1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 32 #include <asm/apic.h> 33 #include <asm/perf_event.h> 34 #include <asm/tlbflush.h> 35 #include <asm/desc.h> 36 #include <asm/debugreg.h> 37 #include <asm/kvm_para.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/spec-ctrl.h> 40 #include <asm/cpu_device_id.h> 41 #include <asm/traps.h> 42 #include <asm/reboot.h> 43 #include <asm/fpu/api.h> 44 45 #include <trace/events/ipi.h> 46 47 #include "trace.h" 48 49 #include "svm.h" 50 #include "svm_ops.h" 51 52 #include "kvm_onhyperv.h" 53 #include "svm_onhyperv.h" 54 55 MODULE_AUTHOR("Qumranet"); 56 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions"); 57 MODULE_LICENSE("GPL"); 58 59 #ifdef MODULE 60 static const struct x86_cpu_id svm_cpu_id[] = { 61 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 62 {} 63 }; 64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 65 #endif 66 67 #define SEG_TYPE_LDT 2 68 #define SEG_TYPE_BUSY_TSS16 3 69 70 static bool erratum_383_found __read_mostly; 71 72 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 73 74 /* 75 * Set osvw_len to higher value when updated Revision Guides 76 * are published and we know what the new status bits are 77 */ 78 static uint64_t osvw_len = 4, osvw_status; 79 80 static DEFINE_PER_CPU(u64, current_tsc_ratio); 81 82 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 83 84 static const struct svm_direct_access_msrs { 85 u32 index; /* Index of the MSR */ 86 bool always; /* True if intercept is initially cleared */ 87 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 88 { .index = MSR_STAR, .always = true }, 89 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 90 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 91 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 92 #ifdef CONFIG_X86_64 93 { .index = MSR_GS_BASE, .always = true }, 94 { .index = MSR_FS_BASE, .always = true }, 95 { .index = MSR_KERNEL_GS_BASE, .always = true }, 96 { .index = MSR_LSTAR, .always = true }, 97 { .index = MSR_CSTAR, .always = true }, 98 { .index = MSR_SYSCALL_MASK, .always = true }, 99 #endif 100 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 101 { .index = MSR_IA32_PRED_CMD, .always = false }, 102 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 103 { .index = MSR_IA32_DEBUGCTLMSR, .always = false }, 104 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 105 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 106 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 107 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 108 { .index = MSR_IA32_XSS, .always = false }, 109 { .index = MSR_EFER, .always = false }, 110 { .index = MSR_IA32_CR_PAT, .always = false }, 111 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 112 { .index = MSR_TSC_AUX, .always = false }, 113 { .index = X2APIC_MSR(APIC_ID), .always = false }, 114 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 115 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 116 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 117 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 118 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 119 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 120 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 121 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 122 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 123 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 124 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 125 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 126 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 127 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 128 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 129 130 /* 131 * Note: 132 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 133 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 134 * the AVIC hardware would generate GP fault. Therefore, always 135 * intercept the MSR 0x832, and do not setup direct_access_msr. 136 */ 137 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 138 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 139 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 140 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 141 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 142 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 143 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 144 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 145 { .index = MSR_INVALID, .always = false }, 146 }; 147 148 /* 149 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 150 * pause_filter_count: On processors that support Pause filtering(indicated 151 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 152 * count value. On VMRUN this value is loaded into an internal counter. 153 * Each time a pause instruction is executed, this counter is decremented 154 * until it reaches zero at which time a #VMEXIT is generated if pause 155 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 156 * Intercept Filtering for more details. 157 * This also indicate if ple logic enabled. 158 * 159 * pause_filter_thresh: In addition, some processor families support advanced 160 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 161 * the amount of time a guest is allowed to execute in a pause loop. 162 * In this mode, a 16-bit pause filter threshold field is added in the 163 * VMCB. The threshold value is a cycle count that is used to reset the 164 * pause counter. As with simple pause filtering, VMRUN loads the pause 165 * count value from VMCB into an internal counter. Then, on each pause 166 * instruction the hardware checks the elapsed number of cycles since 167 * the most recent pause instruction against the pause filter threshold. 168 * If the elapsed cycle count is greater than the pause filter threshold, 169 * then the internal pause count is reloaded from the VMCB and execution 170 * continues. If the elapsed cycle count is less than the pause filter 171 * threshold, then the internal pause count is decremented. If the count 172 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 173 * triggered. If advanced pause filtering is supported and pause filter 174 * threshold field is set to zero, the filter will operate in the simpler, 175 * count only mode. 176 */ 177 178 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 179 module_param(pause_filter_thresh, ushort, 0444); 180 181 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 182 module_param(pause_filter_count, ushort, 0444); 183 184 /* Default doubles per-vcpu window every exit. */ 185 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 186 module_param(pause_filter_count_grow, ushort, 0444); 187 188 /* Default resets per-vcpu window every exit to pause_filter_count. */ 189 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 190 module_param(pause_filter_count_shrink, ushort, 0444); 191 192 /* Default is to compute the maximum so we can never overflow. */ 193 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 194 module_param(pause_filter_count_max, ushort, 0444); 195 196 /* 197 * Use nested page tables by default. Note, NPT may get forced off by 198 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 199 */ 200 bool npt_enabled = true; 201 module_param_named(npt, npt_enabled, bool, 0444); 202 203 /* allow nested virtualization in KVM/SVM */ 204 static int nested = true; 205 module_param(nested, int, 0444); 206 207 /* enable/disable Next RIP Save */ 208 int nrips = true; 209 module_param(nrips, int, 0444); 210 211 /* enable/disable Virtual VMLOAD VMSAVE */ 212 static int vls = true; 213 module_param(vls, int, 0444); 214 215 /* enable/disable Virtual GIF */ 216 int vgif = true; 217 module_param(vgif, int, 0444); 218 219 /* enable/disable LBR virtualization */ 220 int lbrv = true; 221 module_param(lbrv, int, 0444); 222 223 static int tsc_scaling = true; 224 module_param(tsc_scaling, int, 0444); 225 226 /* 227 * enable / disable AVIC. Because the defaults differ for APICv 228 * support between VMX and SVM we cannot use module_param_named. 229 */ 230 static bool avic; 231 module_param(avic, bool, 0444); 232 233 bool __read_mostly dump_invalid_vmcb; 234 module_param(dump_invalid_vmcb, bool, 0644); 235 236 237 bool intercept_smi = true; 238 module_param(intercept_smi, bool, 0444); 239 240 bool vnmi = true; 241 module_param(vnmi, bool, 0444); 242 243 static bool svm_gp_erratum_intercept = true; 244 245 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 246 247 static unsigned long iopm_base; 248 249 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 250 251 /* 252 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 253 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 254 * 255 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 256 * defer the restoration of TSC_AUX until the CPU returns to userspace. 257 */ 258 static int tsc_aux_uret_slot __read_mostly = -1; 259 260 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 261 262 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 263 #define MSRS_RANGE_SIZE 2048 264 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 265 266 u32 svm_msrpm_offset(u32 msr) 267 { 268 u32 offset; 269 int i; 270 271 for (i = 0; i < NUM_MSR_MAPS; i++) { 272 if (msr < msrpm_ranges[i] || 273 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 274 continue; 275 276 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 277 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 278 279 /* Now we have the u8 offset - but need the u32 offset */ 280 return offset / 4; 281 } 282 283 /* MSR not in any range */ 284 return MSR_INVALID; 285 } 286 287 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 288 289 static int get_npt_level(void) 290 { 291 #ifdef CONFIG_X86_64 292 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 293 #else 294 return PT32E_ROOT_LEVEL; 295 #endif 296 } 297 298 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 299 { 300 struct vcpu_svm *svm = to_svm(vcpu); 301 u64 old_efer = vcpu->arch.efer; 302 vcpu->arch.efer = efer; 303 304 if (!npt_enabled) { 305 /* Shadow paging assumes NX to be available. */ 306 efer |= EFER_NX; 307 308 if (!(efer & EFER_LMA)) 309 efer &= ~EFER_LME; 310 } 311 312 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 313 if (!(efer & EFER_SVME)) { 314 svm_leave_nested(vcpu); 315 svm_set_gif(svm, true); 316 /* #GP intercept is still needed for vmware backdoor */ 317 if (!enable_vmware_backdoor) 318 clr_exception_intercept(svm, GP_VECTOR); 319 320 /* 321 * Free the nested guest state, unless we are in SMM. 322 * In this case we will return to the nested guest 323 * as soon as we leave SMM. 324 */ 325 if (!is_smm(vcpu)) 326 svm_free_nested(svm); 327 328 } else { 329 int ret = svm_allocate_nested(svm); 330 331 if (ret) { 332 vcpu->arch.efer = old_efer; 333 return ret; 334 } 335 336 /* 337 * Never intercept #GP for SEV guests, KVM can't 338 * decrypt guest memory to workaround the erratum. 339 */ 340 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 341 set_exception_intercept(svm, GP_VECTOR); 342 } 343 } 344 345 svm->vmcb->save.efer = efer | EFER_SVME; 346 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 347 return 0; 348 } 349 350 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 351 { 352 struct vcpu_svm *svm = to_svm(vcpu); 353 u32 ret = 0; 354 355 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 356 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 357 return ret; 358 } 359 360 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 361 { 362 struct vcpu_svm *svm = to_svm(vcpu); 363 364 if (mask == 0) 365 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 366 else 367 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 368 369 } 370 371 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 372 bool commit_side_effects) 373 { 374 struct vcpu_svm *svm = to_svm(vcpu); 375 unsigned long old_rflags; 376 377 /* 378 * SEV-ES does not expose the next RIP. The RIP update is controlled by 379 * the type of exit and the #VC handler in the guest. 380 */ 381 if (sev_es_guest(vcpu->kvm)) 382 goto done; 383 384 if (nrips && svm->vmcb->control.next_rip != 0) { 385 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 386 svm->next_rip = svm->vmcb->control.next_rip; 387 } 388 389 if (!svm->next_rip) { 390 if (unlikely(!commit_side_effects)) 391 old_rflags = svm->vmcb->save.rflags; 392 393 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 394 return 0; 395 396 if (unlikely(!commit_side_effects)) 397 svm->vmcb->save.rflags = old_rflags; 398 } else { 399 kvm_rip_write(vcpu, svm->next_rip); 400 } 401 402 done: 403 if (likely(commit_side_effects)) 404 svm_set_interrupt_shadow(vcpu, 0); 405 406 return 1; 407 } 408 409 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 410 { 411 return __svm_skip_emulated_instruction(vcpu, true); 412 } 413 414 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 415 { 416 unsigned long rip, old_rip = kvm_rip_read(vcpu); 417 struct vcpu_svm *svm = to_svm(vcpu); 418 419 /* 420 * Due to architectural shortcomings, the CPU doesn't always provide 421 * NextRIP, e.g. if KVM intercepted an exception that occurred while 422 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 423 * the instruction even if NextRIP is supported to acquire the next 424 * RIP so that it can be shoved into the NextRIP field, otherwise 425 * hardware will fail to advance guest RIP during event injection. 426 * Drop the exception/interrupt if emulation fails and effectively 427 * retry the instruction, it's the least awful option. If NRIPS is 428 * in use, the skip must not commit any side effects such as clearing 429 * the interrupt shadow or RFLAGS.RF. 430 */ 431 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 432 return -EIO; 433 434 rip = kvm_rip_read(vcpu); 435 436 /* 437 * Save the injection information, even when using next_rip, as the 438 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 439 * doesn't complete due to a VM-Exit occurring while the CPU is 440 * vectoring the event. Decoding the instruction isn't guaranteed to 441 * work as there may be no backing instruction, e.g. if the event is 442 * being injected by L1 for L2, or if the guest is patching INT3 into 443 * a different instruction. 444 */ 445 svm->soft_int_injected = true; 446 svm->soft_int_csbase = svm->vmcb->save.cs.base; 447 svm->soft_int_old_rip = old_rip; 448 svm->soft_int_next_rip = rip; 449 450 if (nrips) 451 kvm_rip_write(vcpu, old_rip); 452 453 if (static_cpu_has(X86_FEATURE_NRIPS)) 454 svm->vmcb->control.next_rip = rip; 455 456 return 0; 457 } 458 459 static void svm_inject_exception(struct kvm_vcpu *vcpu) 460 { 461 struct kvm_queued_exception *ex = &vcpu->arch.exception; 462 struct vcpu_svm *svm = to_svm(vcpu); 463 464 kvm_deliver_exception_payload(vcpu, ex); 465 466 if (kvm_exception_is_soft(ex->vector) && 467 svm_update_soft_interrupt_rip(vcpu)) 468 return; 469 470 svm->vmcb->control.event_inj = ex->vector 471 | SVM_EVTINJ_VALID 472 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 473 | SVM_EVTINJ_TYPE_EXEPT; 474 svm->vmcb->control.event_inj_err = ex->error_code; 475 } 476 477 static void svm_init_erratum_383(void) 478 { 479 u32 low, high; 480 int err; 481 u64 val; 482 483 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 484 return; 485 486 /* Use _safe variants to not break nested virtualization */ 487 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 488 if (err) 489 return; 490 491 val |= (1ULL << 47); 492 493 low = lower_32_bits(val); 494 high = upper_32_bits(val); 495 496 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 497 498 erratum_383_found = true; 499 } 500 501 static void svm_init_osvw(struct kvm_vcpu *vcpu) 502 { 503 /* 504 * Guests should see errata 400 and 415 as fixed (assuming that 505 * HLT and IO instructions are intercepted). 506 */ 507 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 508 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 509 510 /* 511 * By increasing VCPU's osvw.length to 3 we are telling the guest that 512 * all osvw.status bits inside that length, including bit 0 (which is 513 * reserved for erratum 298), are valid. However, if host processor's 514 * osvw_len is 0 then osvw_status[0] carries no information. We need to 515 * be conservative here and therefore we tell the guest that erratum 298 516 * is present (because we really don't know). 517 */ 518 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 519 vcpu->arch.osvw.status |= 1; 520 } 521 522 static bool __kvm_is_svm_supported(void) 523 { 524 int cpu = smp_processor_id(); 525 struct cpuinfo_x86 *c = &cpu_data(cpu); 526 527 if (c->x86_vendor != X86_VENDOR_AMD && 528 c->x86_vendor != X86_VENDOR_HYGON) { 529 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 530 return false; 531 } 532 533 if (!cpu_has(c, X86_FEATURE_SVM)) { 534 pr_err("SVM not supported by CPU %d\n", cpu); 535 return false; 536 } 537 538 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 539 pr_info("KVM is unsupported when running as an SEV guest\n"); 540 return false; 541 } 542 543 return true; 544 } 545 546 static bool kvm_is_svm_supported(void) 547 { 548 bool supported; 549 550 migrate_disable(); 551 supported = __kvm_is_svm_supported(); 552 migrate_enable(); 553 554 return supported; 555 } 556 557 static int svm_check_processor_compat(void) 558 { 559 if (!__kvm_is_svm_supported()) 560 return -EIO; 561 562 return 0; 563 } 564 565 static void __svm_write_tsc_multiplier(u64 multiplier) 566 { 567 if (multiplier == __this_cpu_read(current_tsc_ratio)) 568 return; 569 570 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 571 __this_cpu_write(current_tsc_ratio, multiplier); 572 } 573 574 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd) 575 { 576 return page_address(sd->save_area) + 0x400; 577 } 578 579 static inline void kvm_cpu_svm_disable(void) 580 { 581 uint64_t efer; 582 583 wrmsrl(MSR_VM_HSAVE_PA, 0); 584 rdmsrl(MSR_EFER, efer); 585 if (efer & EFER_SVME) { 586 /* 587 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 588 * NMI aren't blocked. 589 */ 590 stgi(); 591 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 592 } 593 } 594 595 static void svm_emergency_disable(void) 596 { 597 kvm_rebooting = true; 598 599 kvm_cpu_svm_disable(); 600 } 601 602 static void svm_hardware_disable(void) 603 { 604 /* Make sure we clean up behind us */ 605 if (tsc_scaling) 606 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 607 608 kvm_cpu_svm_disable(); 609 610 amd_pmu_disable_virt(); 611 } 612 613 static int svm_hardware_enable(void) 614 { 615 616 struct svm_cpu_data *sd; 617 uint64_t efer; 618 int me = raw_smp_processor_id(); 619 620 rdmsrl(MSR_EFER, efer); 621 if (efer & EFER_SVME) 622 return -EBUSY; 623 624 sd = per_cpu_ptr(&svm_data, me); 625 sd->asid_generation = 1; 626 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 627 sd->next_asid = sd->max_asid + 1; 628 sd->min_asid = max_sev_asid + 1; 629 630 wrmsrl(MSR_EFER, efer | EFER_SVME); 631 632 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 633 634 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 635 /* 636 * Set the default value, even if we don't use TSC scaling 637 * to avoid having stale value in the msr 638 */ 639 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 640 } 641 642 643 /* 644 * Get OSVW bits. 645 * 646 * Note that it is possible to have a system with mixed processor 647 * revisions and therefore different OSVW bits. If bits are not the same 648 * on different processors then choose the worst case (i.e. if erratum 649 * is present on one processor and not on another then assume that the 650 * erratum is present everywhere). 651 */ 652 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 653 uint64_t len, status = 0; 654 int err; 655 656 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 657 if (!err) 658 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 659 &err); 660 661 if (err) 662 osvw_status = osvw_len = 0; 663 else { 664 if (len < osvw_len) 665 osvw_len = len; 666 osvw_status |= status; 667 osvw_status &= (1ULL << osvw_len) - 1; 668 } 669 } else 670 osvw_status = osvw_len = 0; 671 672 svm_init_erratum_383(); 673 674 amd_pmu_enable_virt(); 675 676 /* 677 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 678 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 679 * Since Linux does not change the value of TSC_AUX once set, prime the 680 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 681 */ 682 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 683 u32 __maybe_unused msr_hi; 684 685 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi); 686 } 687 688 return 0; 689 } 690 691 static void svm_cpu_uninit(int cpu) 692 { 693 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 694 695 if (!sd->save_area) 696 return; 697 698 kfree(sd->sev_vmcbs); 699 __free_page(sd->save_area); 700 sd->save_area_pa = 0; 701 sd->save_area = NULL; 702 } 703 704 static int svm_cpu_init(int cpu) 705 { 706 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 707 int ret = -ENOMEM; 708 709 memset(sd, 0, sizeof(struct svm_cpu_data)); 710 sd->save_area = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL); 711 if (!sd->save_area) 712 return ret; 713 714 ret = sev_cpu_init(sd); 715 if (ret) 716 goto free_save_area; 717 718 sd->save_area_pa = __sme_page_pa(sd->save_area); 719 return 0; 720 721 free_save_area: 722 __free_page(sd->save_area); 723 sd->save_area = NULL; 724 return ret; 725 726 } 727 728 static void set_dr_intercepts(struct vcpu_svm *svm) 729 { 730 struct vmcb *vmcb = svm->vmcb01.ptr; 731 732 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 743 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 744 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 748 749 recalc_intercepts(svm); 750 } 751 752 static void clr_dr_intercepts(struct vcpu_svm *svm) 753 { 754 struct vmcb *vmcb = svm->vmcb01.ptr; 755 756 vmcb->control.intercepts[INTERCEPT_DR] = 0; 757 758 recalc_intercepts(svm); 759 } 760 761 static int direct_access_msr_slot(u32 msr) 762 { 763 u32 i; 764 765 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 766 if (direct_access_msrs[i].index == msr) 767 return i; 768 769 return -ENOENT; 770 } 771 772 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 773 int write) 774 { 775 struct vcpu_svm *svm = to_svm(vcpu); 776 int slot = direct_access_msr_slot(msr); 777 778 if (slot == -ENOENT) 779 return; 780 781 /* Set the shadow bitmaps to the desired intercept states */ 782 if (read) 783 set_bit(slot, svm->shadow_msr_intercept.read); 784 else 785 clear_bit(slot, svm->shadow_msr_intercept.read); 786 787 if (write) 788 set_bit(slot, svm->shadow_msr_intercept.write); 789 else 790 clear_bit(slot, svm->shadow_msr_intercept.write); 791 } 792 793 static bool valid_msr_intercept(u32 index) 794 { 795 return direct_access_msr_slot(index) != -ENOENT; 796 } 797 798 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 799 { 800 u8 bit_write; 801 unsigned long tmp; 802 u32 offset; 803 u32 *msrpm; 804 805 /* 806 * For non-nested case: 807 * If the L01 MSR bitmap does not intercept the MSR, then we need to 808 * save it. 809 * 810 * For nested case: 811 * If the L02 MSR bitmap does not intercept the MSR, then we need to 812 * save it. 813 */ 814 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 815 to_svm(vcpu)->msrpm; 816 817 offset = svm_msrpm_offset(msr); 818 bit_write = 2 * (msr & 0x0f) + 1; 819 tmp = msrpm[offset]; 820 821 BUG_ON(offset == MSR_INVALID); 822 823 return test_bit(bit_write, &tmp); 824 } 825 826 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 827 u32 msr, int read, int write) 828 { 829 struct vcpu_svm *svm = to_svm(vcpu); 830 u8 bit_read, bit_write; 831 unsigned long tmp; 832 u32 offset; 833 834 /* 835 * If this warning triggers extend the direct_access_msrs list at the 836 * beginning of the file 837 */ 838 WARN_ON(!valid_msr_intercept(msr)); 839 840 /* Enforce non allowed MSRs to trap */ 841 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 842 read = 0; 843 844 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 845 write = 0; 846 847 offset = svm_msrpm_offset(msr); 848 bit_read = 2 * (msr & 0x0f); 849 bit_write = 2 * (msr & 0x0f) + 1; 850 tmp = msrpm[offset]; 851 852 BUG_ON(offset == MSR_INVALID); 853 854 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 855 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 856 857 msrpm[offset] = tmp; 858 859 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 860 svm->nested.force_msr_bitmap_recalc = true; 861 } 862 863 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 864 int read, int write) 865 { 866 set_shadow_msr_intercept(vcpu, msr, read, write); 867 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 868 } 869 870 u32 *svm_vcpu_alloc_msrpm(void) 871 { 872 unsigned int order = get_order(MSRPM_SIZE); 873 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 874 u32 *msrpm; 875 876 if (!pages) 877 return NULL; 878 879 msrpm = page_address(pages); 880 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 881 882 return msrpm; 883 } 884 885 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 886 { 887 int i; 888 889 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 890 if (!direct_access_msrs[i].always) 891 continue; 892 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 893 } 894 } 895 896 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 897 { 898 int i; 899 900 if (intercept == svm->x2avic_msrs_intercepted) 901 return; 902 903 if (!x2avic_enabled) 904 return; 905 906 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 907 int index = direct_access_msrs[i].index; 908 909 if ((index < APIC_BASE_MSR) || 910 (index > APIC_BASE_MSR + 0xff)) 911 continue; 912 set_msr_interception(&svm->vcpu, svm->msrpm, index, 913 !intercept, !intercept); 914 } 915 916 svm->x2avic_msrs_intercepted = intercept; 917 } 918 919 void svm_vcpu_free_msrpm(u32 *msrpm) 920 { 921 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 922 } 923 924 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 925 { 926 struct vcpu_svm *svm = to_svm(vcpu); 927 u32 i; 928 929 /* 930 * Set intercept permissions for all direct access MSRs again. They 931 * will automatically get filtered through the MSR filter, so we are 932 * back in sync after this. 933 */ 934 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 935 u32 msr = direct_access_msrs[i].index; 936 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 937 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 938 939 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 940 } 941 } 942 943 static void add_msr_offset(u32 offset) 944 { 945 int i; 946 947 for (i = 0; i < MSRPM_OFFSETS; ++i) { 948 949 /* Offset already in list? */ 950 if (msrpm_offsets[i] == offset) 951 return; 952 953 /* Slot used by another offset? */ 954 if (msrpm_offsets[i] != MSR_INVALID) 955 continue; 956 957 /* Add offset to list */ 958 msrpm_offsets[i] = offset; 959 960 return; 961 } 962 963 /* 964 * If this BUG triggers the msrpm_offsets table has an overflow. Just 965 * increase MSRPM_OFFSETS in this case. 966 */ 967 BUG(); 968 } 969 970 static void init_msrpm_offsets(void) 971 { 972 int i; 973 974 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 975 976 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 977 u32 offset; 978 979 offset = svm_msrpm_offset(direct_access_msrs[i].index); 980 BUG_ON(offset == MSR_INVALID); 981 982 add_msr_offset(offset); 983 } 984 } 985 986 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 987 { 988 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 989 to_vmcb->save.br_from = from_vmcb->save.br_from; 990 to_vmcb->save.br_to = from_vmcb->save.br_to; 991 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 992 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 993 994 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 995 } 996 997 void svm_enable_lbrv(struct kvm_vcpu *vcpu) 998 { 999 struct vcpu_svm *svm = to_svm(vcpu); 1000 1001 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 1002 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 1003 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1005 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1006 1007 if (sev_es_guest(vcpu->kvm)) 1008 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1); 1009 1010 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1011 if (is_guest_mode(vcpu)) 1012 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1013 } 1014 1015 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1016 { 1017 struct vcpu_svm *svm = to_svm(vcpu); 1018 1019 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); 1020 1021 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1022 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1024 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1025 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1026 1027 /* 1028 * Move the LBR msrs back to the vmcb01 to avoid copying them 1029 * on nested guest entries. 1030 */ 1031 if (is_guest_mode(vcpu)) 1032 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1033 } 1034 1035 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1036 { 1037 /* 1038 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1039 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1040 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1041 */ 1042 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1043 svm->vmcb01.ptr; 1044 } 1045 1046 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1047 { 1048 struct vcpu_svm *svm = to_svm(vcpu); 1049 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1050 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1051 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && 1052 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1053 1054 if (enable_lbrv == current_enable_lbrv) 1055 return; 1056 1057 if (enable_lbrv) 1058 svm_enable_lbrv(vcpu); 1059 else 1060 svm_disable_lbrv(vcpu); 1061 } 1062 1063 void disable_nmi_singlestep(struct vcpu_svm *svm) 1064 { 1065 svm->nmi_singlestep = false; 1066 1067 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1068 /* Clear our flags if they were not set by the guest */ 1069 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1070 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1071 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1072 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1073 } 1074 } 1075 1076 static void grow_ple_window(struct kvm_vcpu *vcpu) 1077 { 1078 struct vcpu_svm *svm = to_svm(vcpu); 1079 struct vmcb_control_area *control = &svm->vmcb->control; 1080 int old = control->pause_filter_count; 1081 1082 if (kvm_pause_in_guest(vcpu->kvm)) 1083 return; 1084 1085 control->pause_filter_count = __grow_ple_window(old, 1086 pause_filter_count, 1087 pause_filter_count_grow, 1088 pause_filter_count_max); 1089 1090 if (control->pause_filter_count != old) { 1091 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1092 trace_kvm_ple_window_update(vcpu->vcpu_id, 1093 control->pause_filter_count, old); 1094 } 1095 } 1096 1097 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1098 { 1099 struct vcpu_svm *svm = to_svm(vcpu); 1100 struct vmcb_control_area *control = &svm->vmcb->control; 1101 int old = control->pause_filter_count; 1102 1103 if (kvm_pause_in_guest(vcpu->kvm)) 1104 return; 1105 1106 control->pause_filter_count = 1107 __shrink_ple_window(old, 1108 pause_filter_count, 1109 pause_filter_count_shrink, 1110 pause_filter_count); 1111 if (control->pause_filter_count != old) { 1112 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1113 trace_kvm_ple_window_update(vcpu->vcpu_id, 1114 control->pause_filter_count, old); 1115 } 1116 } 1117 1118 static void svm_hardware_unsetup(void) 1119 { 1120 int cpu; 1121 1122 sev_hardware_unsetup(); 1123 1124 for_each_possible_cpu(cpu) 1125 svm_cpu_uninit(cpu); 1126 1127 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1128 get_order(IOPM_SIZE)); 1129 iopm_base = 0; 1130 } 1131 1132 static void init_seg(struct vmcb_seg *seg) 1133 { 1134 seg->selector = 0; 1135 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1136 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1137 seg->limit = 0xffff; 1138 seg->base = 0; 1139 } 1140 1141 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1142 { 1143 seg->selector = 0; 1144 seg->attrib = SVM_SELECTOR_P_MASK | type; 1145 seg->limit = 0xffff; 1146 seg->base = 0; 1147 } 1148 1149 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1150 { 1151 struct vcpu_svm *svm = to_svm(vcpu); 1152 1153 return svm->nested.ctl.tsc_offset; 1154 } 1155 1156 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1157 { 1158 struct vcpu_svm *svm = to_svm(vcpu); 1159 1160 return svm->tsc_ratio_msr; 1161 } 1162 1163 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1164 { 1165 struct vcpu_svm *svm = to_svm(vcpu); 1166 1167 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1168 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1169 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1170 } 1171 1172 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1173 { 1174 preempt_disable(); 1175 if (to_svm(vcpu)->guest_state_loaded) 1176 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1177 preempt_enable(); 1178 } 1179 1180 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1181 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1182 struct vcpu_svm *svm) 1183 { 1184 /* 1185 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1186 * roots, or if INVPCID is disabled in the guest to inject #UD. 1187 */ 1188 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1189 if (!npt_enabled || 1190 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1191 svm_set_intercept(svm, INTERCEPT_INVPCID); 1192 else 1193 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1194 } 1195 1196 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1197 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1198 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1199 else 1200 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1201 } 1202 } 1203 1204 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1205 { 1206 struct vcpu_svm *svm = to_svm(vcpu); 1207 1208 if (guest_cpuid_is_intel_compatible(vcpu)) { 1209 /* 1210 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1211 * accesses because the processor only stores 32 bits. 1212 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1213 */ 1214 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1215 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1216 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1217 1218 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1219 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1220 } else { 1221 /* 1222 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1223 * in VMCB and clear intercepts to avoid #VMEXIT. 1224 */ 1225 if (vls) { 1226 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1227 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1228 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1229 } 1230 /* No need to intercept these MSRs */ 1231 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1232 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1233 } 1234 } 1235 1236 static void init_vmcb(struct kvm_vcpu *vcpu) 1237 { 1238 struct vcpu_svm *svm = to_svm(vcpu); 1239 struct vmcb *vmcb = svm->vmcb01.ptr; 1240 struct vmcb_control_area *control = &vmcb->control; 1241 struct vmcb_save_area *save = &vmcb->save; 1242 1243 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1244 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1245 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1246 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1247 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1248 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1249 if (!kvm_vcpu_apicv_active(vcpu)) 1250 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1251 1252 set_dr_intercepts(svm); 1253 1254 set_exception_intercept(svm, PF_VECTOR); 1255 set_exception_intercept(svm, UD_VECTOR); 1256 set_exception_intercept(svm, MC_VECTOR); 1257 set_exception_intercept(svm, AC_VECTOR); 1258 set_exception_intercept(svm, DB_VECTOR); 1259 /* 1260 * Guest access to VMware backdoor ports could legitimately 1261 * trigger #GP because of TSS I/O permission bitmap. 1262 * We intercept those #GP and allow access to them anyway 1263 * as VMware does. 1264 */ 1265 if (enable_vmware_backdoor) 1266 set_exception_intercept(svm, GP_VECTOR); 1267 1268 svm_set_intercept(svm, INTERCEPT_INTR); 1269 svm_set_intercept(svm, INTERCEPT_NMI); 1270 1271 if (intercept_smi) 1272 svm_set_intercept(svm, INTERCEPT_SMI); 1273 1274 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1275 svm_set_intercept(svm, INTERCEPT_RDPMC); 1276 svm_set_intercept(svm, INTERCEPT_CPUID); 1277 svm_set_intercept(svm, INTERCEPT_INVD); 1278 svm_set_intercept(svm, INTERCEPT_INVLPG); 1279 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1280 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1281 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1282 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1283 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1284 svm_set_intercept(svm, INTERCEPT_VMRUN); 1285 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1286 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1287 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1288 svm_set_intercept(svm, INTERCEPT_STGI); 1289 svm_set_intercept(svm, INTERCEPT_CLGI); 1290 svm_set_intercept(svm, INTERCEPT_SKINIT); 1291 svm_set_intercept(svm, INTERCEPT_WBINVD); 1292 svm_set_intercept(svm, INTERCEPT_XSETBV); 1293 svm_set_intercept(svm, INTERCEPT_RDPRU); 1294 svm_set_intercept(svm, INTERCEPT_RSM); 1295 1296 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1297 svm_set_intercept(svm, INTERCEPT_MONITOR); 1298 svm_set_intercept(svm, INTERCEPT_MWAIT); 1299 } 1300 1301 if (!kvm_hlt_in_guest(vcpu->kvm)) 1302 svm_set_intercept(svm, INTERCEPT_HLT); 1303 1304 control->iopm_base_pa = __sme_set(iopm_base); 1305 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1306 control->int_ctl = V_INTR_MASKING_MASK; 1307 1308 init_seg(&save->es); 1309 init_seg(&save->ss); 1310 init_seg(&save->ds); 1311 init_seg(&save->fs); 1312 init_seg(&save->gs); 1313 1314 save->cs.selector = 0xf000; 1315 save->cs.base = 0xffff0000; 1316 /* Executable/Readable Code Segment */ 1317 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1318 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1319 save->cs.limit = 0xffff; 1320 1321 save->gdtr.base = 0; 1322 save->gdtr.limit = 0xffff; 1323 save->idtr.base = 0; 1324 save->idtr.limit = 0xffff; 1325 1326 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1327 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1328 1329 if (npt_enabled) { 1330 /* Setup VMCB for Nested Paging */ 1331 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1332 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1333 clr_exception_intercept(svm, PF_VECTOR); 1334 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1335 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1336 save->g_pat = vcpu->arch.pat; 1337 save->cr3 = 0; 1338 } 1339 svm->current_vmcb->asid_generation = 0; 1340 svm->asid = 0; 1341 1342 svm->nested.vmcb12_gpa = INVALID_GPA; 1343 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1344 1345 if (!kvm_pause_in_guest(vcpu->kvm)) { 1346 control->pause_filter_count = pause_filter_count; 1347 if (pause_filter_thresh) 1348 control->pause_filter_thresh = pause_filter_thresh; 1349 svm_set_intercept(svm, INTERCEPT_PAUSE); 1350 } else { 1351 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1352 } 1353 1354 svm_recalc_instruction_intercepts(vcpu, svm); 1355 1356 /* 1357 * If the host supports V_SPEC_CTRL then disable the interception 1358 * of MSR_IA32_SPEC_CTRL. 1359 */ 1360 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1361 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1362 1363 if (kvm_vcpu_apicv_active(vcpu)) 1364 avic_init_vmcb(svm, vmcb); 1365 1366 if (vnmi) 1367 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1368 1369 if (vgif) { 1370 svm_clr_intercept(svm, INTERCEPT_STGI); 1371 svm_clr_intercept(svm, INTERCEPT_CLGI); 1372 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1373 } 1374 1375 if (sev_guest(vcpu->kvm)) 1376 sev_init_vmcb(svm); 1377 1378 svm_hv_init_vmcb(vmcb); 1379 init_vmcb_after_set_cpuid(vcpu); 1380 1381 vmcb_mark_all_dirty(vmcb); 1382 1383 enable_gif(svm); 1384 } 1385 1386 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1387 { 1388 struct vcpu_svm *svm = to_svm(vcpu); 1389 1390 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1391 1392 svm_init_osvw(vcpu); 1393 vcpu->arch.microcode_version = 0x01000065; 1394 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1395 1396 svm->nmi_masked = false; 1397 svm->awaiting_iret_completion = false; 1398 1399 if (sev_es_guest(vcpu->kvm)) 1400 sev_es_vcpu_reset(svm); 1401 } 1402 1403 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1404 { 1405 struct vcpu_svm *svm = to_svm(vcpu); 1406 1407 svm->spec_ctrl = 0; 1408 svm->virt_spec_ctrl = 0; 1409 1410 if (init_event) 1411 sev_snp_init_protected_guest_state(vcpu); 1412 1413 init_vmcb(vcpu); 1414 1415 if (!init_event) 1416 __svm_vcpu_reset(vcpu); 1417 } 1418 1419 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1420 { 1421 svm->current_vmcb = target_vmcb; 1422 svm->vmcb = target_vmcb->ptr; 1423 } 1424 1425 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1426 { 1427 struct vcpu_svm *svm; 1428 struct page *vmcb01_page; 1429 struct page *vmsa_page = NULL; 1430 int err; 1431 1432 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1433 svm = to_svm(vcpu); 1434 1435 err = -ENOMEM; 1436 vmcb01_page = snp_safe_alloc_page(); 1437 if (!vmcb01_page) 1438 goto out; 1439 1440 if (sev_es_guest(vcpu->kvm)) { 1441 /* 1442 * SEV-ES guests require a separate VMSA page used to contain 1443 * the encrypted register state of the guest. 1444 */ 1445 vmsa_page = snp_safe_alloc_page(); 1446 if (!vmsa_page) 1447 goto error_free_vmcb_page; 1448 } 1449 1450 err = avic_init_vcpu(svm); 1451 if (err) 1452 goto error_free_vmsa_page; 1453 1454 svm->msrpm = svm_vcpu_alloc_msrpm(); 1455 if (!svm->msrpm) { 1456 err = -ENOMEM; 1457 goto error_free_vmsa_page; 1458 } 1459 1460 svm->x2avic_msrs_intercepted = true; 1461 1462 svm->vmcb01.ptr = page_address(vmcb01_page); 1463 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1464 svm_switch_vmcb(svm, &svm->vmcb01); 1465 1466 if (vmsa_page) 1467 svm->sev_es.vmsa = page_address(vmsa_page); 1468 1469 svm->guest_state_loaded = false; 1470 1471 return 0; 1472 1473 error_free_vmsa_page: 1474 if (vmsa_page) 1475 __free_page(vmsa_page); 1476 error_free_vmcb_page: 1477 __free_page(vmcb01_page); 1478 out: 1479 return err; 1480 } 1481 1482 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1483 { 1484 int i; 1485 1486 for_each_online_cpu(i) 1487 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1488 } 1489 1490 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1491 { 1492 struct vcpu_svm *svm = to_svm(vcpu); 1493 1494 /* 1495 * The vmcb page can be recycled, causing a false negative in 1496 * svm_vcpu_load(). So, ensure that no logical CPU has this 1497 * vmcb page recorded as its current vmcb. 1498 */ 1499 svm_clear_current_vmcb(svm->vmcb); 1500 1501 svm_leave_nested(vcpu); 1502 svm_free_nested(svm); 1503 1504 sev_free_vcpu(vcpu); 1505 1506 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1507 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1508 } 1509 1510 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1511 { 1512 struct vcpu_svm *svm = to_svm(vcpu); 1513 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1514 1515 if (sev_es_guest(vcpu->kvm)) 1516 sev_es_unmap_ghcb(svm); 1517 1518 if (svm->guest_state_loaded) 1519 return; 1520 1521 /* 1522 * Save additional host state that will be restored on VMEXIT (sev-es) 1523 * or subsequent vmload of host save area. 1524 */ 1525 vmsave(sd->save_area_pa); 1526 if (sev_es_guest(vcpu->kvm)) 1527 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd)); 1528 1529 if (tsc_scaling) 1530 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1531 1532 /* 1533 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1534 * available. The user return MSR support is not required in this case 1535 * because TSC_AUX is restored on #VMEXIT from the host save area 1536 * (which has been initialized in svm_hardware_enable()). 1537 */ 1538 if (likely(tsc_aux_uret_slot >= 0) && 1539 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1540 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1541 1542 svm->guest_state_loaded = true; 1543 } 1544 1545 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1546 { 1547 to_svm(vcpu)->guest_state_loaded = false; 1548 } 1549 1550 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1551 { 1552 struct vcpu_svm *svm = to_svm(vcpu); 1553 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1554 1555 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1556 shrink_ple_window(vcpu); 1557 1558 if (sd->current_vmcb != svm->vmcb) { 1559 sd->current_vmcb = svm->vmcb; 1560 1561 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) 1562 indirect_branch_prediction_barrier(); 1563 } 1564 if (kvm_vcpu_apicv_active(vcpu)) 1565 avic_vcpu_load(vcpu, cpu); 1566 } 1567 1568 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1569 { 1570 if (kvm_vcpu_apicv_active(vcpu)) 1571 avic_vcpu_put(vcpu); 1572 1573 svm_prepare_host_switch(vcpu); 1574 1575 ++vcpu->stat.host_state_reload; 1576 } 1577 1578 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1579 { 1580 struct vcpu_svm *svm = to_svm(vcpu); 1581 unsigned long rflags = svm->vmcb->save.rflags; 1582 1583 if (svm->nmi_singlestep) { 1584 /* Hide our flags if they were not set by the guest */ 1585 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1586 rflags &= ~X86_EFLAGS_TF; 1587 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1588 rflags &= ~X86_EFLAGS_RF; 1589 } 1590 return rflags; 1591 } 1592 1593 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1594 { 1595 if (to_svm(vcpu)->nmi_singlestep) 1596 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1597 1598 /* 1599 * Any change of EFLAGS.VM is accompanied by a reload of SS 1600 * (caused by either a task switch or an inter-privilege IRET), 1601 * so we do not need to update the CPL here. 1602 */ 1603 to_svm(vcpu)->vmcb->save.rflags = rflags; 1604 } 1605 1606 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1607 { 1608 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1609 1610 return sev_es_guest(vcpu->kvm) 1611 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1612 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1613 } 1614 1615 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1616 { 1617 kvm_register_mark_available(vcpu, reg); 1618 1619 switch (reg) { 1620 case VCPU_EXREG_PDPTR: 1621 /* 1622 * When !npt_enabled, mmu->pdptrs[] is already available since 1623 * it is always updated per SDM when moving to CRs. 1624 */ 1625 if (npt_enabled) 1626 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1627 break; 1628 default: 1629 KVM_BUG_ON(1, vcpu->kvm); 1630 } 1631 } 1632 1633 static void svm_set_vintr(struct vcpu_svm *svm) 1634 { 1635 struct vmcb_control_area *control; 1636 1637 /* 1638 * The following fields are ignored when AVIC is enabled 1639 */ 1640 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1641 1642 svm_set_intercept(svm, INTERCEPT_VINTR); 1643 1644 /* 1645 * Recalculating intercepts may have cleared the VINTR intercept. If 1646 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1647 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1648 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1649 * interrupts will never be unblocked while L2 is running. 1650 */ 1651 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1652 return; 1653 1654 /* 1655 * This is just a dummy VINTR to actually cause a vmexit to happen. 1656 * Actual injection of virtual interrupts happens through EVENTINJ. 1657 */ 1658 control = &svm->vmcb->control; 1659 control->int_vector = 0x0; 1660 control->int_ctl &= ~V_INTR_PRIO_MASK; 1661 control->int_ctl |= V_IRQ_MASK | 1662 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1663 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1664 } 1665 1666 static void svm_clear_vintr(struct vcpu_svm *svm) 1667 { 1668 svm_clr_intercept(svm, INTERCEPT_VINTR); 1669 1670 /* Drop int_ctl fields related to VINTR injection. */ 1671 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1672 if (is_guest_mode(&svm->vcpu)) { 1673 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1674 1675 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1676 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1677 1678 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1679 V_IRQ_INJECTION_BITS_MASK; 1680 1681 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1682 } 1683 1684 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1685 } 1686 1687 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1688 { 1689 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1690 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1691 1692 switch (seg) { 1693 case VCPU_SREG_CS: return &save->cs; 1694 case VCPU_SREG_DS: return &save->ds; 1695 case VCPU_SREG_ES: return &save->es; 1696 case VCPU_SREG_FS: return &save01->fs; 1697 case VCPU_SREG_GS: return &save01->gs; 1698 case VCPU_SREG_SS: return &save->ss; 1699 case VCPU_SREG_TR: return &save01->tr; 1700 case VCPU_SREG_LDTR: return &save01->ldtr; 1701 } 1702 BUG(); 1703 return NULL; 1704 } 1705 1706 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1707 { 1708 struct vmcb_seg *s = svm_seg(vcpu, seg); 1709 1710 return s->base; 1711 } 1712 1713 static void svm_get_segment(struct kvm_vcpu *vcpu, 1714 struct kvm_segment *var, int seg) 1715 { 1716 struct vmcb_seg *s = svm_seg(vcpu, seg); 1717 1718 var->base = s->base; 1719 var->limit = s->limit; 1720 var->selector = s->selector; 1721 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1722 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1723 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1724 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1725 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1726 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1727 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1728 1729 /* 1730 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1731 * However, the SVM spec states that the G bit is not observed by the 1732 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1733 * So let's synthesize a legal G bit for all segments, this helps 1734 * running KVM nested. It also helps cross-vendor migration, because 1735 * Intel's vmentry has a check on the 'G' bit. 1736 */ 1737 var->g = s->limit > 0xfffff; 1738 1739 /* 1740 * AMD's VMCB does not have an explicit unusable field, so emulate it 1741 * for cross vendor migration purposes by "not present" 1742 */ 1743 var->unusable = !var->present; 1744 1745 switch (seg) { 1746 case VCPU_SREG_TR: 1747 /* 1748 * Work around a bug where the busy flag in the tr selector 1749 * isn't exposed 1750 */ 1751 var->type |= 0x2; 1752 break; 1753 case VCPU_SREG_DS: 1754 case VCPU_SREG_ES: 1755 case VCPU_SREG_FS: 1756 case VCPU_SREG_GS: 1757 /* 1758 * The accessed bit must always be set in the segment 1759 * descriptor cache, although it can be cleared in the 1760 * descriptor, the cached bit always remains at 1. Since 1761 * Intel has a check on this, set it here to support 1762 * cross-vendor migration. 1763 */ 1764 if (!var->unusable) 1765 var->type |= 0x1; 1766 break; 1767 case VCPU_SREG_SS: 1768 /* 1769 * On AMD CPUs sometimes the DB bit in the segment 1770 * descriptor is left as 1, although the whole segment has 1771 * been made unusable. Clear it here to pass an Intel VMX 1772 * entry check when cross vendor migrating. 1773 */ 1774 if (var->unusable) 1775 var->db = 0; 1776 /* This is symmetric with svm_set_segment() */ 1777 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1778 break; 1779 } 1780 } 1781 1782 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1783 { 1784 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1785 1786 return save->cpl; 1787 } 1788 1789 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1790 { 1791 struct kvm_segment cs; 1792 1793 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1794 *db = cs.db; 1795 *l = cs.l; 1796 } 1797 1798 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1799 { 1800 struct vcpu_svm *svm = to_svm(vcpu); 1801 1802 dt->size = svm->vmcb->save.idtr.limit; 1803 dt->address = svm->vmcb->save.idtr.base; 1804 } 1805 1806 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1807 { 1808 struct vcpu_svm *svm = to_svm(vcpu); 1809 1810 svm->vmcb->save.idtr.limit = dt->size; 1811 svm->vmcb->save.idtr.base = dt->address ; 1812 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1813 } 1814 1815 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1816 { 1817 struct vcpu_svm *svm = to_svm(vcpu); 1818 1819 dt->size = svm->vmcb->save.gdtr.limit; 1820 dt->address = svm->vmcb->save.gdtr.base; 1821 } 1822 1823 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1824 { 1825 struct vcpu_svm *svm = to_svm(vcpu); 1826 1827 svm->vmcb->save.gdtr.limit = dt->size; 1828 svm->vmcb->save.gdtr.base = dt->address ; 1829 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1830 } 1831 1832 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1833 { 1834 struct vcpu_svm *svm = to_svm(vcpu); 1835 1836 /* 1837 * For guests that don't set guest_state_protected, the cr3 update is 1838 * handled via kvm_mmu_load() while entering the guest. For guests 1839 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1840 * VMCB save area now, since the save area will become the initial 1841 * contents of the VMSA, and future VMCB save area updates won't be 1842 * seen. 1843 */ 1844 if (sev_es_guest(vcpu->kvm)) { 1845 svm->vmcb->save.cr3 = cr3; 1846 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1847 } 1848 } 1849 1850 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1851 { 1852 return true; 1853 } 1854 1855 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1856 { 1857 struct vcpu_svm *svm = to_svm(vcpu); 1858 u64 hcr0 = cr0; 1859 bool old_paging = is_paging(vcpu); 1860 1861 #ifdef CONFIG_X86_64 1862 if (vcpu->arch.efer & EFER_LME) { 1863 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1864 vcpu->arch.efer |= EFER_LMA; 1865 if (!vcpu->arch.guest_state_protected) 1866 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1867 } 1868 1869 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1870 vcpu->arch.efer &= ~EFER_LMA; 1871 if (!vcpu->arch.guest_state_protected) 1872 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1873 } 1874 } 1875 #endif 1876 vcpu->arch.cr0 = cr0; 1877 1878 if (!npt_enabled) { 1879 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1880 if (old_paging != is_paging(vcpu)) 1881 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1882 } 1883 1884 /* 1885 * re-enable caching here because the QEMU bios 1886 * does not do it - this results in some delay at 1887 * reboot 1888 */ 1889 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1890 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1891 1892 svm->vmcb->save.cr0 = hcr0; 1893 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1894 1895 /* 1896 * SEV-ES guests must always keep the CR intercepts cleared. CR 1897 * tracking is done using the CR write traps. 1898 */ 1899 if (sev_es_guest(vcpu->kvm)) 1900 return; 1901 1902 if (hcr0 == cr0) { 1903 /* Selective CR0 write remains on. */ 1904 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1905 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1906 } else { 1907 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1908 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1909 } 1910 } 1911 1912 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1913 { 1914 return true; 1915 } 1916 1917 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1918 { 1919 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1920 unsigned long old_cr4 = vcpu->arch.cr4; 1921 1922 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1923 svm_flush_tlb_current(vcpu); 1924 1925 vcpu->arch.cr4 = cr4; 1926 if (!npt_enabled) { 1927 cr4 |= X86_CR4_PAE; 1928 1929 if (!is_paging(vcpu)) 1930 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1931 } 1932 cr4 |= host_cr4_mce; 1933 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1934 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1935 1936 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1937 kvm_update_cpuid_runtime(vcpu); 1938 } 1939 1940 static void svm_set_segment(struct kvm_vcpu *vcpu, 1941 struct kvm_segment *var, int seg) 1942 { 1943 struct vcpu_svm *svm = to_svm(vcpu); 1944 struct vmcb_seg *s = svm_seg(vcpu, seg); 1945 1946 s->base = var->base; 1947 s->limit = var->limit; 1948 s->selector = var->selector; 1949 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1950 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1951 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1952 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1953 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1954 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1955 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1956 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1957 1958 /* 1959 * This is always accurate, except if SYSRET returned to a segment 1960 * with SS.DPL != 3. Intel does not have this quirk, and always 1961 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1962 * would entail passing the CPL to userspace and back. 1963 */ 1964 if (seg == VCPU_SREG_SS) 1965 /* This is symmetric with svm_get_segment() */ 1966 svm->vmcb->save.cpl = (var->dpl & 3); 1967 1968 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1969 } 1970 1971 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1972 { 1973 struct vcpu_svm *svm = to_svm(vcpu); 1974 1975 clr_exception_intercept(svm, BP_VECTOR); 1976 1977 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1978 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1979 set_exception_intercept(svm, BP_VECTOR); 1980 } 1981 } 1982 1983 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1984 { 1985 if (sd->next_asid > sd->max_asid) { 1986 ++sd->asid_generation; 1987 sd->next_asid = sd->min_asid; 1988 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1989 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1990 } 1991 1992 svm->current_vmcb->asid_generation = sd->asid_generation; 1993 svm->asid = sd->next_asid++; 1994 } 1995 1996 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1997 { 1998 struct vmcb *vmcb = svm->vmcb; 1999 2000 if (svm->vcpu.arch.guest_state_protected) 2001 return; 2002 2003 if (unlikely(value != vmcb->save.dr6)) { 2004 vmcb->save.dr6 = value; 2005 vmcb_mark_dirty(vmcb, VMCB_DR); 2006 } 2007 } 2008 2009 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2010 { 2011 struct vcpu_svm *svm = to_svm(vcpu); 2012 2013 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2014 return; 2015 2016 get_debugreg(vcpu->arch.db[0], 0); 2017 get_debugreg(vcpu->arch.db[1], 1); 2018 get_debugreg(vcpu->arch.db[2], 2); 2019 get_debugreg(vcpu->arch.db[3], 3); 2020 /* 2021 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2022 * because db_interception might need it. We can do it before vmentry. 2023 */ 2024 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2025 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2026 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2027 set_dr_intercepts(svm); 2028 } 2029 2030 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2031 { 2032 struct vcpu_svm *svm = to_svm(vcpu); 2033 2034 if (vcpu->arch.guest_state_protected) 2035 return; 2036 2037 svm->vmcb->save.dr7 = value; 2038 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2039 } 2040 2041 static int pf_interception(struct kvm_vcpu *vcpu) 2042 { 2043 struct vcpu_svm *svm = to_svm(vcpu); 2044 2045 u64 fault_address = svm->vmcb->control.exit_info_2; 2046 u64 error_code = svm->vmcb->control.exit_info_1; 2047 2048 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2049 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2050 svm->vmcb->control.insn_bytes : NULL, 2051 svm->vmcb->control.insn_len); 2052 } 2053 2054 static int npf_interception(struct kvm_vcpu *vcpu) 2055 { 2056 struct vcpu_svm *svm = to_svm(vcpu); 2057 int rc; 2058 2059 u64 fault_address = svm->vmcb->control.exit_info_2; 2060 u64 error_code = svm->vmcb->control.exit_info_1; 2061 2062 /* 2063 * WARN if hardware generates a fault with an error code that collides 2064 * with KVM-defined sythentic flags. Clear the flags and continue on, 2065 * i.e. don't terminate the VM, as KVM can't possibly be relying on a 2066 * flag that KVM doesn't know about. 2067 */ 2068 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK)) 2069 error_code &= ~PFERR_SYNTHETIC_MASK; 2070 2071 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK)) 2072 error_code |= PFERR_PRIVATE_ACCESS; 2073 2074 trace_kvm_page_fault(vcpu, fault_address, error_code); 2075 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code, 2076 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2077 svm->vmcb->control.insn_bytes : NULL, 2078 svm->vmcb->control.insn_len); 2079 2080 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK) 2081 sev_handle_rmp_fault(vcpu, fault_address, error_code); 2082 2083 return rc; 2084 } 2085 2086 static int db_interception(struct kvm_vcpu *vcpu) 2087 { 2088 struct kvm_run *kvm_run = vcpu->run; 2089 struct vcpu_svm *svm = to_svm(vcpu); 2090 2091 if (!(vcpu->guest_debug & 2092 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2093 !svm->nmi_singlestep) { 2094 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2095 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2096 return 1; 2097 } 2098 2099 if (svm->nmi_singlestep) { 2100 disable_nmi_singlestep(svm); 2101 /* Make sure we check for pending NMIs upon entry */ 2102 kvm_make_request(KVM_REQ_EVENT, vcpu); 2103 } 2104 2105 if (vcpu->guest_debug & 2106 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2107 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2108 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2109 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2110 kvm_run->debug.arch.pc = 2111 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2112 kvm_run->debug.arch.exception = DB_VECTOR; 2113 return 0; 2114 } 2115 2116 return 1; 2117 } 2118 2119 static int bp_interception(struct kvm_vcpu *vcpu) 2120 { 2121 struct vcpu_svm *svm = to_svm(vcpu); 2122 struct kvm_run *kvm_run = vcpu->run; 2123 2124 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2125 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2126 kvm_run->debug.arch.exception = BP_VECTOR; 2127 return 0; 2128 } 2129 2130 static int ud_interception(struct kvm_vcpu *vcpu) 2131 { 2132 return handle_ud(vcpu); 2133 } 2134 2135 static int ac_interception(struct kvm_vcpu *vcpu) 2136 { 2137 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2138 return 1; 2139 } 2140 2141 static bool is_erratum_383(void) 2142 { 2143 int err, i; 2144 u64 value; 2145 2146 if (!erratum_383_found) 2147 return false; 2148 2149 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2150 if (err) 2151 return false; 2152 2153 /* Bit 62 may or may not be set for this mce */ 2154 value &= ~(1ULL << 62); 2155 2156 if (value != 0xb600000000010015ULL) 2157 return false; 2158 2159 /* Clear MCi_STATUS registers */ 2160 for (i = 0; i < 6; ++i) 2161 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2162 2163 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2164 if (!err) { 2165 u32 low, high; 2166 2167 value &= ~(1ULL << 2); 2168 low = lower_32_bits(value); 2169 high = upper_32_bits(value); 2170 2171 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2172 } 2173 2174 /* Flush tlb to evict multi-match entries */ 2175 __flush_tlb_all(); 2176 2177 return true; 2178 } 2179 2180 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2181 { 2182 if (is_erratum_383()) { 2183 /* 2184 * Erratum 383 triggered. Guest state is corrupt so kill the 2185 * guest. 2186 */ 2187 pr_err("Guest triggered AMD Erratum 383\n"); 2188 2189 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2190 2191 return; 2192 } 2193 2194 /* 2195 * On an #MC intercept the MCE handler is not called automatically in 2196 * the host. So do it by hand here. 2197 */ 2198 kvm_machine_check(); 2199 } 2200 2201 static int mc_interception(struct kvm_vcpu *vcpu) 2202 { 2203 return 1; 2204 } 2205 2206 static int shutdown_interception(struct kvm_vcpu *vcpu) 2207 { 2208 struct kvm_run *kvm_run = vcpu->run; 2209 struct vcpu_svm *svm = to_svm(vcpu); 2210 2211 2212 /* 2213 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2214 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2215 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2216 * userspace. At a platform view, INIT is acceptable behavior as 2217 * there exist bare metal platforms that automatically INIT the CPU 2218 * in response to shutdown. 2219 * 2220 * The VM save area for SEV-ES guests has already been encrypted so it 2221 * cannot be reinitialized, i.e. synthesizing INIT is futile. 2222 */ 2223 if (!sev_es_guest(vcpu->kvm)) { 2224 clear_page(svm->vmcb); 2225 kvm_vcpu_reset(vcpu, true); 2226 } 2227 2228 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2229 return 0; 2230 } 2231 2232 static int io_interception(struct kvm_vcpu *vcpu) 2233 { 2234 struct vcpu_svm *svm = to_svm(vcpu); 2235 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2236 int size, in, string; 2237 unsigned port; 2238 2239 ++vcpu->stat.io_exits; 2240 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2241 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2242 port = io_info >> 16; 2243 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2244 2245 if (string) { 2246 if (sev_es_guest(vcpu->kvm)) 2247 return sev_es_string_io(svm, size, port, in); 2248 else 2249 return kvm_emulate_instruction(vcpu, 0); 2250 } 2251 2252 svm->next_rip = svm->vmcb->control.exit_info_2; 2253 2254 return kvm_fast_pio(vcpu, size, port, in); 2255 } 2256 2257 static int nmi_interception(struct kvm_vcpu *vcpu) 2258 { 2259 return 1; 2260 } 2261 2262 static int smi_interception(struct kvm_vcpu *vcpu) 2263 { 2264 return 1; 2265 } 2266 2267 static int intr_interception(struct kvm_vcpu *vcpu) 2268 { 2269 ++vcpu->stat.irq_exits; 2270 return 1; 2271 } 2272 2273 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2274 { 2275 struct vcpu_svm *svm = to_svm(vcpu); 2276 struct vmcb *vmcb12; 2277 struct kvm_host_map map; 2278 int ret; 2279 2280 if (nested_svm_check_permissions(vcpu)) 2281 return 1; 2282 2283 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2284 if (ret) { 2285 if (ret == -EINVAL) 2286 kvm_inject_gp(vcpu, 0); 2287 return 1; 2288 } 2289 2290 vmcb12 = map.hva; 2291 2292 ret = kvm_skip_emulated_instruction(vcpu); 2293 2294 if (vmload) { 2295 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2296 svm->sysenter_eip_hi = 0; 2297 svm->sysenter_esp_hi = 0; 2298 } else { 2299 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2300 } 2301 2302 kvm_vcpu_unmap(vcpu, &map, true); 2303 2304 return ret; 2305 } 2306 2307 static int vmload_interception(struct kvm_vcpu *vcpu) 2308 { 2309 return vmload_vmsave_interception(vcpu, true); 2310 } 2311 2312 static int vmsave_interception(struct kvm_vcpu *vcpu) 2313 { 2314 return vmload_vmsave_interception(vcpu, false); 2315 } 2316 2317 static int vmrun_interception(struct kvm_vcpu *vcpu) 2318 { 2319 if (nested_svm_check_permissions(vcpu)) 2320 return 1; 2321 2322 return nested_svm_vmrun(vcpu); 2323 } 2324 2325 enum { 2326 NONE_SVM_INSTR, 2327 SVM_INSTR_VMRUN, 2328 SVM_INSTR_VMLOAD, 2329 SVM_INSTR_VMSAVE, 2330 }; 2331 2332 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2333 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2334 { 2335 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2336 2337 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2338 return NONE_SVM_INSTR; 2339 2340 switch (ctxt->modrm) { 2341 case 0xd8: /* VMRUN */ 2342 return SVM_INSTR_VMRUN; 2343 case 0xda: /* VMLOAD */ 2344 return SVM_INSTR_VMLOAD; 2345 case 0xdb: /* VMSAVE */ 2346 return SVM_INSTR_VMSAVE; 2347 default: 2348 break; 2349 } 2350 2351 return NONE_SVM_INSTR; 2352 } 2353 2354 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2355 { 2356 const int guest_mode_exit_codes[] = { 2357 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2358 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2359 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2360 }; 2361 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2362 [SVM_INSTR_VMRUN] = vmrun_interception, 2363 [SVM_INSTR_VMLOAD] = vmload_interception, 2364 [SVM_INSTR_VMSAVE] = vmsave_interception, 2365 }; 2366 struct vcpu_svm *svm = to_svm(vcpu); 2367 int ret; 2368 2369 if (is_guest_mode(vcpu)) { 2370 /* Returns '1' or -errno on failure, '' on success. */ 2371 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2372 if (ret) 2373 return ret; 2374 return 1; 2375 } 2376 return svm_instr_handlers[opcode](vcpu); 2377 } 2378 2379 /* 2380 * #GP handling code. Note that #GP can be triggered under the following two 2381 * cases: 2382 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2383 * some AMD CPUs when EAX of these instructions are in the reserved memory 2384 * regions (e.g. SMM memory on host). 2385 * 2) VMware backdoor 2386 */ 2387 static int gp_interception(struct kvm_vcpu *vcpu) 2388 { 2389 struct vcpu_svm *svm = to_svm(vcpu); 2390 u32 error_code = svm->vmcb->control.exit_info_1; 2391 int opcode; 2392 2393 /* Both #GP cases have zero error_code */ 2394 if (error_code) 2395 goto reinject; 2396 2397 /* Decode the instruction for usage later */ 2398 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2399 goto reinject; 2400 2401 opcode = svm_instr_opcode(vcpu); 2402 2403 if (opcode == NONE_SVM_INSTR) { 2404 if (!enable_vmware_backdoor) 2405 goto reinject; 2406 2407 /* 2408 * VMware backdoor emulation on #GP interception only handles 2409 * IN{S}, OUT{S}, and RDPMC. 2410 */ 2411 if (!is_guest_mode(vcpu)) 2412 return kvm_emulate_instruction(vcpu, 2413 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2414 } else { 2415 /* All SVM instructions expect page aligned RAX */ 2416 if (svm->vmcb->save.rax & ~PAGE_MASK) 2417 goto reinject; 2418 2419 return emulate_svm_instr(vcpu, opcode); 2420 } 2421 2422 reinject: 2423 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2424 return 1; 2425 } 2426 2427 void svm_set_gif(struct vcpu_svm *svm, bool value) 2428 { 2429 if (value) { 2430 /* 2431 * If VGIF is enabled, the STGI intercept is only added to 2432 * detect the opening of the SMI/NMI window; remove it now. 2433 * Likewise, clear the VINTR intercept, we will set it 2434 * again while processing KVM_REQ_EVENT if needed. 2435 */ 2436 if (vgif) 2437 svm_clr_intercept(svm, INTERCEPT_STGI); 2438 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2439 svm_clear_vintr(svm); 2440 2441 enable_gif(svm); 2442 if (svm->vcpu.arch.smi_pending || 2443 svm->vcpu.arch.nmi_pending || 2444 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2445 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2446 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2447 } else { 2448 disable_gif(svm); 2449 2450 /* 2451 * After a CLGI no interrupts should come. But if vGIF is 2452 * in use, we still rely on the VINTR intercept (rather than 2453 * STGI) to detect an open interrupt window. 2454 */ 2455 if (!vgif) 2456 svm_clear_vintr(svm); 2457 } 2458 } 2459 2460 static int stgi_interception(struct kvm_vcpu *vcpu) 2461 { 2462 int ret; 2463 2464 if (nested_svm_check_permissions(vcpu)) 2465 return 1; 2466 2467 ret = kvm_skip_emulated_instruction(vcpu); 2468 svm_set_gif(to_svm(vcpu), true); 2469 return ret; 2470 } 2471 2472 static int clgi_interception(struct kvm_vcpu *vcpu) 2473 { 2474 int ret; 2475 2476 if (nested_svm_check_permissions(vcpu)) 2477 return 1; 2478 2479 ret = kvm_skip_emulated_instruction(vcpu); 2480 svm_set_gif(to_svm(vcpu), false); 2481 return ret; 2482 } 2483 2484 static int invlpga_interception(struct kvm_vcpu *vcpu) 2485 { 2486 gva_t gva = kvm_rax_read(vcpu); 2487 u32 asid = kvm_rcx_read(vcpu); 2488 2489 /* FIXME: Handle an address size prefix. */ 2490 if (!is_long_mode(vcpu)) 2491 gva = (u32)gva; 2492 2493 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2494 2495 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2496 kvm_mmu_invlpg(vcpu, gva); 2497 2498 return kvm_skip_emulated_instruction(vcpu); 2499 } 2500 2501 static int skinit_interception(struct kvm_vcpu *vcpu) 2502 { 2503 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2504 2505 kvm_queue_exception(vcpu, UD_VECTOR); 2506 return 1; 2507 } 2508 2509 static int task_switch_interception(struct kvm_vcpu *vcpu) 2510 { 2511 struct vcpu_svm *svm = to_svm(vcpu); 2512 u16 tss_selector; 2513 int reason; 2514 int int_type = svm->vmcb->control.exit_int_info & 2515 SVM_EXITINTINFO_TYPE_MASK; 2516 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2517 uint32_t type = 2518 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2519 uint32_t idt_v = 2520 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2521 bool has_error_code = false; 2522 u32 error_code = 0; 2523 2524 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2525 2526 if (svm->vmcb->control.exit_info_2 & 2527 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2528 reason = TASK_SWITCH_IRET; 2529 else if (svm->vmcb->control.exit_info_2 & 2530 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2531 reason = TASK_SWITCH_JMP; 2532 else if (idt_v) 2533 reason = TASK_SWITCH_GATE; 2534 else 2535 reason = TASK_SWITCH_CALL; 2536 2537 if (reason == TASK_SWITCH_GATE) { 2538 switch (type) { 2539 case SVM_EXITINTINFO_TYPE_NMI: 2540 vcpu->arch.nmi_injected = false; 2541 break; 2542 case SVM_EXITINTINFO_TYPE_EXEPT: 2543 if (svm->vmcb->control.exit_info_2 & 2544 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2545 has_error_code = true; 2546 error_code = 2547 (u32)svm->vmcb->control.exit_info_2; 2548 } 2549 kvm_clear_exception_queue(vcpu); 2550 break; 2551 case SVM_EXITINTINFO_TYPE_INTR: 2552 case SVM_EXITINTINFO_TYPE_SOFT: 2553 kvm_clear_interrupt_queue(vcpu); 2554 break; 2555 default: 2556 break; 2557 } 2558 } 2559 2560 if (reason != TASK_SWITCH_GATE || 2561 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2562 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2563 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2564 if (!svm_skip_emulated_instruction(vcpu)) 2565 return 0; 2566 } 2567 2568 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2569 int_vec = -1; 2570 2571 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2572 has_error_code, error_code); 2573 } 2574 2575 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2576 { 2577 if (!sev_es_guest(svm->vcpu.kvm)) 2578 svm_clr_intercept(svm, INTERCEPT_IRET); 2579 } 2580 2581 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2582 { 2583 if (!sev_es_guest(svm->vcpu.kvm)) 2584 svm_set_intercept(svm, INTERCEPT_IRET); 2585 } 2586 2587 static int iret_interception(struct kvm_vcpu *vcpu) 2588 { 2589 struct vcpu_svm *svm = to_svm(vcpu); 2590 2591 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2592 2593 ++vcpu->stat.nmi_window_exits; 2594 svm->awaiting_iret_completion = true; 2595 2596 svm_clr_iret_intercept(svm); 2597 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2598 2599 kvm_make_request(KVM_REQ_EVENT, vcpu); 2600 return 1; 2601 } 2602 2603 static int invlpg_interception(struct kvm_vcpu *vcpu) 2604 { 2605 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2606 return kvm_emulate_instruction(vcpu, 0); 2607 2608 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2609 return kvm_skip_emulated_instruction(vcpu); 2610 } 2611 2612 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2613 { 2614 return kvm_emulate_instruction(vcpu, 0); 2615 } 2616 2617 static int rsm_interception(struct kvm_vcpu *vcpu) 2618 { 2619 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2620 } 2621 2622 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2623 unsigned long val) 2624 { 2625 struct vcpu_svm *svm = to_svm(vcpu); 2626 unsigned long cr0 = vcpu->arch.cr0; 2627 bool ret = false; 2628 2629 if (!is_guest_mode(vcpu) || 2630 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2631 return false; 2632 2633 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2634 val &= ~SVM_CR0_SELECTIVE_MASK; 2635 2636 if (cr0 ^ val) { 2637 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2638 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2639 } 2640 2641 return ret; 2642 } 2643 2644 #define CR_VALID (1ULL << 63) 2645 2646 static int cr_interception(struct kvm_vcpu *vcpu) 2647 { 2648 struct vcpu_svm *svm = to_svm(vcpu); 2649 int reg, cr; 2650 unsigned long val; 2651 int err; 2652 2653 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2654 return emulate_on_interception(vcpu); 2655 2656 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2657 return emulate_on_interception(vcpu); 2658 2659 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2660 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2661 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2662 else 2663 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2664 2665 err = 0; 2666 if (cr >= 16) { /* mov to cr */ 2667 cr -= 16; 2668 val = kvm_register_read(vcpu, reg); 2669 trace_kvm_cr_write(cr, val); 2670 switch (cr) { 2671 case 0: 2672 if (!check_selective_cr0_intercepted(vcpu, val)) 2673 err = kvm_set_cr0(vcpu, val); 2674 else 2675 return 1; 2676 2677 break; 2678 case 3: 2679 err = kvm_set_cr3(vcpu, val); 2680 break; 2681 case 4: 2682 err = kvm_set_cr4(vcpu, val); 2683 break; 2684 case 8: 2685 err = kvm_set_cr8(vcpu, val); 2686 break; 2687 default: 2688 WARN(1, "unhandled write to CR%d", cr); 2689 kvm_queue_exception(vcpu, UD_VECTOR); 2690 return 1; 2691 } 2692 } else { /* mov from cr */ 2693 switch (cr) { 2694 case 0: 2695 val = kvm_read_cr0(vcpu); 2696 break; 2697 case 2: 2698 val = vcpu->arch.cr2; 2699 break; 2700 case 3: 2701 val = kvm_read_cr3(vcpu); 2702 break; 2703 case 4: 2704 val = kvm_read_cr4(vcpu); 2705 break; 2706 case 8: 2707 val = kvm_get_cr8(vcpu); 2708 break; 2709 default: 2710 WARN(1, "unhandled read from CR%d", cr); 2711 kvm_queue_exception(vcpu, UD_VECTOR); 2712 return 1; 2713 } 2714 kvm_register_write(vcpu, reg, val); 2715 trace_kvm_cr_read(cr, val); 2716 } 2717 return kvm_complete_insn_gp(vcpu, err); 2718 } 2719 2720 static int cr_trap(struct kvm_vcpu *vcpu) 2721 { 2722 struct vcpu_svm *svm = to_svm(vcpu); 2723 unsigned long old_value, new_value; 2724 unsigned int cr; 2725 int ret = 0; 2726 2727 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2728 2729 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2730 switch (cr) { 2731 case 0: 2732 old_value = kvm_read_cr0(vcpu); 2733 svm_set_cr0(vcpu, new_value); 2734 2735 kvm_post_set_cr0(vcpu, old_value, new_value); 2736 break; 2737 case 4: 2738 old_value = kvm_read_cr4(vcpu); 2739 svm_set_cr4(vcpu, new_value); 2740 2741 kvm_post_set_cr4(vcpu, old_value, new_value); 2742 break; 2743 case 8: 2744 ret = kvm_set_cr8(vcpu, new_value); 2745 break; 2746 default: 2747 WARN(1, "unhandled CR%d write trap", cr); 2748 kvm_queue_exception(vcpu, UD_VECTOR); 2749 return 1; 2750 } 2751 2752 return kvm_complete_insn_gp(vcpu, ret); 2753 } 2754 2755 static int dr_interception(struct kvm_vcpu *vcpu) 2756 { 2757 struct vcpu_svm *svm = to_svm(vcpu); 2758 int reg, dr; 2759 int err = 0; 2760 2761 /* 2762 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2763 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2764 */ 2765 if (sev_es_guest(vcpu->kvm)) 2766 return 1; 2767 2768 if (vcpu->guest_debug == 0) { 2769 /* 2770 * No more DR vmexits; force a reload of the debug registers 2771 * and reenter on this instruction. The next vmexit will 2772 * retrieve the full state of the debug registers. 2773 */ 2774 clr_dr_intercepts(svm); 2775 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2776 return 1; 2777 } 2778 2779 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2780 return emulate_on_interception(vcpu); 2781 2782 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2783 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2784 if (dr >= 16) { /* mov to DRn */ 2785 dr -= 16; 2786 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 2787 } else { 2788 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 2789 } 2790 2791 return kvm_complete_insn_gp(vcpu, err); 2792 } 2793 2794 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2795 { 2796 int r; 2797 2798 u8 cr8_prev = kvm_get_cr8(vcpu); 2799 /* instruction emulation calls kvm_set_cr8() */ 2800 r = cr_interception(vcpu); 2801 if (lapic_in_kernel(vcpu)) 2802 return r; 2803 if (cr8_prev <= kvm_get_cr8(vcpu)) 2804 return r; 2805 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2806 return 0; 2807 } 2808 2809 static int efer_trap(struct kvm_vcpu *vcpu) 2810 { 2811 struct msr_data msr_info; 2812 int ret; 2813 2814 /* 2815 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2816 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2817 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2818 * the guest doesn't have X86_FEATURE_SVM. 2819 */ 2820 msr_info.host_initiated = false; 2821 msr_info.index = MSR_EFER; 2822 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2823 ret = kvm_set_msr_common(vcpu, &msr_info); 2824 2825 return kvm_complete_insn_gp(vcpu, ret); 2826 } 2827 2828 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2829 { 2830 msr->data = 0; 2831 2832 switch (msr->index) { 2833 case MSR_AMD64_DE_CFG: 2834 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2835 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2836 break; 2837 default: 2838 return KVM_MSR_RET_INVALID; 2839 } 2840 2841 return 0; 2842 } 2843 2844 static bool 2845 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2846 { 2847 return sev_es_guest(vcpu->kvm) && 2848 vcpu->arch.guest_state_protected && 2849 svm_msrpm_offset(msr_info->index) != MSR_INVALID && 2850 !msr_write_intercepted(vcpu, msr_info->index); 2851 } 2852 2853 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2854 { 2855 struct vcpu_svm *svm = to_svm(vcpu); 2856 2857 if (sev_es_prevent_msr_access(vcpu, msr_info)) { 2858 msr_info->data = 0; 2859 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2860 } 2861 2862 switch (msr_info->index) { 2863 case MSR_AMD64_TSC_RATIO: 2864 if (!msr_info->host_initiated && 2865 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) 2866 return 1; 2867 msr_info->data = svm->tsc_ratio_msr; 2868 break; 2869 case MSR_STAR: 2870 msr_info->data = svm->vmcb01.ptr->save.star; 2871 break; 2872 #ifdef CONFIG_X86_64 2873 case MSR_LSTAR: 2874 msr_info->data = svm->vmcb01.ptr->save.lstar; 2875 break; 2876 case MSR_CSTAR: 2877 msr_info->data = svm->vmcb01.ptr->save.cstar; 2878 break; 2879 case MSR_GS_BASE: 2880 msr_info->data = svm->vmcb01.ptr->save.gs.base; 2881 break; 2882 case MSR_FS_BASE: 2883 msr_info->data = svm->vmcb01.ptr->save.fs.base; 2884 break; 2885 case MSR_KERNEL_GS_BASE: 2886 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2887 break; 2888 case MSR_SYSCALL_MASK: 2889 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2890 break; 2891 #endif 2892 case MSR_IA32_SYSENTER_CS: 2893 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2894 break; 2895 case MSR_IA32_SYSENTER_EIP: 2896 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2897 if (guest_cpuid_is_intel_compatible(vcpu)) 2898 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2899 break; 2900 case MSR_IA32_SYSENTER_ESP: 2901 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2902 if (guest_cpuid_is_intel_compatible(vcpu)) 2903 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2904 break; 2905 case MSR_TSC_AUX: 2906 msr_info->data = svm->tsc_aux; 2907 break; 2908 case MSR_IA32_DEBUGCTLMSR: 2909 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2910 break; 2911 case MSR_IA32_LASTBRANCHFROMIP: 2912 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2913 break; 2914 case MSR_IA32_LASTBRANCHTOIP: 2915 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2916 break; 2917 case MSR_IA32_LASTINTFROMIP: 2918 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2919 break; 2920 case MSR_IA32_LASTINTTOIP: 2921 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2922 break; 2923 case MSR_VM_HSAVE_PA: 2924 msr_info->data = svm->nested.hsave_msr; 2925 break; 2926 case MSR_VM_CR: 2927 msr_info->data = svm->nested.vm_cr_msr; 2928 break; 2929 case MSR_IA32_SPEC_CTRL: 2930 if (!msr_info->host_initiated && 2931 !guest_has_spec_ctrl_msr(vcpu)) 2932 return 1; 2933 2934 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2935 msr_info->data = svm->vmcb->save.spec_ctrl; 2936 else 2937 msr_info->data = svm->spec_ctrl; 2938 break; 2939 case MSR_AMD64_VIRT_SPEC_CTRL: 2940 if (!msr_info->host_initiated && 2941 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2942 return 1; 2943 2944 msr_info->data = svm->virt_spec_ctrl; 2945 break; 2946 case MSR_F15H_IC_CFG: { 2947 2948 int family, model; 2949 2950 family = guest_cpuid_family(vcpu); 2951 model = guest_cpuid_model(vcpu); 2952 2953 if (family < 0 || model < 0) 2954 return kvm_get_msr_common(vcpu, msr_info); 2955 2956 msr_info->data = 0; 2957 2958 if (family == 0x15 && 2959 (model >= 0x2 && model < 0x20)) 2960 msr_info->data = 0x1E; 2961 } 2962 break; 2963 case MSR_AMD64_DE_CFG: 2964 msr_info->data = svm->msr_decfg; 2965 break; 2966 default: 2967 return kvm_get_msr_common(vcpu, msr_info); 2968 } 2969 return 0; 2970 } 2971 2972 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2973 { 2974 struct vcpu_svm *svm = to_svm(vcpu); 2975 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2976 return kvm_complete_insn_gp(vcpu, err); 2977 2978 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2979 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2980 X86_TRAP_GP | 2981 SVM_EVTINJ_TYPE_EXEPT | 2982 SVM_EVTINJ_VALID); 2983 return 1; 2984 } 2985 2986 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2987 { 2988 struct vcpu_svm *svm = to_svm(vcpu); 2989 int svm_dis, chg_mask; 2990 2991 if (data & ~SVM_VM_CR_VALID_MASK) 2992 return 1; 2993 2994 chg_mask = SVM_VM_CR_VALID_MASK; 2995 2996 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2997 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2998 2999 svm->nested.vm_cr_msr &= ~chg_mask; 3000 svm->nested.vm_cr_msr |= (data & chg_mask); 3001 3002 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 3003 3004 /* check for svm_disable while efer.svme is set */ 3005 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 3006 return 1; 3007 3008 return 0; 3009 } 3010 3011 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 3012 { 3013 struct vcpu_svm *svm = to_svm(vcpu); 3014 int ret = 0; 3015 3016 u32 ecx = msr->index; 3017 u64 data = msr->data; 3018 3019 if (sev_es_prevent_msr_access(vcpu, msr)) 3020 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 3021 3022 switch (ecx) { 3023 case MSR_AMD64_TSC_RATIO: 3024 3025 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { 3026 3027 if (!msr->host_initiated) 3028 return 1; 3029 /* 3030 * In case TSC scaling is not enabled, always 3031 * leave this MSR at the default value. 3032 * 3033 * Due to bug in qemu 6.2.0, it would try to set 3034 * this msr to 0 if tsc scaling is not enabled. 3035 * Ignore this value as well. 3036 */ 3037 if (data != 0 && data != svm->tsc_ratio_msr) 3038 return 1; 3039 break; 3040 } 3041 3042 if (data & SVM_TSC_RATIO_RSVD) 3043 return 1; 3044 3045 svm->tsc_ratio_msr = data; 3046 3047 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && 3048 is_guest_mode(vcpu)) 3049 nested_svm_update_tsc_ratio_msr(vcpu); 3050 3051 break; 3052 case MSR_IA32_CR_PAT: 3053 ret = kvm_set_msr_common(vcpu, msr); 3054 if (ret) 3055 break; 3056 3057 svm->vmcb01.ptr->save.g_pat = data; 3058 if (is_guest_mode(vcpu)) 3059 nested_vmcb02_compute_g_pat(svm); 3060 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3061 break; 3062 case MSR_IA32_SPEC_CTRL: 3063 if (!msr->host_initiated && 3064 !guest_has_spec_ctrl_msr(vcpu)) 3065 return 1; 3066 3067 if (kvm_spec_ctrl_test_value(data)) 3068 return 1; 3069 3070 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3071 svm->vmcb->save.spec_ctrl = data; 3072 else 3073 svm->spec_ctrl = data; 3074 if (!data) 3075 break; 3076 3077 /* 3078 * For non-nested: 3079 * When it's written (to non-zero) for the first time, pass 3080 * it through. 3081 * 3082 * For nested: 3083 * The handling of the MSR bitmap for L2 guests is done in 3084 * nested_svm_vmrun_msrpm. 3085 * We update the L1 MSR bit as well since it will end up 3086 * touching the MSR anyway now. 3087 */ 3088 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3089 break; 3090 case MSR_AMD64_VIRT_SPEC_CTRL: 3091 if (!msr->host_initiated && 3092 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3093 return 1; 3094 3095 if (data & ~SPEC_CTRL_SSBD) 3096 return 1; 3097 3098 svm->virt_spec_ctrl = data; 3099 break; 3100 case MSR_STAR: 3101 svm->vmcb01.ptr->save.star = data; 3102 break; 3103 #ifdef CONFIG_X86_64 3104 case MSR_LSTAR: 3105 svm->vmcb01.ptr->save.lstar = data; 3106 break; 3107 case MSR_CSTAR: 3108 svm->vmcb01.ptr->save.cstar = data; 3109 break; 3110 case MSR_GS_BASE: 3111 svm->vmcb01.ptr->save.gs.base = data; 3112 break; 3113 case MSR_FS_BASE: 3114 svm->vmcb01.ptr->save.fs.base = data; 3115 break; 3116 case MSR_KERNEL_GS_BASE: 3117 svm->vmcb01.ptr->save.kernel_gs_base = data; 3118 break; 3119 case MSR_SYSCALL_MASK: 3120 svm->vmcb01.ptr->save.sfmask = data; 3121 break; 3122 #endif 3123 case MSR_IA32_SYSENTER_CS: 3124 svm->vmcb01.ptr->save.sysenter_cs = data; 3125 break; 3126 case MSR_IA32_SYSENTER_EIP: 3127 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3128 /* 3129 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3130 * when we spoof an Intel vendor ID (for cross vendor migration). 3131 * In this case we use this intercept to track the high 3132 * 32 bit part of these msrs to support Intel's 3133 * implementation of SYSENTER/SYSEXIT. 3134 */ 3135 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3136 break; 3137 case MSR_IA32_SYSENTER_ESP: 3138 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3139 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3140 break; 3141 case MSR_TSC_AUX: 3142 /* 3143 * TSC_AUX is always virtualized for SEV-ES guests when the 3144 * feature is available. The user return MSR support is not 3145 * required in this case because TSC_AUX is restored on #VMEXIT 3146 * from the host save area (which has been initialized in 3147 * svm_hardware_enable()). 3148 */ 3149 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3150 break; 3151 3152 /* 3153 * TSC_AUX is usually changed only during boot and never read 3154 * directly. Intercept TSC_AUX instead of exposing it to the 3155 * guest via direct_access_msrs, and switch it via user return. 3156 */ 3157 preempt_disable(); 3158 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3159 preempt_enable(); 3160 if (ret) 3161 break; 3162 3163 svm->tsc_aux = data; 3164 break; 3165 case MSR_IA32_DEBUGCTLMSR: 3166 if (!lbrv) { 3167 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3168 break; 3169 } 3170 if (data & DEBUGCTL_RESERVED_BITS) 3171 return 1; 3172 3173 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3174 svm_update_lbrv(vcpu); 3175 break; 3176 case MSR_VM_HSAVE_PA: 3177 /* 3178 * Old kernels did not validate the value written to 3179 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3180 * value to allow live migrating buggy or malicious guests 3181 * originating from those kernels. 3182 */ 3183 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3184 return 1; 3185 3186 svm->nested.hsave_msr = data & PAGE_MASK; 3187 break; 3188 case MSR_VM_CR: 3189 return svm_set_vm_cr(vcpu, data); 3190 case MSR_VM_IGNNE: 3191 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3192 break; 3193 case MSR_AMD64_DE_CFG: { 3194 struct kvm_msr_entry msr_entry; 3195 3196 msr_entry.index = msr->index; 3197 if (svm_get_msr_feature(&msr_entry)) 3198 return 1; 3199 3200 /* Check the supported bits */ 3201 if (data & ~msr_entry.data) 3202 return 1; 3203 3204 /* Don't allow the guest to change a bit, #GP */ 3205 if (!msr->host_initiated && (data ^ msr_entry.data)) 3206 return 1; 3207 3208 svm->msr_decfg = data; 3209 break; 3210 } 3211 default: 3212 return kvm_set_msr_common(vcpu, msr); 3213 } 3214 return ret; 3215 } 3216 3217 static int msr_interception(struct kvm_vcpu *vcpu) 3218 { 3219 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3220 return kvm_emulate_wrmsr(vcpu); 3221 else 3222 return kvm_emulate_rdmsr(vcpu); 3223 } 3224 3225 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3226 { 3227 kvm_make_request(KVM_REQ_EVENT, vcpu); 3228 svm_clear_vintr(to_svm(vcpu)); 3229 3230 /* 3231 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3232 * In this case AVIC was temporarily disabled for 3233 * requesting the IRQ window and we have to re-enable it. 3234 * 3235 * If running nested, still remove the VM wide AVIC inhibit to 3236 * support case in which the interrupt window was requested when the 3237 * vCPU was not running nested. 3238 3239 * All vCPUs which run still run nested, will remain to have their 3240 * AVIC still inhibited due to per-cpu AVIC inhibition. 3241 */ 3242 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3243 3244 ++vcpu->stat.irq_window_exits; 3245 return 1; 3246 } 3247 3248 static int pause_interception(struct kvm_vcpu *vcpu) 3249 { 3250 bool in_kernel; 3251 /* 3252 * CPL is not made available for an SEV-ES guest, therefore 3253 * vcpu->arch.preempted_in_kernel can never be true. Just 3254 * set in_kernel to false as well. 3255 */ 3256 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3257 3258 grow_ple_window(vcpu); 3259 3260 kvm_vcpu_on_spin(vcpu, in_kernel); 3261 return kvm_skip_emulated_instruction(vcpu); 3262 } 3263 3264 static int invpcid_interception(struct kvm_vcpu *vcpu) 3265 { 3266 struct vcpu_svm *svm = to_svm(vcpu); 3267 unsigned long type; 3268 gva_t gva; 3269 3270 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3271 kvm_queue_exception(vcpu, UD_VECTOR); 3272 return 1; 3273 } 3274 3275 /* 3276 * For an INVPCID intercept: 3277 * EXITINFO1 provides the linear address of the memory operand. 3278 * EXITINFO2 provides the contents of the register operand. 3279 */ 3280 type = svm->vmcb->control.exit_info_2; 3281 gva = svm->vmcb->control.exit_info_1; 3282 3283 return kvm_handle_invpcid(vcpu, type, gva); 3284 } 3285 3286 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3287 [SVM_EXIT_READ_CR0] = cr_interception, 3288 [SVM_EXIT_READ_CR3] = cr_interception, 3289 [SVM_EXIT_READ_CR4] = cr_interception, 3290 [SVM_EXIT_READ_CR8] = cr_interception, 3291 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3292 [SVM_EXIT_WRITE_CR0] = cr_interception, 3293 [SVM_EXIT_WRITE_CR3] = cr_interception, 3294 [SVM_EXIT_WRITE_CR4] = cr_interception, 3295 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3296 [SVM_EXIT_READ_DR0] = dr_interception, 3297 [SVM_EXIT_READ_DR1] = dr_interception, 3298 [SVM_EXIT_READ_DR2] = dr_interception, 3299 [SVM_EXIT_READ_DR3] = dr_interception, 3300 [SVM_EXIT_READ_DR4] = dr_interception, 3301 [SVM_EXIT_READ_DR5] = dr_interception, 3302 [SVM_EXIT_READ_DR6] = dr_interception, 3303 [SVM_EXIT_READ_DR7] = dr_interception, 3304 [SVM_EXIT_WRITE_DR0] = dr_interception, 3305 [SVM_EXIT_WRITE_DR1] = dr_interception, 3306 [SVM_EXIT_WRITE_DR2] = dr_interception, 3307 [SVM_EXIT_WRITE_DR3] = dr_interception, 3308 [SVM_EXIT_WRITE_DR4] = dr_interception, 3309 [SVM_EXIT_WRITE_DR5] = dr_interception, 3310 [SVM_EXIT_WRITE_DR6] = dr_interception, 3311 [SVM_EXIT_WRITE_DR7] = dr_interception, 3312 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3313 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3314 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3315 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3316 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3317 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3318 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3319 [SVM_EXIT_INTR] = intr_interception, 3320 [SVM_EXIT_NMI] = nmi_interception, 3321 [SVM_EXIT_SMI] = smi_interception, 3322 [SVM_EXIT_VINTR] = interrupt_window_interception, 3323 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3324 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3325 [SVM_EXIT_IRET] = iret_interception, 3326 [SVM_EXIT_INVD] = kvm_emulate_invd, 3327 [SVM_EXIT_PAUSE] = pause_interception, 3328 [SVM_EXIT_HLT] = kvm_emulate_halt, 3329 [SVM_EXIT_INVLPG] = invlpg_interception, 3330 [SVM_EXIT_INVLPGA] = invlpga_interception, 3331 [SVM_EXIT_IOIO] = io_interception, 3332 [SVM_EXIT_MSR] = msr_interception, 3333 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3334 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3335 [SVM_EXIT_VMRUN] = vmrun_interception, 3336 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3337 [SVM_EXIT_VMLOAD] = vmload_interception, 3338 [SVM_EXIT_VMSAVE] = vmsave_interception, 3339 [SVM_EXIT_STGI] = stgi_interception, 3340 [SVM_EXIT_CLGI] = clgi_interception, 3341 [SVM_EXIT_SKINIT] = skinit_interception, 3342 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3343 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3344 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3345 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3346 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3347 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3348 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3349 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3350 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3351 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3352 [SVM_EXIT_INVPCID] = invpcid_interception, 3353 [SVM_EXIT_NPF] = npf_interception, 3354 [SVM_EXIT_RSM] = rsm_interception, 3355 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3356 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3357 #ifdef CONFIG_KVM_AMD_SEV 3358 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3359 #endif 3360 }; 3361 3362 static void dump_vmcb(struct kvm_vcpu *vcpu) 3363 { 3364 struct vcpu_svm *svm = to_svm(vcpu); 3365 struct vmcb_control_area *control = &svm->vmcb->control; 3366 struct vmcb_save_area *save = &svm->vmcb->save; 3367 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3368 3369 if (!dump_invalid_vmcb) { 3370 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3371 return; 3372 } 3373 3374 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3375 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3376 pr_err("VMCB Control Area:\n"); 3377 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3378 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3379 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3380 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3381 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3382 pr_err("%-20s%08x %08x\n", "intercepts:", 3383 control->intercepts[INTERCEPT_WORD3], 3384 control->intercepts[INTERCEPT_WORD4]); 3385 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3386 pr_err("%-20s%d\n", "pause filter threshold:", 3387 control->pause_filter_thresh); 3388 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3389 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3390 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3391 pr_err("%-20s%d\n", "asid:", control->asid); 3392 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3393 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3394 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3395 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3396 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3397 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3398 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3399 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3400 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3401 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3402 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3403 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3404 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3405 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3406 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3407 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3408 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3409 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3410 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3411 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3412 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3413 pr_err("VMCB State Save Area:\n"); 3414 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3415 "es:", 3416 save->es.selector, save->es.attrib, 3417 save->es.limit, save->es.base); 3418 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3419 "cs:", 3420 save->cs.selector, save->cs.attrib, 3421 save->cs.limit, save->cs.base); 3422 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3423 "ss:", 3424 save->ss.selector, save->ss.attrib, 3425 save->ss.limit, save->ss.base); 3426 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3427 "ds:", 3428 save->ds.selector, save->ds.attrib, 3429 save->ds.limit, save->ds.base); 3430 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3431 "fs:", 3432 save01->fs.selector, save01->fs.attrib, 3433 save01->fs.limit, save01->fs.base); 3434 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3435 "gs:", 3436 save01->gs.selector, save01->gs.attrib, 3437 save01->gs.limit, save01->gs.base); 3438 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3439 "gdtr:", 3440 save->gdtr.selector, save->gdtr.attrib, 3441 save->gdtr.limit, save->gdtr.base); 3442 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3443 "ldtr:", 3444 save01->ldtr.selector, save01->ldtr.attrib, 3445 save01->ldtr.limit, save01->ldtr.base); 3446 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3447 "idtr:", 3448 save->idtr.selector, save->idtr.attrib, 3449 save->idtr.limit, save->idtr.base); 3450 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3451 "tr:", 3452 save01->tr.selector, save01->tr.attrib, 3453 save01->tr.limit, save01->tr.base); 3454 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3455 save->vmpl, save->cpl, save->efer); 3456 pr_err("%-15s %016llx %-13s %016llx\n", 3457 "cr0:", save->cr0, "cr2:", save->cr2); 3458 pr_err("%-15s %016llx %-13s %016llx\n", 3459 "cr3:", save->cr3, "cr4:", save->cr4); 3460 pr_err("%-15s %016llx %-13s %016llx\n", 3461 "dr6:", save->dr6, "dr7:", save->dr7); 3462 pr_err("%-15s %016llx %-13s %016llx\n", 3463 "rip:", save->rip, "rflags:", save->rflags); 3464 pr_err("%-15s %016llx %-13s %016llx\n", 3465 "rsp:", save->rsp, "rax:", save->rax); 3466 pr_err("%-15s %016llx %-13s %016llx\n", 3467 "star:", save01->star, "lstar:", save01->lstar); 3468 pr_err("%-15s %016llx %-13s %016llx\n", 3469 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3470 pr_err("%-15s %016llx %-13s %016llx\n", 3471 "kernel_gs_base:", save01->kernel_gs_base, 3472 "sysenter_cs:", save01->sysenter_cs); 3473 pr_err("%-15s %016llx %-13s %016llx\n", 3474 "sysenter_esp:", save01->sysenter_esp, 3475 "sysenter_eip:", save01->sysenter_eip); 3476 pr_err("%-15s %016llx %-13s %016llx\n", 3477 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3478 pr_err("%-15s %016llx %-13s %016llx\n", 3479 "br_from:", save->br_from, "br_to:", save->br_to); 3480 pr_err("%-15s %016llx %-13s %016llx\n", 3481 "excp_from:", save->last_excp_from, 3482 "excp_to:", save->last_excp_to); 3483 } 3484 3485 static bool svm_check_exit_valid(u64 exit_code) 3486 { 3487 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3488 svm_exit_handlers[exit_code]); 3489 } 3490 3491 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3492 { 3493 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3494 dump_vmcb(vcpu); 3495 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3496 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3497 vcpu->run->internal.ndata = 2; 3498 vcpu->run->internal.data[0] = exit_code; 3499 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3500 return 0; 3501 } 3502 3503 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3504 { 3505 if (!svm_check_exit_valid(exit_code)) 3506 return svm_handle_invalid_exit(vcpu, exit_code); 3507 3508 #ifdef CONFIG_MITIGATION_RETPOLINE 3509 if (exit_code == SVM_EXIT_MSR) 3510 return msr_interception(vcpu); 3511 else if (exit_code == SVM_EXIT_VINTR) 3512 return interrupt_window_interception(vcpu); 3513 else if (exit_code == SVM_EXIT_INTR) 3514 return intr_interception(vcpu); 3515 else if (exit_code == SVM_EXIT_HLT) 3516 return kvm_emulate_halt(vcpu); 3517 else if (exit_code == SVM_EXIT_NPF) 3518 return npf_interception(vcpu); 3519 #endif 3520 return svm_exit_handlers[exit_code](vcpu); 3521 } 3522 3523 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3524 u64 *info1, u64 *info2, 3525 u32 *intr_info, u32 *error_code) 3526 { 3527 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3528 3529 *reason = control->exit_code; 3530 *info1 = control->exit_info_1; 3531 *info2 = control->exit_info_2; 3532 *intr_info = control->exit_int_info; 3533 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3534 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3535 *error_code = control->exit_int_info_err; 3536 else 3537 *error_code = 0; 3538 } 3539 3540 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3541 { 3542 struct vcpu_svm *svm = to_svm(vcpu); 3543 struct kvm_run *kvm_run = vcpu->run; 3544 u32 exit_code = svm->vmcb->control.exit_code; 3545 3546 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3547 if (!sev_es_guest(vcpu->kvm)) { 3548 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3549 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3550 if (npt_enabled) 3551 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3552 } 3553 3554 if (is_guest_mode(vcpu)) { 3555 int vmexit; 3556 3557 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3558 3559 vmexit = nested_svm_exit_special(svm); 3560 3561 if (vmexit == NESTED_EXIT_CONTINUE) 3562 vmexit = nested_svm_exit_handled(svm); 3563 3564 if (vmexit == NESTED_EXIT_DONE) 3565 return 1; 3566 } 3567 3568 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3569 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3570 kvm_run->fail_entry.hardware_entry_failure_reason 3571 = svm->vmcb->control.exit_code; 3572 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3573 dump_vmcb(vcpu); 3574 return 0; 3575 } 3576 3577 if (exit_fastpath != EXIT_FASTPATH_NONE) 3578 return 1; 3579 3580 return svm_invoke_exit_handler(vcpu, exit_code); 3581 } 3582 3583 static void pre_svm_run(struct kvm_vcpu *vcpu) 3584 { 3585 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3586 struct vcpu_svm *svm = to_svm(vcpu); 3587 3588 /* 3589 * If the previous vmrun of the vmcb occurred on a different physical 3590 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3591 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3592 */ 3593 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3594 svm->current_vmcb->asid_generation = 0; 3595 vmcb_mark_all_dirty(svm->vmcb); 3596 svm->current_vmcb->cpu = vcpu->cpu; 3597 } 3598 3599 if (sev_guest(vcpu->kvm)) 3600 return pre_sev_run(svm, vcpu->cpu); 3601 3602 /* FIXME: handle wraparound of asid_generation */ 3603 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3604 new_asid(svm, sd); 3605 } 3606 3607 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3608 { 3609 struct vcpu_svm *svm = to_svm(vcpu); 3610 3611 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3612 3613 if (svm->nmi_l1_to_l2) 3614 return; 3615 3616 /* 3617 * No need to manually track NMI masking when vNMI is enabled, hardware 3618 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the 3619 * case where software directly injects an NMI. 3620 */ 3621 if (!is_vnmi_enabled(svm)) { 3622 svm->nmi_masked = true; 3623 svm_set_iret_intercept(svm); 3624 } 3625 ++vcpu->stat.nmi_injections; 3626 } 3627 3628 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3629 { 3630 struct vcpu_svm *svm = to_svm(vcpu); 3631 3632 if (!is_vnmi_enabled(svm)) 3633 return false; 3634 3635 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3636 } 3637 3638 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3639 { 3640 struct vcpu_svm *svm = to_svm(vcpu); 3641 3642 if (!is_vnmi_enabled(svm)) 3643 return false; 3644 3645 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3646 return false; 3647 3648 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3649 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3650 3651 /* 3652 * Because the pending NMI is serviced by hardware, KVM can't know when 3653 * the NMI is "injected", but for all intents and purposes, passing the 3654 * NMI off to hardware counts as injection. 3655 */ 3656 ++vcpu->stat.nmi_injections; 3657 3658 return true; 3659 } 3660 3661 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3662 { 3663 struct vcpu_svm *svm = to_svm(vcpu); 3664 u32 type; 3665 3666 if (vcpu->arch.interrupt.soft) { 3667 if (svm_update_soft_interrupt_rip(vcpu)) 3668 return; 3669 3670 type = SVM_EVTINJ_TYPE_SOFT; 3671 } else { 3672 type = SVM_EVTINJ_TYPE_INTR; 3673 } 3674 3675 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3676 vcpu->arch.interrupt.soft, reinjected); 3677 ++vcpu->stat.irq_injections; 3678 3679 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3680 SVM_EVTINJ_VALID | type; 3681 } 3682 3683 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3684 int trig_mode, int vector) 3685 { 3686 /* 3687 * apic->apicv_active must be read after vcpu->mode. 3688 * Pairs with smp_store_release in vcpu_enter_guest. 3689 */ 3690 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3691 3692 /* Note, this is called iff the local APIC is in-kernel. */ 3693 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3694 /* Process the interrupt via kvm_check_and_inject_events(). */ 3695 kvm_make_request(KVM_REQ_EVENT, vcpu); 3696 kvm_vcpu_kick(vcpu); 3697 return; 3698 } 3699 3700 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3701 if (in_guest_mode) { 3702 /* 3703 * Signal the doorbell to tell hardware to inject the IRQ. If 3704 * the vCPU exits the guest before the doorbell chimes, hardware 3705 * will automatically process AVIC interrupts at the next VMRUN. 3706 */ 3707 avic_ring_doorbell(vcpu); 3708 } else { 3709 /* 3710 * Wake the vCPU if it was blocking. KVM will then detect the 3711 * pending IRQ when checking if the vCPU has a wake event. 3712 */ 3713 kvm_vcpu_wake_up(vcpu); 3714 } 3715 } 3716 3717 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3718 int trig_mode, int vector) 3719 { 3720 kvm_lapic_set_irr(vector, apic); 3721 3722 /* 3723 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3724 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3725 * the read of guest_mode. This guarantees that either VMRUN will see 3726 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3727 * will signal the doorbell if the CPU has already entered the guest. 3728 */ 3729 smp_mb__after_atomic(); 3730 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3731 } 3732 3733 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3734 { 3735 struct vcpu_svm *svm = to_svm(vcpu); 3736 3737 /* 3738 * SEV-ES guests must always keep the CR intercepts cleared. CR 3739 * tracking is done using the CR write traps. 3740 */ 3741 if (sev_es_guest(vcpu->kvm)) 3742 return; 3743 3744 if (nested_svm_virtualize_tpr(vcpu)) 3745 return; 3746 3747 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3748 3749 if (irr == -1) 3750 return; 3751 3752 if (tpr >= irr) 3753 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3754 } 3755 3756 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3757 { 3758 struct vcpu_svm *svm = to_svm(vcpu); 3759 3760 if (is_vnmi_enabled(svm)) 3761 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3762 else 3763 return svm->nmi_masked; 3764 } 3765 3766 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3767 { 3768 struct vcpu_svm *svm = to_svm(vcpu); 3769 3770 if (is_vnmi_enabled(svm)) { 3771 if (masked) 3772 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3773 else 3774 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3775 3776 } else { 3777 svm->nmi_masked = masked; 3778 if (masked) 3779 svm_set_iret_intercept(svm); 3780 else 3781 svm_clr_iret_intercept(svm); 3782 } 3783 } 3784 3785 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3786 { 3787 struct vcpu_svm *svm = to_svm(vcpu); 3788 struct vmcb *vmcb = svm->vmcb; 3789 3790 if (!gif_set(svm)) 3791 return true; 3792 3793 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3794 return false; 3795 3796 if (svm_get_nmi_mask(vcpu)) 3797 return true; 3798 3799 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3800 } 3801 3802 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3803 { 3804 struct vcpu_svm *svm = to_svm(vcpu); 3805 if (svm->nested.nested_run_pending) 3806 return -EBUSY; 3807 3808 if (svm_nmi_blocked(vcpu)) 3809 return 0; 3810 3811 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3812 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3813 return -EBUSY; 3814 return 1; 3815 } 3816 3817 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3818 { 3819 struct vcpu_svm *svm = to_svm(vcpu); 3820 struct vmcb *vmcb = svm->vmcb; 3821 3822 if (!gif_set(svm)) 3823 return true; 3824 3825 if (is_guest_mode(vcpu)) { 3826 /* As long as interrupts are being delivered... */ 3827 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3828 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3829 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3830 return true; 3831 3832 /* ... vmexits aren't blocked by the interrupt shadow */ 3833 if (nested_exit_on_intr(svm)) 3834 return false; 3835 } else { 3836 if (!svm_get_if_flag(vcpu)) 3837 return true; 3838 } 3839 3840 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3841 } 3842 3843 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3844 { 3845 struct vcpu_svm *svm = to_svm(vcpu); 3846 3847 if (svm->nested.nested_run_pending) 3848 return -EBUSY; 3849 3850 if (svm_interrupt_blocked(vcpu)) 3851 return 0; 3852 3853 /* 3854 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3855 * e.g. if the IRQ arrived asynchronously after checking nested events. 3856 */ 3857 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3858 return -EBUSY; 3859 3860 return 1; 3861 } 3862 3863 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3864 { 3865 struct vcpu_svm *svm = to_svm(vcpu); 3866 3867 /* 3868 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3869 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3870 * get that intercept, this function will be called again though and 3871 * we'll get the vintr intercept. However, if the vGIF feature is 3872 * enabled, the STGI interception will not occur. Enable the irq 3873 * window under the assumption that the hardware will set the GIF. 3874 */ 3875 if (vgif || gif_set(svm)) { 3876 /* 3877 * IRQ window is not needed when AVIC is enabled, 3878 * unless we have pending ExtINT since it cannot be injected 3879 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3880 * and fallback to injecting IRQ via V_IRQ. 3881 * 3882 * If running nested, AVIC is already locally inhibited 3883 * on this vCPU, therefore there is no need to request 3884 * the VM wide AVIC inhibition. 3885 */ 3886 if (!is_guest_mode(vcpu)) 3887 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3888 3889 svm_set_vintr(svm); 3890 } 3891 } 3892 3893 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3894 { 3895 struct vcpu_svm *svm = to_svm(vcpu); 3896 3897 /* 3898 * If NMIs are outright masked, i.e. the vCPU is already handling an 3899 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 3900 * more to do at this time as KVM has already enabled IRET intercepts. 3901 * If KVM has already intercepted IRET, then single-step over the IRET, 3902 * as NMIs aren't architecturally unmasked until the IRET completes. 3903 * 3904 * If vNMI is enabled, KVM should never request an NMI window if NMIs 3905 * are masked, as KVM allows at most one to-be-injected NMI and one 3906 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 3907 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 3908 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 3909 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 3910 * inject the NMI. In those situations, KVM needs to single-step over 3911 * the STI shadow or intercept STGI. 3912 */ 3913 if (svm_get_nmi_mask(vcpu)) { 3914 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3915 3916 if (!svm->awaiting_iret_completion) 3917 return; /* IRET will cause a vm exit */ 3918 } 3919 3920 /* 3921 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3922 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3923 * KVM can't intercept and single-step IRET to detect when NMIs are 3924 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3925 * 3926 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3927 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3928 * supported NAEs in the GHCB protocol. 3929 */ 3930 if (sev_es_guest(vcpu->kvm)) 3931 return; 3932 3933 if (!gif_set(svm)) { 3934 if (vgif) 3935 svm_set_intercept(svm, INTERCEPT_STGI); 3936 return; /* STGI will cause a vm exit */ 3937 } 3938 3939 /* 3940 * Something prevents NMI from been injected. Single step over possible 3941 * problem (IRET or exception injection or interrupt shadow) 3942 */ 3943 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3944 svm->nmi_singlestep = true; 3945 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3946 } 3947 3948 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3949 { 3950 struct vcpu_svm *svm = to_svm(vcpu); 3951 3952 /* 3953 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3954 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3955 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3956 */ 3957 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3958 3959 /* 3960 * Flush only the current ASID even if the TLB flush was invoked via 3961 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3962 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3963 * unconditionally does a TLB flush on both nested VM-Enter and nested 3964 * VM-Exit (via kvm_mmu_reset_context()). 3965 */ 3966 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3967 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3968 else 3969 svm->current_vmcb->asid_generation--; 3970 } 3971 3972 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3973 { 3974 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3975 3976 /* 3977 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3978 * flush the NPT mappings via hypercall as flushing the ASID only 3979 * affects virtual to physical mappings, it does not invalidate guest 3980 * physical to host physical mappings. 3981 */ 3982 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3983 hyperv_flush_guest_mapping(root_tdp); 3984 3985 svm_flush_tlb_asid(vcpu); 3986 } 3987 3988 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3989 { 3990 /* 3991 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3992 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3993 * a "regular" remote flush. Reaching this point means either there's 3994 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3995 * which might be fatal to the guest. Yell, but try to recover. 3996 */ 3997 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3998 hv_flush_remote_tlbs(vcpu->kvm); 3999 4000 svm_flush_tlb_asid(vcpu); 4001 } 4002 4003 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 4004 { 4005 struct vcpu_svm *svm = to_svm(vcpu); 4006 4007 invlpga(gva, svm->vmcb->control.asid); 4008 } 4009 4010 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 4011 { 4012 struct vcpu_svm *svm = to_svm(vcpu); 4013 4014 if (nested_svm_virtualize_tpr(vcpu)) 4015 return; 4016 4017 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 4018 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 4019 kvm_set_cr8(vcpu, cr8); 4020 } 4021 } 4022 4023 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 4024 { 4025 struct vcpu_svm *svm = to_svm(vcpu); 4026 u64 cr8; 4027 4028 if (nested_svm_virtualize_tpr(vcpu) || 4029 kvm_vcpu_apicv_active(vcpu)) 4030 return; 4031 4032 cr8 = kvm_get_cr8(vcpu); 4033 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 4034 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 4035 } 4036 4037 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 4038 int type) 4039 { 4040 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4041 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4042 struct vcpu_svm *svm = to_svm(vcpu); 4043 4044 /* 4045 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4046 * associated with the original soft exception/interrupt. next_rip is 4047 * cleared on all exits that can occur while vectoring an event, so KVM 4048 * needs to manually set next_rip for re-injection. Unlike the !nrips 4049 * case below, this needs to be done if and only if KVM is re-injecting 4050 * the same event, i.e. if the event is a soft exception/interrupt, 4051 * otherwise next_rip is unused on VMRUN. 4052 */ 4053 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4054 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4055 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4056 /* 4057 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4058 * injecting the soft exception/interrupt. That advancement needs to 4059 * be unwound if vectoring didn't complete. Note, the new event may 4060 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4061 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4062 * be the reported vectored event, but RIP still needs to be unwound. 4063 */ 4064 else if (!nrips && (is_soft || is_exception) && 4065 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4066 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4067 } 4068 4069 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4070 { 4071 struct vcpu_svm *svm = to_svm(vcpu); 4072 u8 vector; 4073 int type; 4074 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4075 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4076 bool soft_int_injected = svm->soft_int_injected; 4077 4078 svm->nmi_l1_to_l2 = false; 4079 svm->soft_int_injected = false; 4080 4081 /* 4082 * If we've made progress since setting awaiting_iret_completion, we've 4083 * executed an IRET and can allow NMI injection. 4084 */ 4085 if (svm->awaiting_iret_completion && 4086 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4087 svm->awaiting_iret_completion = false; 4088 svm->nmi_masked = false; 4089 kvm_make_request(KVM_REQ_EVENT, vcpu); 4090 } 4091 4092 vcpu->arch.nmi_injected = false; 4093 kvm_clear_exception_queue(vcpu); 4094 kvm_clear_interrupt_queue(vcpu); 4095 4096 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4097 return; 4098 4099 kvm_make_request(KVM_REQ_EVENT, vcpu); 4100 4101 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4102 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4103 4104 if (soft_int_injected) 4105 svm_complete_soft_interrupt(vcpu, vector, type); 4106 4107 switch (type) { 4108 case SVM_EXITINTINFO_TYPE_NMI: 4109 vcpu->arch.nmi_injected = true; 4110 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4111 break; 4112 case SVM_EXITINTINFO_TYPE_EXEPT: 4113 /* 4114 * Never re-inject a #VC exception. 4115 */ 4116 if (vector == X86_TRAP_VC) 4117 break; 4118 4119 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 4120 u32 err = svm->vmcb->control.exit_int_info_err; 4121 kvm_requeue_exception_e(vcpu, vector, err); 4122 4123 } else 4124 kvm_requeue_exception(vcpu, vector); 4125 break; 4126 case SVM_EXITINTINFO_TYPE_INTR: 4127 kvm_queue_interrupt(vcpu, vector, false); 4128 break; 4129 case SVM_EXITINTINFO_TYPE_SOFT: 4130 kvm_queue_interrupt(vcpu, vector, true); 4131 break; 4132 default: 4133 break; 4134 } 4135 4136 } 4137 4138 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4139 { 4140 struct vcpu_svm *svm = to_svm(vcpu); 4141 struct vmcb_control_area *control = &svm->vmcb->control; 4142 4143 control->exit_int_info = control->event_inj; 4144 control->exit_int_info_err = control->event_inj_err; 4145 control->event_inj = 0; 4146 svm_complete_interrupts(vcpu); 4147 } 4148 4149 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4150 { 4151 if (to_kvm_sev_info(vcpu->kvm)->need_init) 4152 return -EINVAL; 4153 4154 return 1; 4155 } 4156 4157 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4158 { 4159 if (is_guest_mode(vcpu)) 4160 return EXIT_FASTPATH_NONE; 4161 4162 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 4163 to_svm(vcpu)->vmcb->control.exit_info_1) 4164 return handle_fastpath_set_msr_irqoff(vcpu); 4165 4166 return EXIT_FASTPATH_NONE; 4167 } 4168 4169 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4170 { 4171 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 4172 struct vcpu_svm *svm = to_svm(vcpu); 4173 4174 guest_state_enter_irqoff(); 4175 4176 amd_clear_divider(); 4177 4178 if (sev_es_guest(vcpu->kvm)) 4179 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted, 4180 sev_es_host_save_area(sd)); 4181 else 4182 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4183 4184 guest_state_exit_irqoff(); 4185 } 4186 4187 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, 4188 bool force_immediate_exit) 4189 { 4190 struct vcpu_svm *svm = to_svm(vcpu); 4191 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4192 4193 trace_kvm_entry(vcpu, force_immediate_exit); 4194 4195 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4196 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4197 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4198 4199 /* 4200 * Disable singlestep if we're injecting an interrupt/exception. 4201 * We don't want our modified rflags to be pushed on the stack where 4202 * we might not be able to easily reset them if we disabled NMI 4203 * singlestep later. 4204 */ 4205 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4206 /* 4207 * Event injection happens before external interrupts cause a 4208 * vmexit and interrupts are disabled here, so smp_send_reschedule 4209 * is enough to force an immediate vmexit. 4210 */ 4211 disable_nmi_singlestep(svm); 4212 force_immediate_exit = true; 4213 } 4214 4215 if (force_immediate_exit) 4216 smp_send_reschedule(vcpu->cpu); 4217 4218 pre_svm_run(vcpu); 4219 4220 sync_lapic_to_cr8(vcpu); 4221 4222 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4223 svm->vmcb->control.asid = svm->asid; 4224 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4225 } 4226 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4227 4228 svm_hv_update_vp_id(svm->vmcb, vcpu); 4229 4230 /* 4231 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4232 * of a #DB. 4233 */ 4234 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 4235 svm_set_dr6(svm, vcpu->arch.dr6); 4236 else 4237 svm_set_dr6(svm, DR6_ACTIVE_LOW); 4238 4239 clgi(); 4240 kvm_load_guest_xsave_state(vcpu); 4241 4242 kvm_wait_lapic_expire(vcpu); 4243 4244 /* 4245 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4246 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4247 * is no need to worry about the conditional branch over the wrmsr 4248 * being speculatively taken. 4249 */ 4250 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4251 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4252 4253 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4254 4255 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4256 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4257 4258 if (!sev_es_guest(vcpu->kvm)) { 4259 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4260 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4261 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4262 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4263 } 4264 vcpu->arch.regs_dirty = 0; 4265 4266 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4267 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4268 4269 kvm_load_host_xsave_state(vcpu); 4270 stgi(); 4271 4272 /* Any pending NMI will happen here */ 4273 4274 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4275 kvm_after_interrupt(vcpu); 4276 4277 sync_cr8_to_lapic(vcpu); 4278 4279 svm->next_rip = 0; 4280 if (is_guest_mode(vcpu)) { 4281 nested_sync_control_from_vmcb02(svm); 4282 4283 /* Track VMRUNs that have made past consistency checking */ 4284 if (svm->nested.nested_run_pending && 4285 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4286 ++vcpu->stat.nested_run; 4287 4288 svm->nested.nested_run_pending = 0; 4289 } 4290 4291 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4292 vmcb_mark_all_clean(svm->vmcb); 4293 4294 /* if exit due to PF check for async PF */ 4295 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4296 vcpu->arch.apf.host_apf_flags = 4297 kvm_read_and_reset_apf_flags(); 4298 4299 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4300 4301 /* 4302 * We need to handle MC intercepts here before the vcpu has a chance to 4303 * change the physical cpu 4304 */ 4305 if (unlikely(svm->vmcb->control.exit_code == 4306 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4307 svm_handle_mce(vcpu); 4308 4309 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4310 4311 svm_complete_interrupts(vcpu); 4312 4313 return svm_exit_handlers_fastpath(vcpu); 4314 } 4315 4316 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4317 int root_level) 4318 { 4319 struct vcpu_svm *svm = to_svm(vcpu); 4320 unsigned long cr3; 4321 4322 if (npt_enabled) { 4323 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4324 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4325 4326 hv_track_root_tdp(vcpu, root_hpa); 4327 4328 cr3 = vcpu->arch.cr3; 4329 } else if (root_level >= PT64_ROOT_4LEVEL) { 4330 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4331 } else { 4332 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4333 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4334 cr3 = root_hpa; 4335 } 4336 4337 svm->vmcb->save.cr3 = cr3; 4338 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4339 } 4340 4341 static void 4342 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4343 { 4344 /* 4345 * Patch in the VMMCALL instruction: 4346 */ 4347 hypercall[0] = 0x0f; 4348 hypercall[1] = 0x01; 4349 hypercall[2] = 0xd9; 4350 } 4351 4352 /* 4353 * The kvm parameter can be NULL (module initialization, or invocation before 4354 * VM creation). Be sure to check the kvm parameter before using it. 4355 */ 4356 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4357 { 4358 switch (index) { 4359 case MSR_IA32_MCG_EXT_CTL: 4360 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4361 return false; 4362 case MSR_IA32_SMBASE: 4363 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4364 return false; 4365 /* SEV-ES guests do not support SMM, so report false */ 4366 if (kvm && sev_es_guest(kvm)) 4367 return false; 4368 break; 4369 default: 4370 break; 4371 } 4372 4373 return true; 4374 } 4375 4376 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4377 { 4378 struct vcpu_svm *svm = to_svm(vcpu); 4379 4380 /* 4381 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4382 * can only disable all variants of by disallowing CR4.OSXSAVE from 4383 * being set. As a result, if the host has XSAVE and XSAVES, and the 4384 * guest has XSAVE enabled, the guest can execute XSAVES without 4385 * faulting. Treat XSAVES as enabled in this case regardless of 4386 * whether it's advertised to the guest so that KVM context switches 4387 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4388 * the guest read/write access to the host's XSS. 4389 */ 4390 if (boot_cpu_has(X86_FEATURE_XSAVE) && 4391 boot_cpu_has(X86_FEATURE_XSAVES) && 4392 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 4393 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); 4394 4395 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); 4396 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); 4397 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); 4398 4399 /* 4400 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that 4401 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4402 * SVM on Intel is bonkers and extremely unlikely to work). 4403 */ 4404 if (!guest_cpuid_is_intel_compatible(vcpu)) 4405 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4406 4407 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); 4408 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); 4409 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); 4410 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); 4411 4412 svm_recalc_instruction_intercepts(vcpu, svm); 4413 4414 if (boot_cpu_has(X86_FEATURE_IBPB)) 4415 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4416 !!guest_has_pred_cmd_msr(vcpu)); 4417 4418 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4419 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4420 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4421 4422 if (sev_guest(vcpu->kvm)) 4423 sev_vcpu_after_set_cpuid(svm); 4424 4425 init_vmcb_after_set_cpuid(vcpu); 4426 } 4427 4428 static bool svm_has_wbinvd_exit(void) 4429 { 4430 return true; 4431 } 4432 4433 #define PRE_EX(exit) { .exit_code = (exit), \ 4434 .stage = X86_ICPT_PRE_EXCEPT, } 4435 #define POST_EX(exit) { .exit_code = (exit), \ 4436 .stage = X86_ICPT_POST_EXCEPT, } 4437 #define POST_MEM(exit) { .exit_code = (exit), \ 4438 .stage = X86_ICPT_POST_MEMACCESS, } 4439 4440 static const struct __x86_intercept { 4441 u32 exit_code; 4442 enum x86_intercept_stage stage; 4443 } x86_intercept_map[] = { 4444 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4445 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4446 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4447 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4448 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4449 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4450 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4451 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4452 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4453 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4454 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4455 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4456 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4457 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4458 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4459 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4460 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4461 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4462 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4463 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4464 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4465 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4466 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4467 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4468 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4469 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4470 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4471 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4472 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4473 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4474 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4475 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4476 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4477 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4478 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4479 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4480 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4481 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4482 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4483 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4484 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4485 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4486 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4487 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4488 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4489 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4490 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4491 }; 4492 4493 #undef PRE_EX 4494 #undef POST_EX 4495 #undef POST_MEM 4496 4497 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4498 struct x86_instruction_info *info, 4499 enum x86_intercept_stage stage, 4500 struct x86_exception *exception) 4501 { 4502 struct vcpu_svm *svm = to_svm(vcpu); 4503 int vmexit, ret = X86EMUL_CONTINUE; 4504 struct __x86_intercept icpt_info; 4505 struct vmcb *vmcb = svm->vmcb; 4506 4507 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4508 goto out; 4509 4510 icpt_info = x86_intercept_map[info->intercept]; 4511 4512 if (stage != icpt_info.stage) 4513 goto out; 4514 4515 switch (icpt_info.exit_code) { 4516 case SVM_EXIT_READ_CR0: 4517 if (info->intercept == x86_intercept_cr_read) 4518 icpt_info.exit_code += info->modrm_reg; 4519 break; 4520 case SVM_EXIT_WRITE_CR0: { 4521 unsigned long cr0, val; 4522 4523 if (info->intercept == x86_intercept_cr_write) 4524 icpt_info.exit_code += info->modrm_reg; 4525 4526 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4527 info->intercept == x86_intercept_clts) 4528 break; 4529 4530 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4531 INTERCEPT_SELECTIVE_CR0))) 4532 break; 4533 4534 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4535 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4536 4537 if (info->intercept == x86_intercept_lmsw) { 4538 cr0 &= 0xfUL; 4539 val &= 0xfUL; 4540 /* lmsw can't clear PE - catch this here */ 4541 if (cr0 & X86_CR0_PE) 4542 val |= X86_CR0_PE; 4543 } 4544 4545 if (cr0 ^ val) 4546 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4547 4548 break; 4549 } 4550 case SVM_EXIT_READ_DR0: 4551 case SVM_EXIT_WRITE_DR0: 4552 icpt_info.exit_code += info->modrm_reg; 4553 break; 4554 case SVM_EXIT_MSR: 4555 if (info->intercept == x86_intercept_wrmsr) 4556 vmcb->control.exit_info_1 = 1; 4557 else 4558 vmcb->control.exit_info_1 = 0; 4559 break; 4560 case SVM_EXIT_PAUSE: 4561 /* 4562 * We get this for NOP only, but pause 4563 * is rep not, check this here 4564 */ 4565 if (info->rep_prefix != REPE_PREFIX) 4566 goto out; 4567 break; 4568 case SVM_EXIT_IOIO: { 4569 u64 exit_info; 4570 u32 bytes; 4571 4572 if (info->intercept == x86_intercept_in || 4573 info->intercept == x86_intercept_ins) { 4574 exit_info = ((info->src_val & 0xffff) << 16) | 4575 SVM_IOIO_TYPE_MASK; 4576 bytes = info->dst_bytes; 4577 } else { 4578 exit_info = (info->dst_val & 0xffff) << 16; 4579 bytes = info->src_bytes; 4580 } 4581 4582 if (info->intercept == x86_intercept_outs || 4583 info->intercept == x86_intercept_ins) 4584 exit_info |= SVM_IOIO_STR_MASK; 4585 4586 if (info->rep_prefix) 4587 exit_info |= SVM_IOIO_REP_MASK; 4588 4589 bytes = min(bytes, 4u); 4590 4591 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4592 4593 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4594 4595 vmcb->control.exit_info_1 = exit_info; 4596 vmcb->control.exit_info_2 = info->next_rip; 4597 4598 break; 4599 } 4600 default: 4601 break; 4602 } 4603 4604 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4605 if (static_cpu_has(X86_FEATURE_NRIPS)) 4606 vmcb->control.next_rip = info->next_rip; 4607 vmcb->control.exit_code = icpt_info.exit_code; 4608 vmexit = nested_svm_exit_handled(svm); 4609 4610 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4611 : X86EMUL_CONTINUE; 4612 4613 out: 4614 return ret; 4615 } 4616 4617 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4618 { 4619 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4620 vcpu->arch.at_instruction_boundary = true; 4621 } 4622 4623 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4624 { 4625 /* [63:9] are reserved. */ 4626 vcpu->arch.mcg_cap &= 0x1ff; 4627 } 4628 4629 #ifdef CONFIG_KVM_SMM 4630 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4631 { 4632 struct vcpu_svm *svm = to_svm(vcpu); 4633 4634 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4635 if (!gif_set(svm)) 4636 return true; 4637 4638 return is_smm(vcpu); 4639 } 4640 4641 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4642 { 4643 struct vcpu_svm *svm = to_svm(vcpu); 4644 if (svm->nested.nested_run_pending) 4645 return -EBUSY; 4646 4647 if (svm_smi_blocked(vcpu)) 4648 return 0; 4649 4650 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4651 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4652 return -EBUSY; 4653 4654 return 1; 4655 } 4656 4657 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4658 { 4659 struct vcpu_svm *svm = to_svm(vcpu); 4660 struct kvm_host_map map_save; 4661 int ret; 4662 4663 if (!is_guest_mode(vcpu)) 4664 return 0; 4665 4666 /* 4667 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4668 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4669 */ 4670 4671 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4672 return 1; 4673 4674 smram->smram64.svm_guest_flag = 1; 4675 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4676 4677 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4678 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4679 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4680 4681 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4682 if (ret) 4683 return ret; 4684 4685 /* 4686 * KVM uses VMCB01 to store L1 host state while L2 runs but 4687 * VMCB01 is going to be used during SMM and thus the state will 4688 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4689 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4690 * format of the area is identical to guest save area offsetted 4691 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4692 * within 'struct vmcb'). Note: HSAVE area may also be used by 4693 * L1 hypervisor to save additional host context (e.g. KVM does 4694 * that, see svm_prepare_switch_to_guest()) which must be 4695 * preserved. 4696 */ 4697 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4698 return 1; 4699 4700 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4701 4702 svm_copy_vmrun_state(map_save.hva + 0x400, 4703 &svm->vmcb01.ptr->save); 4704 4705 kvm_vcpu_unmap(vcpu, &map_save, true); 4706 return 0; 4707 } 4708 4709 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4710 { 4711 struct vcpu_svm *svm = to_svm(vcpu); 4712 struct kvm_host_map map, map_save; 4713 struct vmcb *vmcb12; 4714 int ret; 4715 4716 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4717 4718 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4719 return 0; 4720 4721 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4722 if (!smram64->svm_guest_flag) 4723 return 0; 4724 4725 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4726 return 1; 4727 4728 if (!(smram64->efer & EFER_SVME)) 4729 return 1; 4730 4731 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4732 return 1; 4733 4734 ret = 1; 4735 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4736 goto unmap_map; 4737 4738 if (svm_allocate_nested(svm)) 4739 goto unmap_save; 4740 4741 /* 4742 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4743 * used during SMM (see svm_enter_smm()) 4744 */ 4745 4746 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4747 4748 /* 4749 * Enter the nested guest now 4750 */ 4751 4752 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4753 4754 vmcb12 = map.hva; 4755 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4756 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4757 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4758 4759 if (ret) 4760 goto unmap_save; 4761 4762 svm->nested.nested_run_pending = 1; 4763 4764 unmap_save: 4765 kvm_vcpu_unmap(vcpu, &map_save, true); 4766 unmap_map: 4767 kvm_vcpu_unmap(vcpu, &map, true); 4768 return ret; 4769 } 4770 4771 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4772 { 4773 struct vcpu_svm *svm = to_svm(vcpu); 4774 4775 if (!gif_set(svm)) { 4776 if (vgif) 4777 svm_set_intercept(svm, INTERCEPT_STGI); 4778 /* STGI will cause a vm exit */ 4779 } else { 4780 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4781 } 4782 } 4783 #endif 4784 4785 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4786 void *insn, int insn_len) 4787 { 4788 bool smep, smap, is_user; 4789 u64 error_code; 4790 4791 /* Emulation is always possible when KVM has access to all guest state. */ 4792 if (!sev_guest(vcpu->kvm)) 4793 return X86EMUL_CONTINUE; 4794 4795 /* #UD and #GP should never be intercepted for SEV guests. */ 4796 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4797 EMULTYPE_TRAP_UD_FORCED | 4798 EMULTYPE_VMWARE_GP)); 4799 4800 /* 4801 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4802 * to guest register state. 4803 */ 4804 if (sev_es_guest(vcpu->kvm)) 4805 return X86EMUL_RETRY_INSTR; 4806 4807 /* 4808 * Emulation is possible if the instruction is already decoded, e.g. 4809 * when completing I/O after returning from userspace. 4810 */ 4811 if (emul_type & EMULTYPE_NO_DECODE) 4812 return X86EMUL_CONTINUE; 4813 4814 /* 4815 * Emulation is possible for SEV guests if and only if a prefilled 4816 * buffer containing the bytes of the intercepted instruction is 4817 * available. SEV guest memory is encrypted with a guest specific key 4818 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and 4819 * decode garbage. 4820 * 4821 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4822 * KVM reached this point without an instruction buffer. In practice, 4823 * this path should never be hit by a well-behaved guest, e.g. KVM 4824 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4825 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4826 * access, and needs to be handled by KVM to avoid putting the guest 4827 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4828 * its the least awful option given lack of insight into the guest. 4829 * 4830 * If KVM is trying to skip an instruction, simply resume the guest. 4831 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4832 * will attempt to re-inject the INT3/INTO and skip the instruction. 4833 * In that scenario, retrying the INT3/INTO and hoping the guest will 4834 * make forward progress is the only option that has a chance of 4835 * success (and in practice it will work the vast majority of the time). 4836 */ 4837 if (unlikely(!insn)) { 4838 if (emul_type & EMULTYPE_SKIP) 4839 return X86EMUL_UNHANDLEABLE; 4840 4841 kvm_queue_exception(vcpu, UD_VECTOR); 4842 return X86EMUL_PROPAGATE_FAULT; 4843 } 4844 4845 /* 4846 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4847 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4848 * the faulting instruction because the code fetch itself faulted, e.g. 4849 * the guest attempted to fetch from emulated MMIO or a guest page 4850 * table used to translate CS:RIP resides in emulated MMIO. 4851 */ 4852 if (likely(insn_len)) 4853 return X86EMUL_CONTINUE; 4854 4855 /* 4856 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4857 * 4858 * Errata: 4859 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4860 * possible that CPU microcode implementing DecodeAssist will fail to 4861 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4862 * be ''. This happens because microcode reads CS:RIP using a _data_ 4863 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4864 * gives up and does not fill the instruction bytes buffer. 4865 * 4866 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4867 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4868 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4869 * GuestIntrBytes field of the VMCB. 4870 * 4871 * This does _not_ mean that the erratum has been encountered, as the 4872 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4873 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4874 * encountered a reserved/not-present #PF. 4875 * 4876 * To hit the erratum, the following conditions must be true: 4877 * 1. CR4.SMAP=1 (obviously). 4878 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4879 * have been hit as the guest would have encountered a SMEP 4880 * violation #PF, not a #NPF. 4881 * 3. The #NPF is not due to a code fetch, in which case failure to 4882 * retrieve the instruction bytes is legitimate (see abvoe). 4883 * 4884 * In addition, don't apply the erratum workaround if the #NPF occurred 4885 * while translating guest page tables (see below). 4886 */ 4887 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4888 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4889 goto resume_guest; 4890 4891 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4892 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4893 is_user = svm_get_cpl(vcpu) == 3; 4894 if (smap && (!smep || is_user)) { 4895 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4896 4897 /* 4898 * If the fault occurred in userspace, arbitrarily inject #GP 4899 * to avoid killing the guest and to hopefully avoid confusing 4900 * the guest kernel too much, e.g. injecting #PF would not be 4901 * coherent with respect to the guest's page tables. Request 4902 * triple fault if the fault occurred in the kernel as there's 4903 * no fault that KVM can inject without confusing the guest. 4904 * In practice, the triple fault is moot as no sane SEV kernel 4905 * will execute from user memory while also running with SMAP=1. 4906 */ 4907 if (is_user) 4908 kvm_inject_gp(vcpu, 0); 4909 else 4910 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4911 return X86EMUL_PROPAGATE_FAULT; 4912 } 4913 4914 resume_guest: 4915 /* 4916 * If the erratum was not hit, simply resume the guest and let it fault 4917 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4918 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4919 * userspace will kill the guest, and letting the emulator read garbage 4920 * will yield random behavior and potentially corrupt the guest. 4921 * 4922 * Simply resuming the guest is technically not a violation of the SEV 4923 * architecture. AMD's APM states that all code fetches and page table 4924 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4925 * APM also states that encrypted accesses to MMIO are "ignored", but 4926 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4927 * the guest spin is technically "ignoring" the access. 4928 */ 4929 return X86EMUL_RETRY_INSTR; 4930 } 4931 4932 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4933 { 4934 struct vcpu_svm *svm = to_svm(vcpu); 4935 4936 return !gif_set(svm); 4937 } 4938 4939 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4940 { 4941 if (!sev_es_guest(vcpu->kvm)) 4942 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4943 4944 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4945 } 4946 4947 static void svm_vm_destroy(struct kvm *kvm) 4948 { 4949 avic_vm_destroy(kvm); 4950 sev_vm_destroy(kvm); 4951 } 4952 4953 static int svm_vm_init(struct kvm *kvm) 4954 { 4955 int type = kvm->arch.vm_type; 4956 4957 if (type != KVM_X86_DEFAULT_VM && 4958 type != KVM_X86_SW_PROTECTED_VM) { 4959 kvm->arch.has_protected_state = 4960 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM); 4961 to_kvm_sev_info(kvm)->need_init = true; 4962 4963 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM); 4964 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem; 4965 } 4966 4967 if (!pause_filter_count || !pause_filter_thresh) 4968 kvm->arch.pause_in_guest = true; 4969 4970 if (enable_apicv) { 4971 int ret = avic_vm_init(kvm); 4972 if (ret) 4973 return ret; 4974 } 4975 4976 return 0; 4977 } 4978 4979 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) 4980 { 4981 struct page *page = snp_safe_alloc_page(); 4982 4983 if (!page) 4984 return NULL; 4985 4986 return page_address(page); 4987 } 4988 4989 static struct kvm_x86_ops svm_x86_ops __initdata = { 4990 .name = KBUILD_MODNAME, 4991 4992 .check_processor_compatibility = svm_check_processor_compat, 4993 4994 .hardware_unsetup = svm_hardware_unsetup, 4995 .hardware_enable = svm_hardware_enable, 4996 .hardware_disable = svm_hardware_disable, 4997 .has_emulated_msr = svm_has_emulated_msr, 4998 4999 .vcpu_create = svm_vcpu_create, 5000 .vcpu_free = svm_vcpu_free, 5001 .vcpu_reset = svm_vcpu_reset, 5002 5003 .vm_size = sizeof(struct kvm_svm), 5004 .vm_init = svm_vm_init, 5005 .vm_destroy = svm_vm_destroy, 5006 5007 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 5008 .vcpu_load = svm_vcpu_load, 5009 .vcpu_put = svm_vcpu_put, 5010 .vcpu_blocking = avic_vcpu_blocking, 5011 .vcpu_unblocking = avic_vcpu_unblocking, 5012 5013 .update_exception_bitmap = svm_update_exception_bitmap, 5014 .get_msr_feature = svm_get_msr_feature, 5015 .get_msr = svm_get_msr, 5016 .set_msr = svm_set_msr, 5017 .get_segment_base = svm_get_segment_base, 5018 .get_segment = svm_get_segment, 5019 .set_segment = svm_set_segment, 5020 .get_cpl = svm_get_cpl, 5021 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 5022 .is_valid_cr0 = svm_is_valid_cr0, 5023 .set_cr0 = svm_set_cr0, 5024 .post_set_cr3 = sev_post_set_cr3, 5025 .is_valid_cr4 = svm_is_valid_cr4, 5026 .set_cr4 = svm_set_cr4, 5027 .set_efer = svm_set_efer, 5028 .get_idt = svm_get_idt, 5029 .set_idt = svm_set_idt, 5030 .get_gdt = svm_get_gdt, 5031 .set_gdt = svm_set_gdt, 5032 .set_dr7 = svm_set_dr7, 5033 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 5034 .cache_reg = svm_cache_reg, 5035 .get_rflags = svm_get_rflags, 5036 .set_rflags = svm_set_rflags, 5037 .get_if_flag = svm_get_if_flag, 5038 5039 .flush_tlb_all = svm_flush_tlb_all, 5040 .flush_tlb_current = svm_flush_tlb_current, 5041 .flush_tlb_gva = svm_flush_tlb_gva, 5042 .flush_tlb_guest = svm_flush_tlb_asid, 5043 5044 .vcpu_pre_run = svm_vcpu_pre_run, 5045 .vcpu_run = svm_vcpu_run, 5046 .handle_exit = svm_handle_exit, 5047 .skip_emulated_instruction = svm_skip_emulated_instruction, 5048 .update_emulated_instruction = NULL, 5049 .set_interrupt_shadow = svm_set_interrupt_shadow, 5050 .get_interrupt_shadow = svm_get_interrupt_shadow, 5051 .patch_hypercall = svm_patch_hypercall, 5052 .inject_irq = svm_inject_irq, 5053 .inject_nmi = svm_inject_nmi, 5054 .is_vnmi_pending = svm_is_vnmi_pending, 5055 .set_vnmi_pending = svm_set_vnmi_pending, 5056 .inject_exception = svm_inject_exception, 5057 .cancel_injection = svm_cancel_injection, 5058 .interrupt_allowed = svm_interrupt_allowed, 5059 .nmi_allowed = svm_nmi_allowed, 5060 .get_nmi_mask = svm_get_nmi_mask, 5061 .set_nmi_mask = svm_set_nmi_mask, 5062 .enable_nmi_window = svm_enable_nmi_window, 5063 .enable_irq_window = svm_enable_irq_window, 5064 .update_cr8_intercept = svm_update_cr8_intercept, 5065 5066 .x2apic_icr_is_split = true, 5067 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 5068 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5069 .apicv_post_state_restore = avic_apicv_post_state_restore, 5070 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5071 5072 .get_exit_info = svm_get_exit_info, 5073 5074 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5075 5076 .has_wbinvd_exit = svm_has_wbinvd_exit, 5077 5078 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5079 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5080 .write_tsc_offset = svm_write_tsc_offset, 5081 .write_tsc_multiplier = svm_write_tsc_multiplier, 5082 5083 .load_mmu_pgd = svm_load_mmu_pgd, 5084 5085 .check_intercept = svm_check_intercept, 5086 .handle_exit_irqoff = svm_handle_exit_irqoff, 5087 5088 .nested_ops = &svm_nested_ops, 5089 5090 .deliver_interrupt = svm_deliver_interrupt, 5091 .pi_update_irte = avic_pi_update_irte, 5092 .setup_mce = svm_setup_mce, 5093 5094 #ifdef CONFIG_KVM_SMM 5095 .smi_allowed = svm_smi_allowed, 5096 .enter_smm = svm_enter_smm, 5097 .leave_smm = svm_leave_smm, 5098 .enable_smi_window = svm_enable_smi_window, 5099 #endif 5100 5101 #ifdef CONFIG_KVM_AMD_SEV 5102 .dev_get_attr = sev_dev_get_attr, 5103 .mem_enc_ioctl = sev_mem_enc_ioctl, 5104 .mem_enc_register_region = sev_mem_enc_register_region, 5105 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5106 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5107 5108 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5109 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5110 #endif 5111 .check_emulate_instruction = svm_check_emulate_instruction, 5112 5113 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5114 5115 .msr_filter_changed = svm_msr_filter_changed, 5116 .complete_emulated_msr = svm_complete_emulated_msr, 5117 5118 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5119 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5120 .alloc_apic_backing_page = svm_alloc_apic_backing_page, 5121 5122 .gmem_prepare = sev_gmem_prepare, 5123 .gmem_invalidate = sev_gmem_invalidate, 5124 .private_max_mapping_level = sev_private_max_mapping_level, 5125 }; 5126 5127 /* 5128 * The default MMIO mask is a single bit (excluding the present bit), 5129 * which could conflict with the memory encryption bit. Check for 5130 * memory encryption support and override the default MMIO mask if 5131 * memory encryption is enabled. 5132 */ 5133 static __init void svm_adjust_mmio_mask(void) 5134 { 5135 unsigned int enc_bit, mask_bit; 5136 u64 msr, mask; 5137 5138 /* If there is no memory encryption support, use existing mask */ 5139 if (cpuid_eax(0x80000000) < 0x8000001f) 5140 return; 5141 5142 /* If memory encryption is not enabled, use existing mask */ 5143 rdmsrl(MSR_AMD64_SYSCFG, msr); 5144 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5145 return; 5146 5147 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5148 mask_bit = boot_cpu_data.x86_phys_bits; 5149 5150 /* Increment the mask bit if it is the same as the encryption bit */ 5151 if (enc_bit == mask_bit) 5152 mask_bit++; 5153 5154 /* 5155 * If the mask bit location is below 52, then some bits above the 5156 * physical addressing limit will always be reserved, so use the 5157 * rsvd_bits() function to generate the mask. This mask, along with 5158 * the present bit, will be used to generate a page fault with 5159 * PFER.RSV = 1. 5160 * 5161 * If the mask bit location is 52 (or above), then clear the mask. 5162 */ 5163 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5164 5165 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5166 } 5167 5168 static __init void svm_set_cpu_caps(void) 5169 { 5170 kvm_set_cpu_caps(); 5171 5172 kvm_caps.supported_perf_cap = 0; 5173 kvm_caps.supported_xss = 0; 5174 5175 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5176 if (nested) { 5177 kvm_cpu_cap_set(X86_FEATURE_SVM); 5178 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5179 5180 /* 5181 * KVM currently flushes TLBs on *every* nested SVM transition, 5182 * and so for all intents and purposes KVM supports flushing by 5183 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. 5184 */ 5185 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); 5186 5187 if (nrips) 5188 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5189 5190 if (npt_enabled) 5191 kvm_cpu_cap_set(X86_FEATURE_NPT); 5192 5193 if (tsc_scaling) 5194 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5195 5196 if (vls) 5197 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5198 if (lbrv) 5199 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5200 5201 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5202 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5203 5204 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5205 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5206 5207 if (vgif) 5208 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5209 5210 if (vnmi) 5211 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5212 5213 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5214 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5215 } 5216 5217 /* CPUID 0x80000008 */ 5218 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5219 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5220 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5221 5222 if (enable_pmu) { 5223 /* 5224 * Enumerate support for PERFCTR_CORE if and only if KVM has 5225 * access to enough counters to virtualize "core" support, 5226 * otherwise limit vPMU support to the legacy number of counters. 5227 */ 5228 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5229 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5230 kvm_pmu_cap.num_counters_gp); 5231 else 5232 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5233 5234 if (kvm_pmu_cap.version != 2 || 5235 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5236 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5237 } 5238 5239 /* CPUID 0x8000001F (SME/SEV features) */ 5240 sev_set_cpu_caps(); 5241 5242 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */ 5243 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT); 5244 } 5245 5246 static __init int svm_hardware_setup(void) 5247 { 5248 int cpu; 5249 struct page *iopm_pages; 5250 void *iopm_va; 5251 int r; 5252 unsigned int order = get_order(IOPM_SIZE); 5253 5254 /* 5255 * NX is required for shadow paging and for NPT if the NX huge pages 5256 * mitigation is enabled. 5257 */ 5258 if (!boot_cpu_has(X86_FEATURE_NX)) { 5259 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5260 return -EOPNOTSUPP; 5261 } 5262 kvm_enable_efer_bits(EFER_NX); 5263 5264 iopm_pages = alloc_pages(GFP_KERNEL, order); 5265 5266 if (!iopm_pages) 5267 return -ENOMEM; 5268 5269 iopm_va = page_address(iopm_pages); 5270 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5271 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 5272 5273 init_msrpm_offsets(); 5274 5275 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5276 XFEATURE_MASK_BNDCSR); 5277 5278 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5279 kvm_enable_efer_bits(EFER_FFXSR); 5280 5281 if (tsc_scaling) { 5282 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5283 tsc_scaling = false; 5284 } else { 5285 pr_info("TSC scaling supported\n"); 5286 kvm_caps.has_tsc_control = true; 5287 } 5288 } 5289 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5290 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5291 5292 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5293 5294 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5295 kvm_enable_efer_bits(EFER_AUTOIBRS); 5296 5297 /* Check for pause filtering support */ 5298 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5299 pause_filter_count = 0; 5300 pause_filter_thresh = 0; 5301 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5302 pause_filter_thresh = 0; 5303 } 5304 5305 if (nested) { 5306 pr_info("Nested Virtualization enabled\n"); 5307 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5308 } 5309 5310 /* 5311 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5312 * NPT isn't supported if the host is using 2-level paging since host 5313 * CR4 is unchanged on VMRUN. 5314 */ 5315 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5316 npt_enabled = false; 5317 5318 if (!boot_cpu_has(X86_FEATURE_NPT)) 5319 npt_enabled = false; 5320 5321 /* Force VM NPT level equal to the host's paging level */ 5322 kvm_configure_mmu(npt_enabled, get_npt_level(), 5323 get_npt_level(), PG_LEVEL_1G); 5324 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5325 5326 /* Setup shadow_me_value and shadow_me_mask */ 5327 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5328 5329 svm_adjust_mmio_mask(); 5330 5331 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5332 5333 if (lbrv) { 5334 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5335 lbrv = false; 5336 else 5337 pr_info("LBR virtualization supported\n"); 5338 } 5339 /* 5340 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5341 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5342 */ 5343 sev_hardware_setup(); 5344 5345 svm_hv_hardware_setup(); 5346 5347 for_each_possible_cpu(cpu) { 5348 r = svm_cpu_init(cpu); 5349 if (r) 5350 goto err; 5351 } 5352 5353 enable_apicv = avic = avic && avic_hardware_setup(); 5354 5355 if (!enable_apicv) { 5356 svm_x86_ops.vcpu_blocking = NULL; 5357 svm_x86_ops.vcpu_unblocking = NULL; 5358 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5359 } else if (!x2avic_enabled) { 5360 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5361 } 5362 5363 if (vls) { 5364 if (!npt_enabled || 5365 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5366 !IS_ENABLED(CONFIG_X86_64)) { 5367 vls = false; 5368 } else { 5369 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5370 } 5371 } 5372 5373 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5374 svm_gp_erratum_intercept = false; 5375 5376 if (vgif) { 5377 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5378 vgif = false; 5379 else 5380 pr_info("Virtual GIF supported\n"); 5381 } 5382 5383 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5384 if (vnmi) 5385 pr_info("Virtual NMI enabled\n"); 5386 5387 if (!vnmi) { 5388 svm_x86_ops.is_vnmi_pending = NULL; 5389 svm_x86_ops.set_vnmi_pending = NULL; 5390 } 5391 5392 if (!enable_pmu) 5393 pr_info("PMU virtualization is disabled\n"); 5394 5395 svm_set_cpu_caps(); 5396 5397 /* 5398 * It seems that on AMD processors PTE's accessed bit is 5399 * being set by the CPU hardware before the NPF vmexit. 5400 * This is not expected behaviour and our tests fail because 5401 * of it. 5402 * A workaround here is to disable support for 5403 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5404 * In this case userspace can know if there is support using 5405 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5406 * it 5407 * If future AMD CPU models change the behaviour described above, 5408 * this variable can be changed accordingly 5409 */ 5410 allow_smaller_maxphyaddr = !npt_enabled; 5411 5412 return 0; 5413 5414 err: 5415 svm_hardware_unsetup(); 5416 return r; 5417 } 5418 5419 5420 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5421 .hardware_setup = svm_hardware_setup, 5422 5423 .runtime_ops = &svm_x86_ops, 5424 .pmu_ops = &amd_pmu_ops, 5425 }; 5426 5427 static void __svm_exit(void) 5428 { 5429 kvm_x86_vendor_exit(); 5430 5431 cpu_emergency_unregister_virt_callback(svm_emergency_disable); 5432 } 5433 5434 static int __init svm_init(void) 5435 { 5436 int r; 5437 5438 __unused_size_checks(); 5439 5440 if (!kvm_is_svm_supported()) 5441 return -EOPNOTSUPP; 5442 5443 r = kvm_x86_vendor_init(&svm_init_ops); 5444 if (r) 5445 return r; 5446 5447 cpu_emergency_register_virt_callback(svm_emergency_disable); 5448 5449 /* 5450 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5451 * exposed to userspace! 5452 */ 5453 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5454 THIS_MODULE); 5455 if (r) 5456 goto err_kvm_init; 5457 5458 return 0; 5459 5460 err_kvm_init: 5461 __svm_exit(); 5462 return r; 5463 } 5464 5465 static void __exit svm_exit(void) 5466 { 5467 kvm_exit(); 5468 __svm_exit(); 5469 } 5470 5471 module_init(svm_init) 5472 module_exit(svm_exit) 5473
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.