~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kvm/svm/svm.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2 
  3 #include <linux/kvm_host.h>
  4 
  5 #include "irq.h"
  6 #include "mmu.h"
  7 #include "kvm_cache_regs.h"
  8 #include "x86.h"
  9 #include "smm.h"
 10 #include "cpuid.h"
 11 #include "pmu.h"
 12 
 13 #include <linux/module.h>
 14 #include <linux/mod_devicetable.h>
 15 #include <linux/kernel.h>
 16 #include <linux/vmalloc.h>
 17 #include <linux/highmem.h>
 18 #include <linux/amd-iommu.h>
 19 #include <linux/sched.h>
 20 #include <linux/trace_events.h>
 21 #include <linux/slab.h>
 22 #include <linux/hashtable.h>
 23 #include <linux/objtool.h>
 24 #include <linux/psp-sev.h>
 25 #include <linux/file.h>
 26 #include <linux/pagemap.h>
 27 #include <linux/swap.h>
 28 #include <linux/rwsem.h>
 29 #include <linux/cc_platform.h>
 30 #include <linux/smp.h>
 31 
 32 #include <asm/apic.h>
 33 #include <asm/perf_event.h>
 34 #include <asm/tlbflush.h>
 35 #include <asm/desc.h>
 36 #include <asm/debugreg.h>
 37 #include <asm/kvm_para.h>
 38 #include <asm/irq_remapping.h>
 39 #include <asm/spec-ctrl.h>
 40 #include <asm/cpu_device_id.h>
 41 #include <asm/traps.h>
 42 #include <asm/reboot.h>
 43 #include <asm/fpu/api.h>
 44 
 45 #include <trace/events/ipi.h>
 46 
 47 #include "trace.h"
 48 
 49 #include "svm.h"
 50 #include "svm_ops.h"
 51 
 52 #include "kvm_onhyperv.h"
 53 #include "svm_onhyperv.h"
 54 
 55 MODULE_AUTHOR("Qumranet");
 56 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
 57 MODULE_LICENSE("GPL");
 58 
 59 #ifdef MODULE
 60 static const struct x86_cpu_id svm_cpu_id[] = {
 61         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
 62         {}
 63 };
 64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
 65 #endif
 66 
 67 #define SEG_TYPE_LDT 2
 68 #define SEG_TYPE_BUSY_TSS16 3
 69 
 70 static bool erratum_383_found __read_mostly;
 71 
 72 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 73 
 74 /*
 75  * Set osvw_len to higher value when updated Revision Guides
 76  * are published and we know what the new status bits are
 77  */
 78 static uint64_t osvw_len = 4, osvw_status;
 79 
 80 static DEFINE_PER_CPU(u64, current_tsc_ratio);
 81 
 82 #define X2APIC_MSR(x)   (APIC_BASE_MSR + (x >> 4))
 83 
 84 static const struct svm_direct_access_msrs {
 85         u32 index;   /* Index of the MSR */
 86         bool always; /* True if intercept is initially cleared */
 87 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
 88         { .index = MSR_STAR,                            .always = true  },
 89         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
 90         { .index = MSR_IA32_SYSENTER_EIP,               .always = false },
 91         { .index = MSR_IA32_SYSENTER_ESP,               .always = false },
 92 #ifdef CONFIG_X86_64
 93         { .index = MSR_GS_BASE,                         .always = true  },
 94         { .index = MSR_FS_BASE,                         .always = true  },
 95         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
 96         { .index = MSR_LSTAR,                           .always = true  },
 97         { .index = MSR_CSTAR,                           .always = true  },
 98         { .index = MSR_SYSCALL_MASK,                    .always = true  },
 99 #endif
100         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
101         { .index = MSR_IA32_PRED_CMD,                   .always = false },
102         { .index = MSR_IA32_FLUSH_CMD,                  .always = false },
103         { .index = MSR_IA32_DEBUGCTLMSR,                .always = false },
104         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
105         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
106         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
107         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
108         { .index = MSR_IA32_XSS,                        .always = false },
109         { .index = MSR_EFER,                            .always = false },
110         { .index = MSR_IA32_CR_PAT,                     .always = false },
111         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
112         { .index = MSR_TSC_AUX,                         .always = false },
113         { .index = X2APIC_MSR(APIC_ID),                 .always = false },
114         { .index = X2APIC_MSR(APIC_LVR),                .always = false },
115         { .index = X2APIC_MSR(APIC_TASKPRI),            .always = false },
116         { .index = X2APIC_MSR(APIC_ARBPRI),             .always = false },
117         { .index = X2APIC_MSR(APIC_PROCPRI),            .always = false },
118         { .index = X2APIC_MSR(APIC_EOI),                .always = false },
119         { .index = X2APIC_MSR(APIC_RRR),                .always = false },
120         { .index = X2APIC_MSR(APIC_LDR),                .always = false },
121         { .index = X2APIC_MSR(APIC_DFR),                .always = false },
122         { .index = X2APIC_MSR(APIC_SPIV),               .always = false },
123         { .index = X2APIC_MSR(APIC_ISR),                .always = false },
124         { .index = X2APIC_MSR(APIC_TMR),                .always = false },
125         { .index = X2APIC_MSR(APIC_IRR),                .always = false },
126         { .index = X2APIC_MSR(APIC_ESR),                .always = false },
127         { .index = X2APIC_MSR(APIC_ICR),                .always = false },
128         { .index = X2APIC_MSR(APIC_ICR2),               .always = false },
129 
130         /*
131          * Note:
132          * AMD does not virtualize APIC TSC-deadline timer mode, but it is
133          * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
134          * the AVIC hardware would generate GP fault. Therefore, always
135          * intercept the MSR 0x832, and do not setup direct_access_msr.
136          */
137         { .index = X2APIC_MSR(APIC_LVTTHMR),            .always = false },
138         { .index = X2APIC_MSR(APIC_LVTPC),              .always = false },
139         { .index = X2APIC_MSR(APIC_LVT0),               .always = false },
140         { .index = X2APIC_MSR(APIC_LVT1),               .always = false },
141         { .index = X2APIC_MSR(APIC_LVTERR),             .always = false },
142         { .index = X2APIC_MSR(APIC_TMICT),              .always = false },
143         { .index = X2APIC_MSR(APIC_TMCCT),              .always = false },
144         { .index = X2APIC_MSR(APIC_TDCR),               .always = false },
145         { .index = MSR_INVALID,                         .always = false },
146 };
147 
148 /*
149  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
150  * pause_filter_count: On processors that support Pause filtering(indicated
151  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
152  *      count value. On VMRUN this value is loaded into an internal counter.
153  *      Each time a pause instruction is executed, this counter is decremented
154  *      until it reaches zero at which time a #VMEXIT is generated if pause
155  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
156  *      Intercept Filtering for more details.
157  *      This also indicate if ple logic enabled.
158  *
159  * pause_filter_thresh: In addition, some processor families support advanced
160  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
161  *      the amount of time a guest is allowed to execute in a pause loop.
162  *      In this mode, a 16-bit pause filter threshold field is added in the
163  *      VMCB. The threshold value is a cycle count that is used to reset the
164  *      pause counter. As with simple pause filtering, VMRUN loads the pause
165  *      count value from VMCB into an internal counter. Then, on each pause
166  *      instruction the hardware checks the elapsed number of cycles since
167  *      the most recent pause instruction against the pause filter threshold.
168  *      If the elapsed cycle count is greater than the pause filter threshold,
169  *      then the internal pause count is reloaded from the VMCB and execution
170  *      continues. If the elapsed cycle count is less than the pause filter
171  *      threshold, then the internal pause count is decremented. If the count
172  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
173  *      triggered. If advanced pause filtering is supported and pause filter
174  *      threshold field is set to zero, the filter will operate in the simpler,
175  *      count only mode.
176  */
177 
178 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
179 module_param(pause_filter_thresh, ushort, 0444);
180 
181 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
182 module_param(pause_filter_count, ushort, 0444);
183 
184 /* Default doubles per-vcpu window every exit. */
185 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
186 module_param(pause_filter_count_grow, ushort, 0444);
187 
188 /* Default resets per-vcpu window every exit to pause_filter_count. */
189 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
190 module_param(pause_filter_count_shrink, ushort, 0444);
191 
192 /* Default is to compute the maximum so we can never overflow. */
193 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
194 module_param(pause_filter_count_max, ushort, 0444);
195 
196 /*
197  * Use nested page tables by default.  Note, NPT may get forced off by
198  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
199  */
200 bool npt_enabled = true;
201 module_param_named(npt, npt_enabled, bool, 0444);
202 
203 /* allow nested virtualization in KVM/SVM */
204 static int nested = true;
205 module_param(nested, int, 0444);
206 
207 /* enable/disable Next RIP Save */
208 int nrips = true;
209 module_param(nrips, int, 0444);
210 
211 /* enable/disable Virtual VMLOAD VMSAVE */
212 static int vls = true;
213 module_param(vls, int, 0444);
214 
215 /* enable/disable Virtual GIF */
216 int vgif = true;
217 module_param(vgif, int, 0444);
218 
219 /* enable/disable LBR virtualization */
220 int lbrv = true;
221 module_param(lbrv, int, 0444);
222 
223 static int tsc_scaling = true;
224 module_param(tsc_scaling, int, 0444);
225 
226 /*
227  * enable / disable AVIC.  Because the defaults differ for APICv
228  * support between VMX and SVM we cannot use module_param_named.
229  */
230 static bool avic;
231 module_param(avic, bool, 0444);
232 
233 bool __read_mostly dump_invalid_vmcb;
234 module_param(dump_invalid_vmcb, bool, 0644);
235 
236 
237 bool intercept_smi = true;
238 module_param(intercept_smi, bool, 0444);
239 
240 bool vnmi = true;
241 module_param(vnmi, bool, 0444);
242 
243 static bool svm_gp_erratum_intercept = true;
244 
245 static u8 rsm_ins_bytes[] = "\x0f\xaa";
246 
247 static unsigned long iopm_base;
248 
249 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
250 
251 /*
252  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
253  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
254  *
255  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
256  * defer the restoration of TSC_AUX until the CPU returns to userspace.
257  */
258 static int tsc_aux_uret_slot __read_mostly = -1;
259 
260 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
261 
262 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
263 #define MSRS_RANGE_SIZE 2048
264 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
265 
266 u32 svm_msrpm_offset(u32 msr)
267 {
268         u32 offset;
269         int i;
270 
271         for (i = 0; i < NUM_MSR_MAPS; i++) {
272                 if (msr < msrpm_ranges[i] ||
273                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
274                         continue;
275 
276                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
277                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
278 
279                 /* Now we have the u8 offset - but need the u32 offset */
280                 return offset / 4;
281         }
282 
283         /* MSR not in any range */
284         return MSR_INVALID;
285 }
286 
287 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
288 
289 static int get_npt_level(void)
290 {
291 #ifdef CONFIG_X86_64
292         return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
293 #else
294         return PT32E_ROOT_LEVEL;
295 #endif
296 }
297 
298 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
299 {
300         struct vcpu_svm *svm = to_svm(vcpu);
301         u64 old_efer = vcpu->arch.efer;
302         vcpu->arch.efer = efer;
303 
304         if (!npt_enabled) {
305                 /* Shadow paging assumes NX to be available.  */
306                 efer |= EFER_NX;
307 
308                 if (!(efer & EFER_LMA))
309                         efer &= ~EFER_LME;
310         }
311 
312         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
313                 if (!(efer & EFER_SVME)) {
314                         svm_leave_nested(vcpu);
315                         svm_set_gif(svm, true);
316                         /* #GP intercept is still needed for vmware backdoor */
317                         if (!enable_vmware_backdoor)
318                                 clr_exception_intercept(svm, GP_VECTOR);
319 
320                         /*
321                          * Free the nested guest state, unless we are in SMM.
322                          * In this case we will return to the nested guest
323                          * as soon as we leave SMM.
324                          */
325                         if (!is_smm(vcpu))
326                                 svm_free_nested(svm);
327 
328                 } else {
329                         int ret = svm_allocate_nested(svm);
330 
331                         if (ret) {
332                                 vcpu->arch.efer = old_efer;
333                                 return ret;
334                         }
335 
336                         /*
337                          * Never intercept #GP for SEV guests, KVM can't
338                          * decrypt guest memory to workaround the erratum.
339                          */
340                         if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
341                                 set_exception_intercept(svm, GP_VECTOR);
342                 }
343         }
344 
345         svm->vmcb->save.efer = efer | EFER_SVME;
346         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
347         return 0;
348 }
349 
350 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
351 {
352         struct vcpu_svm *svm = to_svm(vcpu);
353         u32 ret = 0;
354 
355         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
356                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
357         return ret;
358 }
359 
360 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
361 {
362         struct vcpu_svm *svm = to_svm(vcpu);
363 
364         if (mask == 0)
365                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
366         else
367                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
368 
369 }
370 
371 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
372                                            bool commit_side_effects)
373 {
374         struct vcpu_svm *svm = to_svm(vcpu);
375         unsigned long old_rflags;
376 
377         /*
378          * SEV-ES does not expose the next RIP. The RIP update is controlled by
379          * the type of exit and the #VC handler in the guest.
380          */
381         if (sev_es_guest(vcpu->kvm))
382                 goto done;
383 
384         if (nrips && svm->vmcb->control.next_rip != 0) {
385                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
386                 svm->next_rip = svm->vmcb->control.next_rip;
387         }
388 
389         if (!svm->next_rip) {
390                 if (unlikely(!commit_side_effects))
391                         old_rflags = svm->vmcb->save.rflags;
392 
393                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
394                         return 0;
395 
396                 if (unlikely(!commit_side_effects))
397                         svm->vmcb->save.rflags = old_rflags;
398         } else {
399                 kvm_rip_write(vcpu, svm->next_rip);
400         }
401 
402 done:
403         if (likely(commit_side_effects))
404                 svm_set_interrupt_shadow(vcpu, 0);
405 
406         return 1;
407 }
408 
409 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
410 {
411         return __svm_skip_emulated_instruction(vcpu, true);
412 }
413 
414 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
415 {
416         unsigned long rip, old_rip = kvm_rip_read(vcpu);
417         struct vcpu_svm *svm = to_svm(vcpu);
418 
419         /*
420          * Due to architectural shortcomings, the CPU doesn't always provide
421          * NextRIP, e.g. if KVM intercepted an exception that occurred while
422          * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
423          * the instruction even if NextRIP is supported to acquire the next
424          * RIP so that it can be shoved into the NextRIP field, otherwise
425          * hardware will fail to advance guest RIP during event injection.
426          * Drop the exception/interrupt if emulation fails and effectively
427          * retry the instruction, it's the least awful option.  If NRIPS is
428          * in use, the skip must not commit any side effects such as clearing
429          * the interrupt shadow or RFLAGS.RF.
430          */
431         if (!__svm_skip_emulated_instruction(vcpu, !nrips))
432                 return -EIO;
433 
434         rip = kvm_rip_read(vcpu);
435 
436         /*
437          * Save the injection information, even when using next_rip, as the
438          * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
439          * doesn't complete due to a VM-Exit occurring while the CPU is
440          * vectoring the event.   Decoding the instruction isn't guaranteed to
441          * work as there may be no backing instruction, e.g. if the event is
442          * being injected by L1 for L2, or if the guest is patching INT3 into
443          * a different instruction.
444          */
445         svm->soft_int_injected = true;
446         svm->soft_int_csbase = svm->vmcb->save.cs.base;
447         svm->soft_int_old_rip = old_rip;
448         svm->soft_int_next_rip = rip;
449 
450         if (nrips)
451                 kvm_rip_write(vcpu, old_rip);
452 
453         if (static_cpu_has(X86_FEATURE_NRIPS))
454                 svm->vmcb->control.next_rip = rip;
455 
456         return 0;
457 }
458 
459 static void svm_inject_exception(struct kvm_vcpu *vcpu)
460 {
461         struct kvm_queued_exception *ex = &vcpu->arch.exception;
462         struct vcpu_svm *svm = to_svm(vcpu);
463 
464         kvm_deliver_exception_payload(vcpu, ex);
465 
466         if (kvm_exception_is_soft(ex->vector) &&
467             svm_update_soft_interrupt_rip(vcpu))
468                 return;
469 
470         svm->vmcb->control.event_inj = ex->vector
471                 | SVM_EVTINJ_VALID
472                 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
473                 | SVM_EVTINJ_TYPE_EXEPT;
474         svm->vmcb->control.event_inj_err = ex->error_code;
475 }
476 
477 static void svm_init_erratum_383(void)
478 {
479         u32 low, high;
480         int err;
481         u64 val;
482 
483         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
484                 return;
485 
486         /* Use _safe variants to not break nested virtualization */
487         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
488         if (err)
489                 return;
490 
491         val |= (1ULL << 47);
492 
493         low  = lower_32_bits(val);
494         high = upper_32_bits(val);
495 
496         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
497 
498         erratum_383_found = true;
499 }
500 
501 static void svm_init_osvw(struct kvm_vcpu *vcpu)
502 {
503         /*
504          * Guests should see errata 400 and 415 as fixed (assuming that
505          * HLT and IO instructions are intercepted).
506          */
507         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
508         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
509 
510         /*
511          * By increasing VCPU's osvw.length to 3 we are telling the guest that
512          * all osvw.status bits inside that length, including bit 0 (which is
513          * reserved for erratum 298), are valid. However, if host processor's
514          * osvw_len is 0 then osvw_status[0] carries no information. We need to
515          * be conservative here and therefore we tell the guest that erratum 298
516          * is present (because we really don't know).
517          */
518         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
519                 vcpu->arch.osvw.status |= 1;
520 }
521 
522 static bool __kvm_is_svm_supported(void)
523 {
524         int cpu = smp_processor_id();
525         struct cpuinfo_x86 *c = &cpu_data(cpu);
526 
527         if (c->x86_vendor != X86_VENDOR_AMD &&
528             c->x86_vendor != X86_VENDOR_HYGON) {
529                 pr_err("CPU %d isn't AMD or Hygon\n", cpu);
530                 return false;
531         }
532 
533         if (!cpu_has(c, X86_FEATURE_SVM)) {
534                 pr_err("SVM not supported by CPU %d\n", cpu);
535                 return false;
536         }
537 
538         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
539                 pr_info("KVM is unsupported when running as an SEV guest\n");
540                 return false;
541         }
542 
543         return true;
544 }
545 
546 static bool kvm_is_svm_supported(void)
547 {
548         bool supported;
549 
550         migrate_disable();
551         supported = __kvm_is_svm_supported();
552         migrate_enable();
553 
554         return supported;
555 }
556 
557 static int svm_check_processor_compat(void)
558 {
559         if (!__kvm_is_svm_supported())
560                 return -EIO;
561 
562         return 0;
563 }
564 
565 static void __svm_write_tsc_multiplier(u64 multiplier)
566 {
567         if (multiplier == __this_cpu_read(current_tsc_ratio))
568                 return;
569 
570         wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
571         __this_cpu_write(current_tsc_ratio, multiplier);
572 }
573 
574 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
575 {
576         return page_address(sd->save_area) + 0x400;
577 }
578 
579 static inline void kvm_cpu_svm_disable(void)
580 {
581         uint64_t efer;
582 
583         wrmsrl(MSR_VM_HSAVE_PA, 0);
584         rdmsrl(MSR_EFER, efer);
585         if (efer & EFER_SVME) {
586                 /*
587                  * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
588                  * NMI aren't blocked.
589                  */
590                 stgi();
591                 wrmsrl(MSR_EFER, efer & ~EFER_SVME);
592         }
593 }
594 
595 static void svm_emergency_disable(void)
596 {
597         kvm_rebooting = true;
598 
599         kvm_cpu_svm_disable();
600 }
601 
602 static void svm_hardware_disable(void)
603 {
604         /* Make sure we clean up behind us */
605         if (tsc_scaling)
606                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
607 
608         kvm_cpu_svm_disable();
609 
610         amd_pmu_disable_virt();
611 }
612 
613 static int svm_hardware_enable(void)
614 {
615 
616         struct svm_cpu_data *sd;
617         uint64_t efer;
618         int me = raw_smp_processor_id();
619 
620         rdmsrl(MSR_EFER, efer);
621         if (efer & EFER_SVME)
622                 return -EBUSY;
623 
624         sd = per_cpu_ptr(&svm_data, me);
625         sd->asid_generation = 1;
626         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
627         sd->next_asid = sd->max_asid + 1;
628         sd->min_asid = max_sev_asid + 1;
629 
630         wrmsrl(MSR_EFER, efer | EFER_SVME);
631 
632         wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
633 
634         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
635                 /*
636                  * Set the default value, even if we don't use TSC scaling
637                  * to avoid having stale value in the msr
638                  */
639                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
640         }
641 
642 
643         /*
644          * Get OSVW bits.
645          *
646          * Note that it is possible to have a system with mixed processor
647          * revisions and therefore different OSVW bits. If bits are not the same
648          * on different processors then choose the worst case (i.e. if erratum
649          * is present on one processor and not on another then assume that the
650          * erratum is present everywhere).
651          */
652         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
653                 uint64_t len, status = 0;
654                 int err;
655 
656                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
657                 if (!err)
658                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
659                                                       &err);
660 
661                 if (err)
662                         osvw_status = osvw_len = 0;
663                 else {
664                         if (len < osvw_len)
665                                 osvw_len = len;
666                         osvw_status |= status;
667                         osvw_status &= (1ULL << osvw_len) - 1;
668                 }
669         } else
670                 osvw_status = osvw_len = 0;
671 
672         svm_init_erratum_383();
673 
674         amd_pmu_enable_virt();
675 
676         /*
677          * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
678          * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
679          * Since Linux does not change the value of TSC_AUX once set, prime the
680          * TSC_AUX field now to avoid a RDMSR on every vCPU run.
681          */
682         if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
683                 u32 __maybe_unused msr_hi;
684 
685                 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi);
686         }
687 
688         return 0;
689 }
690 
691 static void svm_cpu_uninit(int cpu)
692 {
693         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
694 
695         if (!sd->save_area)
696                 return;
697 
698         kfree(sd->sev_vmcbs);
699         __free_page(sd->save_area);
700         sd->save_area_pa = 0;
701         sd->save_area = NULL;
702 }
703 
704 static int svm_cpu_init(int cpu)
705 {
706         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
707         int ret = -ENOMEM;
708 
709         memset(sd, 0, sizeof(struct svm_cpu_data));
710         sd->save_area = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
711         if (!sd->save_area)
712                 return ret;
713 
714         ret = sev_cpu_init(sd);
715         if (ret)
716                 goto free_save_area;
717 
718         sd->save_area_pa = __sme_page_pa(sd->save_area);
719         return 0;
720 
721 free_save_area:
722         __free_page(sd->save_area);
723         sd->save_area = NULL;
724         return ret;
725 
726 }
727 
728 static void set_dr_intercepts(struct vcpu_svm *svm)
729 {
730         struct vmcb *vmcb = svm->vmcb01.ptr;
731 
732         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
733         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
734         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
735         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
736         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
737         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
738         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
739         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
740         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
741         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
742         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
743         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
744         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
745         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
746         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
747         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
748 
749         recalc_intercepts(svm);
750 }
751 
752 static void clr_dr_intercepts(struct vcpu_svm *svm)
753 {
754         struct vmcb *vmcb = svm->vmcb01.ptr;
755 
756         vmcb->control.intercepts[INTERCEPT_DR] = 0;
757 
758         recalc_intercepts(svm);
759 }
760 
761 static int direct_access_msr_slot(u32 msr)
762 {
763         u32 i;
764 
765         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
766                 if (direct_access_msrs[i].index == msr)
767                         return i;
768 
769         return -ENOENT;
770 }
771 
772 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
773                                      int write)
774 {
775         struct vcpu_svm *svm = to_svm(vcpu);
776         int slot = direct_access_msr_slot(msr);
777 
778         if (slot == -ENOENT)
779                 return;
780 
781         /* Set the shadow bitmaps to the desired intercept states */
782         if (read)
783                 set_bit(slot, svm->shadow_msr_intercept.read);
784         else
785                 clear_bit(slot, svm->shadow_msr_intercept.read);
786 
787         if (write)
788                 set_bit(slot, svm->shadow_msr_intercept.write);
789         else
790                 clear_bit(slot, svm->shadow_msr_intercept.write);
791 }
792 
793 static bool valid_msr_intercept(u32 index)
794 {
795         return direct_access_msr_slot(index) != -ENOENT;
796 }
797 
798 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
799 {
800         u8 bit_write;
801         unsigned long tmp;
802         u32 offset;
803         u32 *msrpm;
804 
805         /*
806          * For non-nested case:
807          * If the L01 MSR bitmap does not intercept the MSR, then we need to
808          * save it.
809          *
810          * For nested case:
811          * If the L02 MSR bitmap does not intercept the MSR, then we need to
812          * save it.
813          */
814         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
815                                       to_svm(vcpu)->msrpm;
816 
817         offset    = svm_msrpm_offset(msr);
818         bit_write = 2 * (msr & 0x0f) + 1;
819         tmp       = msrpm[offset];
820 
821         BUG_ON(offset == MSR_INVALID);
822 
823         return test_bit(bit_write, &tmp);
824 }
825 
826 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
827                                         u32 msr, int read, int write)
828 {
829         struct vcpu_svm *svm = to_svm(vcpu);
830         u8 bit_read, bit_write;
831         unsigned long tmp;
832         u32 offset;
833 
834         /*
835          * If this warning triggers extend the direct_access_msrs list at the
836          * beginning of the file
837          */
838         WARN_ON(!valid_msr_intercept(msr));
839 
840         /* Enforce non allowed MSRs to trap */
841         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
842                 read = 0;
843 
844         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
845                 write = 0;
846 
847         offset    = svm_msrpm_offset(msr);
848         bit_read  = 2 * (msr & 0x0f);
849         bit_write = 2 * (msr & 0x0f) + 1;
850         tmp       = msrpm[offset];
851 
852         BUG_ON(offset == MSR_INVALID);
853 
854         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
855         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
856 
857         msrpm[offset] = tmp;
858 
859         svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
860         svm->nested.force_msr_bitmap_recalc = true;
861 }
862 
863 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
864                           int read, int write)
865 {
866         set_shadow_msr_intercept(vcpu, msr, read, write);
867         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
868 }
869 
870 u32 *svm_vcpu_alloc_msrpm(void)
871 {
872         unsigned int order = get_order(MSRPM_SIZE);
873         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
874         u32 *msrpm;
875 
876         if (!pages)
877                 return NULL;
878 
879         msrpm = page_address(pages);
880         memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
881 
882         return msrpm;
883 }
884 
885 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
886 {
887         int i;
888 
889         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
890                 if (!direct_access_msrs[i].always)
891                         continue;
892                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
893         }
894 }
895 
896 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
897 {
898         int i;
899 
900         if (intercept == svm->x2avic_msrs_intercepted)
901                 return;
902 
903         if (!x2avic_enabled)
904                 return;
905 
906         for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
907                 int index = direct_access_msrs[i].index;
908 
909                 if ((index < APIC_BASE_MSR) ||
910                     (index > APIC_BASE_MSR + 0xff))
911                         continue;
912                 set_msr_interception(&svm->vcpu, svm->msrpm, index,
913                                      !intercept, !intercept);
914         }
915 
916         svm->x2avic_msrs_intercepted = intercept;
917 }
918 
919 void svm_vcpu_free_msrpm(u32 *msrpm)
920 {
921         __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
922 }
923 
924 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
925 {
926         struct vcpu_svm *svm = to_svm(vcpu);
927         u32 i;
928 
929         /*
930          * Set intercept permissions for all direct access MSRs again. They
931          * will automatically get filtered through the MSR filter, so we are
932          * back in sync after this.
933          */
934         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
935                 u32 msr = direct_access_msrs[i].index;
936                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
937                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
938 
939                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
940         }
941 }
942 
943 static void add_msr_offset(u32 offset)
944 {
945         int i;
946 
947         for (i = 0; i < MSRPM_OFFSETS; ++i) {
948 
949                 /* Offset already in list? */
950                 if (msrpm_offsets[i] == offset)
951                         return;
952 
953                 /* Slot used by another offset? */
954                 if (msrpm_offsets[i] != MSR_INVALID)
955                         continue;
956 
957                 /* Add offset to list */
958                 msrpm_offsets[i] = offset;
959 
960                 return;
961         }
962 
963         /*
964          * If this BUG triggers the msrpm_offsets table has an overflow. Just
965          * increase MSRPM_OFFSETS in this case.
966          */
967         BUG();
968 }
969 
970 static void init_msrpm_offsets(void)
971 {
972         int i;
973 
974         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
975 
976         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
977                 u32 offset;
978 
979                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
980                 BUG_ON(offset == MSR_INVALID);
981 
982                 add_msr_offset(offset);
983         }
984 }
985 
986 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
987 {
988         to_vmcb->save.dbgctl            = from_vmcb->save.dbgctl;
989         to_vmcb->save.br_from           = from_vmcb->save.br_from;
990         to_vmcb->save.br_to             = from_vmcb->save.br_to;
991         to_vmcb->save.last_excp_from    = from_vmcb->save.last_excp_from;
992         to_vmcb->save.last_excp_to      = from_vmcb->save.last_excp_to;
993 
994         vmcb_mark_dirty(to_vmcb, VMCB_LBR);
995 }
996 
997 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
998 {
999         struct vcpu_svm *svm = to_svm(vcpu);
1000 
1001         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1002         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1003         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1004         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1005         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1006 
1007         if (sev_es_guest(vcpu->kvm))
1008                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);
1009 
1010         /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1011         if (is_guest_mode(vcpu))
1012                 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1013 }
1014 
1015 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1016 {
1017         struct vcpu_svm *svm = to_svm(vcpu);
1018 
1019         KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
1020 
1021         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1022         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1023         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1024         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1025         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1026 
1027         /*
1028          * Move the LBR msrs back to the vmcb01 to avoid copying them
1029          * on nested guest entries.
1030          */
1031         if (is_guest_mode(vcpu))
1032                 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1033 }
1034 
1035 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1036 {
1037         /*
1038          * If LBR virtualization is disabled, the LBR MSRs are always kept in
1039          * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
1040          * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1041          */
1042         return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1043                                                                    svm->vmcb01.ptr;
1044 }
1045 
1046 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1047 {
1048         struct vcpu_svm *svm = to_svm(vcpu);
1049         bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1050         bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1051                             (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1052                             (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1053 
1054         if (enable_lbrv == current_enable_lbrv)
1055                 return;
1056 
1057         if (enable_lbrv)
1058                 svm_enable_lbrv(vcpu);
1059         else
1060                 svm_disable_lbrv(vcpu);
1061 }
1062 
1063 void disable_nmi_singlestep(struct vcpu_svm *svm)
1064 {
1065         svm->nmi_singlestep = false;
1066 
1067         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1068                 /* Clear our flags if they were not set by the guest */
1069                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1070                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1071                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1072                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1073         }
1074 }
1075 
1076 static void grow_ple_window(struct kvm_vcpu *vcpu)
1077 {
1078         struct vcpu_svm *svm = to_svm(vcpu);
1079         struct vmcb_control_area *control = &svm->vmcb->control;
1080         int old = control->pause_filter_count;
1081 
1082         if (kvm_pause_in_guest(vcpu->kvm))
1083                 return;
1084 
1085         control->pause_filter_count = __grow_ple_window(old,
1086                                                         pause_filter_count,
1087                                                         pause_filter_count_grow,
1088                                                         pause_filter_count_max);
1089 
1090         if (control->pause_filter_count != old) {
1091                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1092                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1093                                             control->pause_filter_count, old);
1094         }
1095 }
1096 
1097 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1098 {
1099         struct vcpu_svm *svm = to_svm(vcpu);
1100         struct vmcb_control_area *control = &svm->vmcb->control;
1101         int old = control->pause_filter_count;
1102 
1103         if (kvm_pause_in_guest(vcpu->kvm))
1104                 return;
1105 
1106         control->pause_filter_count =
1107                                 __shrink_ple_window(old,
1108                                                     pause_filter_count,
1109                                                     pause_filter_count_shrink,
1110                                                     pause_filter_count);
1111         if (control->pause_filter_count != old) {
1112                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1113                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1114                                             control->pause_filter_count, old);
1115         }
1116 }
1117 
1118 static void svm_hardware_unsetup(void)
1119 {
1120         int cpu;
1121 
1122         sev_hardware_unsetup();
1123 
1124         for_each_possible_cpu(cpu)
1125                 svm_cpu_uninit(cpu);
1126 
1127         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1128         get_order(IOPM_SIZE));
1129         iopm_base = 0;
1130 }
1131 
1132 static void init_seg(struct vmcb_seg *seg)
1133 {
1134         seg->selector = 0;
1135         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1136                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1137         seg->limit = 0xffff;
1138         seg->base = 0;
1139 }
1140 
1141 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1142 {
1143         seg->selector = 0;
1144         seg->attrib = SVM_SELECTOR_P_MASK | type;
1145         seg->limit = 0xffff;
1146         seg->base = 0;
1147 }
1148 
1149 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1150 {
1151         struct vcpu_svm *svm = to_svm(vcpu);
1152 
1153         return svm->nested.ctl.tsc_offset;
1154 }
1155 
1156 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1157 {
1158         struct vcpu_svm *svm = to_svm(vcpu);
1159 
1160         return svm->tsc_ratio_msr;
1161 }
1162 
1163 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1164 {
1165         struct vcpu_svm *svm = to_svm(vcpu);
1166 
1167         svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1168         svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1169         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1170 }
1171 
1172 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1173 {
1174         preempt_disable();
1175         if (to_svm(vcpu)->guest_state_loaded)
1176                 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1177         preempt_enable();
1178 }
1179 
1180 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1181 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1182                                               struct vcpu_svm *svm)
1183 {
1184         /*
1185          * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1186          * roots, or if INVPCID is disabled in the guest to inject #UD.
1187          */
1188         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1189                 if (!npt_enabled ||
1190                     !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1191                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1192                 else
1193                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1194         }
1195 
1196         if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1197                 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1198                         svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1199                 else
1200                         svm_set_intercept(svm, INTERCEPT_RDTSCP);
1201         }
1202 }
1203 
1204 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1205 {
1206         struct vcpu_svm *svm = to_svm(vcpu);
1207 
1208         if (guest_cpuid_is_intel_compatible(vcpu)) {
1209                 /*
1210                  * We must intercept SYSENTER_EIP and SYSENTER_ESP
1211                  * accesses because the processor only stores 32 bits.
1212                  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1213                  */
1214                 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1215                 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1216                 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1217 
1218                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1219                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1220         } else {
1221                 /*
1222                  * If hardware supports Virtual VMLOAD VMSAVE then enable it
1223                  * in VMCB and clear intercepts to avoid #VMEXIT.
1224                  */
1225                 if (vls) {
1226                         svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1227                         svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1228                         svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1229                 }
1230                 /* No need to intercept these MSRs */
1231                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1232                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1233         }
1234 }
1235 
1236 static void init_vmcb(struct kvm_vcpu *vcpu)
1237 {
1238         struct vcpu_svm *svm = to_svm(vcpu);
1239         struct vmcb *vmcb = svm->vmcb01.ptr;
1240         struct vmcb_control_area *control = &vmcb->control;
1241         struct vmcb_save_area *save = &vmcb->save;
1242 
1243         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1244         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1245         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1246         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1247         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1248         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1249         if (!kvm_vcpu_apicv_active(vcpu))
1250                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1251 
1252         set_dr_intercepts(svm);
1253 
1254         set_exception_intercept(svm, PF_VECTOR);
1255         set_exception_intercept(svm, UD_VECTOR);
1256         set_exception_intercept(svm, MC_VECTOR);
1257         set_exception_intercept(svm, AC_VECTOR);
1258         set_exception_intercept(svm, DB_VECTOR);
1259         /*
1260          * Guest access to VMware backdoor ports could legitimately
1261          * trigger #GP because of TSS I/O permission bitmap.
1262          * We intercept those #GP and allow access to them anyway
1263          * as VMware does.
1264          */
1265         if (enable_vmware_backdoor)
1266                 set_exception_intercept(svm, GP_VECTOR);
1267 
1268         svm_set_intercept(svm, INTERCEPT_INTR);
1269         svm_set_intercept(svm, INTERCEPT_NMI);
1270 
1271         if (intercept_smi)
1272                 svm_set_intercept(svm, INTERCEPT_SMI);
1273 
1274         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1275         svm_set_intercept(svm, INTERCEPT_RDPMC);
1276         svm_set_intercept(svm, INTERCEPT_CPUID);
1277         svm_set_intercept(svm, INTERCEPT_INVD);
1278         svm_set_intercept(svm, INTERCEPT_INVLPG);
1279         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1280         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1281         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1282         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1283         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1284         svm_set_intercept(svm, INTERCEPT_VMRUN);
1285         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1286         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1287         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1288         svm_set_intercept(svm, INTERCEPT_STGI);
1289         svm_set_intercept(svm, INTERCEPT_CLGI);
1290         svm_set_intercept(svm, INTERCEPT_SKINIT);
1291         svm_set_intercept(svm, INTERCEPT_WBINVD);
1292         svm_set_intercept(svm, INTERCEPT_XSETBV);
1293         svm_set_intercept(svm, INTERCEPT_RDPRU);
1294         svm_set_intercept(svm, INTERCEPT_RSM);
1295 
1296         if (!kvm_mwait_in_guest(vcpu->kvm)) {
1297                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1298                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1299         }
1300 
1301         if (!kvm_hlt_in_guest(vcpu->kvm))
1302                 svm_set_intercept(svm, INTERCEPT_HLT);
1303 
1304         control->iopm_base_pa = __sme_set(iopm_base);
1305         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1306         control->int_ctl = V_INTR_MASKING_MASK;
1307 
1308         init_seg(&save->es);
1309         init_seg(&save->ss);
1310         init_seg(&save->ds);
1311         init_seg(&save->fs);
1312         init_seg(&save->gs);
1313 
1314         save->cs.selector = 0xf000;
1315         save->cs.base = 0xffff0000;
1316         /* Executable/Readable Code Segment */
1317         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1318                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1319         save->cs.limit = 0xffff;
1320 
1321         save->gdtr.base = 0;
1322         save->gdtr.limit = 0xffff;
1323         save->idtr.base = 0;
1324         save->idtr.limit = 0xffff;
1325 
1326         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1327         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1328 
1329         if (npt_enabled) {
1330                 /* Setup VMCB for Nested Paging */
1331                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1332                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1333                 clr_exception_intercept(svm, PF_VECTOR);
1334                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1335                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1336                 save->g_pat = vcpu->arch.pat;
1337                 save->cr3 = 0;
1338         }
1339         svm->current_vmcb->asid_generation = 0;
1340         svm->asid = 0;
1341 
1342         svm->nested.vmcb12_gpa = INVALID_GPA;
1343         svm->nested.last_vmcb12_gpa = INVALID_GPA;
1344 
1345         if (!kvm_pause_in_guest(vcpu->kvm)) {
1346                 control->pause_filter_count = pause_filter_count;
1347                 if (pause_filter_thresh)
1348                         control->pause_filter_thresh = pause_filter_thresh;
1349                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1350         } else {
1351                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1352         }
1353 
1354         svm_recalc_instruction_intercepts(vcpu, svm);
1355 
1356         /*
1357          * If the host supports V_SPEC_CTRL then disable the interception
1358          * of MSR_IA32_SPEC_CTRL.
1359          */
1360         if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1361                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1362 
1363         if (kvm_vcpu_apicv_active(vcpu))
1364                 avic_init_vmcb(svm, vmcb);
1365 
1366         if (vnmi)
1367                 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1368 
1369         if (vgif) {
1370                 svm_clr_intercept(svm, INTERCEPT_STGI);
1371                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1372                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1373         }
1374 
1375         if (sev_guest(vcpu->kvm))
1376                 sev_init_vmcb(svm);
1377 
1378         svm_hv_init_vmcb(vmcb);
1379         init_vmcb_after_set_cpuid(vcpu);
1380 
1381         vmcb_mark_all_dirty(vmcb);
1382 
1383         enable_gif(svm);
1384 }
1385 
1386 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1387 {
1388         struct vcpu_svm *svm = to_svm(vcpu);
1389 
1390         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1391 
1392         svm_init_osvw(vcpu);
1393         vcpu->arch.microcode_version = 0x01000065;
1394         svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1395 
1396         svm->nmi_masked = false;
1397         svm->awaiting_iret_completion = false;
1398 
1399         if (sev_es_guest(vcpu->kvm))
1400                 sev_es_vcpu_reset(svm);
1401 }
1402 
1403 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1404 {
1405         struct vcpu_svm *svm = to_svm(vcpu);
1406 
1407         svm->spec_ctrl = 0;
1408         svm->virt_spec_ctrl = 0;
1409 
1410         if (init_event)
1411                 sev_snp_init_protected_guest_state(vcpu);
1412 
1413         init_vmcb(vcpu);
1414 
1415         if (!init_event)
1416                 __svm_vcpu_reset(vcpu);
1417 }
1418 
1419 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1420 {
1421         svm->current_vmcb = target_vmcb;
1422         svm->vmcb = target_vmcb->ptr;
1423 }
1424 
1425 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1426 {
1427         struct vcpu_svm *svm;
1428         struct page *vmcb01_page;
1429         struct page *vmsa_page = NULL;
1430         int err;
1431 
1432         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1433         svm = to_svm(vcpu);
1434 
1435         err = -ENOMEM;
1436         vmcb01_page = snp_safe_alloc_page();
1437         if (!vmcb01_page)
1438                 goto out;
1439 
1440         if (sev_es_guest(vcpu->kvm)) {
1441                 /*
1442                  * SEV-ES guests require a separate VMSA page used to contain
1443                  * the encrypted register state of the guest.
1444                  */
1445                 vmsa_page = snp_safe_alloc_page();
1446                 if (!vmsa_page)
1447                         goto error_free_vmcb_page;
1448         }
1449 
1450         err = avic_init_vcpu(svm);
1451         if (err)
1452                 goto error_free_vmsa_page;
1453 
1454         svm->msrpm = svm_vcpu_alloc_msrpm();
1455         if (!svm->msrpm) {
1456                 err = -ENOMEM;
1457                 goto error_free_vmsa_page;
1458         }
1459 
1460         svm->x2avic_msrs_intercepted = true;
1461 
1462         svm->vmcb01.ptr = page_address(vmcb01_page);
1463         svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1464         svm_switch_vmcb(svm, &svm->vmcb01);
1465 
1466         if (vmsa_page)
1467                 svm->sev_es.vmsa = page_address(vmsa_page);
1468 
1469         svm->guest_state_loaded = false;
1470 
1471         return 0;
1472 
1473 error_free_vmsa_page:
1474         if (vmsa_page)
1475                 __free_page(vmsa_page);
1476 error_free_vmcb_page:
1477         __free_page(vmcb01_page);
1478 out:
1479         return err;
1480 }
1481 
1482 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1483 {
1484         int i;
1485 
1486         for_each_online_cpu(i)
1487                 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1488 }
1489 
1490 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1491 {
1492         struct vcpu_svm *svm = to_svm(vcpu);
1493 
1494         /*
1495          * The vmcb page can be recycled, causing a false negative in
1496          * svm_vcpu_load(). So, ensure that no logical CPU has this
1497          * vmcb page recorded as its current vmcb.
1498          */
1499         svm_clear_current_vmcb(svm->vmcb);
1500 
1501         svm_leave_nested(vcpu);
1502         svm_free_nested(svm);
1503 
1504         sev_free_vcpu(vcpu);
1505 
1506         __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1507         __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1508 }
1509 
1510 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1511 {
1512         struct vcpu_svm *svm = to_svm(vcpu);
1513         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1514 
1515         if (sev_es_guest(vcpu->kvm))
1516                 sev_es_unmap_ghcb(svm);
1517 
1518         if (svm->guest_state_loaded)
1519                 return;
1520 
1521         /*
1522          * Save additional host state that will be restored on VMEXIT (sev-es)
1523          * or subsequent vmload of host save area.
1524          */
1525         vmsave(sd->save_area_pa);
1526         if (sev_es_guest(vcpu->kvm))
1527                 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1528 
1529         if (tsc_scaling)
1530                 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1531 
1532         /*
1533          * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1534          * available. The user return MSR support is not required in this case
1535          * because TSC_AUX is restored on #VMEXIT from the host save area
1536          * (which has been initialized in svm_hardware_enable()).
1537          */
1538         if (likely(tsc_aux_uret_slot >= 0) &&
1539             (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1540                 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1541 
1542         svm->guest_state_loaded = true;
1543 }
1544 
1545 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1546 {
1547         to_svm(vcpu)->guest_state_loaded = false;
1548 }
1549 
1550 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1551 {
1552         struct vcpu_svm *svm = to_svm(vcpu);
1553         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1554 
1555         if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1556                 shrink_ple_window(vcpu);
1557 
1558         if (sd->current_vmcb != svm->vmcb) {
1559                 sd->current_vmcb = svm->vmcb;
1560 
1561                 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1562                         indirect_branch_prediction_barrier();
1563         }
1564         if (kvm_vcpu_apicv_active(vcpu))
1565                 avic_vcpu_load(vcpu, cpu);
1566 }
1567 
1568 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1569 {
1570         if (kvm_vcpu_apicv_active(vcpu))
1571                 avic_vcpu_put(vcpu);
1572 
1573         svm_prepare_host_switch(vcpu);
1574 
1575         ++vcpu->stat.host_state_reload;
1576 }
1577 
1578 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1579 {
1580         struct vcpu_svm *svm = to_svm(vcpu);
1581         unsigned long rflags = svm->vmcb->save.rflags;
1582 
1583         if (svm->nmi_singlestep) {
1584                 /* Hide our flags if they were not set by the guest */
1585                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1586                         rflags &= ~X86_EFLAGS_TF;
1587                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1588                         rflags &= ~X86_EFLAGS_RF;
1589         }
1590         return rflags;
1591 }
1592 
1593 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1594 {
1595         if (to_svm(vcpu)->nmi_singlestep)
1596                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1597 
1598        /*
1599         * Any change of EFLAGS.VM is accompanied by a reload of SS
1600         * (caused by either a task switch or an inter-privilege IRET),
1601         * so we do not need to update the CPL here.
1602         */
1603         to_svm(vcpu)->vmcb->save.rflags = rflags;
1604 }
1605 
1606 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1607 {
1608         struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1609 
1610         return sev_es_guest(vcpu->kvm)
1611                 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1612                 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1613 }
1614 
1615 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1616 {
1617         kvm_register_mark_available(vcpu, reg);
1618 
1619         switch (reg) {
1620         case VCPU_EXREG_PDPTR:
1621                 /*
1622                  * When !npt_enabled, mmu->pdptrs[] is already available since
1623                  * it is always updated per SDM when moving to CRs.
1624                  */
1625                 if (npt_enabled)
1626                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1627                 break;
1628         default:
1629                 KVM_BUG_ON(1, vcpu->kvm);
1630         }
1631 }
1632 
1633 static void svm_set_vintr(struct vcpu_svm *svm)
1634 {
1635         struct vmcb_control_area *control;
1636 
1637         /*
1638          * The following fields are ignored when AVIC is enabled
1639          */
1640         WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1641 
1642         svm_set_intercept(svm, INTERCEPT_VINTR);
1643 
1644         /*
1645          * Recalculating intercepts may have cleared the VINTR intercept.  If
1646          * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1647          * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1648          * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1649          * interrupts will never be unblocked while L2 is running.
1650          */
1651         if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1652                 return;
1653 
1654         /*
1655          * This is just a dummy VINTR to actually cause a vmexit to happen.
1656          * Actual injection of virtual interrupts happens through EVENTINJ.
1657          */
1658         control = &svm->vmcb->control;
1659         control->int_vector = 0x0;
1660         control->int_ctl &= ~V_INTR_PRIO_MASK;
1661         control->int_ctl |= V_IRQ_MASK |
1662                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1663         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1664 }
1665 
1666 static void svm_clear_vintr(struct vcpu_svm *svm)
1667 {
1668         svm_clr_intercept(svm, INTERCEPT_VINTR);
1669 
1670         /* Drop int_ctl fields related to VINTR injection.  */
1671         svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1672         if (is_guest_mode(&svm->vcpu)) {
1673                 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1674 
1675                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1676                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1677 
1678                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1679                         V_IRQ_INJECTION_BITS_MASK;
1680 
1681                 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1682         }
1683 
1684         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1685 }
1686 
1687 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1688 {
1689         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1690         struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1691 
1692         switch (seg) {
1693         case VCPU_SREG_CS: return &save->cs;
1694         case VCPU_SREG_DS: return &save->ds;
1695         case VCPU_SREG_ES: return &save->es;
1696         case VCPU_SREG_FS: return &save01->fs;
1697         case VCPU_SREG_GS: return &save01->gs;
1698         case VCPU_SREG_SS: return &save->ss;
1699         case VCPU_SREG_TR: return &save01->tr;
1700         case VCPU_SREG_LDTR: return &save01->ldtr;
1701         }
1702         BUG();
1703         return NULL;
1704 }
1705 
1706 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1707 {
1708         struct vmcb_seg *s = svm_seg(vcpu, seg);
1709 
1710         return s->base;
1711 }
1712 
1713 static void svm_get_segment(struct kvm_vcpu *vcpu,
1714                             struct kvm_segment *var, int seg)
1715 {
1716         struct vmcb_seg *s = svm_seg(vcpu, seg);
1717 
1718         var->base = s->base;
1719         var->limit = s->limit;
1720         var->selector = s->selector;
1721         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1722         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1723         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1724         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1725         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1726         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1727         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1728 
1729         /*
1730          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1731          * However, the SVM spec states that the G bit is not observed by the
1732          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1733          * So let's synthesize a legal G bit for all segments, this helps
1734          * running KVM nested. It also helps cross-vendor migration, because
1735          * Intel's vmentry has a check on the 'G' bit.
1736          */
1737         var->g = s->limit > 0xfffff;
1738 
1739         /*
1740          * AMD's VMCB does not have an explicit unusable field, so emulate it
1741          * for cross vendor migration purposes by "not present"
1742          */
1743         var->unusable = !var->present;
1744 
1745         switch (seg) {
1746         case VCPU_SREG_TR:
1747                 /*
1748                  * Work around a bug where the busy flag in the tr selector
1749                  * isn't exposed
1750                  */
1751                 var->type |= 0x2;
1752                 break;
1753         case VCPU_SREG_DS:
1754         case VCPU_SREG_ES:
1755         case VCPU_SREG_FS:
1756         case VCPU_SREG_GS:
1757                 /*
1758                  * The accessed bit must always be set in the segment
1759                  * descriptor cache, although it can be cleared in the
1760                  * descriptor, the cached bit always remains at 1. Since
1761                  * Intel has a check on this, set it here to support
1762                  * cross-vendor migration.
1763                  */
1764                 if (!var->unusable)
1765                         var->type |= 0x1;
1766                 break;
1767         case VCPU_SREG_SS:
1768                 /*
1769                  * On AMD CPUs sometimes the DB bit in the segment
1770                  * descriptor is left as 1, although the whole segment has
1771                  * been made unusable. Clear it here to pass an Intel VMX
1772                  * entry check when cross vendor migrating.
1773                  */
1774                 if (var->unusable)
1775                         var->db = 0;
1776                 /* This is symmetric with svm_set_segment() */
1777                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1778                 break;
1779         }
1780 }
1781 
1782 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1783 {
1784         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1785 
1786         return save->cpl;
1787 }
1788 
1789 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1790 {
1791         struct kvm_segment cs;
1792 
1793         svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1794         *db = cs.db;
1795         *l = cs.l;
1796 }
1797 
1798 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1799 {
1800         struct vcpu_svm *svm = to_svm(vcpu);
1801 
1802         dt->size = svm->vmcb->save.idtr.limit;
1803         dt->address = svm->vmcb->save.idtr.base;
1804 }
1805 
1806 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1807 {
1808         struct vcpu_svm *svm = to_svm(vcpu);
1809 
1810         svm->vmcb->save.idtr.limit = dt->size;
1811         svm->vmcb->save.idtr.base = dt->address ;
1812         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1813 }
1814 
1815 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1816 {
1817         struct vcpu_svm *svm = to_svm(vcpu);
1818 
1819         dt->size = svm->vmcb->save.gdtr.limit;
1820         dt->address = svm->vmcb->save.gdtr.base;
1821 }
1822 
1823 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1824 {
1825         struct vcpu_svm *svm = to_svm(vcpu);
1826 
1827         svm->vmcb->save.gdtr.limit = dt->size;
1828         svm->vmcb->save.gdtr.base = dt->address ;
1829         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1830 }
1831 
1832 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1833 {
1834         struct vcpu_svm *svm = to_svm(vcpu);
1835 
1836         /*
1837          * For guests that don't set guest_state_protected, the cr3 update is
1838          * handled via kvm_mmu_load() while entering the guest. For guests
1839          * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1840          * VMCB save area now, since the save area will become the initial
1841          * contents of the VMSA, and future VMCB save area updates won't be
1842          * seen.
1843          */
1844         if (sev_es_guest(vcpu->kvm)) {
1845                 svm->vmcb->save.cr3 = cr3;
1846                 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1847         }
1848 }
1849 
1850 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1851 {
1852         return true;
1853 }
1854 
1855 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1856 {
1857         struct vcpu_svm *svm = to_svm(vcpu);
1858         u64 hcr0 = cr0;
1859         bool old_paging = is_paging(vcpu);
1860 
1861 #ifdef CONFIG_X86_64
1862         if (vcpu->arch.efer & EFER_LME) {
1863                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1864                         vcpu->arch.efer |= EFER_LMA;
1865                         if (!vcpu->arch.guest_state_protected)
1866                                 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1867                 }
1868 
1869                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1870                         vcpu->arch.efer &= ~EFER_LMA;
1871                         if (!vcpu->arch.guest_state_protected)
1872                                 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1873                 }
1874         }
1875 #endif
1876         vcpu->arch.cr0 = cr0;
1877 
1878         if (!npt_enabled) {
1879                 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1880                 if (old_paging != is_paging(vcpu))
1881                         svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1882         }
1883 
1884         /*
1885          * re-enable caching here because the QEMU bios
1886          * does not do it - this results in some delay at
1887          * reboot
1888          */
1889         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1890                 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1891 
1892         svm->vmcb->save.cr0 = hcr0;
1893         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1894 
1895         /*
1896          * SEV-ES guests must always keep the CR intercepts cleared. CR
1897          * tracking is done using the CR write traps.
1898          */
1899         if (sev_es_guest(vcpu->kvm))
1900                 return;
1901 
1902         if (hcr0 == cr0) {
1903                 /* Selective CR0 write remains on.  */
1904                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1905                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1906         } else {
1907                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1908                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1909         }
1910 }
1911 
1912 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1913 {
1914         return true;
1915 }
1916 
1917 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1918 {
1919         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1920         unsigned long old_cr4 = vcpu->arch.cr4;
1921 
1922         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1923                 svm_flush_tlb_current(vcpu);
1924 
1925         vcpu->arch.cr4 = cr4;
1926         if (!npt_enabled) {
1927                 cr4 |= X86_CR4_PAE;
1928 
1929                 if (!is_paging(vcpu))
1930                         cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1931         }
1932         cr4 |= host_cr4_mce;
1933         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1934         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1935 
1936         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1937                 kvm_update_cpuid_runtime(vcpu);
1938 }
1939 
1940 static void svm_set_segment(struct kvm_vcpu *vcpu,
1941                             struct kvm_segment *var, int seg)
1942 {
1943         struct vcpu_svm *svm = to_svm(vcpu);
1944         struct vmcb_seg *s = svm_seg(vcpu, seg);
1945 
1946         s->base = var->base;
1947         s->limit = var->limit;
1948         s->selector = var->selector;
1949         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1950         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1951         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1952         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1953         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1954         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1955         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1956         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1957 
1958         /*
1959          * This is always accurate, except if SYSRET returned to a segment
1960          * with SS.DPL != 3.  Intel does not have this quirk, and always
1961          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1962          * would entail passing the CPL to userspace and back.
1963          */
1964         if (seg == VCPU_SREG_SS)
1965                 /* This is symmetric with svm_get_segment() */
1966                 svm->vmcb->save.cpl = (var->dpl & 3);
1967 
1968         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1969 }
1970 
1971 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1972 {
1973         struct vcpu_svm *svm = to_svm(vcpu);
1974 
1975         clr_exception_intercept(svm, BP_VECTOR);
1976 
1977         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1978                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1979                         set_exception_intercept(svm, BP_VECTOR);
1980         }
1981 }
1982 
1983 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1984 {
1985         if (sd->next_asid > sd->max_asid) {
1986                 ++sd->asid_generation;
1987                 sd->next_asid = sd->min_asid;
1988                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1989                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1990         }
1991 
1992         svm->current_vmcb->asid_generation = sd->asid_generation;
1993         svm->asid = sd->next_asid++;
1994 }
1995 
1996 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1997 {
1998         struct vmcb *vmcb = svm->vmcb;
1999 
2000         if (svm->vcpu.arch.guest_state_protected)
2001                 return;
2002 
2003         if (unlikely(value != vmcb->save.dr6)) {
2004                 vmcb->save.dr6 = value;
2005                 vmcb_mark_dirty(vmcb, VMCB_DR);
2006         }
2007 }
2008 
2009 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2010 {
2011         struct vcpu_svm *svm = to_svm(vcpu);
2012 
2013         if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2014                 return;
2015 
2016         get_debugreg(vcpu->arch.db[0], 0);
2017         get_debugreg(vcpu->arch.db[1], 1);
2018         get_debugreg(vcpu->arch.db[2], 2);
2019         get_debugreg(vcpu->arch.db[3], 3);
2020         /*
2021          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2022          * because db_interception might need it.  We can do it before vmentry.
2023          */
2024         vcpu->arch.dr6 = svm->vmcb->save.dr6;
2025         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2026         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2027         set_dr_intercepts(svm);
2028 }
2029 
2030 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2031 {
2032         struct vcpu_svm *svm = to_svm(vcpu);
2033 
2034         if (vcpu->arch.guest_state_protected)
2035                 return;
2036 
2037         svm->vmcb->save.dr7 = value;
2038         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2039 }
2040 
2041 static int pf_interception(struct kvm_vcpu *vcpu)
2042 {
2043         struct vcpu_svm *svm = to_svm(vcpu);
2044 
2045         u64 fault_address = svm->vmcb->control.exit_info_2;
2046         u64 error_code = svm->vmcb->control.exit_info_1;
2047 
2048         return kvm_handle_page_fault(vcpu, error_code, fault_address,
2049                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2050                         svm->vmcb->control.insn_bytes : NULL,
2051                         svm->vmcb->control.insn_len);
2052 }
2053 
2054 static int npf_interception(struct kvm_vcpu *vcpu)
2055 {
2056         struct vcpu_svm *svm = to_svm(vcpu);
2057         int rc;
2058 
2059         u64 fault_address = svm->vmcb->control.exit_info_2;
2060         u64 error_code = svm->vmcb->control.exit_info_1;
2061 
2062         /*
2063          * WARN if hardware generates a fault with an error code that collides
2064          * with KVM-defined sythentic flags.  Clear the flags and continue on,
2065          * i.e. don't terminate the VM, as KVM can't possibly be relying on a
2066          * flag that KVM doesn't know about.
2067          */
2068         if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
2069                 error_code &= ~PFERR_SYNTHETIC_MASK;
2070 
2071         if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
2072                 error_code |= PFERR_PRIVATE_ACCESS;
2073 
2074         trace_kvm_page_fault(vcpu, fault_address, error_code);
2075         rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
2076                                 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2077                                 svm->vmcb->control.insn_bytes : NULL,
2078                                 svm->vmcb->control.insn_len);
2079 
2080         if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
2081                 sev_handle_rmp_fault(vcpu, fault_address, error_code);
2082 
2083         return rc;
2084 }
2085 
2086 static int db_interception(struct kvm_vcpu *vcpu)
2087 {
2088         struct kvm_run *kvm_run = vcpu->run;
2089         struct vcpu_svm *svm = to_svm(vcpu);
2090 
2091         if (!(vcpu->guest_debug &
2092               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2093                 !svm->nmi_singlestep) {
2094                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2095                 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2096                 return 1;
2097         }
2098 
2099         if (svm->nmi_singlestep) {
2100                 disable_nmi_singlestep(svm);
2101                 /* Make sure we check for pending NMIs upon entry */
2102                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2103         }
2104 
2105         if (vcpu->guest_debug &
2106             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2107                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2108                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2109                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2110                 kvm_run->debug.arch.pc =
2111                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2112                 kvm_run->debug.arch.exception = DB_VECTOR;
2113                 return 0;
2114         }
2115 
2116         return 1;
2117 }
2118 
2119 static int bp_interception(struct kvm_vcpu *vcpu)
2120 {
2121         struct vcpu_svm *svm = to_svm(vcpu);
2122         struct kvm_run *kvm_run = vcpu->run;
2123 
2124         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2125         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2126         kvm_run->debug.arch.exception = BP_VECTOR;
2127         return 0;
2128 }
2129 
2130 static int ud_interception(struct kvm_vcpu *vcpu)
2131 {
2132         return handle_ud(vcpu);
2133 }
2134 
2135 static int ac_interception(struct kvm_vcpu *vcpu)
2136 {
2137         kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2138         return 1;
2139 }
2140 
2141 static bool is_erratum_383(void)
2142 {
2143         int err, i;
2144         u64 value;
2145 
2146         if (!erratum_383_found)
2147                 return false;
2148 
2149         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2150         if (err)
2151                 return false;
2152 
2153         /* Bit 62 may or may not be set for this mce */
2154         value &= ~(1ULL << 62);
2155 
2156         if (value != 0xb600000000010015ULL)
2157                 return false;
2158 
2159         /* Clear MCi_STATUS registers */
2160         for (i = 0; i < 6; ++i)
2161                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2162 
2163         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2164         if (!err) {
2165                 u32 low, high;
2166 
2167                 value &= ~(1ULL << 2);
2168                 low    = lower_32_bits(value);
2169                 high   = upper_32_bits(value);
2170 
2171                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2172         }
2173 
2174         /* Flush tlb to evict multi-match entries */
2175         __flush_tlb_all();
2176 
2177         return true;
2178 }
2179 
2180 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2181 {
2182         if (is_erratum_383()) {
2183                 /*
2184                  * Erratum 383 triggered. Guest state is corrupt so kill the
2185                  * guest.
2186                  */
2187                 pr_err("Guest triggered AMD Erratum 383\n");
2188 
2189                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2190 
2191                 return;
2192         }
2193 
2194         /*
2195          * On an #MC intercept the MCE handler is not called automatically in
2196          * the host. So do it by hand here.
2197          */
2198         kvm_machine_check();
2199 }
2200 
2201 static int mc_interception(struct kvm_vcpu *vcpu)
2202 {
2203         return 1;
2204 }
2205 
2206 static int shutdown_interception(struct kvm_vcpu *vcpu)
2207 {
2208         struct kvm_run *kvm_run = vcpu->run;
2209         struct vcpu_svm *svm = to_svm(vcpu);
2210 
2211 
2212         /*
2213          * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2214          * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2215          * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2216          * userspace.  At a platform view, INIT is acceptable behavior as
2217          * there exist bare metal platforms that automatically INIT the CPU
2218          * in response to shutdown.
2219          *
2220          * The VM save area for SEV-ES guests has already been encrypted so it
2221          * cannot be reinitialized, i.e. synthesizing INIT is futile.
2222          */
2223         if (!sev_es_guest(vcpu->kvm)) {
2224                 clear_page(svm->vmcb);
2225                 kvm_vcpu_reset(vcpu, true);
2226         }
2227 
2228         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2229         return 0;
2230 }
2231 
2232 static int io_interception(struct kvm_vcpu *vcpu)
2233 {
2234         struct vcpu_svm *svm = to_svm(vcpu);
2235         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2236         int size, in, string;
2237         unsigned port;
2238 
2239         ++vcpu->stat.io_exits;
2240         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2241         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2242         port = io_info >> 16;
2243         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2244 
2245         if (string) {
2246                 if (sev_es_guest(vcpu->kvm))
2247                         return sev_es_string_io(svm, size, port, in);
2248                 else
2249                         return kvm_emulate_instruction(vcpu, 0);
2250         }
2251 
2252         svm->next_rip = svm->vmcb->control.exit_info_2;
2253 
2254         return kvm_fast_pio(vcpu, size, port, in);
2255 }
2256 
2257 static int nmi_interception(struct kvm_vcpu *vcpu)
2258 {
2259         return 1;
2260 }
2261 
2262 static int smi_interception(struct kvm_vcpu *vcpu)
2263 {
2264         return 1;
2265 }
2266 
2267 static int intr_interception(struct kvm_vcpu *vcpu)
2268 {
2269         ++vcpu->stat.irq_exits;
2270         return 1;
2271 }
2272 
2273 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2274 {
2275         struct vcpu_svm *svm = to_svm(vcpu);
2276         struct vmcb *vmcb12;
2277         struct kvm_host_map map;
2278         int ret;
2279 
2280         if (nested_svm_check_permissions(vcpu))
2281                 return 1;
2282 
2283         ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2284         if (ret) {
2285                 if (ret == -EINVAL)
2286                         kvm_inject_gp(vcpu, 0);
2287                 return 1;
2288         }
2289 
2290         vmcb12 = map.hva;
2291 
2292         ret = kvm_skip_emulated_instruction(vcpu);
2293 
2294         if (vmload) {
2295                 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2296                 svm->sysenter_eip_hi = 0;
2297                 svm->sysenter_esp_hi = 0;
2298         } else {
2299                 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2300         }
2301 
2302         kvm_vcpu_unmap(vcpu, &map, true);
2303 
2304         return ret;
2305 }
2306 
2307 static int vmload_interception(struct kvm_vcpu *vcpu)
2308 {
2309         return vmload_vmsave_interception(vcpu, true);
2310 }
2311 
2312 static int vmsave_interception(struct kvm_vcpu *vcpu)
2313 {
2314         return vmload_vmsave_interception(vcpu, false);
2315 }
2316 
2317 static int vmrun_interception(struct kvm_vcpu *vcpu)
2318 {
2319         if (nested_svm_check_permissions(vcpu))
2320                 return 1;
2321 
2322         return nested_svm_vmrun(vcpu);
2323 }
2324 
2325 enum {
2326         NONE_SVM_INSTR,
2327         SVM_INSTR_VMRUN,
2328         SVM_INSTR_VMLOAD,
2329         SVM_INSTR_VMSAVE,
2330 };
2331 
2332 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2333 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2334 {
2335         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2336 
2337         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2338                 return NONE_SVM_INSTR;
2339 
2340         switch (ctxt->modrm) {
2341         case 0xd8: /* VMRUN */
2342                 return SVM_INSTR_VMRUN;
2343         case 0xda: /* VMLOAD */
2344                 return SVM_INSTR_VMLOAD;
2345         case 0xdb: /* VMSAVE */
2346                 return SVM_INSTR_VMSAVE;
2347         default:
2348                 break;
2349         }
2350 
2351         return NONE_SVM_INSTR;
2352 }
2353 
2354 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2355 {
2356         const int guest_mode_exit_codes[] = {
2357                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2358                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2359                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2360         };
2361         int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2362                 [SVM_INSTR_VMRUN] = vmrun_interception,
2363                 [SVM_INSTR_VMLOAD] = vmload_interception,
2364                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2365         };
2366         struct vcpu_svm *svm = to_svm(vcpu);
2367         int ret;
2368 
2369         if (is_guest_mode(vcpu)) {
2370                 /* Returns '1' or -errno on failure, '' on success. */
2371                 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2372                 if (ret)
2373                         return ret;
2374                 return 1;
2375         }
2376         return svm_instr_handlers[opcode](vcpu);
2377 }
2378 
2379 /*
2380  * #GP handling code. Note that #GP can be triggered under the following two
2381  * cases:
2382  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2383  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2384  *      regions (e.g. SMM memory on host).
2385  *   2) VMware backdoor
2386  */
2387 static int gp_interception(struct kvm_vcpu *vcpu)
2388 {
2389         struct vcpu_svm *svm = to_svm(vcpu);
2390         u32 error_code = svm->vmcb->control.exit_info_1;
2391         int opcode;
2392 
2393         /* Both #GP cases have zero error_code */
2394         if (error_code)
2395                 goto reinject;
2396 
2397         /* Decode the instruction for usage later */
2398         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2399                 goto reinject;
2400 
2401         opcode = svm_instr_opcode(vcpu);
2402 
2403         if (opcode == NONE_SVM_INSTR) {
2404                 if (!enable_vmware_backdoor)
2405                         goto reinject;
2406 
2407                 /*
2408                  * VMware backdoor emulation on #GP interception only handles
2409                  * IN{S}, OUT{S}, and RDPMC.
2410                  */
2411                 if (!is_guest_mode(vcpu))
2412                         return kvm_emulate_instruction(vcpu,
2413                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2414         } else {
2415                 /* All SVM instructions expect page aligned RAX */
2416                 if (svm->vmcb->save.rax & ~PAGE_MASK)
2417                         goto reinject;
2418 
2419                 return emulate_svm_instr(vcpu, opcode);
2420         }
2421 
2422 reinject:
2423         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2424         return 1;
2425 }
2426 
2427 void svm_set_gif(struct vcpu_svm *svm, bool value)
2428 {
2429         if (value) {
2430                 /*
2431                  * If VGIF is enabled, the STGI intercept is only added to
2432                  * detect the opening of the SMI/NMI window; remove it now.
2433                  * Likewise, clear the VINTR intercept, we will set it
2434                  * again while processing KVM_REQ_EVENT if needed.
2435                  */
2436                 if (vgif)
2437                         svm_clr_intercept(svm, INTERCEPT_STGI);
2438                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2439                         svm_clear_vintr(svm);
2440 
2441                 enable_gif(svm);
2442                 if (svm->vcpu.arch.smi_pending ||
2443                     svm->vcpu.arch.nmi_pending ||
2444                     kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2445                     kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2446                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2447         } else {
2448                 disable_gif(svm);
2449 
2450                 /*
2451                  * After a CLGI no interrupts should come.  But if vGIF is
2452                  * in use, we still rely on the VINTR intercept (rather than
2453                  * STGI) to detect an open interrupt window.
2454                 */
2455                 if (!vgif)
2456                         svm_clear_vintr(svm);
2457         }
2458 }
2459 
2460 static int stgi_interception(struct kvm_vcpu *vcpu)
2461 {
2462         int ret;
2463 
2464         if (nested_svm_check_permissions(vcpu))
2465                 return 1;
2466 
2467         ret = kvm_skip_emulated_instruction(vcpu);
2468         svm_set_gif(to_svm(vcpu), true);
2469         return ret;
2470 }
2471 
2472 static int clgi_interception(struct kvm_vcpu *vcpu)
2473 {
2474         int ret;
2475 
2476         if (nested_svm_check_permissions(vcpu))
2477                 return 1;
2478 
2479         ret = kvm_skip_emulated_instruction(vcpu);
2480         svm_set_gif(to_svm(vcpu), false);
2481         return ret;
2482 }
2483 
2484 static int invlpga_interception(struct kvm_vcpu *vcpu)
2485 {
2486         gva_t gva = kvm_rax_read(vcpu);
2487         u32 asid = kvm_rcx_read(vcpu);
2488 
2489         /* FIXME: Handle an address size prefix. */
2490         if (!is_long_mode(vcpu))
2491                 gva = (u32)gva;
2492 
2493         trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2494 
2495         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2496         kvm_mmu_invlpg(vcpu, gva);
2497 
2498         return kvm_skip_emulated_instruction(vcpu);
2499 }
2500 
2501 static int skinit_interception(struct kvm_vcpu *vcpu)
2502 {
2503         trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2504 
2505         kvm_queue_exception(vcpu, UD_VECTOR);
2506         return 1;
2507 }
2508 
2509 static int task_switch_interception(struct kvm_vcpu *vcpu)
2510 {
2511         struct vcpu_svm *svm = to_svm(vcpu);
2512         u16 tss_selector;
2513         int reason;
2514         int int_type = svm->vmcb->control.exit_int_info &
2515                 SVM_EXITINTINFO_TYPE_MASK;
2516         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2517         uint32_t type =
2518                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2519         uint32_t idt_v =
2520                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2521         bool has_error_code = false;
2522         u32 error_code = 0;
2523 
2524         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2525 
2526         if (svm->vmcb->control.exit_info_2 &
2527             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2528                 reason = TASK_SWITCH_IRET;
2529         else if (svm->vmcb->control.exit_info_2 &
2530                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2531                 reason = TASK_SWITCH_JMP;
2532         else if (idt_v)
2533                 reason = TASK_SWITCH_GATE;
2534         else
2535                 reason = TASK_SWITCH_CALL;
2536 
2537         if (reason == TASK_SWITCH_GATE) {
2538                 switch (type) {
2539                 case SVM_EXITINTINFO_TYPE_NMI:
2540                         vcpu->arch.nmi_injected = false;
2541                         break;
2542                 case SVM_EXITINTINFO_TYPE_EXEPT:
2543                         if (svm->vmcb->control.exit_info_2 &
2544                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2545                                 has_error_code = true;
2546                                 error_code =
2547                                         (u32)svm->vmcb->control.exit_info_2;
2548                         }
2549                         kvm_clear_exception_queue(vcpu);
2550                         break;
2551                 case SVM_EXITINTINFO_TYPE_INTR:
2552                 case SVM_EXITINTINFO_TYPE_SOFT:
2553                         kvm_clear_interrupt_queue(vcpu);
2554                         break;
2555                 default:
2556                         break;
2557                 }
2558         }
2559 
2560         if (reason != TASK_SWITCH_GATE ||
2561             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2562             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2563              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2564                 if (!svm_skip_emulated_instruction(vcpu))
2565                         return 0;
2566         }
2567 
2568         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2569                 int_vec = -1;
2570 
2571         return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2572                                has_error_code, error_code);
2573 }
2574 
2575 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2576 {
2577         if (!sev_es_guest(svm->vcpu.kvm))
2578                 svm_clr_intercept(svm, INTERCEPT_IRET);
2579 }
2580 
2581 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2582 {
2583         if (!sev_es_guest(svm->vcpu.kvm))
2584                 svm_set_intercept(svm, INTERCEPT_IRET);
2585 }
2586 
2587 static int iret_interception(struct kvm_vcpu *vcpu)
2588 {
2589         struct vcpu_svm *svm = to_svm(vcpu);
2590 
2591         WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2592 
2593         ++vcpu->stat.nmi_window_exits;
2594         svm->awaiting_iret_completion = true;
2595 
2596         svm_clr_iret_intercept(svm);
2597         svm->nmi_iret_rip = kvm_rip_read(vcpu);
2598 
2599         kvm_make_request(KVM_REQ_EVENT, vcpu);
2600         return 1;
2601 }
2602 
2603 static int invlpg_interception(struct kvm_vcpu *vcpu)
2604 {
2605         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2606                 return kvm_emulate_instruction(vcpu, 0);
2607 
2608         kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2609         return kvm_skip_emulated_instruction(vcpu);
2610 }
2611 
2612 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2613 {
2614         return kvm_emulate_instruction(vcpu, 0);
2615 }
2616 
2617 static int rsm_interception(struct kvm_vcpu *vcpu)
2618 {
2619         return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2620 }
2621 
2622 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2623                                             unsigned long val)
2624 {
2625         struct vcpu_svm *svm = to_svm(vcpu);
2626         unsigned long cr0 = vcpu->arch.cr0;
2627         bool ret = false;
2628 
2629         if (!is_guest_mode(vcpu) ||
2630             (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2631                 return false;
2632 
2633         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2634         val &= ~SVM_CR0_SELECTIVE_MASK;
2635 
2636         if (cr0 ^ val) {
2637                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2638                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2639         }
2640 
2641         return ret;
2642 }
2643 
2644 #define CR_VALID (1ULL << 63)
2645 
2646 static int cr_interception(struct kvm_vcpu *vcpu)
2647 {
2648         struct vcpu_svm *svm = to_svm(vcpu);
2649         int reg, cr;
2650         unsigned long val;
2651         int err;
2652 
2653         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2654                 return emulate_on_interception(vcpu);
2655 
2656         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2657                 return emulate_on_interception(vcpu);
2658 
2659         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2660         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2661                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2662         else
2663                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2664 
2665         err = 0;
2666         if (cr >= 16) { /* mov to cr */
2667                 cr -= 16;
2668                 val = kvm_register_read(vcpu, reg);
2669                 trace_kvm_cr_write(cr, val);
2670                 switch (cr) {
2671                 case 0:
2672                         if (!check_selective_cr0_intercepted(vcpu, val))
2673                                 err = kvm_set_cr0(vcpu, val);
2674                         else
2675                                 return 1;
2676 
2677                         break;
2678                 case 3:
2679                         err = kvm_set_cr3(vcpu, val);
2680                         break;
2681                 case 4:
2682                         err = kvm_set_cr4(vcpu, val);
2683                         break;
2684                 case 8:
2685                         err = kvm_set_cr8(vcpu, val);
2686                         break;
2687                 default:
2688                         WARN(1, "unhandled write to CR%d", cr);
2689                         kvm_queue_exception(vcpu, UD_VECTOR);
2690                         return 1;
2691                 }
2692         } else { /* mov from cr */
2693                 switch (cr) {
2694                 case 0:
2695                         val = kvm_read_cr0(vcpu);
2696                         break;
2697                 case 2:
2698                         val = vcpu->arch.cr2;
2699                         break;
2700                 case 3:
2701                         val = kvm_read_cr3(vcpu);
2702                         break;
2703                 case 4:
2704                         val = kvm_read_cr4(vcpu);
2705                         break;
2706                 case 8:
2707                         val = kvm_get_cr8(vcpu);
2708                         break;
2709                 default:
2710                         WARN(1, "unhandled read from CR%d", cr);
2711                         kvm_queue_exception(vcpu, UD_VECTOR);
2712                         return 1;
2713                 }
2714                 kvm_register_write(vcpu, reg, val);
2715                 trace_kvm_cr_read(cr, val);
2716         }
2717         return kvm_complete_insn_gp(vcpu, err);
2718 }
2719 
2720 static int cr_trap(struct kvm_vcpu *vcpu)
2721 {
2722         struct vcpu_svm *svm = to_svm(vcpu);
2723         unsigned long old_value, new_value;
2724         unsigned int cr;
2725         int ret = 0;
2726 
2727         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2728 
2729         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2730         switch (cr) {
2731         case 0:
2732                 old_value = kvm_read_cr0(vcpu);
2733                 svm_set_cr0(vcpu, new_value);
2734 
2735                 kvm_post_set_cr0(vcpu, old_value, new_value);
2736                 break;
2737         case 4:
2738                 old_value = kvm_read_cr4(vcpu);
2739                 svm_set_cr4(vcpu, new_value);
2740 
2741                 kvm_post_set_cr4(vcpu, old_value, new_value);
2742                 break;
2743         case 8:
2744                 ret = kvm_set_cr8(vcpu, new_value);
2745                 break;
2746         default:
2747                 WARN(1, "unhandled CR%d write trap", cr);
2748                 kvm_queue_exception(vcpu, UD_VECTOR);
2749                 return 1;
2750         }
2751 
2752         return kvm_complete_insn_gp(vcpu, ret);
2753 }
2754 
2755 static int dr_interception(struct kvm_vcpu *vcpu)
2756 {
2757         struct vcpu_svm *svm = to_svm(vcpu);
2758         int reg, dr;
2759         int err = 0;
2760 
2761         /*
2762          * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2763          * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2764          */
2765         if (sev_es_guest(vcpu->kvm))
2766                 return 1;
2767 
2768         if (vcpu->guest_debug == 0) {
2769                 /*
2770                  * No more DR vmexits; force a reload of the debug registers
2771                  * and reenter on this instruction.  The next vmexit will
2772                  * retrieve the full state of the debug registers.
2773                  */
2774                 clr_dr_intercepts(svm);
2775                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2776                 return 1;
2777         }
2778 
2779         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2780                 return emulate_on_interception(vcpu);
2781 
2782         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2783         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2784         if (dr >= 16) { /* mov to DRn  */
2785                 dr -= 16;
2786                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2787         } else {
2788                 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2789         }
2790 
2791         return kvm_complete_insn_gp(vcpu, err);
2792 }
2793 
2794 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2795 {
2796         int r;
2797 
2798         u8 cr8_prev = kvm_get_cr8(vcpu);
2799         /* instruction emulation calls kvm_set_cr8() */
2800         r = cr_interception(vcpu);
2801         if (lapic_in_kernel(vcpu))
2802                 return r;
2803         if (cr8_prev <= kvm_get_cr8(vcpu))
2804                 return r;
2805         vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2806         return 0;
2807 }
2808 
2809 static int efer_trap(struct kvm_vcpu *vcpu)
2810 {
2811         struct msr_data msr_info;
2812         int ret;
2813 
2814         /*
2815          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2816          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2817          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2818          * the guest doesn't have X86_FEATURE_SVM.
2819          */
2820         msr_info.host_initiated = false;
2821         msr_info.index = MSR_EFER;
2822         msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2823         ret = kvm_set_msr_common(vcpu, &msr_info);
2824 
2825         return kvm_complete_insn_gp(vcpu, ret);
2826 }
2827 
2828 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2829 {
2830         msr->data = 0;
2831 
2832         switch (msr->index) {
2833         case MSR_AMD64_DE_CFG:
2834                 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2835                         msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2836                 break;
2837         default:
2838                 return KVM_MSR_RET_INVALID;
2839         }
2840 
2841         return 0;
2842 }
2843 
2844 static bool
2845 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2846 {
2847         return sev_es_guest(vcpu->kvm) &&
2848                vcpu->arch.guest_state_protected &&
2849                svm_msrpm_offset(msr_info->index) != MSR_INVALID &&
2850                !msr_write_intercepted(vcpu, msr_info->index);
2851 }
2852 
2853 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2854 {
2855         struct vcpu_svm *svm = to_svm(vcpu);
2856 
2857         if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2858                 msr_info->data = 0;
2859                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2860         }
2861 
2862         switch (msr_info->index) {
2863         case MSR_AMD64_TSC_RATIO:
2864                 if (!msr_info->host_initiated &&
2865                     !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2866                         return 1;
2867                 msr_info->data = svm->tsc_ratio_msr;
2868                 break;
2869         case MSR_STAR:
2870                 msr_info->data = svm->vmcb01.ptr->save.star;
2871                 break;
2872 #ifdef CONFIG_X86_64
2873         case MSR_LSTAR:
2874                 msr_info->data = svm->vmcb01.ptr->save.lstar;
2875                 break;
2876         case MSR_CSTAR:
2877                 msr_info->data = svm->vmcb01.ptr->save.cstar;
2878                 break;
2879         case MSR_GS_BASE:
2880                 msr_info->data = svm->vmcb01.ptr->save.gs.base;
2881                 break;
2882         case MSR_FS_BASE:
2883                 msr_info->data = svm->vmcb01.ptr->save.fs.base;
2884                 break;
2885         case MSR_KERNEL_GS_BASE:
2886                 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2887                 break;
2888         case MSR_SYSCALL_MASK:
2889                 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2890                 break;
2891 #endif
2892         case MSR_IA32_SYSENTER_CS:
2893                 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2894                 break;
2895         case MSR_IA32_SYSENTER_EIP:
2896                 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2897                 if (guest_cpuid_is_intel_compatible(vcpu))
2898                         msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2899                 break;
2900         case MSR_IA32_SYSENTER_ESP:
2901                 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2902                 if (guest_cpuid_is_intel_compatible(vcpu))
2903                         msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2904                 break;
2905         case MSR_TSC_AUX:
2906                 msr_info->data = svm->tsc_aux;
2907                 break;
2908         case MSR_IA32_DEBUGCTLMSR:
2909                 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2910                 break;
2911         case MSR_IA32_LASTBRANCHFROMIP:
2912                 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2913                 break;
2914         case MSR_IA32_LASTBRANCHTOIP:
2915                 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2916                 break;
2917         case MSR_IA32_LASTINTFROMIP:
2918                 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2919                 break;
2920         case MSR_IA32_LASTINTTOIP:
2921                 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2922                 break;
2923         case MSR_VM_HSAVE_PA:
2924                 msr_info->data = svm->nested.hsave_msr;
2925                 break;
2926         case MSR_VM_CR:
2927                 msr_info->data = svm->nested.vm_cr_msr;
2928                 break;
2929         case MSR_IA32_SPEC_CTRL:
2930                 if (!msr_info->host_initiated &&
2931                     !guest_has_spec_ctrl_msr(vcpu))
2932                         return 1;
2933 
2934                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2935                         msr_info->data = svm->vmcb->save.spec_ctrl;
2936                 else
2937                         msr_info->data = svm->spec_ctrl;
2938                 break;
2939         case MSR_AMD64_VIRT_SPEC_CTRL:
2940                 if (!msr_info->host_initiated &&
2941                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2942                         return 1;
2943 
2944                 msr_info->data = svm->virt_spec_ctrl;
2945                 break;
2946         case MSR_F15H_IC_CFG: {
2947 
2948                 int family, model;
2949 
2950                 family = guest_cpuid_family(vcpu);
2951                 model  = guest_cpuid_model(vcpu);
2952 
2953                 if (family < 0 || model < 0)
2954                         return kvm_get_msr_common(vcpu, msr_info);
2955 
2956                 msr_info->data = 0;
2957 
2958                 if (family == 0x15 &&
2959                     (model >= 0x2 && model < 0x20))
2960                         msr_info->data = 0x1E;
2961                 }
2962                 break;
2963         case MSR_AMD64_DE_CFG:
2964                 msr_info->data = svm->msr_decfg;
2965                 break;
2966         default:
2967                 return kvm_get_msr_common(vcpu, msr_info);
2968         }
2969         return 0;
2970 }
2971 
2972 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2973 {
2974         struct vcpu_svm *svm = to_svm(vcpu);
2975         if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2976                 return kvm_complete_insn_gp(vcpu, err);
2977 
2978         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2979         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2980                                 X86_TRAP_GP |
2981                                 SVM_EVTINJ_TYPE_EXEPT |
2982                                 SVM_EVTINJ_VALID);
2983         return 1;
2984 }
2985 
2986 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2987 {
2988         struct vcpu_svm *svm = to_svm(vcpu);
2989         int svm_dis, chg_mask;
2990 
2991         if (data & ~SVM_VM_CR_VALID_MASK)
2992                 return 1;
2993 
2994         chg_mask = SVM_VM_CR_VALID_MASK;
2995 
2996         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2997                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2998 
2999         svm->nested.vm_cr_msr &= ~chg_mask;
3000         svm->nested.vm_cr_msr |= (data & chg_mask);
3001 
3002         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3003 
3004         /* check for svm_disable while efer.svme is set */
3005         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3006                 return 1;
3007 
3008         return 0;
3009 }
3010 
3011 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3012 {
3013         struct vcpu_svm *svm = to_svm(vcpu);
3014         int ret = 0;
3015 
3016         u32 ecx = msr->index;
3017         u64 data = msr->data;
3018 
3019         if (sev_es_prevent_msr_access(vcpu, msr))
3020                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
3021 
3022         switch (ecx) {
3023         case MSR_AMD64_TSC_RATIO:
3024 
3025                 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
3026 
3027                         if (!msr->host_initiated)
3028                                 return 1;
3029                         /*
3030                          * In case TSC scaling is not enabled, always
3031                          * leave this MSR at the default value.
3032                          *
3033                          * Due to bug in qemu 6.2.0, it would try to set
3034                          * this msr to 0 if tsc scaling is not enabled.
3035                          * Ignore this value as well.
3036                          */
3037                         if (data != 0 && data != svm->tsc_ratio_msr)
3038                                 return 1;
3039                         break;
3040                 }
3041 
3042                 if (data & SVM_TSC_RATIO_RSVD)
3043                         return 1;
3044 
3045                 svm->tsc_ratio_msr = data;
3046 
3047                 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3048                     is_guest_mode(vcpu))
3049                         nested_svm_update_tsc_ratio_msr(vcpu);
3050 
3051                 break;
3052         case MSR_IA32_CR_PAT:
3053                 ret = kvm_set_msr_common(vcpu, msr);
3054                 if (ret)
3055                         break;
3056 
3057                 svm->vmcb01.ptr->save.g_pat = data;
3058                 if (is_guest_mode(vcpu))
3059                         nested_vmcb02_compute_g_pat(svm);
3060                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3061                 break;
3062         case MSR_IA32_SPEC_CTRL:
3063                 if (!msr->host_initiated &&
3064                     !guest_has_spec_ctrl_msr(vcpu))
3065                         return 1;
3066 
3067                 if (kvm_spec_ctrl_test_value(data))
3068                         return 1;
3069 
3070                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3071                         svm->vmcb->save.spec_ctrl = data;
3072                 else
3073                         svm->spec_ctrl = data;
3074                 if (!data)
3075                         break;
3076 
3077                 /*
3078                  * For non-nested:
3079                  * When it's written (to non-zero) for the first time, pass
3080                  * it through.
3081                  *
3082                  * For nested:
3083                  * The handling of the MSR bitmap for L2 guests is done in
3084                  * nested_svm_vmrun_msrpm.
3085                  * We update the L1 MSR bit as well since it will end up
3086                  * touching the MSR anyway now.
3087                  */
3088                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3089                 break;
3090         case MSR_AMD64_VIRT_SPEC_CTRL:
3091                 if (!msr->host_initiated &&
3092                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3093                         return 1;
3094 
3095                 if (data & ~SPEC_CTRL_SSBD)
3096                         return 1;
3097 
3098                 svm->virt_spec_ctrl = data;
3099                 break;
3100         case MSR_STAR:
3101                 svm->vmcb01.ptr->save.star = data;
3102                 break;
3103 #ifdef CONFIG_X86_64
3104         case MSR_LSTAR:
3105                 svm->vmcb01.ptr->save.lstar = data;
3106                 break;
3107         case MSR_CSTAR:
3108                 svm->vmcb01.ptr->save.cstar = data;
3109                 break;
3110         case MSR_GS_BASE:
3111                 svm->vmcb01.ptr->save.gs.base = data;
3112                 break;
3113         case MSR_FS_BASE:
3114                 svm->vmcb01.ptr->save.fs.base = data;
3115                 break;
3116         case MSR_KERNEL_GS_BASE:
3117                 svm->vmcb01.ptr->save.kernel_gs_base = data;
3118                 break;
3119         case MSR_SYSCALL_MASK:
3120                 svm->vmcb01.ptr->save.sfmask = data;
3121                 break;
3122 #endif
3123         case MSR_IA32_SYSENTER_CS:
3124                 svm->vmcb01.ptr->save.sysenter_cs = data;
3125                 break;
3126         case MSR_IA32_SYSENTER_EIP:
3127                 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3128                 /*
3129                  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3130                  * when we spoof an Intel vendor ID (for cross vendor migration).
3131                  * In this case we use this intercept to track the high
3132                  * 32 bit part of these msrs to support Intel's
3133                  * implementation of SYSENTER/SYSEXIT.
3134                  */
3135                 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3136                 break;
3137         case MSR_IA32_SYSENTER_ESP:
3138                 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3139                 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
3140                 break;
3141         case MSR_TSC_AUX:
3142                 /*
3143                  * TSC_AUX is always virtualized for SEV-ES guests when the
3144                  * feature is available. The user return MSR support is not
3145                  * required in this case because TSC_AUX is restored on #VMEXIT
3146                  * from the host save area (which has been initialized in
3147                  * svm_hardware_enable()).
3148                  */
3149                 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3150                         break;
3151 
3152                 /*
3153                  * TSC_AUX is usually changed only during boot and never read
3154                  * directly.  Intercept TSC_AUX instead of exposing it to the
3155                  * guest via direct_access_msrs, and switch it via user return.
3156                  */
3157                 preempt_disable();
3158                 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3159                 preempt_enable();
3160                 if (ret)
3161                         break;
3162 
3163                 svm->tsc_aux = data;
3164                 break;
3165         case MSR_IA32_DEBUGCTLMSR:
3166                 if (!lbrv) {
3167                         kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3168                         break;
3169                 }
3170                 if (data & DEBUGCTL_RESERVED_BITS)
3171                         return 1;
3172 
3173                 svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3174                 svm_update_lbrv(vcpu);
3175                 break;
3176         case MSR_VM_HSAVE_PA:
3177                 /*
3178                  * Old kernels did not validate the value written to
3179                  * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3180                  * value to allow live migrating buggy or malicious guests
3181                  * originating from those kernels.
3182                  */
3183                 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3184                         return 1;
3185 
3186                 svm->nested.hsave_msr = data & PAGE_MASK;
3187                 break;
3188         case MSR_VM_CR:
3189                 return svm_set_vm_cr(vcpu, data);
3190         case MSR_VM_IGNNE:
3191                 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3192                 break;
3193         case MSR_AMD64_DE_CFG: {
3194                 struct kvm_msr_entry msr_entry;
3195 
3196                 msr_entry.index = msr->index;
3197                 if (svm_get_msr_feature(&msr_entry))
3198                         return 1;
3199 
3200                 /* Check the supported bits */
3201                 if (data & ~msr_entry.data)
3202                         return 1;
3203 
3204                 /* Don't allow the guest to change a bit, #GP */
3205                 if (!msr->host_initiated && (data ^ msr_entry.data))
3206                         return 1;
3207 
3208                 svm->msr_decfg = data;
3209                 break;
3210         }
3211         default:
3212                 return kvm_set_msr_common(vcpu, msr);
3213         }
3214         return ret;
3215 }
3216 
3217 static int msr_interception(struct kvm_vcpu *vcpu)
3218 {
3219         if (to_svm(vcpu)->vmcb->control.exit_info_1)
3220                 return kvm_emulate_wrmsr(vcpu);
3221         else
3222                 return kvm_emulate_rdmsr(vcpu);
3223 }
3224 
3225 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3226 {
3227         kvm_make_request(KVM_REQ_EVENT, vcpu);
3228         svm_clear_vintr(to_svm(vcpu));
3229 
3230         /*
3231          * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3232          * In this case AVIC was temporarily disabled for
3233          * requesting the IRQ window and we have to re-enable it.
3234          *
3235          * If running nested, still remove the VM wide AVIC inhibit to
3236          * support case in which the interrupt window was requested when the
3237          * vCPU was not running nested.
3238 
3239          * All vCPUs which run still run nested, will remain to have their
3240          * AVIC still inhibited due to per-cpu AVIC inhibition.
3241          */
3242         kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3243 
3244         ++vcpu->stat.irq_window_exits;
3245         return 1;
3246 }
3247 
3248 static int pause_interception(struct kvm_vcpu *vcpu)
3249 {
3250         bool in_kernel;
3251         /*
3252          * CPL is not made available for an SEV-ES guest, therefore
3253          * vcpu->arch.preempted_in_kernel can never be true.  Just
3254          * set in_kernel to false as well.
3255          */
3256         in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3257 
3258         grow_ple_window(vcpu);
3259 
3260         kvm_vcpu_on_spin(vcpu, in_kernel);
3261         return kvm_skip_emulated_instruction(vcpu);
3262 }
3263 
3264 static int invpcid_interception(struct kvm_vcpu *vcpu)
3265 {
3266         struct vcpu_svm *svm = to_svm(vcpu);
3267         unsigned long type;
3268         gva_t gva;
3269 
3270         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3271                 kvm_queue_exception(vcpu, UD_VECTOR);
3272                 return 1;
3273         }
3274 
3275         /*
3276          * For an INVPCID intercept:
3277          * EXITINFO1 provides the linear address of the memory operand.
3278          * EXITINFO2 provides the contents of the register operand.
3279          */
3280         type = svm->vmcb->control.exit_info_2;
3281         gva = svm->vmcb->control.exit_info_1;
3282 
3283         return kvm_handle_invpcid(vcpu, type, gva);
3284 }
3285 
3286 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3287         [SVM_EXIT_READ_CR0]                     = cr_interception,
3288         [SVM_EXIT_READ_CR3]                     = cr_interception,
3289         [SVM_EXIT_READ_CR4]                     = cr_interception,
3290         [SVM_EXIT_READ_CR8]                     = cr_interception,
3291         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3292         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3293         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3294         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3295         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3296         [SVM_EXIT_READ_DR0]                     = dr_interception,
3297         [SVM_EXIT_READ_DR1]                     = dr_interception,
3298         [SVM_EXIT_READ_DR2]                     = dr_interception,
3299         [SVM_EXIT_READ_DR3]                     = dr_interception,
3300         [SVM_EXIT_READ_DR4]                     = dr_interception,
3301         [SVM_EXIT_READ_DR5]                     = dr_interception,
3302         [SVM_EXIT_READ_DR6]                     = dr_interception,
3303         [SVM_EXIT_READ_DR7]                     = dr_interception,
3304         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3305         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3306         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3307         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3308         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3309         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3310         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3311         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3312         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3313         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3314         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3315         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3316         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3317         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3318         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
3319         [SVM_EXIT_INTR]                         = intr_interception,
3320         [SVM_EXIT_NMI]                          = nmi_interception,
3321         [SVM_EXIT_SMI]                          = smi_interception,
3322         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3323         [SVM_EXIT_RDPMC]                        = kvm_emulate_rdpmc,
3324         [SVM_EXIT_CPUID]                        = kvm_emulate_cpuid,
3325         [SVM_EXIT_IRET]                         = iret_interception,
3326         [SVM_EXIT_INVD]                         = kvm_emulate_invd,
3327         [SVM_EXIT_PAUSE]                        = pause_interception,
3328         [SVM_EXIT_HLT]                          = kvm_emulate_halt,
3329         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3330         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3331         [SVM_EXIT_IOIO]                         = io_interception,
3332         [SVM_EXIT_MSR]                          = msr_interception,
3333         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3334         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3335         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3336         [SVM_EXIT_VMMCALL]                      = kvm_emulate_hypercall,
3337         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3338         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3339         [SVM_EXIT_STGI]                         = stgi_interception,
3340         [SVM_EXIT_CLGI]                         = clgi_interception,
3341         [SVM_EXIT_SKINIT]                       = skinit_interception,
3342         [SVM_EXIT_RDTSCP]                       = kvm_handle_invalid_op,
3343         [SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3344         [SVM_EXIT_MONITOR]                      = kvm_emulate_monitor,
3345         [SVM_EXIT_MWAIT]                        = kvm_emulate_mwait,
3346         [SVM_EXIT_XSETBV]                       = kvm_emulate_xsetbv,
3347         [SVM_EXIT_RDPRU]                        = kvm_handle_invalid_op,
3348         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3349         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3350         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3351         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3352         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3353         [SVM_EXIT_NPF]                          = npf_interception,
3354         [SVM_EXIT_RSM]                          = rsm_interception,
3355         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3356         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3357 #ifdef CONFIG_KVM_AMD_SEV
3358         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3359 #endif
3360 };
3361 
3362 static void dump_vmcb(struct kvm_vcpu *vcpu)
3363 {
3364         struct vcpu_svm *svm = to_svm(vcpu);
3365         struct vmcb_control_area *control = &svm->vmcb->control;
3366         struct vmcb_save_area *save = &svm->vmcb->save;
3367         struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3368 
3369         if (!dump_invalid_vmcb) {
3370                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3371                 return;
3372         }
3373 
3374         pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3375                svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3376         pr_err("VMCB Control Area:\n");
3377         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3378         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3379         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3380         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3381         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3382         pr_err("%-20s%08x %08x\n", "intercepts:",
3383               control->intercepts[INTERCEPT_WORD3],
3384                control->intercepts[INTERCEPT_WORD4]);
3385         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3386         pr_err("%-20s%d\n", "pause filter threshold:",
3387                control->pause_filter_thresh);
3388         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3389         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3390         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3391         pr_err("%-20s%d\n", "asid:", control->asid);
3392         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3393         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3394         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3395         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3396         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3397         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3398         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3399         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3400         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3401         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3402         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3403         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3404         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3405         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3406         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3407         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3408         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3409         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3410         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3411         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3412         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3413         pr_err("VMCB State Save Area:\n");
3414         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3415                "es:",
3416                save->es.selector, save->es.attrib,
3417                save->es.limit, save->es.base);
3418         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3419                "cs:",
3420                save->cs.selector, save->cs.attrib,
3421                save->cs.limit, save->cs.base);
3422         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3423                "ss:",
3424                save->ss.selector, save->ss.attrib,
3425                save->ss.limit, save->ss.base);
3426         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3427                "ds:",
3428                save->ds.selector, save->ds.attrib,
3429                save->ds.limit, save->ds.base);
3430         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3431                "fs:",
3432                save01->fs.selector, save01->fs.attrib,
3433                save01->fs.limit, save01->fs.base);
3434         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3435                "gs:",
3436                save01->gs.selector, save01->gs.attrib,
3437                save01->gs.limit, save01->gs.base);
3438         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3439                "gdtr:",
3440                save->gdtr.selector, save->gdtr.attrib,
3441                save->gdtr.limit, save->gdtr.base);
3442         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3443                "ldtr:",
3444                save01->ldtr.selector, save01->ldtr.attrib,
3445                save01->ldtr.limit, save01->ldtr.base);
3446         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3447                "idtr:",
3448                save->idtr.selector, save->idtr.attrib,
3449                save->idtr.limit, save->idtr.base);
3450         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3451                "tr:",
3452                save01->tr.selector, save01->tr.attrib,
3453                save01->tr.limit, save01->tr.base);
3454         pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3455                save->vmpl, save->cpl, save->efer);
3456         pr_err("%-15s %016llx %-13s %016llx\n",
3457                "cr0:", save->cr0, "cr2:", save->cr2);
3458         pr_err("%-15s %016llx %-13s %016llx\n",
3459                "cr3:", save->cr3, "cr4:", save->cr4);
3460         pr_err("%-15s %016llx %-13s %016llx\n",
3461                "dr6:", save->dr6, "dr7:", save->dr7);
3462         pr_err("%-15s %016llx %-13s %016llx\n",
3463                "rip:", save->rip, "rflags:", save->rflags);
3464         pr_err("%-15s %016llx %-13s %016llx\n",
3465                "rsp:", save->rsp, "rax:", save->rax);
3466         pr_err("%-15s %016llx %-13s %016llx\n",
3467                "star:", save01->star, "lstar:", save01->lstar);
3468         pr_err("%-15s %016llx %-13s %016llx\n",
3469                "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3470         pr_err("%-15s %016llx %-13s %016llx\n",
3471                "kernel_gs_base:", save01->kernel_gs_base,
3472                "sysenter_cs:", save01->sysenter_cs);
3473         pr_err("%-15s %016llx %-13s %016llx\n",
3474                "sysenter_esp:", save01->sysenter_esp,
3475                "sysenter_eip:", save01->sysenter_eip);
3476         pr_err("%-15s %016llx %-13s %016llx\n",
3477                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3478         pr_err("%-15s %016llx %-13s %016llx\n",
3479                "br_from:", save->br_from, "br_to:", save->br_to);
3480         pr_err("%-15s %016llx %-13s %016llx\n",
3481                "excp_from:", save->last_excp_from,
3482                "excp_to:", save->last_excp_to);
3483 }
3484 
3485 static bool svm_check_exit_valid(u64 exit_code)
3486 {
3487         return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3488                 svm_exit_handlers[exit_code]);
3489 }
3490 
3491 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3492 {
3493         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3494         dump_vmcb(vcpu);
3495         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3496         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3497         vcpu->run->internal.ndata = 2;
3498         vcpu->run->internal.data[0] = exit_code;
3499         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3500         return 0;
3501 }
3502 
3503 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3504 {
3505         if (!svm_check_exit_valid(exit_code))
3506                 return svm_handle_invalid_exit(vcpu, exit_code);
3507 
3508 #ifdef CONFIG_MITIGATION_RETPOLINE
3509         if (exit_code == SVM_EXIT_MSR)
3510                 return msr_interception(vcpu);
3511         else if (exit_code == SVM_EXIT_VINTR)
3512                 return interrupt_window_interception(vcpu);
3513         else if (exit_code == SVM_EXIT_INTR)
3514                 return intr_interception(vcpu);
3515         else if (exit_code == SVM_EXIT_HLT)
3516                 return kvm_emulate_halt(vcpu);
3517         else if (exit_code == SVM_EXIT_NPF)
3518                 return npf_interception(vcpu);
3519 #endif
3520         return svm_exit_handlers[exit_code](vcpu);
3521 }
3522 
3523 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3524                               u64 *info1, u64 *info2,
3525                               u32 *intr_info, u32 *error_code)
3526 {
3527         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3528 
3529         *reason = control->exit_code;
3530         *info1 = control->exit_info_1;
3531         *info2 = control->exit_info_2;
3532         *intr_info = control->exit_int_info;
3533         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3534             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3535                 *error_code = control->exit_int_info_err;
3536         else
3537                 *error_code = 0;
3538 }
3539 
3540 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3541 {
3542         struct vcpu_svm *svm = to_svm(vcpu);
3543         struct kvm_run *kvm_run = vcpu->run;
3544         u32 exit_code = svm->vmcb->control.exit_code;
3545 
3546         /* SEV-ES guests must use the CR write traps to track CR registers. */
3547         if (!sev_es_guest(vcpu->kvm)) {
3548                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3549                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3550                 if (npt_enabled)
3551                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3552         }
3553 
3554         if (is_guest_mode(vcpu)) {
3555                 int vmexit;
3556 
3557                 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3558 
3559                 vmexit = nested_svm_exit_special(svm);
3560 
3561                 if (vmexit == NESTED_EXIT_CONTINUE)
3562                         vmexit = nested_svm_exit_handled(svm);
3563 
3564                 if (vmexit == NESTED_EXIT_DONE)
3565                         return 1;
3566         }
3567 
3568         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3569                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3570                 kvm_run->fail_entry.hardware_entry_failure_reason
3571                         = svm->vmcb->control.exit_code;
3572                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3573                 dump_vmcb(vcpu);
3574                 return 0;
3575         }
3576 
3577         if (exit_fastpath != EXIT_FASTPATH_NONE)
3578                 return 1;
3579 
3580         return svm_invoke_exit_handler(vcpu, exit_code);
3581 }
3582 
3583 static void pre_svm_run(struct kvm_vcpu *vcpu)
3584 {
3585         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3586         struct vcpu_svm *svm = to_svm(vcpu);
3587 
3588         /*
3589          * If the previous vmrun of the vmcb occurred on a different physical
3590          * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3591          * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3592          */
3593         if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3594                 svm->current_vmcb->asid_generation = 0;
3595                 vmcb_mark_all_dirty(svm->vmcb);
3596                 svm->current_vmcb->cpu = vcpu->cpu;
3597         }
3598 
3599         if (sev_guest(vcpu->kvm))
3600                 return pre_sev_run(svm, vcpu->cpu);
3601 
3602         /* FIXME: handle wraparound of asid_generation */
3603         if (svm->current_vmcb->asid_generation != sd->asid_generation)
3604                 new_asid(svm, sd);
3605 }
3606 
3607 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3608 {
3609         struct vcpu_svm *svm = to_svm(vcpu);
3610 
3611         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3612 
3613         if (svm->nmi_l1_to_l2)
3614                 return;
3615 
3616         /*
3617          * No need to manually track NMI masking when vNMI is enabled, hardware
3618          * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3619          * case where software directly injects an NMI.
3620          */
3621         if (!is_vnmi_enabled(svm)) {
3622                 svm->nmi_masked = true;
3623                 svm_set_iret_intercept(svm);
3624         }
3625         ++vcpu->stat.nmi_injections;
3626 }
3627 
3628 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3629 {
3630         struct vcpu_svm *svm = to_svm(vcpu);
3631 
3632         if (!is_vnmi_enabled(svm))
3633                 return false;
3634 
3635         return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3636 }
3637 
3638 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3639 {
3640         struct vcpu_svm *svm = to_svm(vcpu);
3641 
3642         if (!is_vnmi_enabled(svm))
3643                 return false;
3644 
3645         if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3646                 return false;
3647 
3648         svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3649         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3650 
3651         /*
3652          * Because the pending NMI is serviced by hardware, KVM can't know when
3653          * the NMI is "injected", but for all intents and purposes, passing the
3654          * NMI off to hardware counts as injection.
3655          */
3656         ++vcpu->stat.nmi_injections;
3657 
3658         return true;
3659 }
3660 
3661 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3662 {
3663         struct vcpu_svm *svm = to_svm(vcpu);
3664         u32 type;
3665 
3666         if (vcpu->arch.interrupt.soft) {
3667                 if (svm_update_soft_interrupt_rip(vcpu))
3668                         return;
3669 
3670                 type = SVM_EVTINJ_TYPE_SOFT;
3671         } else {
3672                 type = SVM_EVTINJ_TYPE_INTR;
3673         }
3674 
3675         trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3676                            vcpu->arch.interrupt.soft, reinjected);
3677         ++vcpu->stat.irq_injections;
3678 
3679         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3680                                        SVM_EVTINJ_VALID | type;
3681 }
3682 
3683 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3684                                      int trig_mode, int vector)
3685 {
3686         /*
3687          * apic->apicv_active must be read after vcpu->mode.
3688          * Pairs with smp_store_release in vcpu_enter_guest.
3689          */
3690         bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3691 
3692         /* Note, this is called iff the local APIC is in-kernel. */
3693         if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3694                 /* Process the interrupt via kvm_check_and_inject_events(). */
3695                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3696                 kvm_vcpu_kick(vcpu);
3697                 return;
3698         }
3699 
3700         trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3701         if (in_guest_mode) {
3702                 /*
3703                  * Signal the doorbell to tell hardware to inject the IRQ.  If
3704                  * the vCPU exits the guest before the doorbell chimes, hardware
3705                  * will automatically process AVIC interrupts at the next VMRUN.
3706                  */
3707                 avic_ring_doorbell(vcpu);
3708         } else {
3709                 /*
3710                  * Wake the vCPU if it was blocking.  KVM will then detect the
3711                  * pending IRQ when checking if the vCPU has a wake event.
3712                  */
3713                 kvm_vcpu_wake_up(vcpu);
3714         }
3715 }
3716 
3717 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3718                                   int trig_mode, int vector)
3719 {
3720         kvm_lapic_set_irr(vector, apic);
3721 
3722         /*
3723          * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3724          * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3725          * the read of guest_mode.  This guarantees that either VMRUN will see
3726          * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3727          * will signal the doorbell if the CPU has already entered the guest.
3728          */
3729         smp_mb__after_atomic();
3730         svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3731 }
3732 
3733 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3734 {
3735         struct vcpu_svm *svm = to_svm(vcpu);
3736 
3737         /*
3738          * SEV-ES guests must always keep the CR intercepts cleared. CR
3739          * tracking is done using the CR write traps.
3740          */
3741         if (sev_es_guest(vcpu->kvm))
3742                 return;
3743 
3744         if (nested_svm_virtualize_tpr(vcpu))
3745                 return;
3746 
3747         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3748 
3749         if (irr == -1)
3750                 return;
3751 
3752         if (tpr >= irr)
3753                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3754 }
3755 
3756 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3757 {
3758         struct vcpu_svm *svm = to_svm(vcpu);
3759 
3760         if (is_vnmi_enabled(svm))
3761                 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3762         else
3763                 return svm->nmi_masked;
3764 }
3765 
3766 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3767 {
3768         struct vcpu_svm *svm = to_svm(vcpu);
3769 
3770         if (is_vnmi_enabled(svm)) {
3771                 if (masked)
3772                         svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3773                 else
3774                         svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3775 
3776         } else {
3777                 svm->nmi_masked = masked;
3778                 if (masked)
3779                         svm_set_iret_intercept(svm);
3780                 else
3781                         svm_clr_iret_intercept(svm);
3782         }
3783 }
3784 
3785 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3786 {
3787         struct vcpu_svm *svm = to_svm(vcpu);
3788         struct vmcb *vmcb = svm->vmcb;
3789 
3790         if (!gif_set(svm))
3791                 return true;
3792 
3793         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3794                 return false;
3795 
3796         if (svm_get_nmi_mask(vcpu))
3797                 return true;
3798 
3799         return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3800 }
3801 
3802 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3803 {
3804         struct vcpu_svm *svm = to_svm(vcpu);
3805         if (svm->nested.nested_run_pending)
3806                 return -EBUSY;
3807 
3808         if (svm_nmi_blocked(vcpu))
3809                 return 0;
3810 
3811         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3812         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3813                 return -EBUSY;
3814         return 1;
3815 }
3816 
3817 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3818 {
3819         struct vcpu_svm *svm = to_svm(vcpu);
3820         struct vmcb *vmcb = svm->vmcb;
3821 
3822         if (!gif_set(svm))
3823                 return true;
3824 
3825         if (is_guest_mode(vcpu)) {
3826                 /* As long as interrupts are being delivered...  */
3827                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3828                     ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3829                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3830                         return true;
3831 
3832                 /* ... vmexits aren't blocked by the interrupt shadow  */
3833                 if (nested_exit_on_intr(svm))
3834                         return false;
3835         } else {
3836                 if (!svm_get_if_flag(vcpu))
3837                         return true;
3838         }
3839 
3840         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3841 }
3842 
3843 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3844 {
3845         struct vcpu_svm *svm = to_svm(vcpu);
3846 
3847         if (svm->nested.nested_run_pending)
3848                 return -EBUSY;
3849 
3850         if (svm_interrupt_blocked(vcpu))
3851                 return 0;
3852 
3853         /*
3854          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3855          * e.g. if the IRQ arrived asynchronously after checking nested events.
3856          */
3857         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3858                 return -EBUSY;
3859 
3860         return 1;
3861 }
3862 
3863 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3864 {
3865         struct vcpu_svm *svm = to_svm(vcpu);
3866 
3867         /*
3868          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3869          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3870          * get that intercept, this function will be called again though and
3871          * we'll get the vintr intercept. However, if the vGIF feature is
3872          * enabled, the STGI interception will not occur. Enable the irq
3873          * window under the assumption that the hardware will set the GIF.
3874          */
3875         if (vgif || gif_set(svm)) {
3876                 /*
3877                  * IRQ window is not needed when AVIC is enabled,
3878                  * unless we have pending ExtINT since it cannot be injected
3879                  * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3880                  * and fallback to injecting IRQ via V_IRQ.
3881                  *
3882                  * If running nested, AVIC is already locally inhibited
3883                  * on this vCPU, therefore there is no need to request
3884                  * the VM wide AVIC inhibition.
3885                  */
3886                 if (!is_guest_mode(vcpu))
3887                         kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3888 
3889                 svm_set_vintr(svm);
3890         }
3891 }
3892 
3893 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3894 {
3895         struct vcpu_svm *svm = to_svm(vcpu);
3896 
3897         /*
3898          * If NMIs are outright masked, i.e. the vCPU is already handling an
3899          * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3900          * more to do at this time as KVM has already enabled IRET intercepts.
3901          * If KVM has already intercepted IRET, then single-step over the IRET,
3902          * as NMIs aren't architecturally unmasked until the IRET completes.
3903          *
3904          * If vNMI is enabled, KVM should never request an NMI window if NMIs
3905          * are masked, as KVM allows at most one to-be-injected NMI and one
3906          * pending NMI.  If two NMIs arrive simultaneously, KVM will inject one
3907          * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3908          * unmasked.  KVM _will_ request an NMI window in some situations, e.g.
3909          * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3910          * inject the NMI.  In those situations, KVM needs to single-step over
3911          * the STI shadow or intercept STGI.
3912          */
3913         if (svm_get_nmi_mask(vcpu)) {
3914                 WARN_ON_ONCE(is_vnmi_enabled(svm));
3915 
3916                 if (!svm->awaiting_iret_completion)
3917                         return; /* IRET will cause a vm exit */
3918         }
3919 
3920         /*
3921          * SEV-ES guests are responsible for signaling when a vCPU is ready to
3922          * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3923          * KVM can't intercept and single-step IRET to detect when NMIs are
3924          * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3925          *
3926          * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3927          * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3928          * supported NAEs in the GHCB protocol.
3929          */
3930         if (sev_es_guest(vcpu->kvm))
3931                 return;
3932 
3933         if (!gif_set(svm)) {
3934                 if (vgif)
3935                         svm_set_intercept(svm, INTERCEPT_STGI);
3936                 return; /* STGI will cause a vm exit */
3937         }
3938 
3939         /*
3940          * Something prevents NMI from been injected. Single step over possible
3941          * problem (IRET or exception injection or interrupt shadow)
3942          */
3943         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3944         svm->nmi_singlestep = true;
3945         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3946 }
3947 
3948 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3949 {
3950         struct vcpu_svm *svm = to_svm(vcpu);
3951 
3952         /*
3953          * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3954          * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3955          * entries, and thus is a superset of Hyper-V's fine grained flushing.
3956          */
3957         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3958 
3959         /*
3960          * Flush only the current ASID even if the TLB flush was invoked via
3961          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3962          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3963          * unconditionally does a TLB flush on both nested VM-Enter and nested
3964          * VM-Exit (via kvm_mmu_reset_context()).
3965          */
3966         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3967                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3968         else
3969                 svm->current_vmcb->asid_generation--;
3970 }
3971 
3972 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3973 {
3974         hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3975 
3976         /*
3977          * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3978          * flush the NPT mappings via hypercall as flushing the ASID only
3979          * affects virtual to physical mappings, it does not invalidate guest
3980          * physical to host physical mappings.
3981          */
3982         if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3983                 hyperv_flush_guest_mapping(root_tdp);
3984 
3985         svm_flush_tlb_asid(vcpu);
3986 }
3987 
3988 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3989 {
3990         /*
3991          * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3992          * flushes should be routed to hv_flush_remote_tlbs() without requesting
3993          * a "regular" remote flush.  Reaching this point means either there's
3994          * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3995          * which might be fatal to the guest.  Yell, but try to recover.
3996          */
3997         if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3998                 hv_flush_remote_tlbs(vcpu->kvm);
3999 
4000         svm_flush_tlb_asid(vcpu);
4001 }
4002 
4003 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
4004 {
4005         struct vcpu_svm *svm = to_svm(vcpu);
4006 
4007         invlpga(gva, svm->vmcb->control.asid);
4008 }
4009 
4010 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4011 {
4012         struct vcpu_svm *svm = to_svm(vcpu);
4013 
4014         if (nested_svm_virtualize_tpr(vcpu))
4015                 return;
4016 
4017         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
4018                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4019                 kvm_set_cr8(vcpu, cr8);
4020         }
4021 }
4022 
4023 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4024 {
4025         struct vcpu_svm *svm = to_svm(vcpu);
4026         u64 cr8;
4027 
4028         if (nested_svm_virtualize_tpr(vcpu) ||
4029             kvm_vcpu_apicv_active(vcpu))
4030                 return;
4031 
4032         cr8 = kvm_get_cr8(vcpu);
4033         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4034         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4035 }
4036 
4037 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4038                                         int type)
4039 {
4040         bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4041         bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4042         struct vcpu_svm *svm = to_svm(vcpu);
4043 
4044         /*
4045          * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4046          * associated with the original soft exception/interrupt.  next_rip is
4047          * cleared on all exits that can occur while vectoring an event, so KVM
4048          * needs to manually set next_rip for re-injection.  Unlike the !nrips
4049          * case below, this needs to be done if and only if KVM is re-injecting
4050          * the same event, i.e. if the event is a soft exception/interrupt,
4051          * otherwise next_rip is unused on VMRUN.
4052          */
4053         if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4054             kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4055                 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4056         /*
4057          * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4058          * injecting the soft exception/interrupt.  That advancement needs to
4059          * be unwound if vectoring didn't complete.  Note, the new event may
4060          * not be the injected event, e.g. if KVM injected an INTn, the INTn
4061          * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4062          * be the reported vectored event, but RIP still needs to be unwound.
4063          */
4064         else if (!nrips && (is_soft || is_exception) &&
4065                  kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4066                 kvm_rip_write(vcpu, svm->soft_int_old_rip);
4067 }
4068 
4069 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4070 {
4071         struct vcpu_svm *svm = to_svm(vcpu);
4072         u8 vector;
4073         int type;
4074         u32 exitintinfo = svm->vmcb->control.exit_int_info;
4075         bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4076         bool soft_int_injected = svm->soft_int_injected;
4077 
4078         svm->nmi_l1_to_l2 = false;
4079         svm->soft_int_injected = false;
4080 
4081         /*
4082          * If we've made progress since setting awaiting_iret_completion, we've
4083          * executed an IRET and can allow NMI injection.
4084          */
4085         if (svm->awaiting_iret_completion &&
4086             kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4087                 svm->awaiting_iret_completion = false;
4088                 svm->nmi_masked = false;
4089                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4090         }
4091 
4092         vcpu->arch.nmi_injected = false;
4093         kvm_clear_exception_queue(vcpu);
4094         kvm_clear_interrupt_queue(vcpu);
4095 
4096         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4097                 return;
4098 
4099         kvm_make_request(KVM_REQ_EVENT, vcpu);
4100 
4101         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4102         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4103 
4104         if (soft_int_injected)
4105                 svm_complete_soft_interrupt(vcpu, vector, type);
4106 
4107         switch (type) {
4108         case SVM_EXITINTINFO_TYPE_NMI:
4109                 vcpu->arch.nmi_injected = true;
4110                 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4111                 break;
4112         case SVM_EXITINTINFO_TYPE_EXEPT:
4113                 /*
4114                  * Never re-inject a #VC exception.
4115                  */
4116                 if (vector == X86_TRAP_VC)
4117                         break;
4118 
4119                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4120                         u32 err = svm->vmcb->control.exit_int_info_err;
4121                         kvm_requeue_exception_e(vcpu, vector, err);
4122 
4123                 } else
4124                         kvm_requeue_exception(vcpu, vector);
4125                 break;
4126         case SVM_EXITINTINFO_TYPE_INTR:
4127                 kvm_queue_interrupt(vcpu, vector, false);
4128                 break;
4129         case SVM_EXITINTINFO_TYPE_SOFT:
4130                 kvm_queue_interrupt(vcpu, vector, true);
4131                 break;
4132         default:
4133                 break;
4134         }
4135 
4136 }
4137 
4138 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4139 {
4140         struct vcpu_svm *svm = to_svm(vcpu);
4141         struct vmcb_control_area *control = &svm->vmcb->control;
4142 
4143         control->exit_int_info = control->event_inj;
4144         control->exit_int_info_err = control->event_inj_err;
4145         control->event_inj = 0;
4146         svm_complete_interrupts(vcpu);
4147 }
4148 
4149 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4150 {
4151         if (to_kvm_sev_info(vcpu->kvm)->need_init)
4152                 return -EINVAL;
4153 
4154         return 1;
4155 }
4156 
4157 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4158 {
4159         if (is_guest_mode(vcpu))
4160                 return EXIT_FASTPATH_NONE;
4161 
4162         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
4163             to_svm(vcpu)->vmcb->control.exit_info_1)
4164                 return handle_fastpath_set_msr_irqoff(vcpu);
4165 
4166         return EXIT_FASTPATH_NONE;
4167 }
4168 
4169 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4170 {
4171         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4172         struct vcpu_svm *svm = to_svm(vcpu);
4173 
4174         guest_state_enter_irqoff();
4175 
4176         amd_clear_divider();
4177 
4178         if (sev_es_guest(vcpu->kvm))
4179                 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4180                                       sev_es_host_save_area(sd));
4181         else
4182                 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4183 
4184         guest_state_exit_irqoff();
4185 }
4186 
4187 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
4188                                           bool force_immediate_exit)
4189 {
4190         struct vcpu_svm *svm = to_svm(vcpu);
4191         bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4192 
4193         trace_kvm_entry(vcpu, force_immediate_exit);
4194 
4195         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4196         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4197         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4198 
4199         /*
4200          * Disable singlestep if we're injecting an interrupt/exception.
4201          * We don't want our modified rflags to be pushed on the stack where
4202          * we might not be able to easily reset them if we disabled NMI
4203          * singlestep later.
4204          */
4205         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4206                 /*
4207                  * Event injection happens before external interrupts cause a
4208                  * vmexit and interrupts are disabled here, so smp_send_reschedule
4209                  * is enough to force an immediate vmexit.
4210                  */
4211                 disable_nmi_singlestep(svm);
4212                 force_immediate_exit = true;
4213         }
4214 
4215         if (force_immediate_exit)
4216                 smp_send_reschedule(vcpu->cpu);
4217 
4218         pre_svm_run(vcpu);
4219 
4220         sync_lapic_to_cr8(vcpu);
4221 
4222         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4223                 svm->vmcb->control.asid = svm->asid;
4224                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4225         }
4226         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4227 
4228         svm_hv_update_vp_id(svm->vmcb, vcpu);
4229 
4230         /*
4231          * Run with all-zero DR6 unless needed, so that we can get the exact cause
4232          * of a #DB.
4233          */
4234         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4235                 svm_set_dr6(svm, vcpu->arch.dr6);
4236         else
4237                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
4238 
4239         clgi();
4240         kvm_load_guest_xsave_state(vcpu);
4241 
4242         kvm_wait_lapic_expire(vcpu);
4243 
4244         /*
4245          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4246          * it's non-zero. Since vmentry is serialising on affected CPUs, there
4247          * is no need to worry about the conditional branch over the wrmsr
4248          * being speculatively taken.
4249          */
4250         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4251                 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4252 
4253         svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4254 
4255         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4256                 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4257 
4258         if (!sev_es_guest(vcpu->kvm)) {
4259                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4260                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4261                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4262                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4263         }
4264         vcpu->arch.regs_dirty = 0;
4265 
4266         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4267                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4268 
4269         kvm_load_host_xsave_state(vcpu);
4270         stgi();
4271 
4272         /* Any pending NMI will happen here */
4273 
4274         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4275                 kvm_after_interrupt(vcpu);
4276 
4277         sync_cr8_to_lapic(vcpu);
4278 
4279         svm->next_rip = 0;
4280         if (is_guest_mode(vcpu)) {
4281                 nested_sync_control_from_vmcb02(svm);
4282 
4283                 /* Track VMRUNs that have made past consistency checking */
4284                 if (svm->nested.nested_run_pending &&
4285                     svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4286                         ++vcpu->stat.nested_run;
4287 
4288                 svm->nested.nested_run_pending = 0;
4289         }
4290 
4291         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4292         vmcb_mark_all_clean(svm->vmcb);
4293 
4294         /* if exit due to PF check for async PF */
4295         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4296                 vcpu->arch.apf.host_apf_flags =
4297                         kvm_read_and_reset_apf_flags();
4298 
4299         vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4300 
4301         /*
4302          * We need to handle MC intercepts here before the vcpu has a chance to
4303          * change the physical cpu
4304          */
4305         if (unlikely(svm->vmcb->control.exit_code ==
4306                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4307                 svm_handle_mce(vcpu);
4308 
4309         trace_kvm_exit(vcpu, KVM_ISA_SVM);
4310 
4311         svm_complete_interrupts(vcpu);
4312 
4313         return svm_exit_handlers_fastpath(vcpu);
4314 }
4315 
4316 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4317                              int root_level)
4318 {
4319         struct vcpu_svm *svm = to_svm(vcpu);
4320         unsigned long cr3;
4321 
4322         if (npt_enabled) {
4323                 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4324                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4325 
4326                 hv_track_root_tdp(vcpu, root_hpa);
4327 
4328                 cr3 = vcpu->arch.cr3;
4329         } else if (root_level >= PT64_ROOT_4LEVEL) {
4330                 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4331         } else {
4332                 /* PCID in the guest should be impossible with a 32-bit MMU. */
4333                 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4334                 cr3 = root_hpa;
4335         }
4336 
4337         svm->vmcb->save.cr3 = cr3;
4338         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4339 }
4340 
4341 static void
4342 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4343 {
4344         /*
4345          * Patch in the VMMCALL instruction:
4346          */
4347         hypercall[0] = 0x0f;
4348         hypercall[1] = 0x01;
4349         hypercall[2] = 0xd9;
4350 }
4351 
4352 /*
4353  * The kvm parameter can be NULL (module initialization, or invocation before
4354  * VM creation). Be sure to check the kvm parameter before using it.
4355  */
4356 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4357 {
4358         switch (index) {
4359         case MSR_IA32_MCG_EXT_CTL:
4360         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4361                 return false;
4362         case MSR_IA32_SMBASE:
4363                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4364                         return false;
4365                 /* SEV-ES guests do not support SMM, so report false */
4366                 if (kvm && sev_es_guest(kvm))
4367                         return false;
4368                 break;
4369         default:
4370                 break;
4371         }
4372 
4373         return true;
4374 }
4375 
4376 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4377 {
4378         struct vcpu_svm *svm = to_svm(vcpu);
4379 
4380         /*
4381          * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4382          * can only disable all variants of by disallowing CR4.OSXSAVE from
4383          * being set.  As a result, if the host has XSAVE and XSAVES, and the
4384          * guest has XSAVE enabled, the guest can execute XSAVES without
4385          * faulting.  Treat XSAVES as enabled in this case regardless of
4386          * whether it's advertised to the guest so that KVM context switches
4387          * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4388          * the guest read/write access to the host's XSS.
4389          */
4390         if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4391             boot_cpu_has(X86_FEATURE_XSAVES) &&
4392             guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4393                 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4394 
4395         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4396         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4397         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4398 
4399         /*
4400          * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4401          * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4402          * SVM on Intel is bonkers and extremely unlikely to work).
4403          */
4404         if (!guest_cpuid_is_intel_compatible(vcpu))
4405                 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4406 
4407         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4408         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4409         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4410         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4411 
4412         svm_recalc_instruction_intercepts(vcpu, svm);
4413 
4414         if (boot_cpu_has(X86_FEATURE_IBPB))
4415                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4416                                      !!guest_has_pred_cmd_msr(vcpu));
4417 
4418         if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4419                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4420                                      !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4421 
4422         if (sev_guest(vcpu->kvm))
4423                 sev_vcpu_after_set_cpuid(svm);
4424 
4425         init_vmcb_after_set_cpuid(vcpu);
4426 }
4427 
4428 static bool svm_has_wbinvd_exit(void)
4429 {
4430         return true;
4431 }
4432 
4433 #define PRE_EX(exit)  { .exit_code = (exit), \
4434                         .stage = X86_ICPT_PRE_EXCEPT, }
4435 #define POST_EX(exit) { .exit_code = (exit), \
4436                         .stage = X86_ICPT_POST_EXCEPT, }
4437 #define POST_MEM(exit) { .exit_code = (exit), \
4438                         .stage = X86_ICPT_POST_MEMACCESS, }
4439 
4440 static const struct __x86_intercept {
4441         u32 exit_code;
4442         enum x86_intercept_stage stage;
4443 } x86_intercept_map[] = {
4444         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4445         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4446         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4447         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4448         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4449         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4450         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4451         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4452         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4453         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4454         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4455         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4456         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4457         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4458         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4459         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4460         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4461         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4462         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4463         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4464         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4465         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4466         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4467         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4468         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4469         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4470         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4471         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4472         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4473         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4474         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4475         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4476         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4477         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4478         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4479         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4480         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4481         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4482         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4483         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4484         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4485         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4486         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4487         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4488         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4489         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4490         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4491 };
4492 
4493 #undef PRE_EX
4494 #undef POST_EX
4495 #undef POST_MEM
4496 
4497 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4498                                struct x86_instruction_info *info,
4499                                enum x86_intercept_stage stage,
4500                                struct x86_exception *exception)
4501 {
4502         struct vcpu_svm *svm = to_svm(vcpu);
4503         int vmexit, ret = X86EMUL_CONTINUE;
4504         struct __x86_intercept icpt_info;
4505         struct vmcb *vmcb = svm->vmcb;
4506 
4507         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4508                 goto out;
4509 
4510         icpt_info = x86_intercept_map[info->intercept];
4511 
4512         if (stage != icpt_info.stage)
4513                 goto out;
4514 
4515         switch (icpt_info.exit_code) {
4516         case SVM_EXIT_READ_CR0:
4517                 if (info->intercept == x86_intercept_cr_read)
4518                         icpt_info.exit_code += info->modrm_reg;
4519                 break;
4520         case SVM_EXIT_WRITE_CR0: {
4521                 unsigned long cr0, val;
4522 
4523                 if (info->intercept == x86_intercept_cr_write)
4524                         icpt_info.exit_code += info->modrm_reg;
4525 
4526                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4527                     info->intercept == x86_intercept_clts)
4528                         break;
4529 
4530                 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4531                                         INTERCEPT_SELECTIVE_CR0)))
4532                         break;
4533 
4534                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4535                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4536 
4537                 if (info->intercept == x86_intercept_lmsw) {
4538                         cr0 &= 0xfUL;
4539                         val &= 0xfUL;
4540                         /* lmsw can't clear PE - catch this here */
4541                         if (cr0 & X86_CR0_PE)
4542                                 val |= X86_CR0_PE;
4543                 }
4544 
4545                 if (cr0 ^ val)
4546                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4547 
4548                 break;
4549         }
4550         case SVM_EXIT_READ_DR0:
4551         case SVM_EXIT_WRITE_DR0:
4552                 icpt_info.exit_code += info->modrm_reg;
4553                 break;
4554         case SVM_EXIT_MSR:
4555                 if (info->intercept == x86_intercept_wrmsr)
4556                         vmcb->control.exit_info_1 = 1;
4557                 else
4558                         vmcb->control.exit_info_1 = 0;
4559                 break;
4560         case SVM_EXIT_PAUSE:
4561                 /*
4562                  * We get this for NOP only, but pause
4563                  * is rep not, check this here
4564                  */
4565                 if (info->rep_prefix != REPE_PREFIX)
4566                         goto out;
4567                 break;
4568         case SVM_EXIT_IOIO: {
4569                 u64 exit_info;
4570                 u32 bytes;
4571 
4572                 if (info->intercept == x86_intercept_in ||
4573                     info->intercept == x86_intercept_ins) {
4574                         exit_info = ((info->src_val & 0xffff) << 16) |
4575                                 SVM_IOIO_TYPE_MASK;
4576                         bytes = info->dst_bytes;
4577                 } else {
4578                         exit_info = (info->dst_val & 0xffff) << 16;
4579                         bytes = info->src_bytes;
4580                 }
4581 
4582                 if (info->intercept == x86_intercept_outs ||
4583                     info->intercept == x86_intercept_ins)
4584                         exit_info |= SVM_IOIO_STR_MASK;
4585 
4586                 if (info->rep_prefix)
4587                         exit_info |= SVM_IOIO_REP_MASK;
4588 
4589                 bytes = min(bytes, 4u);
4590 
4591                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4592 
4593                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4594 
4595                 vmcb->control.exit_info_1 = exit_info;
4596                 vmcb->control.exit_info_2 = info->next_rip;
4597 
4598                 break;
4599         }
4600         default:
4601                 break;
4602         }
4603 
4604         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4605         if (static_cpu_has(X86_FEATURE_NRIPS))
4606                 vmcb->control.next_rip  = info->next_rip;
4607         vmcb->control.exit_code = icpt_info.exit_code;
4608         vmexit = nested_svm_exit_handled(svm);
4609 
4610         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4611                                            : X86EMUL_CONTINUE;
4612 
4613 out:
4614         return ret;
4615 }
4616 
4617 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4618 {
4619         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4620                 vcpu->arch.at_instruction_boundary = true;
4621 }
4622 
4623 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4624 {
4625         /* [63:9] are reserved. */
4626         vcpu->arch.mcg_cap &= 0x1ff;
4627 }
4628 
4629 #ifdef CONFIG_KVM_SMM
4630 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4631 {
4632         struct vcpu_svm *svm = to_svm(vcpu);
4633 
4634         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4635         if (!gif_set(svm))
4636                 return true;
4637 
4638         return is_smm(vcpu);
4639 }
4640 
4641 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4642 {
4643         struct vcpu_svm *svm = to_svm(vcpu);
4644         if (svm->nested.nested_run_pending)
4645                 return -EBUSY;
4646 
4647         if (svm_smi_blocked(vcpu))
4648                 return 0;
4649 
4650         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4651         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4652                 return -EBUSY;
4653 
4654         return 1;
4655 }
4656 
4657 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4658 {
4659         struct vcpu_svm *svm = to_svm(vcpu);
4660         struct kvm_host_map map_save;
4661         int ret;
4662 
4663         if (!is_guest_mode(vcpu))
4664                 return 0;
4665 
4666         /*
4667          * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4668          * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4669          */
4670 
4671         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4672                 return 1;
4673 
4674         smram->smram64.svm_guest_flag = 1;
4675         smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4676 
4677         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4678         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4679         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4680 
4681         ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4682         if (ret)
4683                 return ret;
4684 
4685         /*
4686          * KVM uses VMCB01 to store L1 host state while L2 runs but
4687          * VMCB01 is going to be used during SMM and thus the state will
4688          * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4689          * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4690          * format of the area is identical to guest save area offsetted
4691          * by 0x400 (matches the offset of 'struct vmcb_save_area'
4692          * within 'struct vmcb'). Note: HSAVE area may also be used by
4693          * L1 hypervisor to save additional host context (e.g. KVM does
4694          * that, see svm_prepare_switch_to_guest()) which must be
4695          * preserved.
4696          */
4697         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4698                 return 1;
4699 
4700         BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4701 
4702         svm_copy_vmrun_state(map_save.hva + 0x400,
4703                              &svm->vmcb01.ptr->save);
4704 
4705         kvm_vcpu_unmap(vcpu, &map_save, true);
4706         return 0;
4707 }
4708 
4709 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4710 {
4711         struct vcpu_svm *svm = to_svm(vcpu);
4712         struct kvm_host_map map, map_save;
4713         struct vmcb *vmcb12;
4714         int ret;
4715 
4716         const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4717 
4718         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4719                 return 0;
4720 
4721         /* Non-zero if SMI arrived while vCPU was in guest mode. */
4722         if (!smram64->svm_guest_flag)
4723                 return 0;
4724 
4725         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4726                 return 1;
4727 
4728         if (!(smram64->efer & EFER_SVME))
4729                 return 1;
4730 
4731         if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4732                 return 1;
4733 
4734         ret = 1;
4735         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4736                 goto unmap_map;
4737 
4738         if (svm_allocate_nested(svm))
4739                 goto unmap_save;
4740 
4741         /*
4742          * Restore L1 host state from L1 HSAVE area as VMCB01 was
4743          * used during SMM (see svm_enter_smm())
4744          */
4745 
4746         svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4747 
4748         /*
4749          * Enter the nested guest now
4750          */
4751 
4752         vmcb_mark_all_dirty(svm->vmcb01.ptr);
4753 
4754         vmcb12 = map.hva;
4755         nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4756         nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4757         ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4758 
4759         if (ret)
4760                 goto unmap_save;
4761 
4762         svm->nested.nested_run_pending = 1;
4763 
4764 unmap_save:
4765         kvm_vcpu_unmap(vcpu, &map_save, true);
4766 unmap_map:
4767         kvm_vcpu_unmap(vcpu, &map, true);
4768         return ret;
4769 }
4770 
4771 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4772 {
4773         struct vcpu_svm *svm = to_svm(vcpu);
4774 
4775         if (!gif_set(svm)) {
4776                 if (vgif)
4777                         svm_set_intercept(svm, INTERCEPT_STGI);
4778                 /* STGI will cause a vm exit */
4779         } else {
4780                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4781         }
4782 }
4783 #endif
4784 
4785 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4786                                          void *insn, int insn_len)
4787 {
4788         bool smep, smap, is_user;
4789         u64 error_code;
4790 
4791         /* Emulation is always possible when KVM has access to all guest state. */
4792         if (!sev_guest(vcpu->kvm))
4793                 return X86EMUL_CONTINUE;
4794 
4795         /* #UD and #GP should never be intercepted for SEV guests. */
4796         WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4797                                   EMULTYPE_TRAP_UD_FORCED |
4798                                   EMULTYPE_VMWARE_GP));
4799 
4800         /*
4801          * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4802          * to guest register state.
4803          */
4804         if (sev_es_guest(vcpu->kvm))
4805                 return X86EMUL_RETRY_INSTR;
4806 
4807         /*
4808          * Emulation is possible if the instruction is already decoded, e.g.
4809          * when completing I/O after returning from userspace.
4810          */
4811         if (emul_type & EMULTYPE_NO_DECODE)
4812                 return X86EMUL_CONTINUE;
4813 
4814         /*
4815          * Emulation is possible for SEV guests if and only if a prefilled
4816          * buffer containing the bytes of the intercepted instruction is
4817          * available. SEV guest memory is encrypted with a guest specific key
4818          * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4819          * decode garbage.
4820          *
4821          * If KVM is NOT trying to simply skip an instruction, inject #UD if
4822          * KVM reached this point without an instruction buffer.  In practice,
4823          * this path should never be hit by a well-behaved guest, e.g. KVM
4824          * doesn't intercept #UD or #GP for SEV guests, but this path is still
4825          * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4826          * access, and needs to be handled by KVM to avoid putting the guest
4827          * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4828          * its the least awful option given lack of insight into the guest.
4829          *
4830          * If KVM is trying to skip an instruction, simply resume the guest.
4831          * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4832          * will attempt to re-inject the INT3/INTO and skip the instruction.
4833          * In that scenario, retrying the INT3/INTO and hoping the guest will
4834          * make forward progress is the only option that has a chance of
4835          * success (and in practice it will work the vast majority of the time).
4836          */
4837         if (unlikely(!insn)) {
4838                 if (emul_type & EMULTYPE_SKIP)
4839                         return X86EMUL_UNHANDLEABLE;
4840 
4841                 kvm_queue_exception(vcpu, UD_VECTOR);
4842                 return X86EMUL_PROPAGATE_FAULT;
4843         }
4844 
4845         /*
4846          * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4847          * will be empty if the DecodeAssist microcode cannot fetch bytes for
4848          * the faulting instruction because the code fetch itself faulted, e.g.
4849          * the guest attempted to fetch from emulated MMIO or a guest page
4850          * table used to translate CS:RIP resides in emulated MMIO.
4851          */
4852         if (likely(insn_len))
4853                 return X86EMUL_CONTINUE;
4854 
4855         /*
4856          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4857          *
4858          * Errata:
4859          * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4860          * possible that CPU microcode implementing DecodeAssist will fail to
4861          * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4862          * be ''.  This happens because microcode reads CS:RIP using a _data_
4863          * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4864          * gives up and does not fill the instruction bytes buffer.
4865          *
4866          * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4867          * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4868          * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4869          * GuestIntrBytes field of the VMCB.
4870          *
4871          * This does _not_ mean that the erratum has been encountered, as the
4872          * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4873          * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4874          * encountered a reserved/not-present #PF.
4875          *
4876          * To hit the erratum, the following conditions must be true:
4877          *    1. CR4.SMAP=1 (obviously).
4878          *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4879          *       have been hit as the guest would have encountered a SMEP
4880          *       violation #PF, not a #NPF.
4881          *    3. The #NPF is not due to a code fetch, in which case failure to
4882          *       retrieve the instruction bytes is legitimate (see abvoe).
4883          *
4884          * In addition, don't apply the erratum workaround if the #NPF occurred
4885          * while translating guest page tables (see below).
4886          */
4887         error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4888         if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4889                 goto resume_guest;
4890 
4891         smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4892         smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4893         is_user = svm_get_cpl(vcpu) == 3;
4894         if (smap && (!smep || is_user)) {
4895                 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4896 
4897                 /*
4898                  * If the fault occurred in userspace, arbitrarily inject #GP
4899                  * to avoid killing the guest and to hopefully avoid confusing
4900                  * the guest kernel too much, e.g. injecting #PF would not be
4901                  * coherent with respect to the guest's page tables.  Request
4902                  * triple fault if the fault occurred in the kernel as there's
4903                  * no fault that KVM can inject without confusing the guest.
4904                  * In practice, the triple fault is moot as no sane SEV kernel
4905                  * will execute from user memory while also running with SMAP=1.
4906                  */
4907                 if (is_user)
4908                         kvm_inject_gp(vcpu, 0);
4909                 else
4910                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4911                 return X86EMUL_PROPAGATE_FAULT;
4912         }
4913 
4914 resume_guest:
4915         /*
4916          * If the erratum was not hit, simply resume the guest and let it fault
4917          * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4918          * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4919          * userspace will kill the guest, and letting the emulator read garbage
4920          * will yield random behavior and potentially corrupt the guest.
4921          *
4922          * Simply resuming the guest is technically not a violation of the SEV
4923          * architecture.  AMD's APM states that all code fetches and page table
4924          * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4925          * APM also states that encrypted accesses to MMIO are "ignored", but
4926          * doesn't explicitly define "ignored", i.e. doing nothing and letting
4927          * the guest spin is technically "ignoring" the access.
4928          */
4929         return X86EMUL_RETRY_INSTR;
4930 }
4931 
4932 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4933 {
4934         struct vcpu_svm *svm = to_svm(vcpu);
4935 
4936         return !gif_set(svm);
4937 }
4938 
4939 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4940 {
4941         if (!sev_es_guest(vcpu->kvm))
4942                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4943 
4944         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4945 }
4946 
4947 static void svm_vm_destroy(struct kvm *kvm)
4948 {
4949         avic_vm_destroy(kvm);
4950         sev_vm_destroy(kvm);
4951 }
4952 
4953 static int svm_vm_init(struct kvm *kvm)
4954 {
4955         int type = kvm->arch.vm_type;
4956 
4957         if (type != KVM_X86_DEFAULT_VM &&
4958             type != KVM_X86_SW_PROTECTED_VM) {
4959                 kvm->arch.has_protected_state =
4960                         (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
4961                 to_kvm_sev_info(kvm)->need_init = true;
4962 
4963                 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
4964                 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
4965         }
4966 
4967         if (!pause_filter_count || !pause_filter_thresh)
4968                 kvm->arch.pause_in_guest = true;
4969 
4970         if (enable_apicv) {
4971                 int ret = avic_vm_init(kvm);
4972                 if (ret)
4973                         return ret;
4974         }
4975 
4976         return 0;
4977 }
4978 
4979 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
4980 {
4981         struct page *page = snp_safe_alloc_page();
4982 
4983         if (!page)
4984                 return NULL;
4985 
4986         return page_address(page);
4987 }
4988 
4989 static struct kvm_x86_ops svm_x86_ops __initdata = {
4990         .name = KBUILD_MODNAME,
4991 
4992         .check_processor_compatibility = svm_check_processor_compat,
4993 
4994         .hardware_unsetup = svm_hardware_unsetup,
4995         .hardware_enable = svm_hardware_enable,
4996         .hardware_disable = svm_hardware_disable,
4997         .has_emulated_msr = svm_has_emulated_msr,
4998 
4999         .vcpu_create = svm_vcpu_create,
5000         .vcpu_free = svm_vcpu_free,
5001         .vcpu_reset = svm_vcpu_reset,
5002 
5003         .vm_size = sizeof(struct kvm_svm),
5004         .vm_init = svm_vm_init,
5005         .vm_destroy = svm_vm_destroy,
5006 
5007         .prepare_switch_to_guest = svm_prepare_switch_to_guest,
5008         .vcpu_load = svm_vcpu_load,
5009         .vcpu_put = svm_vcpu_put,
5010         .vcpu_blocking = avic_vcpu_blocking,
5011         .vcpu_unblocking = avic_vcpu_unblocking,
5012 
5013         .update_exception_bitmap = svm_update_exception_bitmap,
5014         .get_msr_feature = svm_get_msr_feature,
5015         .get_msr = svm_get_msr,
5016         .set_msr = svm_set_msr,
5017         .get_segment_base = svm_get_segment_base,
5018         .get_segment = svm_get_segment,
5019         .set_segment = svm_set_segment,
5020         .get_cpl = svm_get_cpl,
5021         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
5022         .is_valid_cr0 = svm_is_valid_cr0,
5023         .set_cr0 = svm_set_cr0,
5024         .post_set_cr3 = sev_post_set_cr3,
5025         .is_valid_cr4 = svm_is_valid_cr4,
5026         .set_cr4 = svm_set_cr4,
5027         .set_efer = svm_set_efer,
5028         .get_idt = svm_get_idt,
5029         .set_idt = svm_set_idt,
5030         .get_gdt = svm_get_gdt,
5031         .set_gdt = svm_set_gdt,
5032         .set_dr7 = svm_set_dr7,
5033         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5034         .cache_reg = svm_cache_reg,
5035         .get_rflags = svm_get_rflags,
5036         .set_rflags = svm_set_rflags,
5037         .get_if_flag = svm_get_if_flag,
5038 
5039         .flush_tlb_all = svm_flush_tlb_all,
5040         .flush_tlb_current = svm_flush_tlb_current,
5041         .flush_tlb_gva = svm_flush_tlb_gva,
5042         .flush_tlb_guest = svm_flush_tlb_asid,
5043 
5044         .vcpu_pre_run = svm_vcpu_pre_run,
5045         .vcpu_run = svm_vcpu_run,
5046         .handle_exit = svm_handle_exit,
5047         .skip_emulated_instruction = svm_skip_emulated_instruction,
5048         .update_emulated_instruction = NULL,
5049         .set_interrupt_shadow = svm_set_interrupt_shadow,
5050         .get_interrupt_shadow = svm_get_interrupt_shadow,
5051         .patch_hypercall = svm_patch_hypercall,
5052         .inject_irq = svm_inject_irq,
5053         .inject_nmi = svm_inject_nmi,
5054         .is_vnmi_pending = svm_is_vnmi_pending,
5055         .set_vnmi_pending = svm_set_vnmi_pending,
5056         .inject_exception = svm_inject_exception,
5057         .cancel_injection = svm_cancel_injection,
5058         .interrupt_allowed = svm_interrupt_allowed,
5059         .nmi_allowed = svm_nmi_allowed,
5060         .get_nmi_mask = svm_get_nmi_mask,
5061         .set_nmi_mask = svm_set_nmi_mask,
5062         .enable_nmi_window = svm_enable_nmi_window,
5063         .enable_irq_window = svm_enable_irq_window,
5064         .update_cr8_intercept = svm_update_cr8_intercept,
5065 
5066         .x2apic_icr_is_split = true,
5067         .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5068         .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5069         .apicv_post_state_restore = avic_apicv_post_state_restore,
5070         .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5071 
5072         .get_exit_info = svm_get_exit_info,
5073 
5074         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5075 
5076         .has_wbinvd_exit = svm_has_wbinvd_exit,
5077 
5078         .get_l2_tsc_offset = svm_get_l2_tsc_offset,
5079         .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5080         .write_tsc_offset = svm_write_tsc_offset,
5081         .write_tsc_multiplier = svm_write_tsc_multiplier,
5082 
5083         .load_mmu_pgd = svm_load_mmu_pgd,
5084 
5085         .check_intercept = svm_check_intercept,
5086         .handle_exit_irqoff = svm_handle_exit_irqoff,
5087 
5088         .nested_ops = &svm_nested_ops,
5089 
5090         .deliver_interrupt = svm_deliver_interrupt,
5091         .pi_update_irte = avic_pi_update_irte,
5092         .setup_mce = svm_setup_mce,
5093 
5094 #ifdef CONFIG_KVM_SMM
5095         .smi_allowed = svm_smi_allowed,
5096         .enter_smm = svm_enter_smm,
5097         .leave_smm = svm_leave_smm,
5098         .enable_smi_window = svm_enable_smi_window,
5099 #endif
5100 
5101 #ifdef CONFIG_KVM_AMD_SEV
5102         .dev_get_attr = sev_dev_get_attr,
5103         .mem_enc_ioctl = sev_mem_enc_ioctl,
5104         .mem_enc_register_region = sev_mem_enc_register_region,
5105         .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5106         .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5107 
5108         .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5109         .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5110 #endif
5111         .check_emulate_instruction = svm_check_emulate_instruction,
5112 
5113         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5114 
5115         .msr_filter_changed = svm_msr_filter_changed,
5116         .complete_emulated_msr = svm_complete_emulated_msr,
5117 
5118         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5119         .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5120         .alloc_apic_backing_page = svm_alloc_apic_backing_page,
5121 
5122         .gmem_prepare = sev_gmem_prepare,
5123         .gmem_invalidate = sev_gmem_invalidate,
5124         .private_max_mapping_level = sev_private_max_mapping_level,
5125 };
5126 
5127 /*
5128  * The default MMIO mask is a single bit (excluding the present bit),
5129  * which could conflict with the memory encryption bit. Check for
5130  * memory encryption support and override the default MMIO mask if
5131  * memory encryption is enabled.
5132  */
5133 static __init void svm_adjust_mmio_mask(void)
5134 {
5135         unsigned int enc_bit, mask_bit;
5136         u64 msr, mask;
5137 
5138         /* If there is no memory encryption support, use existing mask */
5139         if (cpuid_eax(0x80000000) < 0x8000001f)
5140                 return;
5141 
5142         /* If memory encryption is not enabled, use existing mask */
5143         rdmsrl(MSR_AMD64_SYSCFG, msr);
5144         if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5145                 return;
5146 
5147         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5148         mask_bit = boot_cpu_data.x86_phys_bits;
5149 
5150         /* Increment the mask bit if it is the same as the encryption bit */
5151         if (enc_bit == mask_bit)
5152                 mask_bit++;
5153 
5154         /*
5155          * If the mask bit location is below 52, then some bits above the
5156          * physical addressing limit will always be reserved, so use the
5157          * rsvd_bits() function to generate the mask. This mask, along with
5158          * the present bit, will be used to generate a page fault with
5159          * PFER.RSV = 1.
5160          *
5161          * If the mask bit location is 52 (or above), then clear the mask.
5162          */
5163         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5164 
5165         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5166 }
5167 
5168 static __init void svm_set_cpu_caps(void)
5169 {
5170         kvm_set_cpu_caps();
5171 
5172         kvm_caps.supported_perf_cap = 0;
5173         kvm_caps.supported_xss = 0;
5174 
5175         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5176         if (nested) {
5177                 kvm_cpu_cap_set(X86_FEATURE_SVM);
5178                 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5179 
5180                 /*
5181                  * KVM currently flushes TLBs on *every* nested SVM transition,
5182                  * and so for all intents and purposes KVM supports flushing by
5183                  * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5184                  */
5185                 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5186 
5187                 if (nrips)
5188                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5189 
5190                 if (npt_enabled)
5191                         kvm_cpu_cap_set(X86_FEATURE_NPT);
5192 
5193                 if (tsc_scaling)
5194                         kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5195 
5196                 if (vls)
5197                         kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5198                 if (lbrv)
5199                         kvm_cpu_cap_set(X86_FEATURE_LBRV);
5200 
5201                 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5202                         kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5203 
5204                 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5205                         kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5206 
5207                 if (vgif)
5208                         kvm_cpu_cap_set(X86_FEATURE_VGIF);
5209 
5210                 if (vnmi)
5211                         kvm_cpu_cap_set(X86_FEATURE_VNMI);
5212 
5213                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5214                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5215         }
5216 
5217         /* CPUID 0x80000008 */
5218         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5219             boot_cpu_has(X86_FEATURE_AMD_SSBD))
5220                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5221 
5222         if (enable_pmu) {
5223                 /*
5224                  * Enumerate support for PERFCTR_CORE if and only if KVM has
5225                  * access to enough counters to virtualize "core" support,
5226                  * otherwise limit vPMU support to the legacy number of counters.
5227                  */
5228                 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5229                         kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5230                                                           kvm_pmu_cap.num_counters_gp);
5231                 else
5232                         kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5233 
5234                 if (kvm_pmu_cap.version != 2 ||
5235                     !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5236                         kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5237         }
5238 
5239         /* CPUID 0x8000001F (SME/SEV features) */
5240         sev_set_cpu_caps();
5241 
5242         /* Don't advertise Bus Lock Detect to guest if SVM support is absent */
5243         kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5244 }
5245 
5246 static __init int svm_hardware_setup(void)
5247 {
5248         int cpu;
5249         struct page *iopm_pages;
5250         void *iopm_va;
5251         int r;
5252         unsigned int order = get_order(IOPM_SIZE);
5253 
5254         /*
5255          * NX is required for shadow paging and for NPT if the NX huge pages
5256          * mitigation is enabled.
5257          */
5258         if (!boot_cpu_has(X86_FEATURE_NX)) {
5259                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5260                 return -EOPNOTSUPP;
5261         }
5262         kvm_enable_efer_bits(EFER_NX);
5263 
5264         iopm_pages = alloc_pages(GFP_KERNEL, order);
5265 
5266         if (!iopm_pages)
5267                 return -ENOMEM;
5268 
5269         iopm_va = page_address(iopm_pages);
5270         memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5271         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5272 
5273         init_msrpm_offsets();
5274 
5275         kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5276                                      XFEATURE_MASK_BNDCSR);
5277 
5278         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5279                 kvm_enable_efer_bits(EFER_FFXSR);
5280 
5281         if (tsc_scaling) {
5282                 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5283                         tsc_scaling = false;
5284                 } else {
5285                         pr_info("TSC scaling supported\n");
5286                         kvm_caps.has_tsc_control = true;
5287                 }
5288         }
5289         kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5290         kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5291 
5292         tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5293 
5294         if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5295                 kvm_enable_efer_bits(EFER_AUTOIBRS);
5296 
5297         /* Check for pause filtering support */
5298         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5299                 pause_filter_count = 0;
5300                 pause_filter_thresh = 0;
5301         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5302                 pause_filter_thresh = 0;
5303         }
5304 
5305         if (nested) {
5306                 pr_info("Nested Virtualization enabled\n");
5307                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5308         }
5309 
5310         /*
5311          * KVM's MMU doesn't support using 2-level paging for itself, and thus
5312          * NPT isn't supported if the host is using 2-level paging since host
5313          * CR4 is unchanged on VMRUN.
5314          */
5315         if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5316                 npt_enabled = false;
5317 
5318         if (!boot_cpu_has(X86_FEATURE_NPT))
5319                 npt_enabled = false;
5320 
5321         /* Force VM NPT level equal to the host's paging level */
5322         kvm_configure_mmu(npt_enabled, get_npt_level(),
5323                           get_npt_level(), PG_LEVEL_1G);
5324         pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5325 
5326         /* Setup shadow_me_value and shadow_me_mask */
5327         kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5328 
5329         svm_adjust_mmio_mask();
5330 
5331         nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5332 
5333         if (lbrv) {
5334                 if (!boot_cpu_has(X86_FEATURE_LBRV))
5335                         lbrv = false;
5336                 else
5337                         pr_info("LBR virtualization supported\n");
5338         }
5339         /*
5340          * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5341          * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5342          */
5343         sev_hardware_setup();
5344 
5345         svm_hv_hardware_setup();
5346 
5347         for_each_possible_cpu(cpu) {
5348                 r = svm_cpu_init(cpu);
5349                 if (r)
5350                         goto err;
5351         }
5352 
5353         enable_apicv = avic = avic && avic_hardware_setup();
5354 
5355         if (!enable_apicv) {
5356                 svm_x86_ops.vcpu_blocking = NULL;
5357                 svm_x86_ops.vcpu_unblocking = NULL;
5358                 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5359         } else if (!x2avic_enabled) {
5360                 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5361         }
5362 
5363         if (vls) {
5364                 if (!npt_enabled ||
5365                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5366                     !IS_ENABLED(CONFIG_X86_64)) {
5367                         vls = false;
5368                 } else {
5369                         pr_info("Virtual VMLOAD VMSAVE supported\n");
5370                 }
5371         }
5372 
5373         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5374                 svm_gp_erratum_intercept = false;
5375 
5376         if (vgif) {
5377                 if (!boot_cpu_has(X86_FEATURE_VGIF))
5378                         vgif = false;
5379                 else
5380                         pr_info("Virtual GIF supported\n");
5381         }
5382 
5383         vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5384         if (vnmi)
5385                 pr_info("Virtual NMI enabled\n");
5386 
5387         if (!vnmi) {
5388                 svm_x86_ops.is_vnmi_pending = NULL;
5389                 svm_x86_ops.set_vnmi_pending = NULL;
5390         }
5391 
5392         if (!enable_pmu)
5393                 pr_info("PMU virtualization is disabled\n");
5394 
5395         svm_set_cpu_caps();
5396 
5397         /*
5398          * It seems that on AMD processors PTE's accessed bit is
5399          * being set by the CPU hardware before the NPF vmexit.
5400          * This is not expected behaviour and our tests fail because
5401          * of it.
5402          * A workaround here is to disable support for
5403          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5404          * In this case userspace can know if there is support using
5405          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5406          * it
5407          * If future AMD CPU models change the behaviour described above,
5408          * this variable can be changed accordingly
5409          */
5410         allow_smaller_maxphyaddr = !npt_enabled;
5411 
5412         return 0;
5413 
5414 err:
5415         svm_hardware_unsetup();
5416         return r;
5417 }
5418 
5419 
5420 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5421         .hardware_setup = svm_hardware_setup,
5422 
5423         .runtime_ops = &svm_x86_ops,
5424         .pmu_ops = &amd_pmu_ops,
5425 };
5426 
5427 static void __svm_exit(void)
5428 {
5429         kvm_x86_vendor_exit();
5430 
5431         cpu_emergency_unregister_virt_callback(svm_emergency_disable);
5432 }
5433 
5434 static int __init svm_init(void)
5435 {
5436         int r;
5437 
5438         __unused_size_checks();
5439 
5440         if (!kvm_is_svm_supported())
5441                 return -EOPNOTSUPP;
5442 
5443         r = kvm_x86_vendor_init(&svm_init_ops);
5444         if (r)
5445                 return r;
5446 
5447         cpu_emergency_register_virt_callback(svm_emergency_disable);
5448 
5449         /*
5450          * Common KVM initialization _must_ come last, after this, /dev/kvm is
5451          * exposed to userspace!
5452          */
5453         r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5454                      THIS_MODULE);
5455         if (r)
5456                 goto err_kvm_init;
5457 
5458         return 0;
5459 
5460 err_kvm_init:
5461         __svm_exit();
5462         return r;
5463 }
5464 
5465 static void __exit svm_exit(void)
5466 {
5467         kvm_exit();
5468         __svm_exit();
5469 }
5470 
5471 module_init(svm_init)
5472 module_exit(svm_exit)
5473 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php