear any indication that the vCPU is in a type of AP Reset Hold */
3443         svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3444 
3445         if (!svm->sev_es.ghcb)
3446                 return;
3447 
3448         if (svm->sev_es.ghcb_sa_free) {
3449                 /*
3450                  * The scratch area lives outside the GHCB, so there is a
3451                  * buffer that, depending on the operation performed, may
3452                  * need to be synced, then freed.
3453                  */
3454                 if (svm->sev_es.ghcb_sa_sync) {
3455                         kvm_write_guest(svm->vcpu.kvm,
3456                                         svm->sev_es.sw_scratch,
3457                                         svm->sev_es.ghcb_sa,
3458                                         svm->sev_es.ghcb_sa_len);
3459                         svm->sev_es.ghcb_sa_sync = false;
3460                 }
3461 
3462                 kvfree(svm->sev_es.ghcb_sa);
3463                 svm->sev_es.ghcb_sa = NULL;
3464                 svm->sev_es.ghcb_sa_free = false;
3465         }
3466 
3467         trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3468 
3469         sev_es_sync_to_ghcb(svm);
3470 
3471         kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
3472         svm->sev_es.ghcb = NULL;
3473 }
3474 
3475 void pre_sev_run(struct vcpu_svm *svm, int cpu)
3476 {
3477         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3478         unsigned int asid = sev_get_asid(svm->vcpu.kvm);
3479 
3480         /* Assign the asid allocated with this SEV guest */
3481         svm->asid = asid;
3482 
3483         /*
3484          * Flush guest TLB:
3485          *
3486          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3487          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3488          */
3489         if (sd->sev_vmcbs[asid] == svm->vmcb &&
3490             svm->vcpu.arch.last_vmentry_cpu == cpu)
3491                 return;
3492 
3493         sd->sev_vmcbs[asid] = svm->vmcb;
3494         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3495         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3496 }
3497 
3498 #define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
3499 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3500 {
3501         struct vmcb_control_area *control = &svm->vmcb->control;
3502         u64 ghcb_scratch_beg, ghcb_scratch_end;
3503         u64 scratch_gpa_beg, scratch_gpa_end;
3504         void *scratch_va;
3505 
3506         scratch_gpa_beg = svm->sev_es.sw_scratch;
3507         if (!scratch_gpa_beg) {
3508                 pr_err("vmgexit: scratch gpa not provided\n");
3509                 goto e_scratch;
3510         }
3511 
3512         scratch_gpa_end = scratch_gpa_beg + len;
3513         if (scratch_gpa_end < scratch_gpa_beg) {
3514                 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3515                        len, scratch_gpa_beg);
3516                 goto e_scratch;
3517         }
3518 
3519         if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3520                 /* Scratch area begins within GHCB */
3521                 ghcb_scratch_beg = control->ghcb_gpa +
3522                                    offsetof(struct ghcb, shared_buffer);
3523                 ghcb_scratch_end = control->ghcb_gpa +
3524                                    offsetof(struct ghcb, reserved_0xff0);
3525 
3526                 /*
3527                  * If the scratch area begins within the GHCB, it must be
3528                  * completely contained in the GHCB shared buffer area.
3529                  */
3530                 if (scratch_gpa_beg < ghcb_scratch_beg ||
3531                     scratch_gpa_end > ghcb_scratch_end) {
3532                         pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3533                                scratch_gpa_beg, scratch_gpa_end);
3534                         goto e_scratch;
3535                 }
3536 
3537                 scratch_va = (void *)svm->sev_es.ghcb;
3538                 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3539         } else {
3540                 /*
3541                  * The guest memory must be read into a kernel buffer, so
3542                  * limit the size
3543                  */
3544                 if (len > GHCB_SCRATCH_AREA_LIMIT) {
3545                         pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3546                                len, GHCB_SCRATCH_AREA_LIMIT);
3547                         goto e_scratch;
3548                 }
3549                 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3550                 if (!scratch_va)
3551                         return -ENOMEM;
3552 
3553                 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3554                         /* Unable to copy scratch area from guest */
3555                         pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3556 
3557                         kvfree(scratch_va);
3558                         return -EFAULT;
3559                 }
3560 
3561                 /*
3562                  * The scratch area is outside the GHCB. The operation will
3563                  * dictate whether the buffer needs to be synced before running
3564                  * the vCPU next time (i.e. a read was requested so the data
3565                  * must be written back to the guest memory).
3566                  */
3567                 svm->sev_es.ghcb_sa_sync = sync;
3568                 svm->sev_es.ghcb_sa_free = true;
3569         }
3570 
3571         svm->sev_es.ghcb_sa = scratch_va;
3572         svm->sev_es.ghcb_sa_len = len;
3573 
3574         return 0;
3575 
3576 e_scratch:
3577         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
3578         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
3579 
3580         return 1;
3581 }
3582 
3583 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3584                               unsigned int pos)
3585 {
3586         svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3587         svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3588 }
3589 
3590 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3591 {
3592         return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3593 }
3594 
3595 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3596 {
3597         svm->vmcb->control.ghcb_gpa = value;
3598 }
3599 
3600 static int snp_rmptable_psmash(kvm_pfn_t pfn)
3601 {
3602         int ret;
3603 
3604         pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3605 
3606         /*
3607          * PSMASH_FAIL_INUSE indicates another processor is modifying the
3608          * entry, so retry until that's no longer the case.
3609          */
3610         do {
3611                 ret = psmash(pfn);
3612         } while (ret == PSMASH_FAIL_INUSE);
3613 
3614         return ret;
3615 }
3616 
3617 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3618 {
3619         struct vcpu_svm *svm = to_svm(vcpu);
3620 
3621         if (vcpu->run->hypercall.ret)
3622                 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3623         else
3624                 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3625 
3626         return 1; /* resume guest */
3627 }
3628 
3629 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3630 {
3631         u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3632         u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3633         struct kvm_vcpu *vcpu = &svm->vcpu;
3634 
3635         if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3636                 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3637                 return 1; /* resume guest */
3638         }
3639 
3640         if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
3641                 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3642                 return 1; /* resume guest */
3643         }
3644 
3645         vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3646         vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3647         vcpu->run->hypercall.args[0] = gpa;
3648         vcpu->run->hypercall.args[1] = 1;
3649         vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3650                                        ? KVM_MAP_GPA_RANGE_ENCRYPTED
3651                                        : KVM_MAP_GPA_RANGE_DECRYPTED;
3652         vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3653 
3654         vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3655 
3656         return 0; /* forward request to userspace */
3657 }
3658 
3659 struct psc_buffer {
3660         struct psc_hdr hdr;
3661         struct psc_entry entries[];
3662 } __packed;
3663 
3664 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3665 
3666 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3667 {
3668         svm->sev_es.psc_inflight = 0;
3669         svm->sev_es.psc_idx = 0;
3670         svm->sev_es.psc_2m = false;
3671         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret);
3672 }
3673 
3674 static void __snp_complete_one_psc(struct vcpu_svm *svm)
3675 {
3676         struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3677         struct psc_entry *entries = psc->entries;
3678         struct psc_hdr *hdr = &psc->hdr;
3679         __u16 idx;
3680 
3681         /*
3682          * Everything in-flight has been processed successfully. Update the
3683          * corresponding entries in the guest's PSC buffer and zero out the
3684          * count of in-flight PSC entries.
3685          */
3686         for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3687              svm->sev_es.psc_inflight--, idx++) {
3688                 struct psc_entry *entry = &entries[idx];
3689 
3690                 entry->cur_page = entry->pagesize ? 512 : 1;
3691         }
3692 
3693         hdr->cur_entry = idx;
3694 }
3695 
3696 static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3697 {
3698         struct vcpu_svm *svm = to_svm(vcpu);
3699         struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3700 
3701         if (vcpu->run->hypercall.ret) {
3702                 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3703                 return 1; /* resume guest */
3704         }
3705 
3706         __snp_complete_one_psc(svm);
3707 
3708         /* Handle the next range (if any). */
3709         return snp_begin_psc(svm, psc);
3710 }
3711 
3712 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3713 {
3714         struct psc_entry *entries = psc->entries;
3715         struct kvm_vcpu *vcpu = &svm->vcpu;
3716         struct psc_hdr *hdr = &psc->hdr;
3717         struct psc_entry entry_start;
3718         u16 idx, idx_start, idx_end;
3719         int npages;
3720         bool huge;
3721         u64 gfn;
3722 
3723         if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
3724                 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3725                 return 1;
3726         }
3727 
3728 next_range:
3729         /* There should be no other PSCs in-flight at this point. */
3730         if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3731                 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3732                 return 1;
3733         }
3734 
3735         /*
3736          * The PSC descriptor buffer can be modified by a misbehaved guest after
3737          * validation, so take care to only use validated copies of values used
3738          * for things like array indexing.
3739          */
3740         idx_start = hdr->cur_entry;
3741         idx_end = hdr->end_entry;
3742 
3743         if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3744                 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3745                 return 1;
3746         }
3747 
3748         /* Find the start of the next range which needs processing. */
3749         for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3750                 entry_start = entries[idx];
3751 
3752                 gfn = entry_start.gfn;
3753                 huge = entry_start.pagesize;
3754                 npages = huge ? 512 : 1;
3755 
3756                 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3757                         snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3758                         return 1;
3759                 }
3760 
3761                 if (entry_start.cur_page) {
3762                         /*
3763                          * If this is a partially-completed 2M range, force 4K handling
3764                          * for the remaining pages since they're effectively split at
3765                          * this point. Subsequent code should ensure this doesn't get
3766                          * combined with adjacent PSC entries where 2M handling is still
3767                          * possible.
3768                          */
3769                         npages -= entry_start.cur_page;
3770                         gfn += entry_start.cur_page;
3771                         huge = false;
3772                 }
3773 
3774                 if (npages)
3775                         break;
3776         }
3777 
3778         if (idx > idx_end) {
3779                 /* Nothing more to process. */
3780                 snp_complete_psc(svm, 0);
3781                 return 1;
3782         }
3783 
3784         svm->sev_es.psc_2m = huge;
3785         svm->sev_es.psc_idx = idx;
3786         svm->sev_es.psc_inflight = 1;
3787 
3788         /*
3789          * Find all subsequent PSC entries that contain adjacent GPA
3790          * ranges/operations and can be combined into a single
3791          * KVM_HC_MAP_GPA_RANGE exit.
3792          */
3793         while (++idx <= idx_end) {
3794                 struct psc_entry entry = entries[idx];
3795 
3796                 if (entry.operation != entry_start.operation ||
3797                     entry.gfn != entry_start.gfn + npages ||
3798                     entry.cur_page || !!entry.pagesize != huge)
3799                         break;
3800 
3801                 svm->sev_es.psc_inflight++;
3802                 npages += huge ? 512 : 1;
3803         }
3804 
3805         switch (entry_start.operation) {
3806         case VMGEXIT_PSC_OP_PRIVATE:
3807         case VMGEXIT_PSC_OP_SHARED:
3808                 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3809                 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3810                 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3811                 vcpu->run->hypercall.args[1] = npages;
3812                 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3813                                                ? KVM_MAP_GPA_RANGE_ENCRYPTED
3814                                                : KVM_MAP_GPA_RANGE_DECRYPTED;
3815                 vcpu->run->hypercall.args[2] |= entry_start.pagesize
3816                                                 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3817                                                 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3818                 vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3819                 return 0; /* forward request to userspace */
3820         default:
3821                 /*
3822                  * Only shared/private PSC operations are currently supported, so if the
3823                  * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3824                  * then consider the entire range completed and avoid exiting to
3825                  * userspace. In theory snp_complete_psc() can always be called directly
3826                  * at this point to complete the current range and start the next one,
3827                  * but that could lead to unexpected levels of recursion.
3828                  */
3829                 __snp_complete_one_psc(svm);
3830                 goto next_range;
3831         }
3832 
3833         unreachable();
3834 }
3835 
3836 static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu)
3837 {
3838         struct vcpu_svm *svm = to_svm(vcpu);
3839 
3840         WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex));
3841 
3842         /* Mark the vCPU as offline and not runnable */
3843         vcpu->arch.pv.pv_unhalted = false;
3844         vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3845 
3846         /* Clear use of the VMSA */
3847         svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3848 
3849         if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) {
3850                 gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3851                 struct kvm_memory_slot *slot;
3852                 kvm_pfn_t pfn;
3853 
3854                 slot = gfn_to_memslot(vcpu->kvm, gfn);
3855                 if (!slot)
3856                         return -EINVAL;
3857 
3858                 /*
3859                  * The new VMSA will be private memory guest memory, so
3860                  * retrieve the PFN from the gmem backend.
3861                  */
3862                 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, NULL))
3863                         return -EINVAL;
3864 
3865                 /*
3866                  * From this point forward, the VMSA will always be a
3867                  * guest-mapped page rather than the initial one allocated
3868                  * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa
3869                  * could be free'd and cleaned up here, but that involves
3870                  * cleanups like wbinvd_on_all_cpus() which would ideally
3871                  * be handled during teardown rather than guest boot.
3872                  * Deferring that also allows the existing logic for SEV-ES
3873                  * VMSAs to be re-used with minimal SNP-specific changes.
3874                  */
3875                 svm->sev_es.snp_has_guest_vmsa = true;
3876 
3877                 /* Use the new VMSA */
3878                 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
3879 
3880                 /* Mark the vCPU as runnable */
3881                 vcpu->arch.pv.pv_unhalted = false;
3882                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3883 
3884                 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3885 
3886                 /*
3887                  * gmem pages aren't currently migratable, but if this ever
3888                  * changes then care should be taken to ensure
3889                  * svm->sev_es.vmsa is pinned through some other means.
3890                  */
3891                 kvm_release_pfn_clean(pfn);
3892         }
3893 
3894         /*
3895          * When replacing the VMSA during SEV-SNP AP creation,
3896          * mark the VMCB dirty so that full state is always reloaded.
3897          */
3898         vmcb_mark_all_dirty(svm->vmcb);
3899 
3900         return 0;
3901 }
3902 
3903 /*
3904  * Invoked as part of svm_vcpu_reset() processing of an init event.
3905  */
3906 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3907 {
3908         struct vcpu_svm *svm = to_svm(vcpu);
3909         int ret;
3910 
3911         if (!sev_snp_guest(vcpu->kvm))
3912                 return;
3913 
3914         mutex_lock(&svm->sev_es.snp_vmsa_mutex);
3915 
3916         if (!svm->sev_es.snp_ap_waiting_for_reset)
3917                 goto unlock;
3918 
3919         svm->sev_es.snp_ap_waiting_for_reset = false;
3920 
3921         ret = __sev_snp_update_protected_guest_state(vcpu);
3922         if (ret)
3923                 vcpu_unimpl(vcpu, "snp: AP state update on init failed\n");
3924 
3925 unlock:
3926         mutex_unlock(&svm->sev_es.snp_vmsa_mutex);
3927 }
3928 
3929 static int sev_snp_ap_creation(struct vcpu_svm *svm)
3930 {
3931         struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
3932         struct kvm_vcpu *vcpu = &svm->vcpu;
3933         struct kvm_vcpu *target_vcpu;
3934         struct vcpu_svm *target_svm;
3935         unsigned int request;
3936         unsigned int apic_id;
3937         bool kick;
3938         int ret;
3939 
3940         request = lower_32_bits(svm->vmcb->control.exit_info_1);
3941         apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
3942 
3943         /* Validate the APIC ID */
3944         target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
3945         if (!target_vcpu) {
3946                 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
3947                             apic_id);
3948                 return -EINVAL;
3949         }
3950 
3951         ret = 0;
3952 
3953         target_svm = to_svm(target_vcpu);
3954 
3955         /*
3956          * The target vCPU is valid, so the vCPU will be kicked unless the
3957          * request is for CREATE_ON_INIT. For any errors at this stage, the
3958          * kick will place the vCPU in an non-runnable state.
3959          */
3960         kick = true;
3961 
3962         mutex_lock(&target_svm->sev_es.snp_vmsa_mutex);
3963 
3964         target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3965         target_svm->sev_es.snp_ap_waiting_for_reset = true;
3966 
3967         /* Interrupt injection mode shouldn't change for AP creation */
3968         if (request < SVM_VMGEXIT_AP_DESTROY) {
3969                 u64 sev_features;
3970 
3971                 sev_features = vcpu->arch.regs[VCPU_REGS_RAX];
3972                 sev_features ^= sev->vmsa_features;
3973 
3974                 if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) {
3975                         vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n",
3976                                     vcpu->arch.regs[VCPU_REGS_RAX]);
3977                         ret = -EINVAL;
3978                         goto out;
3979                 }
3980         }
3981 
3982         switch (request) {
3983         case SVM_VMGEXIT_AP_CREATE_ON_INIT:
3984                 kick = false;
3985                 fallthrough;
3986         case SVM_VMGEXIT_AP_CREATE:
3987                 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
3988                         vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
3989                                     svm->vmcb->control.exit_info_2);
3990                         ret = -EINVAL;
3991                         goto out;
3992                 }
3993 
3994                 /*
3995                  * Malicious guest can RMPADJUST a large page into VMSA which
3996                  * will hit the SNP erratum where the CPU will incorrectly signal
3997                  * an RMP violation #PF if a hugepage collides with the RMP entry
3998                  * of VMSA page, reject the AP CREATE request if VMSA address from
3999                  * guest is 2M aligned.
4000                  */
4001                 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
4002                         vcpu_unimpl(vcpu,
4003                                     "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
4004                                     svm->vmcb->control.exit_info_2);
4005                         ret = -EINVAL;
4006                         goto out;
4007                 }
4008 
4009                 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
4010                 break;
4011         case SVM_VMGEXIT_AP_DESTROY:
4012                 break;
4013         default:
4014                 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
4015                             request);
4016                 ret = -EINVAL;
4017                 break;
4018         }
4019 
4020 out:
4021         if (kick) {
4022                 kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
4023                 kvm_vcpu_kick(target_vcpu);
4024         }
4025 
4026         mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex);
4027 
4028         return ret;
4029 }
4030 
4031 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4032 {
4033         struct sev_data_snp_guest_request data = {0};
4034         struct kvm *kvm = svm->vcpu.kvm;
4035         struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4036         sev_ret_code fw_err = 0;
4037         int ret;
4038 
4039         if (!sev_snp_guest(kvm))
4040                 return -EINVAL;
4041 
4042         mutex_lock(&sev->guest_req_mutex);
4043 
4044         if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4045                 ret = -EIO;
4046                 goto out_unlock;
4047         }
4048 
4049         data.gctx_paddr = __psp_pa(sev->snp_context);
4050         data.req_paddr = __psp_pa(sev->guest_req_buf);
4051         data.res_paddr = __psp_pa(sev->guest_resp_buf);
4052 
4053         /*
4054          * Firmware failures are propagated on to guest, but any other failure
4055          * condition along the way should be reported to userspace. E.g. if
4056          * the PSP is dead and commands are timing out.
4057          */
4058         ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4059         if (ret && !fw_err)
4060                 goto out_unlock;
4061 
4062         if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4063                 ret = -EIO;
4064                 goto out_unlock;
4065         }
4066 
4067         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err));
4068 
4069         ret = 1; /* resume guest */
4070 
4071 out_unlock:
4072         mutex_unlock(&sev->guest_req_mutex);
4073         return ret;
4074 }
4075 
4076 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4077 {
4078         struct kvm *kvm = svm->vcpu.kvm;
4079         u8 msg_type;
4080 
4081         if (!sev_snp_guest(kvm))
4082                 return -EINVAL;
4083 
4084         if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4085                            &msg_type, 1))
4086                 return -EIO;
4087 
4088         /*
4089          * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4090          * additional certificate data to be provided alongside the attestation
4091          * report via the guest-provided data pages indicated by RAX/RBX. The
4092          * certificate data is optional and requires additional KVM enablement
4093          * to provide an interface for userspace to provide it, but KVM still
4094          * needs to be able to handle extended guest requests either way. So
4095          * provide a stub implementation that will always return an empty
4096          * certificate table in the guest-provided data pages.
4097          */
4098         if (msg_type == SNP_MSG_REPORT_REQ) {
4099                 struct kvm_vcpu *vcpu = &svm->vcpu;
4100                 u64 data_npages;
4101                 gpa_t data_gpa;
4102 
4103                 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4104                         goto request_invalid;
4105 
4106                 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4107                 data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4108 
4109                 if (!PAGE_ALIGNED(data_gpa))
4110                         goto request_invalid;
4111 
4112                 /*
4113                  * As per GHCB spec (see "SNP Extended Guest Request"), the
4114                  * certificate table is terminated by 24-bytes of zeroes.
4115                  */
4116                 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4117                         return -EIO;
4118         }
4119 
4120         return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4121 
4122 request_invalid:
4123         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4124         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4125         return 1; /* resume guest */
4126 }
4127 
4128 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4129 {
4130         struct vmcb_control_area *control = &svm->vmcb->control;
4131         struct kvm_vcpu *vcpu = &svm->vcpu;
4132         struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4133         u64 ghcb_info;
4134         int ret = 1;
4135 
4136         ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4137 
4138         trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4139                                              control->ghcb_gpa);
4140 
4141         switch (ghcb_info) {
4142         case GHCB_MSR_SEV_INFO_REQ:
4143                 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4144                                                     GHCB_VERSION_MIN,
4145                                                     sev_enc_bit));
4146                 break;
4147         case GHCB_MSR_CPUID_REQ: {
4148                 u64 cpuid_fn, cpuid_reg, cpuid_value;
4149 
4150                 cpuid_fn = get_ghcb_msr_bits(svm,
4151                                              GHCB_MSR_CPUID_FUNC_MASK,
4152                                              GHCB_MSR_CPUID_FUNC_POS);
4153 
4154                 /* Initialize the registers needed by the CPUID intercept */
4155                 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4156                 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4157 
4158                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4159                 if (!ret) {
4160                         /* Error, keep GHCB MSR value as-is */
4161                         break;
4162                 }
4163 
4164                 cpuid_reg = get_ghcb_msr_bits(svm,
4165                                               GHCB_MSR_CPUID_REG_MASK,
4166                                               GHCB_MSR_CPUID_REG_POS);
4167                 if (cpuid_reg == 0)
4168                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4169                 else if (cpuid_reg == 1)
4170                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4171                 else if (cpuid_reg == 2)
4172                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4173                 else
4174                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4175 
4176                 set_ghcb_msr_bits(svm, cpuid_value,
4177                                   GHCB_MSR_CPUID_VALUE_MASK,
4178                                   GHCB_MSR_CPUID_VALUE_POS);
4179 
4180                 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4181                                   GHCB_MSR_INFO_MASK,
4182                                   GHCB_MSR_INFO_POS);
4183                 break;
4184         }
4185         case GHCB_MSR_AP_RESET_HOLD_REQ:
4186                 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4187                 ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4188 
4189                 /*
4190                  * Preset the result to a non-SIPI return and then only set
4191                  * the result to non-zero when delivering a SIPI.
4192                  */
4193                 set_ghcb_msr_bits(svm, 0,
4194                                   GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4195                                   GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4196 
4197                 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4198                                   GHCB_MSR_INFO_MASK,
4199                                   GHCB_MSR_INFO_POS);
4200                 break;
4201         case GHCB_MSR_HV_FT_REQ:
4202                 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4203                                   GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4204                 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4205                                   GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4206                 break;
4207         case GHCB_MSR_PREF_GPA_REQ:
4208                 if (!sev_snp_guest(vcpu->kvm))
4209                         goto out_terminate;
4210 
4211                 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4212                                   GHCB_MSR_GPA_VALUE_POS);
4213                 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4214                                   GHCB_MSR_INFO_POS);
4215                 break;
4216         case GHCB_MSR_REG_GPA_REQ: {
4217                 u64 gfn;
4218 
4219                 if (!sev_snp_guest(vcpu->kvm))
4220                         goto out_terminate;
4221 
4222                 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4223                                         GHCB_MSR_GPA_VALUE_POS);
4224 
4225                 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4226 
4227                 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4228                                   GHCB_MSR_GPA_VALUE_POS);
4229                 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4230                                   GHCB_MSR_INFO_POS);
4231                 break;
4232         }
4233         case GHCB_MSR_PSC_REQ:
4234                 if (!sev_snp_guest(vcpu->kvm))
4235                         goto out_terminate;
4236 
4237                 ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4238                 break;
4239         case GHCB_MSR_TERM_REQ: {
4240                 u64 reason_set, reason_code;
4241 
4242                 reason_set = get_ghcb_msr_bits(svm,
4243                                                GHCB_MSR_TERM_REASON_SET_MASK,
4244                                                GHCB_MSR_TERM_REASON_SET_POS);
4245                 reason_code = get_ghcb_msr_bits(svm,
4246                                                 GHCB_MSR_TERM_REASON_MASK,
4247                                                 GHCB_MSR_TERM_REASON_POS);
4248                 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4249                         reason_set, reason_code);
4250 
4251                 goto out_terminate;
4252         }
4253         default:
4254                 /* Error, keep GHCB MSR value as-is */
4255                 break;
4256         }
4257 
4258         trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4259                                             control->ghcb_gpa, ret);
4260 
4261         return ret;
4262 
4263 out_terminate:
4264         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4265         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4266         vcpu->run->system_event.ndata = 1;
4267         vcpu->run->system_event.data[0] = control->ghcb_gpa;
4268 
4269         return 0;
4270 }
4271 
4272 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4273 {
4274         struct vcpu_svm *svm = to_svm(vcpu);
4275         struct vmcb_control_area *control = &svm->vmcb->control;
4276         u64 ghcb_gpa, exit_code;
4277         int ret;
4278 
4279         /* Validate the GHCB */
4280         ghcb_gpa = control->ghcb_gpa;
4281         if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4282                 return sev_handle_vmgexit_msr_protocol(svm);
4283 
4284         if (!ghcb_gpa) {
4285                 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4286 
4287                 /* Without a GHCB, just return right back to the guest */
4288                 return 1;
4289         }
4290 
4291         if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4292                 /* Unable to map GHCB from guest */
4293                 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4294                             ghcb_gpa);
4295 
4296                 /* Without a GHCB, just return right back to the guest */
4297                 return 1;
4298         }
4299 
4300         svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4301 
4302         trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4303 
4304         sev_es_sync_from_ghcb(svm);
4305 
4306         /* SEV-SNP guest requires that the GHCB GPA must be registered */
4307         if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4308                 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4309                 return -EINVAL;
4310         }
4311 
4312         ret = sev_es_validate_vmgexit(svm);
4313         if (ret)
4314                 return ret;
4315 
4316         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
4317         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
4318 
4319         exit_code = kvm_ghcb_get_sw_exit_code(control);
4320         switch (exit_code) {
4321         case SVM_VMGEXIT_MMIO_READ:
4322                 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4323                 if (ret)
4324                         break;
4325 
4326                 ret = kvm_sev_es_mmio_read(vcpu,
4327                                            control->exit_info_1,
4328                                            control->exit_info_2,
4329                                            svm->sev_es.ghcb_sa);
4330                 break;
4331         case SVM_VMGEXIT_MMIO_WRITE:
4332                 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4333                 if (ret)
4334                         break;
4335 
4336                 ret = kvm_sev_es_mmio_write(vcpu,
4337                                             control->exit_info_1,
4338                                             control->exit_info_2,
4339                                             svm->sev_es.ghcb_sa);
4340                 break;
4341         case SVM_VMGEXIT_NMI_COMPLETE:
4342                 ++vcpu->stat.nmi_window_exits;
4343                 svm->nmi_masked = false;
4344                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4345                 ret = 1;
4346                 break;
4347         case SVM_VMGEXIT_AP_HLT_LOOP:
4348                 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4349                 ret = kvm_emulate_ap_reset_hold(vcpu);
4350                 break;
4351         case SVM_VMGEXIT_AP_JUMP_TABLE: {
4352                 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4353 
4354                 switch (control->exit_info_1) {
4355                 case 0:
4356                         /* Set AP jump table address */
4357                         sev->ap_jump_table = control->exit_info_2;
4358                         break;
4359                 case 1:
4360                         /* Get AP jump table address */
4361                         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
4362                         break;
4363                 default:
4364                         pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4365                                control->exit_info_1);
4366                         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4367                         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4368                 }
4369 
4370                 ret = 1;
4371                 break;
4372         }
4373         case SVM_VMGEXIT_HV_FEATURES:
4374                 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED);
4375 
4376                 ret = 1;
4377                 break;
4378         case SVM_VMGEXIT_TERM_REQUEST:
4379                 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4380                         control->exit_info_1, control->exit_info_2);
4381                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4382                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4383                 vcpu->run->system_event.ndata = 1;
4384                 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4385                 break;
4386         case SVM_VMGEXIT_PSC:
4387                 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4388                 if (ret)
4389                         break;
4390 
4391                 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4392                 break;
4393         case SVM_VMGEXIT_AP_CREATION:
4394                 ret = sev_snp_ap_creation(svm);
4395                 if (ret) {
4396                         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4397                         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4398                 }
4399 
4400                 ret = 1;
4401                 break;
4402         case SVM_VMGEXIT_GUEST_REQUEST:
4403                 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4404                 break;
4405         case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4406                 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4407                 break;
4408         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4409                 vcpu_unimpl(vcpu,
4410                             "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4411                             control->exit_info_1, control->exit_info_2);
4412                 ret = -EINVAL;
4413                 break;
4414         default:
4415                 ret = svm_invoke_exit_handler(vcpu, exit_code);
4416         }
4417 
4418         return ret;
4419 }
4420 
4421 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4422 {
4423         int count;
4424         int bytes;
4425         int r;
4426 
4427         if (svm->vmcb->control.exit_info_2 > INT_MAX)
4428                 return -EINVAL;
4429 
4430         count = svm->vmcb->control.exit_info_2;
4431         if (unlikely(check_mul_overflow(count, size, &bytes)))
4432                 return -EINVAL;
4433 
4434         r = setup_vmgexit_scratch(svm, in, bytes);
4435         if (r)
4436                 return r;
4437 
4438         return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4439                                     count, in);
4440 }
4441 
4442 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4443 {
4444         struct kvm_vcpu *vcpu = &svm->vcpu;
4445 
4446         if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
4447                 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4448                                  guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4449 
4450                 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
4451         }
4452 
4453         /*
4454          * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4455          * the host/guest supports its use.
4456          *
4457          * guest_can_use() checks a number of requirements on the host/guest to
4458          * ensure that MSR_IA32_XSS is available, but it might report true even
4459          * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
4460          * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
4461          * to further check that the guest CPUID actually supports
4462          * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
4463          * guests will still get intercepted and caught in the normal
4464          * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
4465          */
4466         if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
4467             guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4468                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
4469         else
4470                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
4471 }
4472 
4473 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4474 {
4475         struct kvm_vcpu *vcpu = &svm->vcpu;
4476         struct kvm_cpuid_entry2 *best;
4477 
4478         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
4479         best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4480         if (best)
4481                 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4482 
4483         if (sev_es_guest(svm->vcpu.kvm))
4484                 sev_es_vcpu_after_set_cpuid(svm);
4485 }
4486 
4487 static void sev_es_init_vmcb(struct vcpu_svm *svm)
4488 {
4489         struct vmcb *vmcb = svm->vmcb01.ptr;
4490         struct kvm_vcpu *vcpu = &svm->vcpu;
4491 
4492         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4493 
4494         /*
4495          * An SEV-ES guest requires a VMSA area that is a separate from the
4496          * VMCB page. Do not include the encryption mask on the VMSA physical
4497          * address since hardware will access it using the guest key.  Note,
4498          * the VMSA will be NULL if this vCPU is the destination for intrahost
4499          * migration, and will be copied later.
4500          */
4501         if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa)
4502                 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4503 
4504         /* Can't intercept CR register access, HV can't modify CR registers */
4505         svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4506         svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4507         svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4508         svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4509         svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4510         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4511 
4512         svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4513 
4514         /* Track EFER/CR register changes */
4515         svm_set_intercept(svm, TRAP_EFER_WRITE);
4516         svm_set_intercept(svm, TRAP_CR0_WRITE);
4517         svm_set_intercept(svm, TRAP_CR4_WRITE);
4518         svm_set_intercept(svm, TRAP_CR8_WRITE);
4519 
4520         vmcb->control.intercepts[INTERCEPT_DR] = 0;
4521         if (!sev_vcpu_has_debug_swap(svm)) {
4522                 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4523                 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4524                 recalc_intercepts(svm);
4525         } else {
4526                 /*
4527                  * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
4528                  * allow debugging SEV-ES guests, and enables DebugSwap iff
4529                  * NO_NESTED_DATA_BP is supported, so there's no reason to
4530                  * intercept #DB when DebugSwap is enabled.  For simplicity
4531                  * with respect to guest debug, intercept #DB for other VMs
4532                  * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4533                  * guest can't DoS the CPU with infinite #DB vectoring.
4534                  */
4535                 clr_exception_intercept(svm, DB_VECTOR);
4536         }
4537 
4538         /* Can't intercept XSETBV, HV can't modify XCR0 directly */
4539         svm_clr_intercept(svm, INTERCEPT_XSETBV);
4540 
4541         /* Clear intercepts on selected MSRs */
4542         set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
4543         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
4544 }
4545 
4546 void sev_init_vmcb(struct vcpu_svm *svm)
4547 {
4548         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4549         clr_exception_intercept(svm, UD_VECTOR);
4550 
4551         /*
4552          * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4553          * KVM can't decrypt guest memory to decode the faulting instruction.
4554          */
4555         clr_exception_intercept(svm, GP_VECTOR);
4556 
4557         if (sev_es_guest(svm->vcpu.kvm))
4558                 sev_es_init_vmcb(svm);
4559 }
4560 
4561 void sev_es_vcpu_reset(struct vcpu_svm *svm)
4562 {
4563         struct kvm_vcpu *vcpu = &svm->vcpu;
4564         struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4565 
4566         /*
4567          * Set the GHCB MSR value as per the GHCB specification when emulating
4568          * vCPU RESET for an SEV-ES guest.
4569          */
4570         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4571                                             GHCB_VERSION_MIN,
4572                                             sev_enc_bit));
4573 
4574         mutex_init(&svm->sev_es.snp_vmsa_mutex);
4575 }
4576 
4577 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4578 {
4579         /*
4580          * All host state for SEV-ES guests is categorized into three swap types
4581          * based on how it is handled by hardware during a world switch:
4582          *
4583          * A: VMRUN:   Host state saved in host save area
4584          *    VMEXIT:  Host state loaded from host save area
4585          *
4586          * B: VMRUN:   Host state _NOT_ saved in host save area
4587          *    VMEXIT:  Host state loaded from host save area
4588          *
4589          * C: VMRUN:   Host state _NOT_ saved in host save area
4590          *    VMEXIT:  Host state initialized to default(reset) values
4591          *
4592          * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4593          * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4594          * by common SVM code).
4595          */
4596         hostsa->xcr0 = kvm_host.xcr0;
4597         hostsa->pkru = read_pkru();
4598         hostsa->xss = kvm_host.xss;
4599 
4600         /*
4601          * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4602          * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
4603          * saves and loads debug registers (Type-A).
4604          */
4605         if (sev_vcpu_has_debug_swap(svm)) {
4606                 hostsa->dr0 = native_get_debugreg(0);
4607                 hostsa->dr1 = native_get_debugreg(1);
4608                 hostsa->dr2 = native_get_debugreg(2);
4609                 hostsa->dr3 = native_get_debugreg(3);
4610                 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4611                 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4612                 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4613                 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4614         }
4615 }
4616 
4617 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4618 {
4619         struct vcpu_svm *svm = to_svm(vcpu);
4620 
4621         /* First SIPI: Use the values as initially set by the VMM */
4622         if (!svm->sev_es.received_first_sipi) {
4623                 svm->sev_es.received_first_sipi = true;
4624                 return;
4625         }
4626 
4627         /* Subsequent SIPI */
4628         switch (svm->sev_es.ap_reset_hold_type) {
4629         case AP_RESET_HOLD_NAE_EVENT:
4630                 /*
4631                  * Return from an AP Reset Hold VMGEXIT, where the guest will
4632                  * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4633                  */
4634                 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
4635                 break;
4636         case AP_RESET_HOLD_MSR_PROTO:
4637                 /*
4638                  * Return from an AP Reset Hold VMGEXIT, where the guest will
4639                  * set the CS and RIP. Set GHCB data field to a non-zero value.
4640                  */
4641                 set_ghcb_msr_bits(svm, 1,
4642                                   GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4643                                   GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4644 
4645                 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4646                                   GHCB_MSR_INFO_MASK,
4647                                   GHCB_MSR_INFO_POS);
4648                 break;
4649         default:
4650                 break;
4651         }
4652 }
4653 
4654 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4655 {
4656         unsigned long pfn;
4657         struct page *p;
4658 
4659         if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4660                 return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4661 
4662         /*
4663          * Allocate an SNP-safe page to workaround the SNP erratum where
4664          * the CPU will incorrectly signal an RMP violation #PF if a
4665          * hugepage (2MB or 1GB) collides with the RMP entry of a
4666          * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4667          *
4668          * Allocate one extra page, choose a page which is not
4669          * 2MB-aligned, and free the other.
4670          */
4671         p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4672         if (!p)
4673                 return NULL;
4674 
4675         split_page(p, 1);
4676 
4677         pfn = page_to_pfn(p);
4678         if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4679                 __free_page(p++);
4680         else
4681                 __free_page(p + 1);
4682 
4683         return p;
4684 }
4685 
4686 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4687 {
4688         struct kvm_memory_slot *slot;
4689         struct kvm *kvm = vcpu->kvm;
4690         int order, rmp_level, ret;
4691         bool assigned;
4692         kvm_pfn_t pfn;
4693         gfn_t gfn;
4694 
4695         gfn = gpa >> PAGE_SHIFT;
4696 
4697         /*
4698          * The only time RMP faults occur for shared pages is when the guest is
4699          * triggering an RMP fault for an implicit page-state change from
4700          * shared->private. Implicit page-state changes are forwarded to
4701          * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4702          * for shared pages should not end up here.
4703          */
4704         if (!kvm_mem_is_private(kvm, gfn)) {
4705                 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4706                                     gpa);
4707                 return;
4708         }
4709 
4710         slot = gfn_to_memslot(kvm, gfn);
4711         if (!kvm_slot_can_be_private(slot)) {
4712                 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4713                                     gpa);
4714                 return;
4715         }
4716 
4717         ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &order);
4718         if (ret) {
4719                 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4720                                     gpa);
4721                 return;
4722         }
4723 
4724         ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4725         if (ret || !assigned) {
4726                 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4727                                     gpa, pfn, ret);
4728                 goto out_no_trace;
4729         }
4730 
4731         /*
4732          * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4733          * with PFERR_GUEST_RMP_BIT set:
4734          *
4735          * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4736          *    bit set if the guest issues them with a smaller granularity than
4737          *    what is indicated by the page-size bit in the 2MB RMP entry for
4738          *    the PFN that backs the GPA.
4739          *
4740          * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4741          *    smaller than what is indicated by the 2MB RMP entry for the PFN
4742          *    that backs the GPA.
4743          *
4744          * In both these cases, the corresponding 2M RMP entry needs to
4745          * be PSMASH'd to 512 4K RMP entries.  If the RMP entry is already
4746          * split into 4K RMP entries, then this is likely a spurious case which
4747          * can occur when there are concurrent accesses by the guest to a 2MB
4748          * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4749          * the process of being PMASH'd into 4K entries. These cases should
4750          * resolve automatically on subsequent accesses, so just ignore them
4751          * here.
4752          */
4753         if (rmp_level == PG_LEVEL_4K)
4754                 goto out;
4755 
4756         ret = snp_rmptable_psmash(pfn);
4757         if (ret) {
4758                 /*
4759                  * Look it up again. If it's 4K now then the PSMASH may have
4760                  * raced with another process and the issue has already resolved
4761                  * itself.
4762                  */
4763                 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4764                     assigned && rmp_level == PG_LEVEL_4K)
4765                         goto out;
4766 
4767                 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4768                                     gpa, pfn, ret);
4769         }
4770 
4771         kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4772 out:
4773         trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4774 out_no_trace:
4775         put_page(pfn_to_page(pfn));
4776 }
4777 
4778 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4779 {
4780         kvm_pfn_t pfn = start;
4781 
4782         while (pfn < end) {
4783                 int ret, rmp_level;
4784                 bool assigned;
4785 
4786                 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4787                 if (ret) {
4788                         pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4789                                             pfn, start, end, rmp_level, ret);
4790                         return false;
4791                 }
4792 
4793                 if (assigned) {
4794                         pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4795                                  __func__, pfn, start, end, rmp_level);
4796                         return false;
4797                 }
4798 
4799                 pfn++;
4800         }
4801 
4802         return true;
4803 }
4804 
4805 static u8 max_level_for_order(int order)
4806 {
4807         if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4808                 return PG_LEVEL_2M;
4809 
4810         return PG_LEVEL_4K;
4811 }
4812 
4813 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4814 {
4815         kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4816 
4817         /*
4818          * If this is a large folio, and the entire 2M range containing the
4819          * PFN is currently shared, then the entire 2M-aligned range can be
4820          * set to private via a single 2M RMP entry.
4821          */
4822         if (max_level_for_order(order) > PG_LEVEL_4K &&
4823             is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4824                 return true;
4825 
4826         return false;
4827 }
4828 
4829 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4830 {
4831         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
4832         kvm_pfn_t pfn_aligned;
4833         gfn_t gfn_aligned;
4834         int level, rc;
4835         bool assigned;
4836 
4837         if (!sev_snp_guest(kvm))
4838                 return 0;
4839 
4840         rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4841         if (rc) {
4842                 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4843                                    gfn, pfn, rc);
4844                 return -ENOENT;
4845         }
4846 
4847         if (assigned) {
4848                 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4849                          __func__, gfn, pfn, max_order, level);
4850                 return 0;
4851         }
4852 
4853         if (is_large_rmp_possible(kvm, pfn, max_order)) {
4854                 level = PG_LEVEL_2M;
4855                 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4856                 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4857         } else {
4858                 level = PG_LEVEL_4K;
4859                 pfn_aligned = pfn;
4860                 gfn_aligned = gfn;
4861         }
4862 
4863         rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4864         if (rc) {
4865                 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4866                                    gfn, pfn, level, rc);
4867                 return -EINVAL;
4868         }
4869 
4870         pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4871                  __func__, gfn, pfn, pfn_aligned, max_order, level);
4872 
4873         return 0;
4874 }
4875 
4876 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
4877 {
4878         kvm_pfn_t pfn;
4879 
4880         if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4881                 return;
4882 
4883         pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
4884 
4885         for (pfn = start; pfn < end;) {
4886                 bool use_2m_update = false;
4887                 int rc, rmp_level;
4888                 bool assigned;
4889 
4890                 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4891                 if (rc || !assigned)
4892                         goto next_pfn;
4893 
4894                 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
4895                                 end >= (pfn + PTRS_PER_PMD) &&
4896                                 rmp_level > PG_LEVEL_4K;
4897 
4898                 /*
4899                  * If an unaligned PFN corresponds to a 2M region assigned as a
4900                  * large page in the RMP table, PSMASH the region into individual
4901                  * 4K RMP entries before attempting to convert a 4K sub-page.
4902                  */
4903                 if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
4904                         /*
4905                          * This shouldn't fail, but if it does, report it, but
4906                          * still try to update RMP entry to shared and pray this
4907                          * was a spurious error that can be addressed later.
4908                          */
4909                         rc = snp_rmptable_psmash(pfn);
4910                         WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
4911                                   pfn, rc);
4912                 }
4913 
4914                 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
4915                 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
4916                               pfn, rc))
4917                         goto next_pfn;
4918 
4919                 /*
4920                  * SEV-ES avoids host/guest cache coherency issues through
4921                  * WBINVD hooks issued via MMU notifiers during run-time, and
4922                  * KVM's VM destroy path at shutdown. Those MMU notifier events
4923                  * don't cover gmem since there is no requirement to map pages
4924                  * to a HVA in order to use them for a running guest. While the
4925                  * shutdown path would still likely cover things for SNP guests,
4926                  * userspace may also free gmem pages during run-time via
4927                  * hole-punching operations on the guest_memfd, so flush the
4928                  * cache entries for these pages before free'ing them back to
4929                  * the host.
4930                  */
4931                 clflush_cache_range(__va(pfn_to_hpa(pfn)),
4932                                     use_2m_update ? PMD_SIZE : PAGE_SIZE);
4933 next_pfn:
4934                 pfn += use_2m_update ? PTRS_PER_PMD : 1;
4935                 cond_resched();
4936         }
4937 }
4938 
4939 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
4940 {
4941         int level, rc;
4942         bool assigned;
4943 
4944         if (!sev_snp_guest(kvm))
4945                 return 0;
4946 
4947         rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4948         if (rc || !assigned)
4949                 return PG_LEVEL_4K;
4950 
4951         return level;
4952 }
4953 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php