~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kvm/vmx/nested.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3 
  4 #include <linux/objtool.h>
  5 #include <linux/percpu.h>
  6 
  7 #include <asm/debugreg.h>
  8 #include <asm/mmu_context.h>
  9 
 10 #include "cpuid.h"
 11 #include "hyperv.h"
 12 #include "mmu.h"
 13 #include "nested.h"
 14 #include "pmu.h"
 15 #include "posted_intr.h"
 16 #include "sgx.h"
 17 #include "trace.h"
 18 #include "vmx.h"
 19 #include "x86.h"
 20 #include "smm.h"
 21 
 22 static bool __read_mostly enable_shadow_vmcs = 1;
 23 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
 24 
 25 static bool __read_mostly nested_early_check = 0;
 26 module_param(nested_early_check, bool, S_IRUGO);
 27 
 28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
 29 
 30 /*
 31  * Hyper-V requires all of these, so mark them as supported even though
 32  * they are just treated the same as all-context.
 33  */
 34 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
 35         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
 36         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
 37         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
 38         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
 39 
 40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
 41 
 42 enum {
 43         VMX_VMREAD_BITMAP,
 44         VMX_VMWRITE_BITMAP,
 45         VMX_BITMAP_NR
 46 };
 47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
 48 
 49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
 50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
 51 
 52 struct shadow_vmcs_field {
 53         u16     encoding;
 54         u16     offset;
 55 };
 56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
 57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
 58 #include "vmcs_shadow_fields.h"
 59 };
 60 static int max_shadow_read_only_fields =
 61         ARRAY_SIZE(shadow_read_only_fields);
 62 
 63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
 64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
 65 #include "vmcs_shadow_fields.h"
 66 };
 67 static int max_shadow_read_write_fields =
 68         ARRAY_SIZE(shadow_read_write_fields);
 69 
 70 static void init_vmcs_shadow_fields(void)
 71 {
 72         int i, j;
 73 
 74         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
 75         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
 76 
 77         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
 78                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
 79                 u16 field = entry.encoding;
 80 
 81                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
 82                     (i + 1 == max_shadow_read_only_fields ||
 83                      shadow_read_only_fields[i + 1].encoding != field + 1))
 84                         pr_err("Missing field from shadow_read_only_field %x\n",
 85                                field + 1);
 86 
 87                 clear_bit(field, vmx_vmread_bitmap);
 88                 if (field & 1)
 89 #ifdef CONFIG_X86_64
 90                         continue;
 91 #else
 92                         entry.offset += sizeof(u32);
 93 #endif
 94                 shadow_read_only_fields[j++] = entry;
 95         }
 96         max_shadow_read_only_fields = j;
 97 
 98         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
 99                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100                 u16 field = entry.encoding;
101 
102                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103                     (i + 1 == max_shadow_read_write_fields ||
104                      shadow_read_write_fields[i + 1].encoding != field + 1))
105                         pr_err("Missing field from shadow_read_write_field %x\n",
106                                field + 1);
107 
108                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109                           field <= GUEST_TR_AR_BYTES,
110                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111 
112                 /*
113                  * PML and the preemption timer can be emulated, but the
114                  * processor cannot vmwrite to fields that don't exist
115                  * on bare metal.
116                  */
117                 switch (field) {
118                 case GUEST_PML_INDEX:
119                         if (!cpu_has_vmx_pml())
120                                 continue;
121                         break;
122                 case VMX_PREEMPTION_TIMER_VALUE:
123                         if (!cpu_has_vmx_preemption_timer())
124                                 continue;
125                         break;
126                 case GUEST_INTR_STATUS:
127                         if (!cpu_has_vmx_apicv())
128                                 continue;
129                         break;
130                 default:
131                         break;
132                 }
133 
134                 clear_bit(field, vmx_vmwrite_bitmap);
135                 clear_bit(field, vmx_vmread_bitmap);
136                 if (field & 1)
137 #ifdef CONFIG_X86_64
138                         continue;
139 #else
140                         entry.offset += sizeof(u32);
141 #endif
142                 shadow_read_write_fields[j++] = entry;
143         }
144         max_shadow_read_write_fields = j;
145 }
146 
147 /*
148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149  * set the success or error code of an emulated VMX instruction (as specified
150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151  * instruction.
152  */
153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158         return kvm_skip_emulated_instruction(vcpu);
159 }
160 
161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165                             X86_EFLAGS_SF | X86_EFLAGS_OF))
166                         | X86_EFLAGS_CF);
167         return kvm_skip_emulated_instruction(vcpu);
168 }
169 
170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171                                 u32 vm_instruction_error)
172 {
173         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
174                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
175                             X86_EFLAGS_SF | X86_EFLAGS_OF))
176                         | X86_EFLAGS_ZF);
177         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178         /*
179          * We don't need to force sync to shadow VMCS because
180          * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181          * fields and thus must be synced.
182          */
183         if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
184                 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185 
186         return kvm_skip_emulated_instruction(vcpu);
187 }
188 
189 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190 {
191         struct vcpu_vmx *vmx = to_vmx(vcpu);
192 
193         /*
194          * failValid writes the error number to the current VMCS, which
195          * can't be done if there isn't a current VMCS.
196          */
197         if (vmx->nested.current_vmptr == INVALID_GPA &&
198             !nested_vmx_is_evmptr12_valid(vmx))
199                 return nested_vmx_failInvalid(vcpu);
200 
201         return nested_vmx_failValid(vcpu, vm_instruction_error);
202 }
203 
204 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205 {
206         /* TODO: not to reset guest simply here. */
207         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
208         pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
209 }
210 
211 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212 {
213         return fixed_bits_valid(control, low, high);
214 }
215 
216 static inline u64 vmx_control_msr(u32 low, u32 high)
217 {
218         return low | ((u64)high << 32);
219 }
220 
221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222 {
223         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
224         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
225         vmx->nested.need_vmcs12_to_shadow_sync = false;
226 }
227 
228 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229 {
230 #ifdef CONFIG_KVM_HYPERV
231         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
232         struct vcpu_vmx *vmx = to_vmx(vcpu);
233 
234         if (nested_vmx_is_evmptr12_valid(vmx)) {
235                 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
236                 vmx->nested.hv_evmcs = NULL;
237         }
238 
239         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
240 
241         if (hv_vcpu) {
242                 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
243                 hv_vcpu->nested.vm_id = 0;
244                 hv_vcpu->nested.vp_id = 0;
245         }
246 #endif
247 }
248 
249 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
250 {
251 #ifdef CONFIG_KVM_HYPERV
252         struct vcpu_vmx *vmx = to_vmx(vcpu);
253         /*
254          * When Enlightened VMEntry is enabled on the calling CPU we treat
255          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
256          * way to distinguish it from VMCS12) and we must not corrupt it by
257          * writing to the non-existent 'launch_state' field. The area doesn't
258          * have to be the currently active EVMCS on the calling CPU and there's
259          * nothing KVM has to do to transition it from 'active' to 'non-active'
260          * state. It is possible that the area will stay mapped as
261          * vmx->nested.hv_evmcs but this shouldn't be a problem.
262          */
263         if (!guest_cpuid_has_evmcs(vcpu) ||
264             !evmptr_is_valid(nested_get_evmptr(vcpu)))
265                 return false;
266 
267         if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
268                 nested_release_evmcs(vcpu);
269 
270         return true;
271 #else
272         return false;
273 #endif
274 }
275 
276 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
277                                      struct loaded_vmcs *prev)
278 {
279         struct vmcs_host_state *dest, *src;
280 
281         if (unlikely(!vmx->guest_state_loaded))
282                 return;
283 
284         src = &prev->host_state;
285         dest = &vmx->loaded_vmcs->host_state;
286 
287         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
288         dest->ldt_sel = src->ldt_sel;
289 #ifdef CONFIG_X86_64
290         dest->ds_sel = src->ds_sel;
291         dest->es_sel = src->es_sel;
292 #endif
293 }
294 
295 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
296 {
297         struct vcpu_vmx *vmx = to_vmx(vcpu);
298         struct loaded_vmcs *prev;
299         int cpu;
300 
301         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
302                 return;
303 
304         cpu = get_cpu();
305         prev = vmx->loaded_vmcs;
306         vmx->loaded_vmcs = vmcs;
307         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
308         vmx_sync_vmcs_host_state(vmx, prev);
309         put_cpu();
310 
311         vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
312 
313         /*
314          * All lazily updated registers will be reloaded from VMCS12 on both
315          * vmentry and vmexit.
316          */
317         vcpu->arch.regs_dirty = 0;
318 }
319 
320 /*
321  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
322  * just stops using VMX.
323  */
324 static void free_nested(struct kvm_vcpu *vcpu)
325 {
326         struct vcpu_vmx *vmx = to_vmx(vcpu);
327 
328         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
329                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
330 
331         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
332                 return;
333 
334         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
335 
336         vmx->nested.vmxon = false;
337         vmx->nested.smm.vmxon = false;
338         vmx->nested.vmxon_ptr = INVALID_GPA;
339         free_vpid(vmx->nested.vpid02);
340         vmx->nested.posted_intr_nv = -1;
341         vmx->nested.current_vmptr = INVALID_GPA;
342         if (enable_shadow_vmcs) {
343                 vmx_disable_shadow_vmcs(vmx);
344                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
345                 free_vmcs(vmx->vmcs01.shadow_vmcs);
346                 vmx->vmcs01.shadow_vmcs = NULL;
347         }
348         kfree(vmx->nested.cached_vmcs12);
349         vmx->nested.cached_vmcs12 = NULL;
350         kfree(vmx->nested.cached_shadow_vmcs12);
351         vmx->nested.cached_shadow_vmcs12 = NULL;
352         /*
353          * Unpin physical memory we referred to in the vmcs02.  The APIC access
354          * page's backing page (yeah, confusing) shouldn't actually be accessed,
355          * and if it is written, the contents are irrelevant.
356          */
357         kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
358         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
359         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
360         vmx->nested.pi_desc = NULL;
361 
362         kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
363 
364         nested_release_evmcs(vcpu);
365 
366         free_loaded_vmcs(&vmx->nested.vmcs02);
367 }
368 
369 /*
370  * Ensure that the current vmcs of the logical processor is the
371  * vmcs01 of the vcpu before calling free_nested().
372  */
373 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
374 {
375         vcpu_load(vcpu);
376         vmx_leave_nested(vcpu);
377         vcpu_put(vcpu);
378 }
379 
380 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
381 
382 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
383 {
384         return VALID_PAGE(root_hpa) &&
385                ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
386 }
387 
388 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
389                                        gpa_t addr)
390 {
391         unsigned long roots = 0;
392         uint i;
393         struct kvm_mmu_root_info *cached_root;
394 
395         WARN_ON_ONCE(!mmu_is_nested(vcpu));
396 
397         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
398                 cached_root = &vcpu->arch.mmu->prev_roots[i];
399 
400                 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
401                                             eptp))
402                         roots |= KVM_MMU_ROOT_PREVIOUS(i);
403         }
404         if (roots)
405                 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
406 }
407 
408 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
409                 struct x86_exception *fault)
410 {
411         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
412         struct vcpu_vmx *vmx = to_vmx(vcpu);
413         unsigned long exit_qualification;
414         u32 vm_exit_reason;
415 
416         if (vmx->nested.pml_full) {
417                 vm_exit_reason = EXIT_REASON_PML_FULL;
418                 vmx->nested.pml_full = false;
419 
420                 /*
421                  * It should be impossible to trigger a nested PML Full VM-Exit
422                  * for anything other than an EPT Violation from L2.  KVM *can*
423                  * trigger nEPT page fault injection in response to an EPT
424                  * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
425                  * tables also changed, but KVM should not treat EPT Misconfig
426                  * VM-Exits as writes.
427                  */
428                 WARN_ON_ONCE(vmx->exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
429 
430                 /*
431                  * PML Full and EPT Violation VM-Exits both use bit 12 to report
432                  * "NMI unblocking due to IRET", i.e. the bit can be propagated
433                  * as-is from the original EXIT_QUALIFICATION.
434                  */
435                 exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
436         } else {
437                 if (fault->error_code & PFERR_RSVD_MASK) {
438                         vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
439                         exit_qualification = 0;
440                 } else {
441                         exit_qualification = fault->exit_qualification;
442                         exit_qualification |= vmx_get_exit_qual(vcpu) &
443                                               (EPT_VIOLATION_GVA_IS_VALID |
444                                                EPT_VIOLATION_GVA_TRANSLATED);
445                         vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
446                 }
447 
448                 /*
449                  * Although the caller (kvm_inject_emulated_page_fault) would
450                  * have already synced the faulting address in the shadow EPT
451                  * tables for the current EPTP12, we also need to sync it for
452                  * any other cached EPTP02s based on the same EP4TA, since the
453                  * TLB associates mappings to the EP4TA rather than the full EPTP.
454                  */
455                 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
456                                            fault->address);
457         }
458 
459         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
460         vmcs12->guest_physical_address = fault->address;
461 }
462 
463 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
464 {
465         struct vcpu_vmx *vmx = to_vmx(vcpu);
466         bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
467         int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
468 
469         kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
470                                 nested_ept_ad_enabled(vcpu),
471                                 nested_ept_get_eptp(vcpu));
472 }
473 
474 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
475 {
476         WARN_ON(mmu_is_nested(vcpu));
477 
478         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
479         nested_ept_new_eptp(vcpu);
480         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
481         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
482         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
483 
484         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
485 }
486 
487 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
488 {
489         vcpu->arch.mmu = &vcpu->arch.root_mmu;
490         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
491 }
492 
493 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
494                                             u16 error_code)
495 {
496         bool inequality, bit;
497 
498         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
499         inequality =
500                 (error_code & vmcs12->page_fault_error_code_mask) !=
501                  vmcs12->page_fault_error_code_match;
502         return inequality ^ bit;
503 }
504 
505 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
506                                            u32 error_code)
507 {
508         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
509 
510         /*
511          * Drop bits 31:16 of the error code when performing the #PF mask+match
512          * check.  All VMCS fields involved are 32 bits, but Intel CPUs never
513          * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
514          * error code.  Including the to-be-dropped bits in the check might
515          * result in an "impossible" or missed exit from L1's perspective.
516          */
517         if (vector == PF_VECTOR)
518                 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
519 
520         return (vmcs12->exception_bitmap & (1u << vector));
521 }
522 
523 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
524                                                struct vmcs12 *vmcs12)
525 {
526         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
527                 return 0;
528 
529         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
530             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
531                 return -EINVAL;
532 
533         return 0;
534 }
535 
536 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
537                                                 struct vmcs12 *vmcs12)
538 {
539         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
540                 return 0;
541 
542         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
543                 return -EINVAL;
544 
545         return 0;
546 }
547 
548 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
549                                                 struct vmcs12 *vmcs12)
550 {
551         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
552                 return 0;
553 
554         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
555                 return -EINVAL;
556 
557         return 0;
558 }
559 
560 /*
561  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
562  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
563  * only the "disable intercept" case needs to be handled.
564  */
565 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
566                                                         unsigned long *msr_bitmap_l0,
567                                                         u32 msr, int type)
568 {
569         if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
570                 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
571 
572         if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
573                 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
574 }
575 
576 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
577 {
578         int msr;
579 
580         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
581                 unsigned word = msr / BITS_PER_LONG;
582 
583                 msr_bitmap[word] = ~0;
584                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
585         }
586 }
587 
588 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)                                     \
589 static inline                                                                   \
590 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,                  \
591                                          unsigned long *msr_bitmap_l1,          \
592                                          unsigned long *msr_bitmap_l0, u32 msr) \
593 {                                                                               \
594         if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||            \
595             vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))                       \
596                 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);                    \
597         else                                                                    \
598                 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);                  \
599 }
600 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
601 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
602 
603 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
604                                                     unsigned long *msr_bitmap_l1,
605                                                     unsigned long *msr_bitmap_l0,
606                                                     u32 msr, int types)
607 {
608         if (types & MSR_TYPE_R)
609                 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
610                                                   msr_bitmap_l0, msr);
611         if (types & MSR_TYPE_W)
612                 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
613                                                    msr_bitmap_l0, msr);
614 }
615 
616 /*
617  * Merge L0's and L1's MSR bitmap, return false to indicate that
618  * we do not use the hardware.
619  */
620 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
621                                                  struct vmcs12 *vmcs12)
622 {
623         struct vcpu_vmx *vmx = to_vmx(vcpu);
624         int msr;
625         unsigned long *msr_bitmap_l1;
626         unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
627         struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
628 
629         /* Nothing to do if the MSR bitmap is not in use.  */
630         if (!cpu_has_vmx_msr_bitmap() ||
631             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
632                 return false;
633 
634         /*
635          * MSR bitmap update can be skipped when:
636          * - MSR bitmap for L1 hasn't changed.
637          * - Nested hypervisor (L1) is attempting to launch the same L2 as
638          *   before.
639          * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
640          *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
641          */
642         if (!vmx->nested.force_msr_bitmap_recalc) {
643                 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
644 
645                 if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
646                     evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
647                         return true;
648         }
649 
650         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
651                 return false;
652 
653         msr_bitmap_l1 = (unsigned long *)map->hva;
654 
655         /*
656          * To keep the control flow simple, pay eight 8-byte writes (sixteen
657          * 4-byte writes on 32-bit systems) up front to enable intercepts for
658          * the x2APIC MSR range and selectively toggle those relevant to L2.
659          */
660         enable_x2apic_msr_intercepts(msr_bitmap_l0);
661 
662         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
663                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
664                         /*
665                          * L0 need not intercept reads for MSRs between 0x800
666                          * and 0x8ff, it just lets the processor take the value
667                          * from the virtual-APIC page; take those 256 bits
668                          * directly from the L1 bitmap.
669                          */
670                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
671                                 unsigned word = msr / BITS_PER_LONG;
672 
673                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
674                         }
675                 }
676 
677                 nested_vmx_disable_intercept_for_x2apic_msr(
678                         msr_bitmap_l1, msr_bitmap_l0,
679                         X2APIC_MSR(APIC_TASKPRI),
680                         MSR_TYPE_R | MSR_TYPE_W);
681 
682                 if (nested_cpu_has_vid(vmcs12)) {
683                         nested_vmx_disable_intercept_for_x2apic_msr(
684                                 msr_bitmap_l1, msr_bitmap_l0,
685                                 X2APIC_MSR(APIC_EOI),
686                                 MSR_TYPE_W);
687                         nested_vmx_disable_intercept_for_x2apic_msr(
688                                 msr_bitmap_l1, msr_bitmap_l0,
689                                 X2APIC_MSR(APIC_SELF_IPI),
690                                 MSR_TYPE_W);
691                 }
692         }
693 
694         /*
695          * Always check vmcs01's bitmap to honor userspace MSR filters and any
696          * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
697          */
698 #ifdef CONFIG_X86_64
699         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
700                                          MSR_FS_BASE, MSR_TYPE_RW);
701 
702         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
703                                          MSR_GS_BASE, MSR_TYPE_RW);
704 
705         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
706                                          MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
707 #endif
708         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
709                                          MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
710 
711         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
712                                          MSR_IA32_PRED_CMD, MSR_TYPE_W);
713 
714         nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
715                                          MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
716 
717         kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
718 
719         vmx->nested.force_msr_bitmap_recalc = false;
720 
721         return true;
722 }
723 
724 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
725                                        struct vmcs12 *vmcs12)
726 {
727         struct vcpu_vmx *vmx = to_vmx(vcpu);
728         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
729 
730         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
731             vmcs12->vmcs_link_pointer == INVALID_GPA)
732                 return;
733 
734         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
735             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
736                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
737                 return;
738 
739         kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
740                               VMCS12_SIZE);
741 }
742 
743 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
744                                               struct vmcs12 *vmcs12)
745 {
746         struct vcpu_vmx *vmx = to_vmx(vcpu);
747         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
748 
749         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
750             vmcs12->vmcs_link_pointer == INVALID_GPA)
751                 return;
752 
753         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
754             kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
755                                       vmcs12->vmcs_link_pointer, VMCS12_SIZE))
756                 return;
757 
758         kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
759                                VMCS12_SIZE);
760 }
761 
762 /*
763  * In nested virtualization, check if L1 has set
764  * VM_EXIT_ACK_INTR_ON_EXIT
765  */
766 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
767 {
768         return get_vmcs12(vcpu)->vm_exit_controls &
769                 VM_EXIT_ACK_INTR_ON_EXIT;
770 }
771 
772 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
773                                           struct vmcs12 *vmcs12)
774 {
775         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
776             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
777                 return -EINVAL;
778         else
779                 return 0;
780 }
781 
782 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
783                                            struct vmcs12 *vmcs12)
784 {
785         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
786             !nested_cpu_has_apic_reg_virt(vmcs12) &&
787             !nested_cpu_has_vid(vmcs12) &&
788             !nested_cpu_has_posted_intr(vmcs12))
789                 return 0;
790 
791         /*
792          * If virtualize x2apic mode is enabled,
793          * virtualize apic access must be disabled.
794          */
795         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
796                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
797                 return -EINVAL;
798 
799         /*
800          * If virtual interrupt delivery is enabled,
801          * we must exit on external interrupts.
802          */
803         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
804                 return -EINVAL;
805 
806         /*
807          * bits 15:8 should be zero in posted_intr_nv,
808          * the descriptor address has been already checked
809          * in nested_get_vmcs12_pages.
810          *
811          * bits 5:0 of posted_intr_desc_addr should be zero.
812          */
813         if (nested_cpu_has_posted_intr(vmcs12) &&
814            (CC(!nested_cpu_has_vid(vmcs12)) ||
815             CC(!nested_exit_intr_ack_set(vcpu)) ||
816             CC((vmcs12->posted_intr_nv & 0xff00)) ||
817             CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
818                 return -EINVAL;
819 
820         /* tpr shadow is needed by all apicv features. */
821         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
822                 return -EINVAL;
823 
824         return 0;
825 }
826 
827 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
828                                        u32 count, u64 addr)
829 {
830         if (count == 0)
831                 return 0;
832 
833         if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
834             !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
835                 return -EINVAL;
836 
837         return 0;
838 }
839 
840 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
841                                                      struct vmcs12 *vmcs12)
842 {
843         if (CC(nested_vmx_check_msr_switch(vcpu,
844                                            vmcs12->vm_exit_msr_load_count,
845                                            vmcs12->vm_exit_msr_load_addr)) ||
846             CC(nested_vmx_check_msr_switch(vcpu,
847                                            vmcs12->vm_exit_msr_store_count,
848                                            vmcs12->vm_exit_msr_store_addr)))
849                 return -EINVAL;
850 
851         return 0;
852 }
853 
854 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
855                                                       struct vmcs12 *vmcs12)
856 {
857         if (CC(nested_vmx_check_msr_switch(vcpu,
858                                            vmcs12->vm_entry_msr_load_count,
859                                            vmcs12->vm_entry_msr_load_addr)))
860                 return -EINVAL;
861 
862         return 0;
863 }
864 
865 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
866                                          struct vmcs12 *vmcs12)
867 {
868         if (!nested_cpu_has_pml(vmcs12))
869                 return 0;
870 
871         if (CC(!nested_cpu_has_ept(vmcs12)) ||
872             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
873                 return -EINVAL;
874 
875         return 0;
876 }
877 
878 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
879                                                         struct vmcs12 *vmcs12)
880 {
881         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
882                !nested_cpu_has_ept(vmcs12)))
883                 return -EINVAL;
884         return 0;
885 }
886 
887 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
888                                                          struct vmcs12 *vmcs12)
889 {
890         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
891                !nested_cpu_has_ept(vmcs12)))
892                 return -EINVAL;
893         return 0;
894 }
895 
896 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
897                                                  struct vmcs12 *vmcs12)
898 {
899         if (!nested_cpu_has_shadow_vmcs(vmcs12))
900                 return 0;
901 
902         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
903             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
904                 return -EINVAL;
905 
906         return 0;
907 }
908 
909 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
910                                        struct vmx_msr_entry *e)
911 {
912         /* x2APIC MSR accesses are not allowed */
913         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
914                 return -EINVAL;
915         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
916             CC(e->index == MSR_IA32_UCODE_REV))
917                 return -EINVAL;
918         if (CC(e->reserved != 0))
919                 return -EINVAL;
920         return 0;
921 }
922 
923 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
924                                      struct vmx_msr_entry *e)
925 {
926         if (CC(e->index == MSR_FS_BASE) ||
927             CC(e->index == MSR_GS_BASE) ||
928             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
929             nested_vmx_msr_check_common(vcpu, e))
930                 return -EINVAL;
931         return 0;
932 }
933 
934 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
935                                       struct vmx_msr_entry *e)
936 {
937         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
938             nested_vmx_msr_check_common(vcpu, e))
939                 return -EINVAL;
940         return 0;
941 }
942 
943 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
944 {
945         struct vcpu_vmx *vmx = to_vmx(vcpu);
946         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
947                                        vmx->nested.msrs.misc_high);
948 
949         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
950 }
951 
952 /*
953  * Load guest's/host's msr at nested entry/exit.
954  * return 0 for success, entry index for failure.
955  *
956  * One of the failure modes for MSR load/store is when a list exceeds the
957  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
958  * as possible, process all valid entries before failing rather than precheck
959  * for a capacity violation.
960  */
961 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
962 {
963         u32 i;
964         struct vmx_msr_entry e;
965         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
966 
967         for (i = 0; i < count; i++) {
968                 if (unlikely(i >= max_msr_list_size))
969                         goto fail;
970 
971                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
972                                         &e, sizeof(e))) {
973                         pr_debug_ratelimited(
974                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
975                                 __func__, i, gpa + i * sizeof(e));
976                         goto fail;
977                 }
978                 if (nested_vmx_load_msr_check(vcpu, &e)) {
979                         pr_debug_ratelimited(
980                                 "%s check failed (%u, 0x%x, 0x%x)\n",
981                                 __func__, i, e.index, e.reserved);
982                         goto fail;
983                 }
984                 if (kvm_set_msr(vcpu, e.index, e.value)) {
985                         pr_debug_ratelimited(
986                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
987                                 __func__, i, e.index, e.value);
988                         goto fail;
989                 }
990         }
991         return 0;
992 fail:
993         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
994         return i + 1;
995 }
996 
997 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
998                                             u32 msr_index,
999                                             u64 *data)
1000 {
1001         struct vcpu_vmx *vmx = to_vmx(vcpu);
1002 
1003         /*
1004          * If the L0 hypervisor stored a more accurate value for the TSC that
1005          * does not include the time taken for emulation of the L2->L1
1006          * VM-exit in L0, use the more accurate value.
1007          */
1008         if (msr_index == MSR_IA32_TSC) {
1009                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1010                                                     MSR_IA32_TSC);
1011 
1012                 if (i >= 0) {
1013                         u64 val = vmx->msr_autostore.guest.val[i].value;
1014 
1015                         *data = kvm_read_l1_tsc(vcpu, val);
1016                         return true;
1017                 }
1018         }
1019 
1020         if (kvm_get_msr(vcpu, msr_index, data)) {
1021                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1022                         msr_index);
1023                 return false;
1024         }
1025         return true;
1026 }
1027 
1028 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1029                                      struct vmx_msr_entry *e)
1030 {
1031         if (kvm_vcpu_read_guest(vcpu,
1032                                 gpa + i * sizeof(*e),
1033                                 e, 2 * sizeof(u32))) {
1034                 pr_debug_ratelimited(
1035                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
1036                         __func__, i, gpa + i * sizeof(*e));
1037                 return false;
1038         }
1039         if (nested_vmx_store_msr_check(vcpu, e)) {
1040                 pr_debug_ratelimited(
1041                         "%s check failed (%u, 0x%x, 0x%x)\n",
1042                         __func__, i, e->index, e->reserved);
1043                 return false;
1044         }
1045         return true;
1046 }
1047 
1048 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1049 {
1050         u64 data;
1051         u32 i;
1052         struct vmx_msr_entry e;
1053         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1054 
1055         for (i = 0; i < count; i++) {
1056                 if (unlikely(i >= max_msr_list_size))
1057                         return -EINVAL;
1058 
1059                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1060                         return -EINVAL;
1061 
1062                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1063                         return -EINVAL;
1064 
1065                 if (kvm_vcpu_write_guest(vcpu,
1066                                          gpa + i * sizeof(e) +
1067                                              offsetof(struct vmx_msr_entry, value),
1068                                          &data, sizeof(data))) {
1069                         pr_debug_ratelimited(
1070                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1071                                 __func__, i, e.index, data);
1072                         return -EINVAL;
1073                 }
1074         }
1075         return 0;
1076 }
1077 
1078 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1079 {
1080         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1081         u32 count = vmcs12->vm_exit_msr_store_count;
1082         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1083         struct vmx_msr_entry e;
1084         u32 i;
1085 
1086         for (i = 0; i < count; i++) {
1087                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1088                         return false;
1089 
1090                 if (e.index == msr_index)
1091                         return true;
1092         }
1093         return false;
1094 }
1095 
1096 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1097                                            u32 msr_index)
1098 {
1099         struct vcpu_vmx *vmx = to_vmx(vcpu);
1100         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1101         bool in_vmcs12_store_list;
1102         int msr_autostore_slot;
1103         bool in_autostore_list;
1104         int last;
1105 
1106         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1107         in_autostore_list = msr_autostore_slot >= 0;
1108         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1109 
1110         if (in_vmcs12_store_list && !in_autostore_list) {
1111                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1112                         /*
1113                          * Emulated VMEntry does not fail here.  Instead a less
1114                          * accurate value will be returned by
1115                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1116                          * instead of reading the value from the vmcs02 VMExit
1117                          * MSR-store area.
1118                          */
1119                         pr_warn_ratelimited(
1120                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1121                                 msr_index);
1122                         return;
1123                 }
1124                 last = autostore->nr++;
1125                 autostore->val[last].index = msr_index;
1126         } else if (!in_vmcs12_store_list && in_autostore_list) {
1127                 last = --autostore->nr;
1128                 autostore->val[msr_autostore_slot] = autostore->val[last];
1129         }
1130 }
1131 
1132 /*
1133  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1134  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1135  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1136  * @entry_failure_code.
1137  */
1138 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1139                                bool nested_ept, bool reload_pdptrs,
1140                                enum vm_entry_failure_code *entry_failure_code)
1141 {
1142         if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1143                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1144                 return -EINVAL;
1145         }
1146 
1147         /*
1148          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1149          * must not be dereferenced.
1150          */
1151         if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1152             CC(!load_pdptrs(vcpu, cr3))) {
1153                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1154                 return -EINVAL;
1155         }
1156 
1157         vcpu->arch.cr3 = cr3;
1158         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1159 
1160         /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1161         kvm_init_mmu(vcpu);
1162 
1163         if (!nested_ept)
1164                 kvm_mmu_new_pgd(vcpu, cr3);
1165 
1166         return 0;
1167 }
1168 
1169 /*
1170  * Returns if KVM is able to config CPU to tag TLB entries
1171  * populated by L2 differently than TLB entries populated
1172  * by L1.
1173  *
1174  * If L0 uses EPT, L1 and L2 run with different EPTP because
1175  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1176  * are tagged with different EPTP.
1177  *
1178  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1179  * with different VPID (L1 entries are tagged with vmx->vpid
1180  * while L2 entries are tagged with vmx->nested.vpid02).
1181  */
1182 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1183 {
1184         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1185 
1186         return enable_ept ||
1187                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1188 }
1189 
1190 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1191                                             struct vmcs12 *vmcs12,
1192                                             bool is_vmenter)
1193 {
1194         struct vcpu_vmx *vmx = to_vmx(vcpu);
1195 
1196         /* Handle pending Hyper-V TLB flush requests */
1197         kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1198 
1199         /*
1200          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1201          * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1202          * full TLB flush from the guest's perspective.  This is required even
1203          * if VPID is disabled in the host as KVM may need to synchronize the
1204          * MMU in response to the guest TLB flush.
1205          *
1206          * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1207          * EPT is a special snowflake, as guest-physical mappings aren't
1208          * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1209          * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1210          * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1211          * those mappings.
1212          */
1213         if (!nested_cpu_has_vpid(vmcs12)) {
1214                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1215                 return;
1216         }
1217 
1218         /* L2 should never have a VPID if VPID is disabled. */
1219         WARN_ON(!enable_vpid);
1220 
1221         /*
1222          * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1223          * emulate a guest TLB flush as KVM does not track vpid12 history nor
1224          * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1225          * that the new vpid12 has never been used and thus represents a new
1226          * guest ASID that cannot have entries in the TLB.
1227          */
1228         if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1229                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1230                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1231                 return;
1232         }
1233 
1234         /*
1235          * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1236          * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1237          * KVM was unable to allocate a VPID for L2, flush the current context
1238          * as the effective ASID is common to both L1 and L2.
1239          */
1240         if (!nested_has_guest_tlb_tag(vcpu))
1241                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1242 }
1243 
1244 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1245 {
1246         superset &= mask;
1247         subset &= mask;
1248 
1249         return (superset | subset) == superset;
1250 }
1251 
1252 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1253 {
1254         const u64 feature_and_reserved =
1255                 /* feature (except bit 48; see below) */
1256                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1257                 /* reserved */
1258                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1259         u64 vmx_basic = vmcs_config.nested.basic;
1260 
1261         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1262                 return -EINVAL;
1263 
1264         /*
1265          * KVM does not emulate a version of VMX that constrains physical
1266          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1267          */
1268         if (data & BIT_ULL(48))
1269                 return -EINVAL;
1270 
1271         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1272             vmx_basic_vmcs_revision_id(data))
1273                 return -EINVAL;
1274 
1275         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1276                 return -EINVAL;
1277 
1278         vmx->nested.msrs.basic = data;
1279         return 0;
1280 }
1281 
1282 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1283                                 u32 **low, u32 **high)
1284 {
1285         switch (msr_index) {
1286         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1287                 *low = &msrs->pinbased_ctls_low;
1288                 *high = &msrs->pinbased_ctls_high;
1289                 break;
1290         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1291                 *low = &msrs->procbased_ctls_low;
1292                 *high = &msrs->procbased_ctls_high;
1293                 break;
1294         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1295                 *low = &msrs->exit_ctls_low;
1296                 *high = &msrs->exit_ctls_high;
1297                 break;
1298         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1299                 *low = &msrs->entry_ctls_low;
1300                 *high = &msrs->entry_ctls_high;
1301                 break;
1302         case MSR_IA32_VMX_PROCBASED_CTLS2:
1303                 *low = &msrs->secondary_ctls_low;
1304                 *high = &msrs->secondary_ctls_high;
1305                 break;
1306         default:
1307                 BUG();
1308         }
1309 }
1310 
1311 static int
1312 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1313 {
1314         u32 *lowp, *highp;
1315         u64 supported;
1316 
1317         vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1318 
1319         supported = vmx_control_msr(*lowp, *highp);
1320 
1321         /* Check must-be-1 bits are still 1. */
1322         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1323                 return -EINVAL;
1324 
1325         /* Check must-be-0 bits are still 0. */
1326         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1327                 return -EINVAL;
1328 
1329         vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1330         *lowp = data;
1331         *highp = data >> 32;
1332         return 0;
1333 }
1334 
1335 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1336 {
1337         const u64 feature_and_reserved_bits =
1338                 /* feature */
1339                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1340                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1341                 /* reserved */
1342                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1343         u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1344                                        vmcs_config.nested.misc_high);
1345 
1346         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1347                 return -EINVAL;
1348 
1349         if ((vmx->nested.msrs.pinbased_ctls_high &
1350              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1351             vmx_misc_preemption_timer_rate(data) !=
1352             vmx_misc_preemption_timer_rate(vmx_misc))
1353                 return -EINVAL;
1354 
1355         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1356                 return -EINVAL;
1357 
1358         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1359                 return -EINVAL;
1360 
1361         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1362                 return -EINVAL;
1363 
1364         vmx->nested.msrs.misc_low = data;
1365         vmx->nested.msrs.misc_high = data >> 32;
1366 
1367         return 0;
1368 }
1369 
1370 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1371 {
1372         u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1373                                                vmcs_config.nested.vpid_caps);
1374 
1375         /* Every bit is either reserved or a feature bit. */
1376         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1377                 return -EINVAL;
1378 
1379         vmx->nested.msrs.ept_caps = data;
1380         vmx->nested.msrs.vpid_caps = data >> 32;
1381         return 0;
1382 }
1383 
1384 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1385 {
1386         switch (msr_index) {
1387         case MSR_IA32_VMX_CR0_FIXED0:
1388                 return &msrs->cr0_fixed0;
1389         case MSR_IA32_VMX_CR4_FIXED0:
1390                 return &msrs->cr4_fixed0;
1391         default:
1392                 BUG();
1393         }
1394 }
1395 
1396 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1397 {
1398         const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1399 
1400         /*
1401          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1402          * must be 1 in the restored value.
1403          */
1404         if (!is_bitwise_subset(data, *msr, -1ULL))
1405                 return -EINVAL;
1406 
1407         *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1408         return 0;
1409 }
1410 
1411 /*
1412  * Called when userspace is restoring VMX MSRs.
1413  *
1414  * Returns 0 on success, non-0 otherwise.
1415  */
1416 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1417 {
1418         struct vcpu_vmx *vmx = to_vmx(vcpu);
1419 
1420         /*
1421          * Don't allow changes to the VMX capability MSRs while the vCPU
1422          * is in VMX operation.
1423          */
1424         if (vmx->nested.vmxon)
1425                 return -EBUSY;
1426 
1427         switch (msr_index) {
1428         case MSR_IA32_VMX_BASIC:
1429                 return vmx_restore_vmx_basic(vmx, data);
1430         case MSR_IA32_VMX_PINBASED_CTLS:
1431         case MSR_IA32_VMX_PROCBASED_CTLS:
1432         case MSR_IA32_VMX_EXIT_CTLS:
1433         case MSR_IA32_VMX_ENTRY_CTLS:
1434                 /*
1435                  * The "non-true" VMX capability MSRs are generated from the
1436                  * "true" MSRs, so we do not support restoring them directly.
1437                  *
1438                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1439                  * should restore the "true" MSRs with the must-be-1 bits
1440                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1441                  * DEFAULT SETTINGS".
1442                  */
1443                 return -EINVAL;
1444         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1445         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1446         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1447         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1448         case MSR_IA32_VMX_PROCBASED_CTLS2:
1449                 return vmx_restore_control_msr(vmx, msr_index, data);
1450         case MSR_IA32_VMX_MISC:
1451                 return vmx_restore_vmx_misc(vmx, data);
1452         case MSR_IA32_VMX_CR0_FIXED0:
1453         case MSR_IA32_VMX_CR4_FIXED0:
1454                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1455         case MSR_IA32_VMX_CR0_FIXED1:
1456         case MSR_IA32_VMX_CR4_FIXED1:
1457                 /*
1458                  * These MSRs are generated based on the vCPU's CPUID, so we
1459                  * do not support restoring them directly.
1460                  */
1461                 return -EINVAL;
1462         case MSR_IA32_VMX_EPT_VPID_CAP:
1463                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1464         case MSR_IA32_VMX_VMCS_ENUM:
1465                 vmx->nested.msrs.vmcs_enum = data;
1466                 return 0;
1467         case MSR_IA32_VMX_VMFUNC:
1468                 if (data & ~vmcs_config.nested.vmfunc_controls)
1469                         return -EINVAL;
1470                 vmx->nested.msrs.vmfunc_controls = data;
1471                 return 0;
1472         default:
1473                 /*
1474                  * The rest of the VMX capability MSRs do not support restore.
1475                  */
1476                 return -EINVAL;
1477         }
1478 }
1479 
1480 /* Returns 0 on success, non-0 otherwise. */
1481 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1482 {
1483         switch (msr_index) {
1484         case MSR_IA32_VMX_BASIC:
1485                 *pdata = msrs->basic;
1486                 break;
1487         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1488         case MSR_IA32_VMX_PINBASED_CTLS:
1489                 *pdata = vmx_control_msr(
1490                         msrs->pinbased_ctls_low,
1491                         msrs->pinbased_ctls_high);
1492                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1493                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1494                 break;
1495         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1496         case MSR_IA32_VMX_PROCBASED_CTLS:
1497                 *pdata = vmx_control_msr(
1498                         msrs->procbased_ctls_low,
1499                         msrs->procbased_ctls_high);
1500                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1501                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1502                 break;
1503         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1504         case MSR_IA32_VMX_EXIT_CTLS:
1505                 *pdata = vmx_control_msr(
1506                         msrs->exit_ctls_low,
1507                         msrs->exit_ctls_high);
1508                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1509                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1510                 break;
1511         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1512         case MSR_IA32_VMX_ENTRY_CTLS:
1513                 *pdata = vmx_control_msr(
1514                         msrs->entry_ctls_low,
1515                         msrs->entry_ctls_high);
1516                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1517                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1518                 break;
1519         case MSR_IA32_VMX_MISC:
1520                 *pdata = vmx_control_msr(
1521                         msrs->misc_low,
1522                         msrs->misc_high);
1523                 break;
1524         case MSR_IA32_VMX_CR0_FIXED0:
1525                 *pdata = msrs->cr0_fixed0;
1526                 break;
1527         case MSR_IA32_VMX_CR0_FIXED1:
1528                 *pdata = msrs->cr0_fixed1;
1529                 break;
1530         case MSR_IA32_VMX_CR4_FIXED0:
1531                 *pdata = msrs->cr4_fixed0;
1532                 break;
1533         case MSR_IA32_VMX_CR4_FIXED1:
1534                 *pdata = msrs->cr4_fixed1;
1535                 break;
1536         case MSR_IA32_VMX_VMCS_ENUM:
1537                 *pdata = msrs->vmcs_enum;
1538                 break;
1539         case MSR_IA32_VMX_PROCBASED_CTLS2:
1540                 *pdata = vmx_control_msr(
1541                         msrs->secondary_ctls_low,
1542                         msrs->secondary_ctls_high);
1543                 break;
1544         case MSR_IA32_VMX_EPT_VPID_CAP:
1545                 *pdata = msrs->ept_caps |
1546                         ((u64)msrs->vpid_caps << 32);
1547                 break;
1548         case MSR_IA32_VMX_VMFUNC:
1549                 *pdata = msrs->vmfunc_controls;
1550                 break;
1551         default:
1552                 return 1;
1553         }
1554 
1555         return 0;
1556 }
1557 
1558 /*
1559  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1560  * been modified by the L1 guest.  Note, "writable" in this context means
1561  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1562  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1563  * VM-exit information fields (which are actually writable if the vCPU is
1564  * configured to support "VMWRITE to any supported field in the VMCS").
1565  */
1566 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1567 {
1568         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1569         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1570         struct shadow_vmcs_field field;
1571         unsigned long val;
1572         int i;
1573 
1574         if (WARN_ON(!shadow_vmcs))
1575                 return;
1576 
1577         preempt_disable();
1578 
1579         vmcs_load(shadow_vmcs);
1580 
1581         for (i = 0; i < max_shadow_read_write_fields; i++) {
1582                 field = shadow_read_write_fields[i];
1583                 val = __vmcs_readl(field.encoding);
1584                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1585         }
1586 
1587         vmcs_clear(shadow_vmcs);
1588         vmcs_load(vmx->loaded_vmcs->vmcs);
1589 
1590         preempt_enable();
1591 }
1592 
1593 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1594 {
1595         const struct shadow_vmcs_field *fields[] = {
1596                 shadow_read_write_fields,
1597                 shadow_read_only_fields
1598         };
1599         const int max_fields[] = {
1600                 max_shadow_read_write_fields,
1601                 max_shadow_read_only_fields
1602         };
1603         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1604         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1605         struct shadow_vmcs_field field;
1606         unsigned long val;
1607         int i, q;
1608 
1609         if (WARN_ON(!shadow_vmcs))
1610                 return;
1611 
1612         vmcs_load(shadow_vmcs);
1613 
1614         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1615                 for (i = 0; i < max_fields[q]; i++) {
1616                         field = fields[q][i];
1617                         val = vmcs12_read_any(vmcs12, field.encoding,
1618                                               field.offset);
1619                         __vmcs_writel(field.encoding, val);
1620                 }
1621         }
1622 
1623         vmcs_clear(shadow_vmcs);
1624         vmcs_load(vmx->loaded_vmcs->vmcs);
1625 }
1626 
1627 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1628 {
1629 #ifdef CONFIG_KVM_HYPERV
1630         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1631         struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1632         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1633 
1634         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1635         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1636         vmcs12->guest_rip = evmcs->guest_rip;
1637 
1638         if (unlikely(!(hv_clean_fields &
1639                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1640                 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1641                 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1642                 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1643         }
1644 
1645         if (unlikely(!(hv_clean_fields &
1646                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1647                 vmcs12->guest_rsp = evmcs->guest_rsp;
1648                 vmcs12->guest_rflags = evmcs->guest_rflags;
1649                 vmcs12->guest_interruptibility_info =
1650                         evmcs->guest_interruptibility_info;
1651                 /*
1652                  * Not present in struct vmcs12:
1653                  * vmcs12->guest_ssp = evmcs->guest_ssp;
1654                  */
1655         }
1656 
1657         if (unlikely(!(hv_clean_fields &
1658                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1659                 vmcs12->cpu_based_vm_exec_control =
1660                         evmcs->cpu_based_vm_exec_control;
1661         }
1662 
1663         if (unlikely(!(hv_clean_fields &
1664                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1665                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1666         }
1667 
1668         if (unlikely(!(hv_clean_fields &
1669                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1670                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1671         }
1672 
1673         if (unlikely(!(hv_clean_fields &
1674                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1675                 vmcs12->vm_entry_intr_info_field =
1676                         evmcs->vm_entry_intr_info_field;
1677                 vmcs12->vm_entry_exception_error_code =
1678                         evmcs->vm_entry_exception_error_code;
1679                 vmcs12->vm_entry_instruction_len =
1680                         evmcs->vm_entry_instruction_len;
1681         }
1682 
1683         if (unlikely(!(hv_clean_fields &
1684                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1685                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1686                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1687                 vmcs12->host_cr0 = evmcs->host_cr0;
1688                 vmcs12->host_cr3 = evmcs->host_cr3;
1689                 vmcs12->host_cr4 = evmcs->host_cr4;
1690                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1691                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1692                 vmcs12->host_rip = evmcs->host_rip;
1693                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1694                 vmcs12->host_es_selector = evmcs->host_es_selector;
1695                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1696                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1697                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1698                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1699                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1700                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1701                 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1702                 /*
1703                  * Not present in struct vmcs12:
1704                  * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1705                  * vmcs12->host_ssp = evmcs->host_ssp;
1706                  * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1707                  */
1708         }
1709 
1710         if (unlikely(!(hv_clean_fields &
1711                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1712                 vmcs12->pin_based_vm_exec_control =
1713                         evmcs->pin_based_vm_exec_control;
1714                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1715                 vmcs12->secondary_vm_exec_control =
1716                         evmcs->secondary_vm_exec_control;
1717         }
1718 
1719         if (unlikely(!(hv_clean_fields &
1720                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1721                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1722                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1723         }
1724 
1725         if (unlikely(!(hv_clean_fields &
1726                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1727                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1728         }
1729 
1730         if (unlikely(!(hv_clean_fields &
1731                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1732                 vmcs12->guest_es_base = evmcs->guest_es_base;
1733                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1734                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1735                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1736                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1737                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1738                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1739                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1740                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1741                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1742                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1743                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1744                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1745                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1746                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1747                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1748                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1749                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1750                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1751                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1752                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1753                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1754                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1755                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1756                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1757                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1758                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1759                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1760                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1761                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1762                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1763                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1764                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1765                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1766                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1767                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1768         }
1769 
1770         if (unlikely(!(hv_clean_fields &
1771                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1772                 vmcs12->tsc_offset = evmcs->tsc_offset;
1773                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1774                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1775                 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1776                 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1777         }
1778 
1779         if (unlikely(!(hv_clean_fields &
1780                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1781                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1782                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1783                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1784                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1785                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1786                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1787                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1788                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1789         }
1790 
1791         if (unlikely(!(hv_clean_fields &
1792                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1793                 vmcs12->host_fs_base = evmcs->host_fs_base;
1794                 vmcs12->host_gs_base = evmcs->host_gs_base;
1795                 vmcs12->host_tr_base = evmcs->host_tr_base;
1796                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1797                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1798                 vmcs12->host_rsp = evmcs->host_rsp;
1799         }
1800 
1801         if (unlikely(!(hv_clean_fields &
1802                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1803                 vmcs12->ept_pointer = evmcs->ept_pointer;
1804                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1805         }
1806 
1807         if (unlikely(!(hv_clean_fields &
1808                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1809                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1810                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1811                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1812                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1813                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1814                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1815                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1816                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1817                 vmcs12->guest_pending_dbg_exceptions =
1818                         evmcs->guest_pending_dbg_exceptions;
1819                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1820                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1821                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1822                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1823                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1824                 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1825                 /*
1826                  * Not present in struct vmcs12:
1827                  * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1828                  * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1829                  * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1830                  */
1831         }
1832 
1833         /*
1834          * Not used?
1835          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1836          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1837          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1838          * vmcs12->page_fault_error_code_mask =
1839          *              evmcs->page_fault_error_code_mask;
1840          * vmcs12->page_fault_error_code_match =
1841          *              evmcs->page_fault_error_code_match;
1842          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1843          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1844          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1845          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1846          */
1847 
1848         /*
1849          * Read only fields:
1850          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1851          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1852          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1853          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1854          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1855          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1856          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1857          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1858          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1859          * vmcs12->exit_qualification = evmcs->exit_qualification;
1860          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1861          *
1862          * Not present in struct vmcs12:
1863          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1864          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1865          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1866          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1867          */
1868 
1869         return;
1870 #else /* CONFIG_KVM_HYPERV */
1871         KVM_BUG_ON(1, vmx->vcpu.kvm);
1872 #endif /* CONFIG_KVM_HYPERV */
1873 }
1874 
1875 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1876 {
1877 #ifdef CONFIG_KVM_HYPERV
1878         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1879         struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1880 
1881         /*
1882          * Should not be changed by KVM:
1883          *
1884          * evmcs->host_es_selector = vmcs12->host_es_selector;
1885          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1886          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1887          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1888          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1889          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1890          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1891          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1892          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1893          * evmcs->host_cr0 = vmcs12->host_cr0;
1894          * evmcs->host_cr3 = vmcs12->host_cr3;
1895          * evmcs->host_cr4 = vmcs12->host_cr4;
1896          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1897          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1898          * evmcs->host_rip = vmcs12->host_rip;
1899          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1900          * evmcs->host_fs_base = vmcs12->host_fs_base;
1901          * evmcs->host_gs_base = vmcs12->host_gs_base;
1902          * evmcs->host_tr_base = vmcs12->host_tr_base;
1903          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1904          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1905          * evmcs->host_rsp = vmcs12->host_rsp;
1906          * sync_vmcs02_to_vmcs12() doesn't read these:
1907          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1908          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1909          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1910          * evmcs->ept_pointer = vmcs12->ept_pointer;
1911          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1912          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1913          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1914          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1915          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1916          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1917          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1918          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1919          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1920          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1921          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1922          * evmcs->page_fault_error_code_mask =
1923          *              vmcs12->page_fault_error_code_mask;
1924          * evmcs->page_fault_error_code_match =
1925          *              vmcs12->page_fault_error_code_match;
1926          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1927          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1928          * evmcs->tsc_offset = vmcs12->tsc_offset;
1929          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1930          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1931          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1932          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1933          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1934          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1935          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1936          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1937          * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1938          * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1939          * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1940          * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1941          *
1942          * Not present in struct vmcs12:
1943          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1944          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1945          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1946          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1947          * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1948          * evmcs->host_ssp = vmcs12->host_ssp;
1949          * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1950          * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1951          * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1952          * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1953          * evmcs->guest_ssp = vmcs12->guest_ssp;
1954          */
1955 
1956         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1957         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1958         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1959         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1960         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1961         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1962         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1963         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1964 
1965         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1966         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1967         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1968         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1969         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1970         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1971         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1972         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1973         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1974         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1975 
1976         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1977         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1978         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1979         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1980         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1981         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1982         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1983         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1984 
1985         evmcs->guest_es_base = vmcs12->guest_es_base;
1986         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1987         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1988         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1989         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1990         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1991         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1992         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1993         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1994         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1995 
1996         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1997         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1998 
1999         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2000         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2001         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2002         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2003 
2004         evmcs->guest_pending_dbg_exceptions =
2005                 vmcs12->guest_pending_dbg_exceptions;
2006         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2007         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2008 
2009         evmcs->guest_activity_state = vmcs12->guest_activity_state;
2010         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2011 
2012         evmcs->guest_cr0 = vmcs12->guest_cr0;
2013         evmcs->guest_cr3 = vmcs12->guest_cr3;
2014         evmcs->guest_cr4 = vmcs12->guest_cr4;
2015         evmcs->guest_dr7 = vmcs12->guest_dr7;
2016 
2017         evmcs->guest_physical_address = vmcs12->guest_physical_address;
2018 
2019         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2020         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2021         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2022         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2023         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2024         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2025         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2026         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2027 
2028         evmcs->exit_qualification = vmcs12->exit_qualification;
2029 
2030         evmcs->guest_linear_address = vmcs12->guest_linear_address;
2031         evmcs->guest_rsp = vmcs12->guest_rsp;
2032         evmcs->guest_rflags = vmcs12->guest_rflags;
2033 
2034         evmcs->guest_interruptibility_info =
2035                 vmcs12->guest_interruptibility_info;
2036         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2037         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2038         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2039         evmcs->vm_entry_exception_error_code =
2040                 vmcs12->vm_entry_exception_error_code;
2041         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2042 
2043         evmcs->guest_rip = vmcs12->guest_rip;
2044 
2045         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2046 
2047         return;
2048 #else /* CONFIG_KVM_HYPERV */
2049         KVM_BUG_ON(1, vmx->vcpu.kvm);
2050 #endif /* CONFIG_KVM_HYPERV */
2051 }
2052 
2053 /*
2054  * This is an equivalent of the nested hypervisor executing the vmptrld
2055  * instruction.
2056  */
2057 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2058         struct kvm_vcpu *vcpu, bool from_launch)
2059 {
2060 #ifdef CONFIG_KVM_HYPERV
2061         struct vcpu_vmx *vmx = to_vmx(vcpu);
2062         bool evmcs_gpa_changed = false;
2063         u64 evmcs_gpa;
2064 
2065         if (likely(!guest_cpuid_has_evmcs(vcpu)))
2066                 return EVMPTRLD_DISABLED;
2067 
2068         evmcs_gpa = nested_get_evmptr(vcpu);
2069         if (!evmptr_is_valid(evmcs_gpa)) {
2070                 nested_release_evmcs(vcpu);
2071                 return EVMPTRLD_DISABLED;
2072         }
2073 
2074         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2075                 vmx->nested.current_vmptr = INVALID_GPA;
2076 
2077                 nested_release_evmcs(vcpu);
2078 
2079                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2080                                  &vmx->nested.hv_evmcs_map))
2081                         return EVMPTRLD_ERROR;
2082 
2083                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2084 
2085                 /*
2086                  * Currently, KVM only supports eVMCS version 1
2087                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2088                  * value to first u32 field of eVMCS which should specify eVMCS
2089                  * VersionNumber.
2090                  *
2091                  * Guest should be aware of supported eVMCS versions by host by
2092                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2093                  * expected to set this CPUID leaf according to the value
2094                  * returned in vmcs_version from nested_enable_evmcs().
2095                  *
2096                  * However, it turns out that Microsoft Hyper-V fails to comply
2097                  * to their own invented interface: When Hyper-V use eVMCS, it
2098                  * just sets first u32 field of eVMCS to revision_id specified
2099                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2100                  * which is one of the supported versions specified in
2101                  * CPUID.0x4000000A.EAX[0:15].
2102                  *
2103                  * To overcome Hyper-V bug, we accept here either a supported
2104                  * eVMCS version or VMCS12 revision_id as valid values for first
2105                  * u32 field of eVMCS.
2106                  */
2107                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2108                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2109                         nested_release_evmcs(vcpu);
2110                         return EVMPTRLD_VMFAIL;
2111                 }
2112 
2113                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2114 
2115                 evmcs_gpa_changed = true;
2116                 /*
2117                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2118                  * reloaded from guest's memory (read only fields, fields not
2119                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2120                  * are no leftovers.
2121                  */
2122                 if (from_launch) {
2123                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2124                         memset(vmcs12, 0, sizeof(*vmcs12));
2125                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2126                 }
2127 
2128         }
2129 
2130         /*
2131          * Clean fields data can't be used on VMLAUNCH and when we switch
2132          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2133          */
2134         if (from_launch || evmcs_gpa_changed) {
2135                 vmx->nested.hv_evmcs->hv_clean_fields &=
2136                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2137 
2138                 vmx->nested.force_msr_bitmap_recalc = true;
2139         }
2140 
2141         return EVMPTRLD_SUCCEEDED;
2142 #else
2143         return EVMPTRLD_DISABLED;
2144 #endif
2145 }
2146 
2147 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2148 {
2149         struct vcpu_vmx *vmx = to_vmx(vcpu);
2150 
2151         if (nested_vmx_is_evmptr12_valid(vmx))
2152                 copy_vmcs12_to_enlightened(vmx);
2153         else
2154                 copy_vmcs12_to_shadow(vmx);
2155 
2156         vmx->nested.need_vmcs12_to_shadow_sync = false;
2157 }
2158 
2159 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2160 {
2161         struct vcpu_vmx *vmx =
2162                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2163 
2164         vmx->nested.preemption_timer_expired = true;
2165         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2166         kvm_vcpu_kick(&vmx->vcpu);
2167 
2168         return HRTIMER_NORESTART;
2169 }
2170 
2171 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2172 {
2173         struct vcpu_vmx *vmx = to_vmx(vcpu);
2174         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2175 
2176         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2177                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2178 
2179         if (!vmx->nested.has_preemption_timer_deadline) {
2180                 vmx->nested.preemption_timer_deadline =
2181                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2182                 vmx->nested.has_preemption_timer_deadline = true;
2183         }
2184         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2185 }
2186 
2187 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2188                                         u64 preemption_timeout)
2189 {
2190         struct vcpu_vmx *vmx = to_vmx(vcpu);
2191 
2192         /*
2193          * A timer value of zero is architecturally guaranteed to cause
2194          * a VMExit prior to executing any instructions in the guest.
2195          */
2196         if (preemption_timeout == 0) {
2197                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2198                 return;
2199         }
2200 
2201         if (vcpu->arch.virtual_tsc_khz == 0)
2202                 return;
2203 
2204         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2205         preemption_timeout *= 1000000;
2206         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2207         hrtimer_start(&vmx->nested.preemption_timer,
2208                       ktime_add_ns(ktime_get(), preemption_timeout),
2209                       HRTIMER_MODE_ABS_PINNED);
2210 }
2211 
2212 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2213 {
2214         if (vmx->nested.nested_run_pending &&
2215             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2216                 return vmcs12->guest_ia32_efer;
2217         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2218                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2219         else
2220                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2221 }
2222 
2223 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2224 {
2225         struct kvm *kvm = vmx->vcpu.kvm;
2226 
2227         /*
2228          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2229          * according to L0's settings (vmcs12 is irrelevant here).  Host
2230          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2231          * will be set as needed prior to VMLAUNCH/VMRESUME.
2232          */
2233         if (vmx->nested.vmcs02_initialized)
2234                 return;
2235         vmx->nested.vmcs02_initialized = true;
2236 
2237         /*
2238          * We don't care what the EPTP value is we just need to guarantee
2239          * it's valid so we don't get a false positive when doing early
2240          * consistency checks.
2241          */
2242         if (enable_ept && nested_early_check)
2243                 vmcs_write64(EPT_POINTER,
2244                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2245 
2246         if (vmx->ve_info)
2247                 vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2248 
2249         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2250         if (cpu_has_vmx_vmfunc())
2251                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2252 
2253         if (cpu_has_vmx_posted_intr())
2254                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2255 
2256         if (cpu_has_vmx_msr_bitmap())
2257                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2258 
2259         /*
2260          * PML is emulated for L2, but never enabled in hardware as the MMU
2261          * handles A/D emulation.  Disabling PML for L2 also avoids having to
2262          * deal with filtering out L2 GPAs from the buffer.
2263          */
2264         if (enable_pml) {
2265                 vmcs_write64(PML_ADDRESS, 0);
2266                 vmcs_write16(GUEST_PML_INDEX, -1);
2267         }
2268 
2269         if (cpu_has_vmx_encls_vmexit())
2270                 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2271 
2272         if (kvm_notify_vmexit_enabled(kvm))
2273                 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2274 
2275         /*
2276          * Set the MSR load/store lists to match L0's settings.  Only the
2277          * addresses are constant (for vmcs02), the counts can change based
2278          * on L2's behavior, e.g. switching to/from long mode.
2279          */
2280         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2281         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2282         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2283 
2284         vmx_set_constant_host_state(vmx);
2285 }
2286 
2287 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2288                                       struct vmcs12 *vmcs12)
2289 {
2290         prepare_vmcs02_constant_state(vmx);
2291 
2292         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2293 
2294         if (enable_vpid) {
2295                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2296                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2297                 else
2298                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2299         }
2300 }
2301 
2302 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2303                                  struct vmcs12 *vmcs12)
2304 {
2305         u32 exec_control;
2306         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2307 
2308         if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2309                 prepare_vmcs02_early_rare(vmx, vmcs12);
2310 
2311         /*
2312          * PIN CONTROLS
2313          */
2314         exec_control = __pin_controls_get(vmcs01);
2315         exec_control |= (vmcs12->pin_based_vm_exec_control &
2316                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2317 
2318         /* Posted interrupts setting is only taken from vmcs12.  */
2319         vmx->nested.pi_pending = false;
2320         if (nested_cpu_has_posted_intr(vmcs12))
2321                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2322         else
2323                 exec_control &= ~PIN_BASED_POSTED_INTR;
2324         pin_controls_set(vmx, exec_control);
2325 
2326         /*
2327          * EXEC CONTROLS
2328          */
2329         exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2330         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2331         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2332         exec_control &= ~CPU_BASED_TPR_SHADOW;
2333         exec_control |= vmcs12->cpu_based_vm_exec_control;
2334 
2335         vmx->nested.l1_tpr_threshold = -1;
2336         if (exec_control & CPU_BASED_TPR_SHADOW)
2337                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2338 #ifdef CONFIG_X86_64
2339         else
2340                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2341                                 CPU_BASED_CR8_STORE_EXITING;
2342 #endif
2343 
2344         /*
2345          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2346          * for I/O port accesses.
2347          */
2348         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2349         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2350 
2351         /*
2352          * This bit will be computed in nested_get_vmcs12_pages, because
2353          * we do not have access to L1's MSR bitmap yet.  For now, keep
2354          * the same bit as before, hoping to avoid multiple VMWRITEs that
2355          * only set/clear this bit.
2356          */
2357         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2358         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2359 
2360         exec_controls_set(vmx, exec_control);
2361 
2362         /*
2363          * SECONDARY EXEC CONTROLS
2364          */
2365         if (cpu_has_secondary_exec_ctrls()) {
2366                 exec_control = __secondary_exec_controls_get(vmcs01);
2367 
2368                 /* Take the following fields only from vmcs12 */
2369                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2370                                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2371                                   SECONDARY_EXEC_ENABLE_INVPCID |
2372                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2373                                   SECONDARY_EXEC_ENABLE_XSAVES |
2374                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2375                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2376                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2377                                   SECONDARY_EXEC_ENABLE_VMFUNC |
2378                                   SECONDARY_EXEC_DESC);
2379 
2380                 if (nested_cpu_has(vmcs12,
2381                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2382                         exec_control |= vmcs12->secondary_vm_exec_control;
2383 
2384                 /* PML is emulated and never enabled in hardware for L2. */
2385                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2386 
2387                 /* VMCS shadowing for L2 is emulated for now */
2388                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2389 
2390                 /*
2391                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2392                  * will not have to rewrite the controls just for this bit.
2393                  */
2394                 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2395                         exec_control |= SECONDARY_EXEC_DESC;
2396 
2397                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2398                         vmcs_write16(GUEST_INTR_STATUS,
2399                                 vmcs12->guest_intr_status);
2400 
2401                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2402                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2403 
2404                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2405                         vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2406 
2407                 secondary_exec_controls_set(vmx, exec_control);
2408         }
2409 
2410         /*
2411          * ENTRY CONTROLS
2412          *
2413          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2414          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2415          * on the related bits (if supported by the CPU) in the hope that
2416          * we can avoid VMWrites during vmx_set_efer().
2417          *
2418          * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2419          * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2420          * do the same for L2.
2421          */
2422         exec_control = __vm_entry_controls_get(vmcs01);
2423         exec_control |= (vmcs12->vm_entry_controls &
2424                          ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2425         exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2426         if (cpu_has_load_ia32_efer()) {
2427                 if (guest_efer & EFER_LMA)
2428                         exec_control |= VM_ENTRY_IA32E_MODE;
2429                 if (guest_efer != kvm_host.efer)
2430                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2431         }
2432         vm_entry_controls_set(vmx, exec_control);
2433 
2434         /*
2435          * EXIT CONTROLS
2436          *
2437          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2438          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2439          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2440          */
2441         exec_control = __vm_exit_controls_get(vmcs01);
2442         if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2443                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2444         else
2445                 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2446         vm_exit_controls_set(vmx, exec_control);
2447 
2448         /*
2449          * Interrupt/Exception Fields
2450          */
2451         if (vmx->nested.nested_run_pending) {
2452                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2453                              vmcs12->vm_entry_intr_info_field);
2454                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2455                              vmcs12->vm_entry_exception_error_code);
2456                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2457                              vmcs12->vm_entry_instruction_len);
2458                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2459                              vmcs12->guest_interruptibility_info);
2460                 vmx->loaded_vmcs->nmi_known_unmasked =
2461                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2462         } else {
2463                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2464         }
2465 }
2466 
2467 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2468 {
2469         struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2470 
2471         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2472                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2473                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2474                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2475                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2476                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2477                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2478                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2479                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2480                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2481                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2482                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2483                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2484                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2485                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2486                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2487                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2488                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2489                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2490                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2491                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2492                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2493                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2494                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2495                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2496                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2497                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2498                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2499                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2500                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2501                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2502                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2503                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2504                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2505                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2506                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2507                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2508                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2509 
2510                 vmx->segment_cache.bitmask = 0;
2511         }
2512 
2513         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2514                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2515                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2516                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2517                             vmcs12->guest_pending_dbg_exceptions);
2518                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2519                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2520 
2521                 /*
2522                  * L1 may access the L2's PDPTR, so save them to construct
2523                  * vmcs12
2524                  */
2525                 if (enable_ept) {
2526                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2527                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2528                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2529                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2530                 }
2531 
2532                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2533                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2534                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2535         }
2536 
2537         if (nested_cpu_has_xsaves(vmcs12))
2538                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2539 
2540         /*
2541          * Whether page-faults are trapped is determined by a combination of
2542          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2543          * doesn't care about page faults then we should set all of these to
2544          * L1's desires. However, if L0 does care about (some) page faults, it
2545          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2546          * simply ask to exit on each and every L2 page fault. This is done by
2547          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2548          * Note that below we don't need special code to set EB.PF beyond the
2549          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2550          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2551          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2552          */
2553         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2554                 /*
2555                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2556                  * go ahead and use it?
2557                  */
2558                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2559                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2560         } else {
2561                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2562                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2563         }
2564 
2565         if (cpu_has_vmx_apicv()) {
2566                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2567                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2568                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2569                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2570         }
2571 
2572         /*
2573          * Make sure the msr_autostore list is up to date before we set the
2574          * count in the vmcs02.
2575          */
2576         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2577 
2578         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2579         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2580         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2581 
2582         set_cr4_guest_host_mask(vmx);
2583 }
2584 
2585 /*
2586  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2587  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2588  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2589  * guest in a way that will both be appropriate to L1's requests, and our
2590  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2591  * function also has additional necessary side-effects, like setting various
2592  * vcpu->arch fields.
2593  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2594  * is assigned to entry_failure_code on failure.
2595  */
2596 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2597                           bool from_vmentry,
2598                           enum vm_entry_failure_code *entry_failure_code)
2599 {
2600         struct vcpu_vmx *vmx = to_vmx(vcpu);
2601         struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2602         bool load_guest_pdptrs_vmcs12 = false;
2603 
2604         if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2605                 prepare_vmcs02_rare(vmx, vmcs12);
2606                 vmx->nested.dirty_vmcs12 = false;
2607 
2608                 load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2609                         !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2610         }
2611 
2612         if (vmx->nested.nested_run_pending &&
2613             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2614                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2615                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2616         } else {
2617                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2618                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2619         }
2620         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2621             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2622                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2623         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2624 
2625         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2626          * bitwise-or of what L1 wants to trap for L2, and what we want to
2627          * trap. Note that CR0.TS also needs updating - we do this later.
2628          */
2629         vmx_update_exception_bitmap(vcpu);
2630         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2631         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2632 
2633         if (vmx->nested.nested_run_pending &&
2634             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2635                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2636                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2637         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2638                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2639         }
2640 
2641         vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2642                         vcpu->arch.l1_tsc_offset,
2643                         vmx_get_l2_tsc_offset(vcpu),
2644                         vmx_get_l2_tsc_multiplier(vcpu));
2645 
2646         vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2647                         vcpu->arch.l1_tsc_scaling_ratio,
2648                         vmx_get_l2_tsc_multiplier(vcpu));
2649 
2650         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2651         if (kvm_caps.has_tsc_control)
2652                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2653 
2654         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2655 
2656         if (nested_cpu_has_ept(vmcs12))
2657                 nested_ept_init_mmu_context(vcpu);
2658 
2659         /*
2660          * Override the CR0/CR4 read shadows after setting the effective guest
2661          * CR0/CR4.  The common helpers also set the shadows, but they don't
2662          * account for vmcs12's cr0/4_guest_host_mask.
2663          */
2664         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2665         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2666 
2667         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2668         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2669 
2670         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2671         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2672         vmx_set_efer(vcpu, vcpu->arch.efer);
2673 
2674         /*
2675          * Guest state is invalid and unrestricted guest is disabled,
2676          * which means L1 attempted VMEntry to L2 with invalid state.
2677          * Fail the VMEntry.
2678          *
2679          * However when force loading the guest state (SMM exit or
2680          * loading nested state after migration, it is possible to
2681          * have invalid guest state now, which will be later fixed by
2682          * restoring L2 register state
2683          */
2684         if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2685                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2686                 return -EINVAL;
2687         }
2688 
2689         /* Shadow page tables on either EPT or shadow page tables. */
2690         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2691                                 from_vmentry, entry_failure_code))
2692                 return -EINVAL;
2693 
2694         /*
2695          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2696          * on nested VM-Exit, which can occur without actually running L2 and
2697          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2698          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2699          * transition to HLT instead of running L2.
2700          */
2701         if (enable_ept)
2702                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2703 
2704         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2705         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2706             is_pae_paging(vcpu)) {
2707                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2708                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2709                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2710                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2711         }
2712 
2713         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2714             kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2715             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2716                                      vmcs12->guest_ia32_perf_global_ctrl))) {
2717                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2718                 return -EINVAL;
2719         }
2720 
2721         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2722         kvm_rip_write(vcpu, vmcs12->guest_rip);
2723 
2724         /*
2725          * It was observed that genuine Hyper-V running in L1 doesn't reset
2726          * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2727          * bits when it changes a field in eVMCS. Mark all fields as clean
2728          * here.
2729          */
2730         if (nested_vmx_is_evmptr12_valid(vmx))
2731                 evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2732 
2733         return 0;
2734 }
2735 
2736 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2737 {
2738         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2739                nested_cpu_has_virtual_nmis(vmcs12)))
2740                 return -EINVAL;
2741 
2742         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2743                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2744                 return -EINVAL;
2745 
2746         return 0;
2747 }
2748 
2749 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2750 {
2751         struct vcpu_vmx *vmx = to_vmx(vcpu);
2752 
2753         /* Check for memory type validity */
2754         switch (new_eptp & VMX_EPTP_MT_MASK) {
2755         case VMX_EPTP_MT_UC:
2756                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2757                         return false;
2758                 break;
2759         case VMX_EPTP_MT_WB:
2760                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2761                         return false;
2762                 break;
2763         default:
2764                 return false;
2765         }
2766 
2767         /* Page-walk levels validity. */
2768         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2769         case VMX_EPTP_PWL_5:
2770                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2771                         return false;
2772                 break;
2773         case VMX_EPTP_PWL_4:
2774                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2775                         return false;
2776                 break;
2777         default:
2778                 return false;
2779         }
2780 
2781         /* Reserved bits should not be set */
2782         if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2783                 return false;
2784 
2785         /* AD, if set, should be supported */
2786         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2787                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2788                         return false;
2789         }
2790 
2791         return true;
2792 }
2793 
2794 /*
2795  * Checks related to VM-Execution Control Fields
2796  */
2797 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2798                                               struct vmcs12 *vmcs12)
2799 {
2800         struct vcpu_vmx *vmx = to_vmx(vcpu);
2801 
2802         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2803                                    vmx->nested.msrs.pinbased_ctls_low,
2804                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2805             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2806                                    vmx->nested.msrs.procbased_ctls_low,
2807                                    vmx->nested.msrs.procbased_ctls_high)))
2808                 return -EINVAL;
2809 
2810         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2811             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2812                                    vmx->nested.msrs.secondary_ctls_low,
2813                                    vmx->nested.msrs.secondary_ctls_high)))
2814                 return -EINVAL;
2815 
2816         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2817             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2818             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2819             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2820             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2821             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2822             nested_vmx_check_nmi_controls(vmcs12) ||
2823             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2824             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2825             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2826             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2827             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2828                 return -EINVAL;
2829 
2830         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2831             nested_cpu_has_save_preemption_timer(vmcs12))
2832                 return -EINVAL;
2833 
2834         if (nested_cpu_has_ept(vmcs12) &&
2835             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2836                 return -EINVAL;
2837 
2838         if (nested_cpu_has_vmfunc(vmcs12)) {
2839                 if (CC(vmcs12->vm_function_control &
2840                        ~vmx->nested.msrs.vmfunc_controls))
2841                         return -EINVAL;
2842 
2843                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2844                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2845                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2846                                 return -EINVAL;
2847                 }
2848         }
2849 
2850         return 0;
2851 }
2852 
2853 /*
2854  * Checks related to VM-Exit Control Fields
2855  */
2856 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2857                                          struct vmcs12 *vmcs12)
2858 {
2859         struct vcpu_vmx *vmx = to_vmx(vcpu);
2860 
2861         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2862                                     vmx->nested.msrs.exit_ctls_low,
2863                                     vmx->nested.msrs.exit_ctls_high)) ||
2864             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2865                 return -EINVAL;
2866 
2867         return 0;
2868 }
2869 
2870 /*
2871  * Checks related to VM-Entry Control Fields
2872  */
2873 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2874                                           struct vmcs12 *vmcs12)
2875 {
2876         struct vcpu_vmx *vmx = to_vmx(vcpu);
2877 
2878         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2879                                     vmx->nested.msrs.entry_ctls_low,
2880                                     vmx->nested.msrs.entry_ctls_high)))
2881                 return -EINVAL;
2882 
2883         /*
2884          * From the Intel SDM, volume 3:
2885          * Fields relevant to VM-entry event injection must be set properly.
2886          * These fields are the VM-entry interruption-information field, the
2887          * VM-entry exception error code, and the VM-entry instruction length.
2888          */
2889         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2890                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2891                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2892                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2893                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2894                 bool should_have_error_code;
2895                 bool urg = nested_cpu_has2(vmcs12,
2896                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2897                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2898 
2899                 /* VM-entry interruption-info field: interruption type */
2900                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2901                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2902                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2903                         return -EINVAL;
2904 
2905                 /* VM-entry interruption-info field: vector */
2906                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2907                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2908                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2909                         return -EINVAL;
2910 
2911                 /* VM-entry interruption-info field: deliver error code */
2912                 should_have_error_code =
2913                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2914                         x86_exception_has_error_code(vector);
2915                 if (CC(has_error_code != should_have_error_code))
2916                         return -EINVAL;
2917 
2918                 /* VM-entry exception error code */
2919                 if (CC(has_error_code &&
2920                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2921                         return -EINVAL;
2922 
2923                 /* VM-entry interruption-info field: reserved bits */
2924                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2925                         return -EINVAL;
2926 
2927                 /* VM-entry instruction length */
2928                 switch (intr_type) {
2929                 case INTR_TYPE_SOFT_EXCEPTION:
2930                 case INTR_TYPE_SOFT_INTR:
2931                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2932                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2933                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2934                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2935                                 return -EINVAL;
2936                 }
2937         }
2938 
2939         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2940                 return -EINVAL;
2941 
2942         return 0;
2943 }
2944 
2945 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2946                                      struct vmcs12 *vmcs12)
2947 {
2948         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2949             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2950             nested_check_vm_entry_controls(vcpu, vmcs12))
2951                 return -EINVAL;
2952 
2953 #ifdef CONFIG_KVM_HYPERV
2954         if (guest_cpuid_has_evmcs(vcpu))
2955                 return nested_evmcs_check_controls(vmcs12);
2956 #endif
2957 
2958         return 0;
2959 }
2960 
2961 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2962                                        struct vmcs12 *vmcs12)
2963 {
2964 #ifdef CONFIG_X86_64
2965         if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2966                 !!(vcpu->arch.efer & EFER_LMA)))
2967                 return -EINVAL;
2968 #endif
2969         return 0;
2970 }
2971 
2972 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2973                                        struct vmcs12 *vmcs12)
2974 {
2975         bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2976 
2977         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2978             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2979             CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
2980                 return -EINVAL;
2981 
2982         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2983             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2984                 return -EINVAL;
2985 
2986         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2987             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2988                 return -EINVAL;
2989 
2990         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2991             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2992                                            vmcs12->host_ia32_perf_global_ctrl)))
2993                 return -EINVAL;
2994 
2995         if (ia32e) {
2996                 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2997                         return -EINVAL;
2998         } else {
2999                 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3000                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3001                     CC((vmcs12->host_rip) >> 32))
3002                         return -EINVAL;
3003         }
3004 
3005         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3006             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3007             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3008             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3009             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3010             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3011             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3012             CC(vmcs12->host_cs_selector == 0) ||
3013             CC(vmcs12->host_tr_selector == 0) ||
3014             CC(vmcs12->host_ss_selector == 0 && !ia32e))
3015                 return -EINVAL;
3016 
3017         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
3018             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
3019             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
3020             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
3021             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
3022             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
3023                 return -EINVAL;
3024 
3025         /*
3026          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3027          * IA32_EFER MSR must be 0 in the field for that register. In addition,
3028          * the values of the LMA and LME bits in the field must each be that of
3029          * the host address-space size VM-exit control.
3030          */
3031         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3032                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3033                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3034                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3035                         return -EINVAL;
3036         }
3037 
3038         return 0;
3039 }
3040 
3041 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3042                                           struct vmcs12 *vmcs12)
3043 {
3044         struct vcpu_vmx *vmx = to_vmx(vcpu);
3045         struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3046         struct vmcs_hdr hdr;
3047 
3048         if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3049                 return 0;
3050 
3051         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3052                 return -EINVAL;
3053 
3054         if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3055             CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3056                                          vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3057                 return -EINVAL;
3058 
3059         if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3060                                             offsetof(struct vmcs12, hdr),
3061                                             sizeof(hdr))))
3062                 return -EINVAL;
3063 
3064         if (CC(hdr.revision_id != VMCS12_REVISION) ||
3065             CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3066                 return -EINVAL;
3067 
3068         return 0;
3069 }
3070 
3071 /*
3072  * Checks related to Guest Non-register State
3073  */
3074 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3075 {
3076         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3077                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3078                vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3079                 return -EINVAL;
3080 
3081         return 0;
3082 }
3083 
3084 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3085                                         struct vmcs12 *vmcs12,
3086                                         enum vm_entry_failure_code *entry_failure_code)
3087 {
3088         bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3089 
3090         *entry_failure_code = ENTRY_FAIL_DEFAULT;
3091 
3092         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3093             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3094                 return -EINVAL;
3095 
3096         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3097             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3098                 return -EINVAL;
3099 
3100         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3101             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3102                 return -EINVAL;
3103 
3104         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3105                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3106                 return -EINVAL;
3107         }
3108 
3109         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3110             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3111                                            vmcs12->guest_ia32_perf_global_ctrl)))
3112                 return -EINVAL;
3113 
3114         if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3115                 return -EINVAL;
3116 
3117         if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3118             CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3119                 return -EINVAL;
3120 
3121         /*
3122          * If the load IA32_EFER VM-entry control is 1, the following checks
3123          * are performed on the field for the IA32_EFER MSR:
3124          * - Bits reserved in the IA32_EFER MSR must be 0.
3125          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3126          *   the IA-32e mode guest VM-exit control. It must also be identical
3127          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3128          *   CR0.PG) is 1.
3129          */
3130         if (to_vmx(vcpu)->nested.nested_run_pending &&
3131             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3132                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3133                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3134                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3135                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3136                         return -EINVAL;
3137         }
3138 
3139         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3140             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3141              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3142                 return -EINVAL;
3143 
3144         if (nested_check_guest_non_reg_state(vmcs12))
3145                 return -EINVAL;
3146 
3147         return 0;
3148 }
3149 
3150 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3151 {
3152         struct vcpu_vmx *vmx = to_vmx(vcpu);
3153         unsigned long cr3, cr4;
3154         bool vm_fail;
3155 
3156         if (!nested_early_check)
3157                 return 0;
3158 
3159         if (vmx->msr_autoload.host.nr)
3160                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3161         if (vmx->msr_autoload.guest.nr)
3162                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3163 
3164         preempt_disable();
3165 
3166         vmx_prepare_switch_to_guest(vcpu);
3167 
3168         /*
3169          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3170          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3171          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3172          * there is no need to preserve other bits or save/restore the field.
3173          */
3174         vmcs_writel(GUEST_RFLAGS, 0);
3175 
3176         cr3 = __get_current_cr3_fast();
3177         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3178                 vmcs_writel(HOST_CR3, cr3);
3179                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3180         }
3181 
3182         cr4 = cr4_read_shadow();
3183         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3184                 vmcs_writel(HOST_CR4, cr4);
3185                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3186         }
3187 
3188         vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3189                                  __vmx_vcpu_run_flags(vmx));
3190 
3191         if (vmx->msr_autoload.host.nr)
3192                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3193         if (vmx->msr_autoload.guest.nr)
3194                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3195 
3196         if (vm_fail) {
3197                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3198 
3199                 preempt_enable();
3200 
3201                 trace_kvm_nested_vmenter_failed(
3202                         "early hardware check VM-instruction error: ", error);
3203                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3204                 return 1;
3205         }
3206 
3207         /*
3208          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3209          */
3210         if (hw_breakpoint_active())
3211                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3212         local_irq_enable();
3213         preempt_enable();
3214 
3215         /*
3216          * A non-failing VMEntry means we somehow entered guest mode with
3217          * an illegal RIP, and that's just the tip of the iceberg.  There
3218          * is no telling what memory has been modified or what state has
3219          * been exposed to unknown code.  Hitting this all but guarantees
3220          * a (very critical) hardware issue.
3221          */
3222         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3223                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3224 
3225         return 0;
3226 }
3227 
3228 #ifdef CONFIG_KVM_HYPERV
3229 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3230 {
3231         struct vcpu_vmx *vmx = to_vmx(vcpu);
3232 
3233         /*
3234          * hv_evmcs may end up being not mapped after migration (when
3235          * L2 was running), map it here to make sure vmcs12 changes are
3236          * properly reflected.
3237          */
3238         if (guest_cpuid_has_evmcs(vcpu) &&
3239             vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3240                 enum nested_evmptrld_status evmptrld_status =
3241                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3242 
3243                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3244                     evmptrld_status == EVMPTRLD_ERROR)
3245                         return false;
3246 
3247                 /*
3248                  * Post migration VMCS12 always provides the most actual
3249                  * information, copy it to eVMCS upon entry.
3250                  */
3251                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3252         }
3253 
3254         return true;
3255 }
3256 #endif
3257 
3258 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3259 {
3260         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3261         struct vcpu_vmx *vmx = to_vmx(vcpu);
3262         struct kvm_host_map *map;
3263 
3264         if (!vcpu->arch.pdptrs_from_userspace &&
3265             !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3266                 /*
3267                  * Reload the guest's PDPTRs since after a migration
3268                  * the guest CR3 might be restored prior to setting the nested
3269                  * state which can lead to a load of wrong PDPTRs.
3270                  */
3271                 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3272                         return false;
3273         }
3274 
3275 
3276         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3277                 map = &vmx->nested.apic_access_page_map;
3278 
3279                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3280                         vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3281                 } else {
3282                         pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3283                                              __func__);
3284                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3285                         vcpu->run->internal.suberror =
3286                                 KVM_INTERNAL_ERROR_EMULATION;
3287                         vcpu->run->internal.ndata = 0;
3288                         return false;
3289                 }
3290         }
3291 
3292         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3293                 map = &vmx->nested.virtual_apic_map;
3294 
3295                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3296                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3297                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3298                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3299                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3300                         /*
3301                          * The processor will never use the TPR shadow, simply
3302                          * clear the bit from the execution control.  Such a
3303                          * configuration is useless, but it happens in tests.
3304                          * For any other configuration, failing the vm entry is
3305                          * _not_ what the processor does but it's basically the
3306                          * only possibility we have.
3307                          */
3308                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3309                 } else {
3310                         /*
3311                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3312                          * force VM-Entry to fail.
3313                          */
3314                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3315                 }
3316         }
3317 
3318         if (nested_cpu_has_posted_intr(vmcs12)) {
3319                 map = &vmx->nested.pi_desc_map;
3320 
3321                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3322                         vmx->nested.pi_desc =
3323                                 (struct pi_desc *)(((void *)map->hva) +
3324                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3325                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3326                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3327                 } else {
3328                         /*
3329                          * Defer the KVM_INTERNAL_EXIT until KVM tries to
3330                          * access the contents of the VMCS12 posted interrupt
3331                          * descriptor. (Note that KVM may do this when it
3332                          * should not, per the architectural specification.)
3333                          */
3334                         vmx->nested.pi_desc = NULL;
3335                         pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3336                 }
3337         }
3338         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3339                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3340         else
3341                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3342 
3343         return true;
3344 }
3345 
3346 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3347 {
3348 #ifdef CONFIG_KVM_HYPERV
3349         /*
3350          * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3351          * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3352          * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3353          * migration.
3354          */
3355         if (!nested_get_evmcs_page(vcpu)) {
3356                 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3357                                      __func__);
3358                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3359                 vcpu->run->internal.suberror =
3360                         KVM_INTERNAL_ERROR_EMULATION;
3361                 vcpu->run->internal.ndata = 0;
3362 
3363                 return false;
3364         }
3365 #endif
3366 
3367         if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3368                 return false;
3369 
3370         return true;
3371 }
3372 
3373 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3374 {
3375         struct vmcs12 *vmcs12;
3376         struct vcpu_vmx *vmx = to_vmx(vcpu);
3377         gpa_t dst;
3378 
3379         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3380                 return 0;
3381 
3382         if (WARN_ON_ONCE(vmx->nested.pml_full))
3383                 return 1;
3384 
3385         /*
3386          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3387          * set is already checked as part of A/D emulation.
3388          */
3389         vmcs12 = get_vmcs12(vcpu);
3390         if (!nested_cpu_has_pml(vmcs12))
3391                 return 0;
3392 
3393         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3394                 vmx->nested.pml_full = true;
3395                 return 1;
3396         }
3397 
3398         gpa &= ~0xFFFull;
3399         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3400 
3401         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3402                                  offset_in_page(dst), sizeof(gpa)))
3403                 return 0;
3404 
3405         vmcs12->guest_pml_index--;
3406 
3407         return 0;
3408 }
3409 
3410 /*
3411  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3412  * for running VMX instructions (except VMXON, whose prerequisites are
3413  * slightly different). It also specifies what exception to inject otherwise.
3414  * Note that many of these exceptions have priority over VM exits, so they
3415  * don't have to be checked again here.
3416  */
3417 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3418 {
3419         if (!to_vmx(vcpu)->nested.vmxon) {
3420                 kvm_queue_exception(vcpu, UD_VECTOR);
3421                 return 0;
3422         }
3423 
3424         if (vmx_get_cpl(vcpu)) {
3425                 kvm_inject_gp(vcpu, 0);
3426                 return 0;
3427         }
3428 
3429         return 1;
3430 }
3431 
3432 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3433 {
3434         u8 rvi = vmx_get_rvi();
3435         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3436 
3437         return ((rvi & 0xf0) > (vppr & 0xf0));
3438 }
3439 
3440 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3441                                    struct vmcs12 *vmcs12);
3442 
3443 /*
3444  * If from_vmentry is false, this is being called from state restore (either RSM
3445  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3446  *
3447  * Returns:
3448  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3449  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3450  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3451  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3452  */
3453 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3454                                                         bool from_vmentry)
3455 {
3456         struct vcpu_vmx *vmx = to_vmx(vcpu);
3457         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3458         enum vm_entry_failure_code entry_failure_code;
3459         bool evaluate_pending_interrupts;
3460         union vmx_exit_reason exit_reason = {
3461                 .basic = EXIT_REASON_INVALID_STATE,
3462                 .failed_vmentry = 1,
3463         };
3464         u32 failed_index;
3465 
3466         trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3467                                  vmx->nested.current_vmptr,
3468                                  vmcs12->guest_rip,
3469                                  vmcs12->guest_intr_status,
3470                                  vmcs12->vm_entry_intr_info_field,
3471                                  vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3472                                  vmcs12->ept_pointer,
3473                                  vmcs12->guest_cr3,
3474                                  KVM_ISA_VMX);
3475 
3476         kvm_service_local_tlb_flush_requests(vcpu);
3477 
3478         evaluate_pending_interrupts = exec_controls_get(vmx) &
3479                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3480         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3481                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3482         if (!evaluate_pending_interrupts)
3483                 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3484 
3485         if (!vmx->nested.nested_run_pending ||
3486             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3487                 vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3488         if (kvm_mpx_supported() &&
3489             (!vmx->nested.nested_run_pending ||
3490              !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3491                 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3492 
3493         /*
3494          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3495          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3496          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3497          * software model to the pre-VMEntry host state.  When EPT is disabled,
3498          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3499          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3500          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3501          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3502          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3503          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3504          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3505          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3506          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3507          * path would need to manually save/restore vmcs01.GUEST_CR3.
3508          */
3509         if (!enable_ept && !nested_early_check)
3510                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3511 
3512         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3513 
3514         prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3515 
3516         if (from_vmentry) {
3517                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3518                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3519                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3520                 }
3521 
3522                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3523                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3524                         return NVMX_VMENTRY_VMFAIL;
3525                 }
3526 
3527                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3528                                                  &entry_failure_code)) {
3529                         exit_reason.basic = EXIT_REASON_INVALID_STATE;
3530                         vmcs12->exit_qualification = entry_failure_code;
3531                         goto vmentry_fail_vmexit;
3532                 }
3533         }
3534 
3535         enter_guest_mode(vcpu);
3536 
3537         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3538                 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3539                 vmcs12->exit_qualification = entry_failure_code;
3540                 goto vmentry_fail_vmexit_guest_mode;
3541         }
3542 
3543         if (from_vmentry) {
3544                 failed_index = nested_vmx_load_msr(vcpu,
3545                                                    vmcs12->vm_entry_msr_load_addr,
3546                                                    vmcs12->vm_entry_msr_load_count);
3547                 if (failed_index) {
3548                         exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3549                         vmcs12->exit_qualification = failed_index;
3550                         goto vmentry_fail_vmexit_guest_mode;
3551                 }
3552         } else {
3553                 /*
3554                  * The MMU is not initialized to point at the right entities yet and
3555                  * "get pages" would need to read data from the guest (i.e. we will
3556                  * need to perform gpa to hpa translation). Request a call
3557                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3558                  * have already been set at vmentry time and should not be reset.
3559                  */
3560                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3561         }
3562 
3563         /*
3564          * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3565          * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3566          * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3567          * unconditionally.
3568          */
3569         if (unlikely(evaluate_pending_interrupts))
3570                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3571 
3572         /*
3573          * Do not start the preemption timer hrtimer until after we know
3574          * we are successful, so that only nested_vmx_vmexit needs to cancel
3575          * the timer.
3576          */
3577         vmx->nested.preemption_timer_expired = false;
3578         if (nested_cpu_has_preemption_timer(vmcs12)) {
3579                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3580                 vmx_start_preemption_timer(vcpu, timer_value);
3581         }
3582 
3583         /*
3584          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3585          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3586          * returned as far as L1 is concerned. It will only return (and set
3587          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3588          */
3589         return NVMX_VMENTRY_SUCCESS;
3590 
3591         /*
3592          * A failed consistency check that leads to a VMExit during L1's
3593          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3594          * 26.7 "VM-entry failures during or after loading guest state".
3595          */
3596 vmentry_fail_vmexit_guest_mode:
3597         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3598                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3599         leave_guest_mode(vcpu);
3600 
3601 vmentry_fail_vmexit:
3602         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3603 
3604         if (!from_vmentry)
3605                 return NVMX_VMENTRY_VMEXIT;
3606 
3607         load_vmcs12_host_state(vcpu, vmcs12);
3608         vmcs12->vm_exit_reason = exit_reason.full;
3609         if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3610                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3611         return NVMX_VMENTRY_VMEXIT;
3612 }
3613 
3614 /*
3615  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3616  * for running an L2 nested guest.
3617  */
3618 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3619 {
3620         struct vmcs12 *vmcs12;
3621         enum nvmx_vmentry_status status;
3622         struct vcpu_vmx *vmx = to_vmx(vcpu);
3623         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3624         enum nested_evmptrld_status evmptrld_status;
3625 
3626         if (!nested_vmx_check_permission(vcpu))
3627                 return 1;
3628 
3629         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3630         if (evmptrld_status == EVMPTRLD_ERROR) {
3631                 kvm_queue_exception(vcpu, UD_VECTOR);
3632                 return 1;
3633         }
3634 
3635         kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
3636 
3637         if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3638                 return nested_vmx_failInvalid(vcpu);
3639 
3640         if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3641                vmx->nested.current_vmptr == INVALID_GPA))
3642                 return nested_vmx_failInvalid(vcpu);
3643 
3644         vmcs12 = get_vmcs12(vcpu);
3645 
3646         /*
3647          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3648          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3649          * rather than RFLAGS.ZF, and no error number is stored to the
3650          * VM-instruction error field.
3651          */
3652         if (CC(vmcs12->hdr.shadow_vmcs))
3653                 return nested_vmx_failInvalid(vcpu);
3654 
3655         if (nested_vmx_is_evmptr12_valid(vmx)) {
3656                 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3657 
3658                 copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3659                 /* Enlightened VMCS doesn't have launch state */
3660                 vmcs12->launch_state = !launch;
3661         } else if (enable_shadow_vmcs) {
3662                 copy_shadow_to_vmcs12(vmx);
3663         }
3664 
3665         /*
3666          * The nested entry process starts with enforcing various prerequisites
3667          * on vmcs12 as required by the Intel SDM, and act appropriately when
3668          * they fail: As the SDM explains, some conditions should cause the
3669          * instruction to fail, while others will cause the instruction to seem
3670          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3671          * To speed up the normal (success) code path, we should avoid checking
3672          * for misconfigurations which will anyway be caught by the processor
3673          * when using the merged vmcs02.
3674          */
3675         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3676                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3677 
3678         if (CC(vmcs12->launch_state == launch))
3679                 return nested_vmx_fail(vcpu,
3680                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3681                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3682 
3683         if (nested_vmx_check_controls(vcpu, vmcs12))
3684                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3685 
3686         if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3687                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3688 
3689         if (nested_vmx_check_host_state(vcpu, vmcs12))
3690                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3691 
3692         /*
3693          * We're finally done with prerequisite checking, and can start with
3694          * the nested entry.
3695          */
3696         vmx->nested.nested_run_pending = 1;
3697         vmx->nested.has_preemption_timer_deadline = false;
3698         status = nested_vmx_enter_non_root_mode(vcpu, true);
3699         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3700                 goto vmentry_failed;
3701 
3702         /* Emulate processing of posted interrupts on VM-Enter. */
3703         if (nested_cpu_has_posted_intr(vmcs12) &&
3704             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3705                 vmx->nested.pi_pending = true;
3706                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3707                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3708         }
3709 
3710         /* Hide L1D cache contents from the nested guest.  */
3711         vmx->vcpu.arch.l1tf_flush_l1d = true;
3712 
3713         /*
3714          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3715          * also be used as part of restoring nVMX state for
3716          * snapshot restore (migration).
3717          *
3718          * In this flow, it is assumed that vmcs12 cache was
3719          * transferred as part of captured nVMX state and should
3720          * therefore not be read from guest memory (which may not
3721          * exist on destination host yet).
3722          */
3723         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3724 
3725         switch (vmcs12->guest_activity_state) {
3726         case GUEST_ACTIVITY_HLT:
3727                 /*
3728                  * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3729                  * awakened by event injection or by an NMI-window VM-exit or
3730                  * by an interrupt-window VM-exit, halt the vcpu.
3731                  */
3732                 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3733                     !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3734                     !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3735                       (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3736                         vmx->nested.nested_run_pending = 0;
3737                         return kvm_emulate_halt_noskip(vcpu);
3738                 }
3739                 break;
3740         case GUEST_ACTIVITY_WAIT_SIPI:
3741                 vmx->nested.nested_run_pending = 0;
3742                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3743                 break;
3744         default:
3745                 break;
3746         }
3747 
3748         return 1;
3749 
3750 vmentry_failed:
3751         vmx->nested.nested_run_pending = 0;
3752         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3753                 return 0;
3754         if (status == NVMX_VMENTRY_VMEXIT)
3755                 return 1;
3756         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3757         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3758 }
3759 
3760 /*
3761  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3762  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3763  * This function returns the new value we should put in vmcs12.guest_cr0.
3764  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3765  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3766  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3767  *     didn't trap the bit, because if L1 did, so would L0).
3768  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3769  *     been modified by L2, and L1 knows it. So just leave the old value of
3770  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3771  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3772  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3773  *     changed these bits, and therefore they need to be updated, but L0
3774  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3775  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3776  */
3777 static inline unsigned long
3778 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3779 {
3780         return
3781         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3782         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3783         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3784                         vcpu->arch.cr0_guest_owned_bits));
3785 }
3786 
3787 static inline unsigned long
3788 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3789 {
3790         return
3791         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3792         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3793         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3794                         vcpu->arch.cr4_guest_owned_bits));
3795 }
3796 
3797 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3798                                       struct vmcs12 *vmcs12,
3799                                       u32 vm_exit_reason, u32 exit_intr_info)
3800 {
3801         u32 idt_vectoring;
3802         unsigned int nr;
3803 
3804         /*
3805          * Per the SDM, VM-Exits due to double and triple faults are never
3806          * considered to occur during event delivery, even if the double/triple
3807          * fault is the result of an escalating vectoring issue.
3808          *
3809          * Note, the SDM qualifies the double fault behavior with "The original
3810          * event results in a double-fault exception".  It's unclear why the
3811          * qualification exists since exits due to double fault can occur only
3812          * while vectoring a different exception (injected events are never
3813          * subject to interception), i.e. there's _always_ an original event.
3814          *
3815          * The SDM also uses NMI as a confusing example for the "original event
3816          * causes the VM exit directly" clause.  NMI isn't special in any way,
3817          * the same rule applies to all events that cause an exit directly.
3818          * NMI is an odd choice for the example because NMIs can only occur on
3819          * instruction boundaries, i.e. they _can't_ occur during vectoring.
3820          */
3821         if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3822             ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3823              is_double_fault(exit_intr_info))) {
3824                 vmcs12->idt_vectoring_info_field = 0;
3825         } else if (vcpu->arch.exception.injected) {
3826                 nr = vcpu->arch.exception.vector;
3827                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3828 
3829                 if (kvm_exception_is_soft(nr)) {
3830                         vmcs12->vm_exit_instruction_len =
3831                                 vcpu->arch.event_exit_inst_len;
3832                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3833                 } else
3834                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3835 
3836                 if (vcpu->arch.exception.has_error_code) {
3837                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3838                         vmcs12->idt_vectoring_error_code =
3839                                 vcpu->arch.exception.error_code;
3840                 }
3841 
3842                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3843         } else if (vcpu->arch.nmi_injected) {
3844                 vmcs12->idt_vectoring_info_field =
3845                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3846         } else if (vcpu->arch.interrupt.injected) {
3847                 nr = vcpu->arch.interrupt.nr;
3848                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3849 
3850                 if (vcpu->arch.interrupt.soft) {
3851                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3852                         vmcs12->vm_entry_instruction_len =
3853                                 vcpu->arch.event_exit_inst_len;
3854                 } else
3855                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3856 
3857                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3858         } else {
3859                 vmcs12->idt_vectoring_info_field = 0;
3860         }
3861 }
3862 
3863 
3864 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3865 {
3866         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3867         gfn_t gfn;
3868 
3869         /*
3870          * Don't need to mark the APIC access page dirty; it is never
3871          * written to by the CPU during APIC virtualization.
3872          */
3873 
3874         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3875                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3876                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3877         }
3878 
3879         if (nested_cpu_has_posted_intr(vmcs12)) {
3880                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3881                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3882         }
3883 }
3884 
3885 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3886 {
3887         struct vcpu_vmx *vmx = to_vmx(vcpu);
3888         int max_irr;
3889         void *vapic_page;
3890         u16 status;
3891 
3892         if (!vmx->nested.pi_pending)
3893                 return 0;
3894 
3895         if (!vmx->nested.pi_desc)
3896                 goto mmio_needed;
3897 
3898         vmx->nested.pi_pending = false;
3899 
3900         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3901                 return 0;
3902 
3903         max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3904         if (max_irr > 0) {
3905                 vapic_page = vmx->nested.virtual_apic_map.hva;
3906                 if (!vapic_page)
3907                         goto mmio_needed;
3908 
3909                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3910                         vapic_page, &max_irr);
3911                 status = vmcs_read16(GUEST_INTR_STATUS);
3912                 if ((u8)max_irr > ((u8)status & 0xff)) {
3913                         status &= ~0xff;
3914                         status |= (u8)max_irr;
3915                         vmcs_write16(GUEST_INTR_STATUS, status);
3916                 }
3917         }
3918 
3919         nested_mark_vmcs12_pages_dirty(vcpu);
3920         return 0;
3921 
3922 mmio_needed:
3923         kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3924         return -ENXIO;
3925 }
3926 
3927 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3928 {
3929         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3930         u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3931         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3932         unsigned long exit_qual;
3933 
3934         if (ex->has_payload) {
3935                 exit_qual = ex->payload;
3936         } else if (ex->vector == PF_VECTOR) {
3937                 exit_qual = vcpu->arch.cr2;
3938         } else if (ex->vector == DB_VECTOR) {
3939                 exit_qual = vcpu->arch.dr6;
3940                 exit_qual &= ~DR6_BT;
3941                 exit_qual ^= DR6_ACTIVE_LOW;
3942         } else {
3943                 exit_qual = 0;
3944         }
3945 
3946         /*
3947          * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3948          * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3949          * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3950          */
3951         if (ex->has_error_code && is_protmode(vcpu)) {
3952                 /*
3953                  * Intel CPUs do not generate error codes with bits 31:16 set,
3954                  * and more importantly VMX disallows setting bits 31:16 in the
3955                  * injected error code for VM-Entry.  Drop the bits to mimic
3956                  * hardware and avoid inducing failure on nested VM-Entry if L1
3957                  * chooses to inject the exception back to L2.  AMD CPUs _do_
3958                  * generate "full" 32-bit error codes, so KVM allows userspace
3959                  * to inject exception error codes with bits 31:16 set.
3960                  */
3961                 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3962                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3963         }
3964 
3965         if (kvm_exception_is_soft(ex->vector))
3966                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3967         else
3968                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3969 
3970         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3971             vmx_get_nmi_mask(vcpu))
3972                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3973 
3974         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3975 }
3976 
3977 /*
3978  * Returns true if a debug trap is (likely) pending delivery.  Infer the class
3979  * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3980  * Using the payload is flawed because code breakpoints (fault-like) and data
3981  * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3982  * this will return false positives if a to-be-injected code breakpoint #DB is
3983  * pending (from KVM's perspective, but not "pending" across an instruction
3984  * boundary).  ICEBP, a.k.a. INT1, is also not reflected here even though it
3985  * too is trap-like.
3986  *
3987  * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3988  * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3989  * #DB has already happened), and MTF isn't marked pending on code breakpoints
3990  * from the emulator (because such #DBs are fault-like and thus don't trigger
3991  * actions that fire on instruction retire).
3992  */
3993 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3994 {
3995         if (!ex->pending || ex->vector != DB_VECTOR)
3996                 return 0;
3997 
3998         /* General Detect #DBs are always fault-like. */
3999         return ex->payload & ~DR6_BD;
4000 }
4001 
4002 /*
4003  * Returns true if there's a pending #DB exception that is lower priority than
4004  * a pending Monitor Trap Flag VM-Exit.  TSS T-flag #DBs are not emulated by
4005  * KVM, but could theoretically be injected by userspace.  Note, this code is
4006  * imperfect, see above.
4007  */
4008 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4009 {
4010         return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4011 }
4012 
4013 /*
4014  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4015  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4016  * represents these debug traps with a payload that is said to be compatible
4017  * with the 'pending debug exceptions' field, write the payload to the VMCS
4018  * field if a VM-exit is delivered before the debug trap.
4019  */
4020 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4021 {
4022         unsigned long pending_dbg;
4023 
4024         pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4025         if (pending_dbg)
4026                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4027 }
4028 
4029 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4030 {
4031         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4032                to_vmx(vcpu)->nested.preemption_timer_expired;
4033 }
4034 
4035 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4036 {
4037         struct vcpu_vmx *vmx = to_vmx(vcpu);
4038         void *vapic = vmx->nested.virtual_apic_map.hva;
4039         int max_irr, vppr;
4040 
4041         if (nested_vmx_preemption_timer_pending(vcpu) ||
4042             vmx->nested.mtf_pending)
4043                 return true;
4044 
4045         /*
4046          * Virtual Interrupt Delivery doesn't require manual injection.  Either
4047          * the interrupt is already in GUEST_RVI and will be recognized by CPU
4048          * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4049          * the interrupt from the PIR to RVI prior to entering the guest.
4050          */
4051         if (for_injection)
4052                 return false;
4053 
4054         if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4055             __vmx_interrupt_blocked(vcpu))
4056                 return false;
4057 
4058         if (!vapic)
4059                 return false;
4060 
4061         vppr = *((u32 *)(vapic + APIC_PROCPRI));
4062 
4063         max_irr = vmx_get_rvi();
4064         if ((max_irr & 0xf0) > (vppr & 0xf0))
4065                 return true;
4066 
4067         if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4068             pi_test_on(vmx->nested.pi_desc)) {
4069                 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4070                 if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4071                         return true;
4072         }
4073 
4074         return false;
4075 }
4076 
4077 /*
4078  * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4079  * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4080  * and less minor edits to splice in the priority of VMX Non-Root specific
4081  * events, e.g. MTF and NMI/INTR-window exiting.
4082  *
4083  * 1 Hardware Reset and Machine Checks
4084  *      - RESET
4085  *      - Machine Check
4086  *
4087  * 2 Trap on Task Switch
4088  *      - T flag in TSS is set (on task switch)
4089  *
4090  * 3 External Hardware Interventions
4091  *      - FLUSH
4092  *      - STOPCLK
4093  *      - SMI
4094  *      - INIT
4095  *
4096  * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4097  *
4098  * 4 Traps on Previous Instruction
4099  *      - Breakpoints
4100  *      - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4101  *        breakpoint, or #DB due to a split-lock access)
4102  *
4103  * 4.3  VMX-preemption timer expired VM-exit
4104  *
4105  * 4.6  NMI-window exiting VM-exit[2]
4106  *
4107  * 5 Nonmaskable Interrupts (NMI)
4108  *
4109  * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4110  *
4111  * 6 Maskable Hardware Interrupts
4112  *
4113  * 7 Code Breakpoint Fault
4114  *
4115  * 8 Faults from Fetching Next Instruction
4116  *      - Code-Segment Limit Violation
4117  *      - Code Page Fault
4118  *      - Control protection exception (missing ENDBRANCH at target of indirect
4119  *                                      call or jump)
4120  *
4121  * 9 Faults from Decoding Next Instruction
4122  *      - Instruction length > 15 bytes
4123  *      - Invalid Opcode
4124  *      - Coprocessor Not Available
4125  *
4126  *10 Faults on Executing Instruction
4127  *      - Overflow
4128  *      - Bound error
4129  *      - Invalid TSS
4130  *      - Segment Not Present
4131  *      - Stack fault
4132  *      - General Protection
4133  *      - Data Page Fault
4134  *      - Alignment Check
4135  *      - x86 FPU Floating-point exception
4136  *      - SIMD floating-point exception
4137  *      - Virtualization exception
4138  *      - Control protection exception
4139  *
4140  * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4141  *     INIT signals, and higher priority events take priority over MTF VM exits.
4142  *     MTF VM exits take priority over debug-trap exceptions and lower priority
4143  *     events.
4144  *
4145  * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4146  *     caused by the VMX-preemption timer.  VM exits caused by the VMX-preemption
4147  *     timer take priority over VM exits caused by the "NMI-window exiting"
4148  *     VM-execution control and lower priority events.
4149  *
4150  * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4151  *     caused by "NMI-window exiting".  VM exits caused by this control take
4152  *     priority over non-maskable interrupts (NMIs) and lower priority events.
4153  *
4154  * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4155  *     the 1-setting of the "interrupt-window exiting" VM-execution control.  Thus,
4156  *     non-maskable interrupts (NMIs) and higher priority events take priority over
4157  *     delivery of a virtual interrupt; delivery of a virtual interrupt takes
4158  *     priority over external interrupts and lower priority events.
4159  */
4160 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4161 {
4162         struct kvm_lapic *apic = vcpu->arch.apic;
4163         struct vcpu_vmx *vmx = to_vmx(vcpu);
4164         /*
4165          * Only a pending nested run blocks a pending exception.  If there is a
4166          * previously injected event, the pending exception occurred while said
4167          * event was being delivered and thus needs to be handled.
4168          */
4169         bool block_nested_exceptions = vmx->nested.nested_run_pending;
4170         /*
4171          * New events (not exceptions) are only recognized at instruction
4172          * boundaries.  If an event needs reinjection, then KVM is handling a
4173          * VM-Exit that occurred _during_ instruction execution; new events are
4174          * blocked until the instruction completes.
4175          */
4176         bool block_nested_events = block_nested_exceptions ||
4177                                    kvm_event_needs_reinjection(vcpu);
4178 
4179         if (lapic_in_kernel(vcpu) &&
4180                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4181                 if (block_nested_events)
4182                         return -EBUSY;
4183                 nested_vmx_update_pending_dbg(vcpu);
4184                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4185                 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4186                         nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4187 
4188                 /* MTF is discarded if the vCPU is in WFS. */
4189                 vmx->nested.mtf_pending = false;
4190                 return 0;
4191         }
4192 
4193         if (lapic_in_kernel(vcpu) &&
4194             test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4195                 if (block_nested_events)
4196                         return -EBUSY;
4197 
4198                 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4199                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4200                         nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4201                                                 apic->sipi_vector & 0xFFUL);
4202                         return 0;
4203                 }
4204                 /* Fallthrough, the SIPI is completely ignored. */
4205         }
4206 
4207         /*
4208          * Process exceptions that are higher priority than Monitor Trap Flag:
4209          * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4210          * could theoretically come in from userspace), and ICEBP (INT1).
4211          *
4212          * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4213          * for TSS T flag #DBs).  KVM also doesn't save/restore pending MTF
4214          * across SMI/RSM as it should; that needs to be addressed in order to
4215          * prioritize SMI over MTF and trap-like #DBs.
4216          */
4217         if (vcpu->arch.exception_vmexit.pending &&
4218             !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4219                 if (block_nested_exceptions)
4220                         return -EBUSY;
4221 
4222                 nested_vmx_inject_exception_vmexit(vcpu);
4223                 return 0;
4224         }
4225 
4226         if (vcpu->arch.exception.pending &&
4227             !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4228                 if (block_nested_exceptions)
4229                         return -EBUSY;
4230                 goto no_vmexit;
4231         }
4232 
4233         if (vmx->nested.mtf_pending) {
4234                 if (block_nested_events)
4235                         return -EBUSY;
4236                 nested_vmx_update_pending_dbg(vcpu);
4237                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4238                 return 0;
4239         }
4240 
4241         if (vcpu->arch.exception_vmexit.pending) {
4242                 if (block_nested_exceptions)
4243                         return -EBUSY;
4244 
4245                 nested_vmx_inject_exception_vmexit(vcpu);
4246                 return 0;
4247         }
4248 
4249         if (vcpu->arch.exception.pending) {
4250                 if (block_nested_exceptions)
4251                         return -EBUSY;
4252                 goto no_vmexit;
4253         }
4254 
4255         if (nested_vmx_preemption_timer_pending(vcpu)) {
4256                 if (block_nested_events)
4257                         return -EBUSY;
4258                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4259                 return 0;
4260         }
4261 
4262         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4263                 if (block_nested_events)
4264                         return -EBUSY;
4265                 goto no_vmexit;
4266         }
4267 
4268         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4269                 if (block_nested_events)
4270                         return -EBUSY;
4271                 if (!nested_exit_on_nmi(vcpu))
4272                         goto no_vmexit;
4273 
4274                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4275                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
4276                                   INTR_INFO_VALID_MASK, 0);
4277                 /*
4278                  * The NMI-triggered VM exit counts as injection:
4279                  * clear this one and block further NMIs.
4280                  */
4281                 vcpu->arch.nmi_pending = 0;
4282                 vmx_set_nmi_mask(vcpu, true);
4283                 return 0;
4284         }
4285 
4286         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4287                 if (block_nested_events)
4288                         return -EBUSY;
4289                 if (!nested_exit_on_intr(vcpu))
4290                         goto no_vmexit;
4291                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4292                 return 0;
4293         }
4294 
4295 no_vmexit:
4296         return vmx_complete_nested_posted_interrupt(vcpu);
4297 }
4298 
4299 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4300 {
4301         ktime_t remaining =
4302                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4303         u64 value;
4304 
4305         if (ktime_to_ns(remaining) <= 0)
4306                 return 0;
4307 
4308         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4309         do_div(value, 1000000);
4310         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4311 }
4312 
4313 static bool is_vmcs12_ext_field(unsigned long field)
4314 {
4315         switch (field) {
4316         case GUEST_ES_SELECTOR:
4317         case GUEST_CS_SELECTOR:
4318         case GUEST_SS_SELECTOR:
4319         case GUEST_DS_SELECTOR:
4320         case GUEST_FS_SELECTOR:
4321         case GUEST_GS_SELECTOR:
4322         case GUEST_LDTR_SELECTOR:
4323         case GUEST_TR_SELECTOR:
4324         case GUEST_ES_LIMIT:
4325         case GUEST_CS_LIMIT:
4326         case GUEST_SS_LIMIT:
4327         case GUEST_DS_LIMIT:
4328         case GUEST_FS_LIMIT:
4329         case GUEST_GS_LIMIT:
4330         case GUEST_LDTR_LIMIT:
4331         case GUEST_TR_LIMIT:
4332         case GUEST_GDTR_LIMIT:
4333         case GUEST_IDTR_LIMIT:
4334         case GUEST_ES_AR_BYTES:
4335         case GUEST_DS_AR_BYTES:
4336         case GUEST_FS_AR_BYTES:
4337         case GUEST_GS_AR_BYTES:
4338         case GUEST_LDTR_AR_BYTES:
4339         case GUEST_TR_AR_BYTES:
4340         case GUEST_ES_BASE:
4341         case GUEST_CS_BASE:
4342         case GUEST_SS_BASE:
4343         case GUEST_DS_BASE:
4344         case GUEST_FS_BASE:
4345         case GUEST_GS_BASE:
4346         case GUEST_LDTR_BASE:
4347         case GUEST_TR_BASE:
4348         case GUEST_GDTR_BASE:
4349         case GUEST_IDTR_BASE:
4350         case GUEST_PENDING_DBG_EXCEPTIONS:
4351         case GUEST_BNDCFGS:
4352                 return true;
4353         default:
4354                 break;
4355         }
4356 
4357         return false;
4358 }
4359 
4360 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4361                                        struct vmcs12 *vmcs12)
4362 {
4363         struct vcpu_vmx *vmx = to_vmx(vcpu);
4364 
4365         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4366         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4367         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4368         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4369         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4370         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4371         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4372         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4373         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4374         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4375         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4376         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4377         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4378         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4379         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4380         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4381         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4382         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4383         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4384         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4385         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4386         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4387         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4388         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4389         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4390         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4391         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4392         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4393         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4394         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4395         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4396         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4397         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4398         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4399         vmcs12->guest_pending_dbg_exceptions =
4400                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4401 
4402         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4403 }
4404 
4405 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4406                                        struct vmcs12 *vmcs12)
4407 {
4408         struct vcpu_vmx *vmx = to_vmx(vcpu);
4409         int cpu;
4410 
4411         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4412                 return;
4413 
4414 
4415         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4416 
4417         cpu = get_cpu();
4418         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4419         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4420 
4421         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4422 
4423         vmx->loaded_vmcs = &vmx->vmcs01;
4424         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4425         put_cpu();
4426 }
4427 
4428 /*
4429  * Update the guest state fields of vmcs12 to reflect changes that
4430  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4431  * VM-entry controls is also updated, since this is really a guest
4432  * state bit.)
4433  */
4434 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4435 {
4436         struct vcpu_vmx *vmx = to_vmx(vcpu);
4437 
4438         if (nested_vmx_is_evmptr12_valid(vmx))
4439                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4440 
4441         vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4442                 !nested_vmx_is_evmptr12_valid(vmx);
4443 
4444         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4445         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4446 
4447         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4448         vmcs12->guest_rip = kvm_rip_read(vcpu);
4449         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4450 
4451         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4452         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4453 
4454         vmcs12->guest_interruptibility_info =
4455                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4456 
4457         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4458                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4459         else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4460                 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4461         else
4462                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4463 
4464         if (nested_cpu_has_preemption_timer(vmcs12) &&
4465             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4466             !vmx->nested.nested_run_pending)
4467                 vmcs12->vmx_preemption_timer_value =
4468                         vmx_get_preemption_timer_value(vcpu);
4469 
4470         /*
4471          * In some cases (usually, nested EPT), L2 is allowed to change its
4472          * own CR3 without exiting. If it has changed it, we must keep it.
4473          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4474          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4475          *
4476          * Additionally, restore L2's PDPTR to vmcs12.
4477          */
4478         if (enable_ept) {
4479                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4480                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4481                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4482                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4483                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4484                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4485                 }
4486         }
4487 
4488         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4489 
4490         if (nested_cpu_has_vid(vmcs12))
4491                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4492 
4493         vmcs12->vm_entry_controls =
4494                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4495                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4496 
4497         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4498                 vmcs12->guest_dr7 = vcpu->arch.dr7;
4499 
4500         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4501                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4502 }
4503 
4504 /*
4505  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4506  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4507  * and this function updates it to reflect the changes to the guest state while
4508  * L2 was running (and perhaps made some exits which were handled directly by L0
4509  * without going back to L1), and to reflect the exit reason.
4510  * Note that we do not have to copy here all VMCS fields, just those that
4511  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4512  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4513  * which already writes to vmcs12 directly.
4514  */
4515 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4516                            u32 vm_exit_reason, u32 exit_intr_info,
4517                            unsigned long exit_qualification)
4518 {
4519         /* update exit information fields: */
4520         vmcs12->vm_exit_reason = vm_exit_reason;
4521         if (to_vmx(vcpu)->exit_reason.enclave_mode)
4522                 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4523         vmcs12->exit_qualification = exit_qualification;
4524 
4525         /*
4526          * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4527          * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4528          * exit info fields are unmodified.
4529          */
4530         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4531                 vmcs12->launch_state = 1;
4532 
4533                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4534                  * instead of reading the real value. */
4535                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4536 
4537                 /*
4538                  * Transfer the event that L0 or L1 may wanted to inject into
4539                  * L2 to IDT_VECTORING_INFO_FIELD.
4540                  */
4541                 vmcs12_save_pending_event(vcpu, vmcs12,
4542                                           vm_exit_reason, exit_intr_info);
4543 
4544                 vmcs12->vm_exit_intr_info = exit_intr_info;
4545                 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4546                 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4547 
4548                 /*
4549                  * According to spec, there's no need to store the guest's
4550                  * MSRs if the exit is due to a VM-entry failure that occurs
4551                  * during or after loading the guest state. Since this exit
4552                  * does not fall in that category, we need to save the MSRs.
4553                  */
4554                 if (nested_vmx_store_msr(vcpu,
4555                                          vmcs12->vm_exit_msr_store_addr,
4556                                          vmcs12->vm_exit_msr_store_count))
4557                         nested_vmx_abort(vcpu,
4558                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4559         }
4560 }
4561 
4562 /*
4563  * A part of what we need to when the nested L2 guest exits and we want to
4564  * run its L1 parent, is to reset L1's guest state to the host state specified
4565  * in vmcs12.
4566  * This function is to be called not only on normal nested exit, but also on
4567  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4568  * Failures During or After Loading Guest State").
4569  * This function should be called when the active VMCS is L1's (vmcs01).
4570  */
4571 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4572                                    struct vmcs12 *vmcs12)
4573 {
4574         enum vm_entry_failure_code ignored;
4575         struct kvm_segment seg;
4576 
4577         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4578                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4579         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4580                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4581         else
4582                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4583         vmx_set_efer(vcpu, vcpu->arch.efer);
4584 
4585         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4586         kvm_rip_write(vcpu, vmcs12->host_rip);
4587         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4588         vmx_set_interrupt_shadow(vcpu, 0);
4589 
4590         /*
4591          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4592          * actually changed, because vmx_set_cr0 refers to efer set above.
4593          *
4594          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4595          * (KVM doesn't change it);
4596          */
4597         vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4598         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4599 
4600         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4601         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4602         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4603 
4604         nested_ept_uninit_mmu_context(vcpu);
4605 
4606         /*
4607          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4608          * couldn't have changed.
4609          */
4610         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4611                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4612 
4613         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4614 
4615         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4616         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4617         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4618         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4619         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4620         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4621         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4622 
4623         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4624         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4625                 vmcs_write64(GUEST_BNDCFGS, 0);
4626 
4627         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4628                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4629                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4630         }
4631         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4632             kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4633                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4634                                          vmcs12->host_ia32_perf_global_ctrl));
4635 
4636         /* Set L1 segment info according to Intel SDM
4637             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4638         seg = (struct kvm_segment) {
4639                 .base = 0,
4640                 .limit = 0xFFFFFFFF,
4641                 .selector = vmcs12->host_cs_selector,
4642                 .type = 11,
4643                 .present = 1,
4644                 .s = 1,
4645                 .g = 1
4646         };
4647         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4648                 seg.l = 1;
4649         else
4650                 seg.db = 1;
4651         __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4652         seg = (struct kvm_segment) {
4653                 .base = 0,
4654                 .limit = 0xFFFFFFFF,
4655                 .type = 3,
4656                 .present = 1,
4657                 .s = 1,
4658                 .db = 1,
4659                 .g = 1
4660         };
4661         seg.selector = vmcs12->host_ds_selector;
4662         __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4663         seg.selector = vmcs12->host_es_selector;
4664         __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4665         seg.selector = vmcs12->host_ss_selector;
4666         __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4667         seg.selector = vmcs12->host_fs_selector;
4668         seg.base = vmcs12->host_fs_base;
4669         __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4670         seg.selector = vmcs12->host_gs_selector;
4671         seg.base = vmcs12->host_gs_base;
4672         __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4673         seg = (struct kvm_segment) {
4674                 .base = vmcs12->host_tr_base,
4675                 .limit = 0x67,
4676                 .selector = vmcs12->host_tr_selector,
4677                 .type = 11,
4678                 .present = 1
4679         };
4680         __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4681 
4682         memset(&seg, 0, sizeof(seg));
4683         seg.unusable = 1;
4684         __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4685 
4686         kvm_set_dr(vcpu, 7, 0x400);
4687         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4688 
4689         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4690                                 vmcs12->vm_exit_msr_load_count))
4691                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4692 
4693         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4694 }
4695 
4696 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4697 {
4698         struct vmx_uret_msr *efer_msr;
4699         unsigned int i;
4700 
4701         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4702                 return vmcs_read64(GUEST_IA32_EFER);
4703 
4704         if (cpu_has_load_ia32_efer())
4705                 return kvm_host.efer;
4706 
4707         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4708                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4709                         return vmx->msr_autoload.guest.val[i].value;
4710         }
4711 
4712         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4713         if (efer_msr)
4714                 return efer_msr->data;
4715 
4716         return kvm_host.efer;
4717 }
4718 
4719 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4720 {
4721         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4722         struct vcpu_vmx *vmx = to_vmx(vcpu);
4723         struct vmx_msr_entry g, h;
4724         gpa_t gpa;
4725         u32 i, j;
4726 
4727         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4728 
4729         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4730                 /*
4731                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4732                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4733                  * and vcpu->arch.dr7 is not squirreled away before the
4734                  * nested VMENTER (not worth adding a variable in nested_vmx).
4735                  */
4736                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4737                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4738                 else
4739                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4740         }
4741 
4742         /*
4743          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4744          * handle a variety of side effects to KVM's software model.
4745          */
4746         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4747 
4748         vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4749         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4750 
4751         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4752         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4753 
4754         nested_ept_uninit_mmu_context(vcpu);
4755         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4756         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4757 
4758         /*
4759          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4760          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4761          * VMFail, like everything else we just need to ensure our
4762          * software model is up-to-date.
4763          */
4764         if (enable_ept && is_pae_paging(vcpu))
4765                 ept_save_pdptrs(vcpu);
4766 
4767         kvm_mmu_reset_context(vcpu);
4768 
4769         /*
4770          * This nasty bit of open coding is a compromise between blindly
4771          * loading L1's MSRs using the exit load lists (incorrect emulation
4772          * of VMFail), leaving the nested VM's MSRs in the software model
4773          * (incorrect behavior) and snapshotting the modified MSRs (too
4774          * expensive since the lists are unbound by hardware).  For each
4775          * MSR that was (prematurely) loaded from the nested VMEntry load
4776          * list, reload it from the exit load list if it exists and differs
4777          * from the guest value.  The intent is to stuff host state as
4778          * silently as possible, not to fully process the exit load list.
4779          */
4780         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4781                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4782                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4783                         pr_debug_ratelimited(
4784                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4785                                 __func__, i, gpa);
4786                         goto vmabort;
4787                 }
4788 
4789                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4790                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4791                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4792                                 pr_debug_ratelimited(
4793                                         "%s read MSR failed (%u, 0x%08llx)\n",
4794                                         __func__, j, gpa);
4795                                 goto vmabort;
4796                         }
4797                         if (h.index != g.index)
4798                                 continue;
4799                         if (h.value == g.value)
4800                                 break;
4801 
4802                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4803                                 pr_debug_ratelimited(
4804                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4805                                         __func__, j, h.index, h.reserved);
4806                                 goto vmabort;
4807                         }
4808 
4809                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4810                                 pr_debug_ratelimited(
4811                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4812                                         __func__, j, h.index, h.value);
4813                                 goto vmabort;
4814                         }
4815                 }
4816         }
4817 
4818         return;
4819 
4820 vmabort:
4821         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4822 }
4823 
4824 /*
4825  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4826  * and modify vmcs12 to make it see what it would expect to see there if
4827  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4828  */
4829 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4830                        u32 exit_intr_info, unsigned long exit_qualification)
4831 {
4832         struct vcpu_vmx *vmx = to_vmx(vcpu);
4833         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4834 
4835         /* Pending MTF traps are discarded on VM-Exit. */
4836         vmx->nested.mtf_pending = false;
4837 
4838         /* trying to cancel vmlaunch/vmresume is a bug */
4839         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4840 
4841 #ifdef CONFIG_KVM_HYPERV
4842         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4843                 /*
4844                  * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4845                  * Enlightened VMCS after migration and we still need to
4846                  * do that when something is forcing L2->L1 exit prior to
4847                  * the first L2 run.
4848                  */
4849                 (void)nested_get_evmcs_page(vcpu);
4850         }
4851 #endif
4852 
4853         /* Service pending TLB flush requests for L2 before switching to L1. */
4854         kvm_service_local_tlb_flush_requests(vcpu);
4855 
4856         /*
4857          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4858          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4859          * up-to-date before switching to L1.
4860          */
4861         if (enable_ept && is_pae_paging(vcpu))
4862                 vmx_ept_load_pdptrs(vcpu);
4863 
4864         leave_guest_mode(vcpu);
4865 
4866         if (nested_cpu_has_preemption_timer(vmcs12))
4867                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4868 
4869         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4870                 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4871                 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4872                         vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4873         }
4874 
4875         if (likely(!vmx->fail)) {
4876                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4877 
4878                 if (vm_exit_reason != -1)
4879                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4880                                        exit_intr_info, exit_qualification);
4881 
4882                 /*
4883                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4884                  * also be used to capture vmcs12 cache as part of
4885                  * capturing nVMX state for snapshot (migration).
4886                  *
4887                  * Otherwise, this flush will dirty guest memory at a
4888                  * point it is already assumed by user-space to be
4889                  * immutable.
4890                  */
4891                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4892         } else {
4893                 /*
4894                  * The only expected VM-instruction error is "VM entry with
4895                  * invalid control field(s)." Anything else indicates a
4896                  * problem with L0.  And we should never get here with a
4897                  * VMFail of any type if early consistency checks are enabled.
4898                  */
4899                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4900                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4901                 WARN_ON_ONCE(nested_early_check);
4902         }
4903 
4904         /*
4905          * Drop events/exceptions that were queued for re-injection to L2
4906          * (picked up via vmx_complete_interrupts()), as well as exceptions
4907          * that were pending for L2.  Note, this must NOT be hoisted above
4908          * prepare_vmcs12(), events/exceptions queued for re-injection need to
4909          * be captured in vmcs12 (see vmcs12_save_pending_event()).
4910          */
4911         vcpu->arch.nmi_injected = false;
4912         kvm_clear_exception_queue(vcpu);
4913         kvm_clear_interrupt_queue(vcpu);
4914 
4915         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4916 
4917         /*
4918          * If IBRS is advertised to the vCPU, KVM must flush the indirect
4919          * branch predictors when transitioning from L2 to L1, as L1 expects
4920          * hardware (KVM in this case) to provide separate predictor modes.
4921          * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4922          * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4923          * separate modes for L2 vs L1.
4924          */
4925         if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4926                 indirect_branch_prediction_barrier();
4927 
4928         /* Update any VMCS fields that might have changed while L2 ran */
4929         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4930         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4931         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4932         if (kvm_caps.has_tsc_control)
4933                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4934 
4935         if (vmx->nested.l1_tpr_threshold != -1)
4936                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4937 
4938         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4939                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4940                 vmx_set_virtual_apic_mode(vcpu);
4941         }
4942 
4943         if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4944                 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4945                 vmx_update_cpu_dirty_logging(vcpu);
4946         }
4947 
4948         /* Unpin physical memory we referred to in vmcs02 */
4949         kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4950         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4951         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4952         vmx->nested.pi_desc = NULL;
4953 
4954         if (vmx->nested.reload_vmcs01_apic_access_page) {
4955                 vmx->nested.reload_vmcs01_apic_access_page = false;
4956                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4957         }
4958 
4959         if (vmx->nested.update_vmcs01_apicv_status) {
4960                 vmx->nested.update_vmcs01_apicv_status = false;
4961                 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4962         }
4963 
4964         if ((vm_exit_reason != -1) &&
4965             (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
4966                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4967 
4968         /* in case we halted in L2 */
4969         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4970 
4971         if (likely(!vmx->fail)) {
4972                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4973                     nested_exit_intr_ack_set(vcpu)) {
4974                         int irq = kvm_cpu_get_interrupt(vcpu);
4975                         WARN_ON(irq < 0);
4976                         vmcs12->vm_exit_intr_info = irq |
4977                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4978                 }
4979 
4980                 if (vm_exit_reason != -1)
4981                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4982                                                        vmcs12->exit_qualification,
4983                                                        vmcs12->idt_vectoring_info_field,
4984                                                        vmcs12->vm_exit_intr_info,
4985                                                        vmcs12->vm_exit_intr_error_code,
4986                                                        KVM_ISA_VMX);
4987 
4988                 load_vmcs12_host_state(vcpu, vmcs12);
4989 
4990                 return;
4991         }
4992 
4993         /*
4994          * After an early L2 VM-entry failure, we're now back
4995          * in L1 which thinks it just finished a VMLAUNCH or
4996          * VMRESUME instruction, so we need to set the failure
4997          * flag and the VM-instruction error field of the VMCS
4998          * accordingly, and skip the emulated instruction.
4999          */
5000         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5001 
5002         /*
5003          * Restore L1's host state to KVM's software model.  We're here
5004          * because a consistency check was caught by hardware, which
5005          * means some amount of guest state has been propagated to KVM's
5006          * model and needs to be unwound to the host's state.
5007          */
5008         nested_vmx_restore_host_state(vcpu);
5009 
5010         vmx->fail = 0;
5011 }
5012 
5013 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5014 {
5015         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5016         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5017 }
5018 
5019 /*
5020  * Decode the memory-address operand of a vmx instruction, as recorded on an
5021  * exit caused by such an instruction (run by a guest hypervisor).
5022  * On success, returns 0. When the operand is invalid, returns 1 and throws
5023  * #UD, #GP, or #SS.
5024  */
5025 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5026                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5027 {
5028         gva_t off;
5029         bool exn;
5030         struct kvm_segment s;
5031 
5032         /*
5033          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5034          * Execution", on an exit, vmx_instruction_info holds most of the
5035          * addressing components of the operand. Only the displacement part
5036          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5037          * For how an actual address is calculated from all these components,
5038          * refer to Vol. 1, "Operand Addressing".
5039          */
5040         int  scaling = vmx_instruction_info & 3;
5041         int  addr_size = (vmx_instruction_info >> 7) & 7;
5042         bool is_reg = vmx_instruction_info & (1u << 10);
5043         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5044         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5045         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5046         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5047         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5048 
5049         if (is_reg) {
5050                 kvm_queue_exception(vcpu, UD_VECTOR);
5051                 return 1;
5052         }
5053 
5054         /* Addr = segment_base + offset */
5055         /* offset = base + [index * scale] + displacement */
5056         off = exit_qualification; /* holds the displacement */
5057         if (addr_size == 1)
5058                 off = (gva_t)sign_extend64(off, 31);
5059         else if (addr_size == 0)
5060                 off = (gva_t)sign_extend64(off, 15);
5061         if (base_is_valid)
5062                 off += kvm_register_read(vcpu, base_reg);
5063         if (index_is_valid)
5064                 off += kvm_register_read(vcpu, index_reg) << scaling;
5065         vmx_get_segment(vcpu, &s, seg_reg);
5066 
5067         /*
5068          * The effective address, i.e. @off, of a memory operand is truncated
5069          * based on the address size of the instruction.  Note that this is
5070          * the *effective address*, i.e. the address prior to accounting for
5071          * the segment's base.
5072          */
5073         if (addr_size == 1) /* 32 bit */
5074                 off &= 0xffffffff;
5075         else if (addr_size == 0) /* 16 bit */
5076                 off &= 0xffff;
5077 
5078         /* Checks for #GP/#SS exceptions. */
5079         exn = false;
5080         if (is_long_mode(vcpu)) {
5081                 /*
5082                  * The virtual/linear address is never truncated in 64-bit
5083                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5084                  * address when using FS/GS with a non-zero base.
5085                  */
5086                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5087                         *ret = s.base + off;
5088                 else
5089                         *ret = off;
5090 
5091                 *ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5092                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5093                  * non-canonical form. This is the only check on the memory
5094                  * destination for long mode!
5095                  */
5096                 exn = is_noncanonical_address(*ret, vcpu);
5097         } else {
5098                 /*
5099                  * When not in long mode, the virtual/linear address is
5100                  * unconditionally truncated to 32 bits regardless of the
5101                  * address size.
5102                  */
5103                 *ret = (s.base + off) & 0xffffffff;
5104 
5105                 /* Protected mode: apply checks for segment validity in the
5106                  * following order:
5107                  * - segment type check (#GP(0) may be thrown)
5108                  * - usability check (#GP(0)/#SS(0))
5109                  * - limit check (#GP(0)/#SS(0))
5110                  */
5111                 if (wr)
5112                         /* #GP(0) if the destination operand is located in a
5113                          * read-only data segment or any code segment.
5114                          */
5115                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
5116                 else
5117                         /* #GP(0) if the source operand is located in an
5118                          * execute-only code segment
5119                          */
5120                         exn = ((s.type & 0xa) == 8);
5121                 if (exn) {
5122                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5123                         return 1;
5124                 }
5125                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5126                  */
5127                 exn = (s.unusable != 0);
5128 
5129                 /*
5130                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
5131                  * outside the segment limit.  All CPUs that support VMX ignore
5132                  * limit checks for flat segments, i.e. segments with base==0,
5133                  * limit==0xffffffff and of type expand-up data or code.
5134                  */
5135                 if (!(s.base == 0 && s.limit == 0xffffffff &&
5136                      ((s.type & 8) || !(s.type & 4))))
5137                         exn = exn || ((u64)off + len - 1 > s.limit);
5138         }
5139         if (exn) {
5140                 kvm_queue_exception_e(vcpu,
5141                                       seg_reg == VCPU_SREG_SS ?
5142                                                 SS_VECTOR : GP_VECTOR,
5143                                       0);
5144                 return 1;
5145         }
5146 
5147         return 0;
5148 }
5149 
5150 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5151                                 int *ret)
5152 {
5153         gva_t gva;
5154         struct x86_exception e;
5155         int r;
5156 
5157         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5158                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5159                                 sizeof(*vmpointer), &gva)) {
5160                 *ret = 1;
5161                 return -EINVAL;
5162         }
5163 
5164         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5165         if (r != X86EMUL_CONTINUE) {
5166                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5167                 return -EINVAL;
5168         }
5169 
5170         return 0;
5171 }
5172 
5173 /*
5174  * Allocate a shadow VMCS and associate it with the currently loaded
5175  * VMCS, unless such a shadow VMCS already exists. The newly allocated
5176  * VMCS is also VMCLEARed, so that it is ready for use.
5177  */
5178 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5179 {
5180         struct vcpu_vmx *vmx = to_vmx(vcpu);
5181         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5182 
5183         /*
5184          * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5185          * when L1 executes VMXOFF or the vCPU is forced out of nested
5186          * operation.  VMXON faults if the CPU is already post-VMXON, so it
5187          * should be impossible to already have an allocated shadow VMCS.  KVM
5188          * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5189          * always be the loaded VMCS.
5190          */
5191         if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5192                 return loaded_vmcs->shadow_vmcs;
5193 
5194         loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5195         if (loaded_vmcs->shadow_vmcs)
5196                 vmcs_clear(loaded_vmcs->shadow_vmcs);
5197 
5198         return loaded_vmcs->shadow_vmcs;
5199 }
5200 
5201 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5202 {
5203         struct vcpu_vmx *vmx = to_vmx(vcpu);
5204         int r;
5205 
5206         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5207         if (r < 0)
5208                 goto out_vmcs02;
5209 
5210         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5211         if (!vmx->nested.cached_vmcs12)
5212                 goto out_cached_vmcs12;
5213 
5214         vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5215         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5216         if (!vmx->nested.cached_shadow_vmcs12)
5217                 goto out_cached_shadow_vmcs12;
5218 
5219         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5220                 goto out_shadow_vmcs;
5221 
5222         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5223                      HRTIMER_MODE_ABS_PINNED);
5224         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5225 
5226         vmx->nested.vpid02 = allocate_vpid();
5227 
5228         vmx->nested.vmcs02_initialized = false;
5229         vmx->nested.vmxon = true;
5230 
5231         if (vmx_pt_mode_is_host_guest()) {
5232                 vmx->pt_desc.guest.ctl = 0;
5233                 pt_update_intercept_for_msr(vcpu);
5234         }
5235 
5236         return 0;
5237 
5238 out_shadow_vmcs:
5239         kfree(vmx->nested.cached_shadow_vmcs12);
5240 
5241 out_cached_shadow_vmcs12:
5242         kfree(vmx->nested.cached_vmcs12);
5243 
5244 out_cached_vmcs12:
5245         free_loaded_vmcs(&vmx->nested.vmcs02);
5246 
5247 out_vmcs02:
5248         return -ENOMEM;
5249 }
5250 
5251 /* Emulate the VMXON instruction. */
5252 static int handle_vmxon(struct kvm_vcpu *vcpu)
5253 {
5254         int ret;
5255         gpa_t vmptr;
5256         uint32_t revision;
5257         struct vcpu_vmx *vmx = to_vmx(vcpu);
5258         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5259                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5260 
5261         /*
5262          * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5263          * the guest and so cannot rely on hardware to perform the check,
5264          * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5265          * for VMXON).
5266          *
5267          * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5268          * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
5269          * force any of the relevant guest state.  For a restricted guest, KVM
5270          * does force CR0.PE=1, but only to also force VM86 in order to emulate
5271          * Real Mode, and so there's no need to check CR0.PE manually.
5272          */
5273         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5274                 kvm_queue_exception(vcpu, UD_VECTOR);
5275                 return 1;
5276         }
5277 
5278         /*
5279          * The CPL is checked for "not in VMX operation" and for "in VMX root",
5280          * and has higher priority than the VM-Fail due to being post-VMXON,
5281          * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
5282          * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5283          * from L2 to L1, i.e. there's no need to check for the vCPU being in
5284          * VMX non-root.
5285          *
5286          * Forwarding the VM-Exit unconditionally, i.e. without performing the
5287          * #UD checks (see above), is functionally ok because KVM doesn't allow
5288          * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5289          * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5290          * missed by hardware due to shadowing CR0 and/or CR4.
5291          */
5292         if (vmx_get_cpl(vcpu)) {
5293                 kvm_inject_gp(vcpu, 0);
5294                 return 1;
5295         }
5296 
5297         if (vmx->nested.vmxon)
5298                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5299 
5300         /*
5301          * Invalid CR0/CR4 generates #GP.  These checks are performed if and
5302          * only if the vCPU isn't already in VMX operation, i.e. effectively
5303          * have lower priority than the VM-Fail above.
5304          */
5305         if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5306             !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5307                 kvm_inject_gp(vcpu, 0);
5308                 return 1;
5309         }
5310 
5311         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5312                         != VMXON_NEEDED_FEATURES) {
5313                 kvm_inject_gp(vcpu, 0);
5314                 return 1;
5315         }
5316 
5317         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5318                 return ret;
5319 
5320         /*
5321          * SDM 3: 24.11.5
5322          * The first 4 bytes of VMXON region contain the supported
5323          * VMCS revision identifier
5324          *
5325          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5326          * which replaces physical address width with 32
5327          */
5328         if (!page_address_valid(vcpu, vmptr))
5329                 return nested_vmx_failInvalid(vcpu);
5330 
5331         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5332             revision != VMCS12_REVISION)
5333                 return nested_vmx_failInvalid(vcpu);
5334 
5335         vmx->nested.vmxon_ptr = vmptr;
5336         ret = enter_vmx_operation(vcpu);
5337         if (ret)
5338                 return ret;
5339 
5340         return nested_vmx_succeed(vcpu);
5341 }
5342 
5343 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5344 {
5345         struct vcpu_vmx *vmx = to_vmx(vcpu);
5346 
5347         if (vmx->nested.current_vmptr == INVALID_GPA)
5348                 return;
5349 
5350         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5351 
5352         if (enable_shadow_vmcs) {
5353                 /* copy to memory all shadowed fields in case
5354                    they were modified */
5355                 copy_shadow_to_vmcs12(vmx);
5356                 vmx_disable_shadow_vmcs(vmx);
5357         }
5358         vmx->nested.posted_intr_nv = -1;
5359 
5360         /* Flush VMCS12 to guest memory */
5361         kvm_vcpu_write_guest_page(vcpu,
5362                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
5363                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5364 
5365         kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5366 
5367         vmx->nested.current_vmptr = INVALID_GPA;
5368 }
5369 
5370 /* Emulate the VMXOFF instruction */
5371 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5372 {
5373         if (!nested_vmx_check_permission(vcpu))
5374                 return 1;
5375 
5376         free_nested(vcpu);
5377 
5378         if (kvm_apic_has_pending_init_or_sipi(vcpu))
5379                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5380 
5381         return nested_vmx_succeed(vcpu);
5382 }
5383 
5384 /* Emulate the VMCLEAR instruction */
5385 static int handle_vmclear(struct kvm_vcpu *vcpu)
5386 {
5387         struct vcpu_vmx *vmx = to_vmx(vcpu);
5388         u32 zero = 0;
5389         gpa_t vmptr;
5390         int r;
5391 
5392         if (!nested_vmx_check_permission(vcpu))
5393                 return 1;
5394 
5395         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5396                 return r;
5397 
5398         if (!page_address_valid(vcpu, vmptr))
5399                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5400 
5401         if (vmptr == vmx->nested.vmxon_ptr)
5402                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5403 
5404         if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5405                 if (vmptr == vmx->nested.current_vmptr)
5406                         nested_release_vmcs12(vcpu);
5407 
5408                 /*
5409                  * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5410                  * for VMCLEAR includes a "ensure that data for VMCS referenced
5411                  * by the operand is in memory" clause that guards writes to
5412                  * memory, i.e. doing nothing for I/O is architecturally valid.
5413                  *
5414                  * FIXME: Suppress failures if and only if no memslot is found,
5415                  * i.e. exit to userspace if __copy_to_user() fails.
5416                  */
5417                 (void)kvm_vcpu_write_guest(vcpu,
5418                                            vmptr + offsetof(struct vmcs12,
5419                                                             launch_state),
5420                                            &zero, sizeof(zero));
5421         }
5422 
5423         return nested_vmx_succeed(vcpu);
5424 }
5425 
5426 /* Emulate the VMLAUNCH instruction */
5427 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5428 {
5429         return nested_vmx_run(vcpu, true);
5430 }
5431 
5432 /* Emulate the VMRESUME instruction */
5433 static int handle_vmresume(struct kvm_vcpu *vcpu)
5434 {
5435 
5436         return nested_vmx_run(vcpu, false);
5437 }
5438 
5439 static int handle_vmread(struct kvm_vcpu *vcpu)
5440 {
5441         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5442                                                     : get_vmcs12(vcpu);
5443         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5444         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5445         struct vcpu_vmx *vmx = to_vmx(vcpu);
5446         struct x86_exception e;
5447         unsigned long field;
5448         u64 value;
5449         gva_t gva = 0;
5450         short offset;
5451         int len, r;
5452 
5453         if (!nested_vmx_check_permission(vcpu))
5454                 return 1;
5455 
5456         /* Decode instruction info and find the field to read */
5457         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5458 
5459         if (!nested_vmx_is_evmptr12_valid(vmx)) {
5460                 /*
5461                  * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5462                  * any VMREAD sets the ALU flags for VMfailInvalid.
5463                  */
5464                 if (vmx->nested.current_vmptr == INVALID_GPA ||
5465                     (is_guest_mode(vcpu) &&
5466                      get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5467                         return nested_vmx_failInvalid(vcpu);
5468 
5469                 offset = get_vmcs12_field_offset(field);
5470                 if (offset < 0)
5471                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5472 
5473                 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5474                         copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5475 
5476                 /* Read the field, zero-extended to a u64 value */
5477                 value = vmcs12_read_any(vmcs12, field, offset);
5478         } else {
5479                 /*
5480                  * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5481                  * enlightened VMCS is active VMREAD/VMWRITE instructions are
5482                  * unsupported. Unfortunately, certain versions of Windows 11
5483                  * don't comply with this requirement which is not enforced in
5484                  * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5485                  * workaround, as misbehaving guests will panic on VM-Fail.
5486                  * Note, enlightened VMCS is incompatible with shadow VMCS so
5487                  * all VMREADs from L2 should go to L1.
5488                  */
5489                 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5490                         return nested_vmx_failInvalid(vcpu);
5491 
5492                 offset = evmcs_field_offset(field, NULL);
5493                 if (offset < 0)
5494                         return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5495 
5496                 /* Read the field, zero-extended to a u64 value */
5497                 value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5498         }
5499 
5500         /*
5501          * Now copy part of this value to register or memory, as requested.
5502          * Note that the number of bits actually copied is 32 or 64 depending
5503          * on the guest's mode (32 or 64 bit), not on the given field's length.
5504          */
5505         if (instr_info & BIT(10)) {
5506                 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5507         } else {
5508                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5509                 if (get_vmx_mem_address(vcpu, exit_qualification,
5510                                         instr_info, true, len, &gva))
5511                         return 1;
5512                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5513                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5514                 if (r != X86EMUL_CONTINUE)
5515                         return kvm_handle_memory_failure(vcpu, r, &e);
5516         }
5517 
5518         return nested_vmx_succeed(vcpu);
5519 }
5520 
5521 static bool is_shadow_field_rw(unsigned long field)
5522 {
5523         switch (field) {
5524 #define SHADOW_FIELD_RW(x, y) case x:
5525 #include "vmcs_shadow_fields.h"
5526                 return true;
5527         default:
5528                 break;
5529         }
5530         return false;
5531 }
5532 
5533 static bool is_shadow_field_ro(unsigned long field)
5534 {
5535         switch (field) {
5536 #define SHADOW_FIELD_RO(x, y) case x:
5537 #include "vmcs_shadow_fields.h"
5538                 return true;
5539         default:
5540                 break;
5541         }
5542         return false;
5543 }
5544 
5545 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5546 {
5547         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5548                                                     : get_vmcs12(vcpu);
5549         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5550         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5551         struct vcpu_vmx *vmx = to_vmx(vcpu);
5552         struct x86_exception e;
5553         unsigned long field;
5554         short offset;
5555         gva_t gva;
5556         int len, r;
5557 
5558         /*
5559          * The value to write might be 32 or 64 bits, depending on L1's long
5560          * mode, and eventually we need to write that into a field of several
5561          * possible lengths. The code below first zero-extends the value to 64
5562          * bit (value), and then copies only the appropriate number of
5563          * bits into the vmcs12 field.
5564          */
5565         u64 value = 0;
5566 
5567         if (!nested_vmx_check_permission(vcpu))
5568                 return 1;
5569 
5570         /*
5571          * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5572          * any VMWRITE sets the ALU flags for VMfailInvalid.
5573          */
5574         if (vmx->nested.current_vmptr == INVALID_GPA ||
5575             (is_guest_mode(vcpu) &&
5576              get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5577                 return nested_vmx_failInvalid(vcpu);
5578 
5579         if (instr_info & BIT(10))
5580                 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5581         else {
5582                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5583                 if (get_vmx_mem_address(vcpu, exit_qualification,
5584                                         instr_info, false, len, &gva))
5585                         return 1;
5586                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5587                 if (r != X86EMUL_CONTINUE)
5588                         return kvm_handle_memory_failure(vcpu, r, &e);
5589         }
5590 
5591         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5592 
5593         offset = get_vmcs12_field_offset(field);
5594         if (offset < 0)
5595                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5596 
5597         /*
5598          * If the vCPU supports "VMWRITE to any supported field in the
5599          * VMCS," then the "read-only" fields are actually read/write.
5600          */
5601         if (vmcs_field_readonly(field) &&
5602             !nested_cpu_has_vmwrite_any_field(vcpu))
5603                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5604 
5605         /*
5606          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5607          * vmcs12, else we may crush a field or consume a stale value.
5608          */
5609         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5610                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5611 
5612         /*
5613          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5614          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5615          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5616          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5617          * from L1 will return a different value than VMREAD from L2 (L1 sees
5618          * the stripped down value, L2 sees the full value as stored by KVM).
5619          */
5620         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5621                 value &= 0x1f0ff;
5622 
5623         vmcs12_write_any(vmcs12, field, offset, value);
5624 
5625         /*
5626          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5627          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5628          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5629          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5630          */
5631         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5632                 /*
5633                  * L1 can read these fields without exiting, ensure the
5634                  * shadow VMCS is up-to-date.
5635                  */
5636                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5637                         preempt_disable();
5638                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5639 
5640                         __vmcs_writel(field, value);
5641 
5642                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5643                         vmcs_load(vmx->loaded_vmcs->vmcs);
5644                         preempt_enable();
5645                 }
5646                 vmx->nested.dirty_vmcs12 = true;
5647         }
5648 
5649         return nested_vmx_succeed(vcpu);
5650 }
5651 
5652 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5653 {
5654         vmx->nested.current_vmptr = vmptr;
5655         if (enable_shadow_vmcs) {
5656                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5657                 vmcs_write64(VMCS_LINK_POINTER,
5658                              __pa(vmx->vmcs01.shadow_vmcs));
5659                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5660         }
5661         vmx->nested.dirty_vmcs12 = true;
5662         vmx->nested.force_msr_bitmap_recalc = true;
5663 }
5664 
5665 /* Emulate the VMPTRLD instruction */
5666 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5667 {
5668         struct vcpu_vmx *vmx = to_vmx(vcpu);
5669         gpa_t vmptr;
5670         int r;
5671 
5672         if (!nested_vmx_check_permission(vcpu))
5673                 return 1;
5674 
5675         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5676                 return r;
5677 
5678         if (!page_address_valid(vcpu, vmptr))
5679                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5680 
5681         if (vmptr == vmx->nested.vmxon_ptr)
5682                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5683 
5684         /* Forbid normal VMPTRLD if Enlightened version was used */
5685         if (nested_vmx_is_evmptr12_valid(vmx))
5686                 return 1;
5687 
5688         if (vmx->nested.current_vmptr != vmptr) {
5689                 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5690                 struct vmcs_hdr hdr;
5691 
5692                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5693                         /*
5694                          * Reads from an unbacked page return all 1s,
5695                          * which means that the 32 bits located at the
5696                          * given physical address won't match the required
5697                          * VMCS12_REVISION identifier.
5698                          */
5699                         return nested_vmx_fail(vcpu,
5700                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5701                 }
5702 
5703                 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5704                                                  offsetof(struct vmcs12, hdr),
5705                                                  sizeof(hdr))) {
5706                         return nested_vmx_fail(vcpu,
5707                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5708                 }
5709 
5710                 if (hdr.revision_id != VMCS12_REVISION ||
5711                     (hdr.shadow_vmcs &&
5712                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5713                         return nested_vmx_fail(vcpu,
5714                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5715                 }
5716 
5717                 nested_release_vmcs12(vcpu);
5718 
5719                 /*
5720                  * Load VMCS12 from guest memory since it is not already
5721                  * cached.
5722                  */
5723                 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5724                                           VMCS12_SIZE)) {
5725                         return nested_vmx_fail(vcpu,
5726                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5727                 }
5728 
5729                 set_current_vmptr(vmx, vmptr);
5730         }
5731 
5732         return nested_vmx_succeed(vcpu);
5733 }
5734 
5735 /* Emulate the VMPTRST instruction */
5736 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5737 {
5738         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5739         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5740         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5741         struct x86_exception e;
5742         gva_t gva;
5743         int r;
5744 
5745         if (!nested_vmx_check_permission(vcpu))
5746                 return 1;
5747 
5748         if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5749                 return 1;
5750 
5751         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5752                                 true, sizeof(gpa_t), &gva))
5753                 return 1;
5754         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5755         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5756                                         sizeof(gpa_t), &e);
5757         if (r != X86EMUL_CONTINUE)
5758                 return kvm_handle_memory_failure(vcpu, r, &e);
5759 
5760         return nested_vmx_succeed(vcpu);
5761 }
5762 
5763 /* Emulate the INVEPT instruction */
5764 static int handle_invept(struct kvm_vcpu *vcpu)
5765 {
5766         struct vcpu_vmx *vmx = to_vmx(vcpu);
5767         u32 vmx_instruction_info, types;
5768         unsigned long type, roots_to_free;
5769         struct kvm_mmu *mmu;
5770         gva_t gva;
5771         struct x86_exception e;
5772         struct {
5773                 u64 eptp, gpa;
5774         } operand;
5775         int i, r, gpr_index;
5776 
5777         if (!(vmx->nested.msrs.secondary_ctls_high &
5778               SECONDARY_EXEC_ENABLE_EPT) ||
5779             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5780                 kvm_queue_exception(vcpu, UD_VECTOR);
5781                 return 1;
5782         }
5783 
5784         if (!nested_vmx_check_permission(vcpu))
5785                 return 1;
5786 
5787         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5788         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5789         type = kvm_register_read(vcpu, gpr_index);
5790 
5791         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5792 
5793         if (type >= 32 || !(types & (1 << type)))
5794                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5795 
5796         /* According to the Intel VMX instruction reference, the memory
5797          * operand is read even if it isn't needed (e.g., for type==global)
5798          */
5799         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5800                         vmx_instruction_info, false, sizeof(operand), &gva))
5801                 return 1;
5802         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5803         if (r != X86EMUL_CONTINUE)
5804                 return kvm_handle_memory_failure(vcpu, r, &e);
5805 
5806         /*
5807          * Nested EPT roots are always held through guest_mmu,
5808          * not root_mmu.
5809          */
5810         mmu = &vcpu->arch.guest_mmu;
5811 
5812         switch (type) {
5813         case VMX_EPT_EXTENT_CONTEXT:
5814                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5815                         return nested_vmx_fail(vcpu,
5816                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5817 
5818                 roots_to_free = 0;
5819                 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5820                                             operand.eptp))
5821                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5822 
5823                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5824                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5825                                                     mmu->prev_roots[i].pgd,
5826                                                     operand.eptp))
5827                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5828                 }
5829                 break;
5830         case VMX_EPT_EXTENT_GLOBAL:
5831                 roots_to_free = KVM_MMU_ROOTS_ALL;
5832                 break;
5833         default:
5834                 BUG();
5835                 break;
5836         }
5837 
5838         if (roots_to_free)
5839                 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5840 
5841         return nested_vmx_succeed(vcpu);
5842 }
5843 
5844 static int handle_invvpid(struct kvm_vcpu *vcpu)
5845 {
5846         struct vcpu_vmx *vmx = to_vmx(vcpu);
5847         u32 vmx_instruction_info;
5848         unsigned long type, types;
5849         gva_t gva;
5850         struct x86_exception e;
5851         struct {
5852                 u64 vpid;
5853                 u64 gla;
5854         } operand;
5855         u16 vpid02;
5856         int r, gpr_index;
5857 
5858         if (!(vmx->nested.msrs.secondary_ctls_high &
5859               SECONDARY_EXEC_ENABLE_VPID) ||
5860                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5861                 kvm_queue_exception(vcpu, UD_VECTOR);
5862                 return 1;
5863         }
5864 
5865         if (!nested_vmx_check_permission(vcpu))
5866                 return 1;
5867 
5868         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5869         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5870         type = kvm_register_read(vcpu, gpr_index);
5871 
5872         types = (vmx->nested.msrs.vpid_caps &
5873                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5874 
5875         if (type >= 32 || !(types & (1 << type)))
5876                 return nested_vmx_fail(vcpu,
5877                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5878 
5879         /* according to the intel vmx instruction reference, the memory
5880          * operand is read even if it isn't needed (e.g., for type==global)
5881          */
5882         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5883                         vmx_instruction_info, false, sizeof(operand), &gva))
5884                 return 1;
5885         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5886         if (r != X86EMUL_CONTINUE)
5887                 return kvm_handle_memory_failure(vcpu, r, &e);
5888 
5889         if (operand.vpid >> 16)
5890                 return nested_vmx_fail(vcpu,
5891                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5892 
5893         vpid02 = nested_get_vpid02(vcpu);
5894         switch (type) {
5895         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5896                 /*
5897                  * LAM doesn't apply to addresses that are inputs to TLB
5898                  * invalidation.
5899                  */
5900                 if (!operand.vpid ||
5901                     is_noncanonical_address(operand.gla, vcpu))
5902                         return nested_vmx_fail(vcpu,
5903                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5904                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5905                 break;
5906         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5907         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5908                 if (!operand.vpid)
5909                         return nested_vmx_fail(vcpu,
5910                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5911                 vpid_sync_context(vpid02);
5912                 break;
5913         case VMX_VPID_EXTENT_ALL_CONTEXT:
5914                 vpid_sync_context(vpid02);
5915                 break;
5916         default:
5917                 WARN_ON_ONCE(1);
5918                 return kvm_skip_emulated_instruction(vcpu);
5919         }
5920 
5921         /*
5922          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5923          * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5924          * roots as VPIDs are not tracked in the MMU role.
5925          *
5926          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5927          * an MMU when EPT is disabled.
5928          *
5929          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5930          */
5931         if (!enable_ept)
5932                 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5933 
5934         return nested_vmx_succeed(vcpu);
5935 }
5936 
5937 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5938                                      struct vmcs12 *vmcs12)
5939 {
5940         u32 index = kvm_rcx_read(vcpu);
5941         u64 new_eptp;
5942 
5943         if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5944                 return 1;
5945         if (index >= VMFUNC_EPTP_ENTRIES)
5946                 return 1;
5947 
5948         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5949                                      &new_eptp, index * 8, 8))
5950                 return 1;
5951 
5952         /*
5953          * If the (L2) guest does a vmfunc to the currently
5954          * active ept pointer, we don't have to do anything else
5955          */
5956         if (vmcs12->ept_pointer != new_eptp) {
5957                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5958                         return 1;
5959 
5960                 vmcs12->ept_pointer = new_eptp;
5961                 nested_ept_new_eptp(vcpu);
5962 
5963                 if (!nested_cpu_has_vpid(vmcs12))
5964                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5965         }
5966 
5967         return 0;
5968 }
5969 
5970 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5971 {
5972         struct vcpu_vmx *vmx = to_vmx(vcpu);
5973         struct vmcs12 *vmcs12;
5974         u32 function = kvm_rax_read(vcpu);
5975 
5976         /*
5977          * VMFUNC should never execute cleanly while L1 is active; KVM supports
5978          * VMFUNC for nested VMs, but not for L1.
5979          */
5980         if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5981                 kvm_queue_exception(vcpu, UD_VECTOR);
5982                 return 1;
5983         }
5984 
5985         vmcs12 = get_vmcs12(vcpu);
5986 
5987         /*
5988          * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5989          * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5990          */
5991         if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5992                 kvm_queue_exception(vcpu, UD_VECTOR);
5993                 return 1;
5994         }
5995 
5996         if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5997                 goto fail;
5998 
5999         switch (function) {
6000         case 0:
6001                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
6002                         goto fail;
6003                 break;
6004         default:
6005                 goto fail;
6006         }
6007         return kvm_skip_emulated_instruction(vcpu);
6008 
6009 fail:
6010         /*
6011          * This is effectively a reflected VM-Exit, as opposed to a synthesized
6012          * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
6013          * EXIT_REASON_VMFUNC as the exit reason.
6014          */
6015         nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
6016                           vmx_get_intr_info(vcpu),
6017                           vmx_get_exit_qual(vcpu));
6018         return 1;
6019 }
6020 
6021 /*
6022  * Return true if an IO instruction with the specified port and size should cause
6023  * a VM-exit into L1.
6024  */
6025 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6026                                  int size)
6027 {
6028         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6029         gpa_t bitmap, last_bitmap;
6030         u8 b;
6031 
6032         last_bitmap = INVALID_GPA;
6033         b = -1;
6034 
6035         while (size > 0) {
6036                 if (port < 0x8000)
6037                         bitmap = vmcs12->io_bitmap_a;
6038                 else if (port < 0x10000)
6039                         bitmap = vmcs12->io_bitmap_b;
6040                 else
6041                         return true;
6042                 bitmap += (port & 0x7fff) / 8;
6043 
6044                 if (last_bitmap != bitmap)
6045                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6046                                 return true;
6047                 if (b & (1 << (port & 7)))
6048                         return true;
6049 
6050                 port++;
6051                 size--;
6052                 last_bitmap = bitmap;
6053         }
6054 
6055         return false;
6056 }
6057 
6058 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6059                                        struct vmcs12 *vmcs12)
6060 {
6061         unsigned long exit_qualification;
6062         unsigned short port;
6063         int size;
6064 
6065         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6066                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6067 
6068         exit_qualification = vmx_get_exit_qual(vcpu);
6069 
6070         port = exit_qualification >> 16;
6071         size = (exit_qualification & 7) + 1;
6072 
6073         return nested_vmx_check_io_bitmaps(vcpu, port, size);
6074 }
6075 
6076 /*
6077  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6078  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6079  * disinterest in the current event (read or write a specific MSR) by using an
6080  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6081  */
6082 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6083                                         struct vmcs12 *vmcs12,
6084                                         union vmx_exit_reason exit_reason)
6085 {
6086         u32 msr_index = kvm_rcx_read(vcpu);
6087         gpa_t bitmap;
6088 
6089         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6090                 return true;
6091 
6092         /*
6093          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6094          * for the four combinations of read/write and low/high MSR numbers.
6095          * First we need to figure out which of the four to use:
6096          */
6097         bitmap = vmcs12->msr_bitmap;
6098         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6099                 bitmap += 2048;
6100         if (msr_index >= 0xc0000000) {
6101                 msr_index -= 0xc0000000;
6102                 bitmap += 1024;
6103         }
6104 
6105         /* Then read the msr_index'th bit from this bitmap: */
6106         if (msr_index < 1024*8) {
6107                 unsigned char b;
6108                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6109                         return true;
6110                 return 1 & (b >> (msr_index & 7));
6111         } else
6112                 return true; /* let L1 handle the wrong parameter */
6113 }
6114 
6115 /*
6116  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6117  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6118  * intercept (via guest_host_mask etc.) the current event.
6119  */
6120 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6121         struct vmcs12 *vmcs12)
6122 {
6123         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6124         int cr = exit_qualification & 15;
6125         int reg;
6126         unsigned long val;
6127 
6128         switch ((exit_qualification >> 4) & 3) {
6129         case 0: /* mov to cr */
6130                 reg = (exit_qualification >> 8) & 15;
6131                 val = kvm_register_read(vcpu, reg);
6132                 switch (cr) {
6133                 case 0:
6134                         if (vmcs12->cr0_guest_host_mask &
6135                             (val ^ vmcs12->cr0_read_shadow))
6136                                 return true;
6137                         break;
6138                 case 3:
6139                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6140                                 return true;
6141                         break;
6142                 case 4:
6143                         if (vmcs12->cr4_guest_host_mask &
6144                             (vmcs12->cr4_read_shadow ^ val))
6145                                 return true;
6146                         break;
6147                 case 8:
6148                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6149                                 return true;
6150                         break;
6151                 }
6152                 break;
6153         case 2: /* clts */
6154                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6155                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6156                         return true;
6157                 break;
6158         case 1: /* mov from cr */
6159                 switch (cr) {
6160                 case 3:
6161                         if (vmcs12->cpu_based_vm_exec_control &
6162                             CPU_BASED_CR3_STORE_EXITING)
6163                                 return true;
6164                         break;
6165                 case 8:
6166                         if (vmcs12->cpu_based_vm_exec_control &
6167                             CPU_BASED_CR8_STORE_EXITING)
6168                                 return true;
6169                         break;
6170                 }
6171                 break;
6172         case 3: /* lmsw */
6173                 /*
6174                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6175                  * cr0. Other attempted changes are ignored, with no exit.
6176                  */
6177                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6178                 if (vmcs12->cr0_guest_host_mask & 0xe &
6179                     (val ^ vmcs12->cr0_read_shadow))
6180                         return true;
6181                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6182                     !(vmcs12->cr0_read_shadow & 0x1) &&
6183                     (val & 0x1))
6184                         return true;
6185                 break;
6186         }
6187         return false;
6188 }
6189 
6190 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6191                                           struct vmcs12 *vmcs12)
6192 {
6193         u32 encls_leaf;
6194 
6195         if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6196             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6197                 return false;
6198 
6199         encls_leaf = kvm_rax_read(vcpu);
6200         if (encls_leaf > 62)
6201                 encls_leaf = 63;
6202         return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6203 }
6204 
6205 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6206         struct vmcs12 *vmcs12, gpa_t bitmap)
6207 {
6208         u32 vmx_instruction_info;
6209         unsigned long field;
6210         u8 b;
6211 
6212         if (!nested_cpu_has_shadow_vmcs(vmcs12))
6213                 return true;
6214 
6215         /* Decode instruction info and find the field to access */
6216         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6217         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6218 
6219         /* Out-of-range fields always cause a VM exit from L2 to L1 */
6220         if (field >> 15)
6221                 return true;
6222 
6223         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6224                 return true;
6225 
6226         return 1 & (b >> (field & 7));
6227 }
6228 
6229 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6230 {
6231         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6232 
6233         if (nested_cpu_has_mtf(vmcs12))
6234                 return true;
6235 
6236         /*
6237          * An MTF VM-exit may be injected into the guest by setting the
6238          * interruption-type to 7 (other event) and the vector field to 0. Such
6239          * is the case regardless of the 'monitor trap flag' VM-execution
6240          * control.
6241          */
6242         return entry_intr_info == (INTR_INFO_VALID_MASK
6243                                    | INTR_TYPE_OTHER_EVENT);
6244 }
6245 
6246 /*
6247  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6248  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
6249  */
6250 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6251                                      union vmx_exit_reason exit_reason)
6252 {
6253         u32 intr_info;
6254 
6255         switch ((u16)exit_reason.basic) {
6256         case EXIT_REASON_EXCEPTION_NMI:
6257                 intr_info = vmx_get_intr_info(vcpu);
6258                 if (is_nmi(intr_info))
6259                         return true;
6260                 else if (is_page_fault(intr_info))
6261                         return vcpu->arch.apf.host_apf_flags ||
6262                                vmx_need_pf_intercept(vcpu);
6263                 else if (is_debug(intr_info) &&
6264                          vcpu->guest_debug &
6265                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6266                         return true;
6267                 else if (is_breakpoint(intr_info) &&
6268                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6269                         return true;
6270                 else if (is_alignment_check(intr_info) &&
6271                          !vmx_guest_inject_ac(vcpu))
6272                         return true;
6273                 else if (is_ve_fault(intr_info))
6274                         return true;
6275                 return false;
6276         case EXIT_REASON_EXTERNAL_INTERRUPT:
6277                 return true;
6278         case EXIT_REASON_MCE_DURING_VMENTRY:
6279                 return true;
6280         case EXIT_REASON_EPT_VIOLATION:
6281                 /*
6282                  * L0 always deals with the EPT violation. If nested EPT is
6283                  * used, and the nested mmu code discovers that the address is
6284                  * missing in the guest EPT table (EPT12), the EPT violation
6285                  * will be injected with nested_ept_inject_page_fault()
6286                  */
6287                 return true;
6288         case EXIT_REASON_EPT_MISCONFIG:
6289                 /*
6290                  * L2 never uses directly L1's EPT, but rather L0's own EPT
6291                  * table (shadow on EPT) or a merged EPT table that L0 built
6292                  * (EPT on EPT). So any problems with the structure of the
6293                  * table is L0's fault.
6294                  */
6295                 return true;
6296         case EXIT_REASON_PREEMPTION_TIMER:
6297                 return true;
6298         case EXIT_REASON_PML_FULL:
6299                 /*
6300                  * PML is emulated for an L1 VMM and should never be enabled in
6301                  * vmcs02, always "handle" PML_FULL by exiting to userspace.
6302                  */
6303                 return true;
6304         case EXIT_REASON_VMFUNC:
6305                 /* VM functions are emulated through L2->L0 vmexits. */
6306                 return true;
6307         case EXIT_REASON_BUS_LOCK:
6308                 /*
6309                  * At present, bus lock VM exit is never exposed to L1.
6310                  * Handle L2's bus locks in L0 directly.
6311                  */
6312                 return true;
6313 #ifdef CONFIG_KVM_HYPERV
6314         case EXIT_REASON_VMCALL:
6315                 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6316                 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6317                         nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6318                         kvm_hv_is_tlb_flush_hcall(vcpu);
6319 #endif
6320         default:
6321                 break;
6322         }
6323         return false;
6324 }
6325 
6326 /*
6327  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6328  * is_guest_mode (L2).
6329  */
6330 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6331                                      union vmx_exit_reason exit_reason)
6332 {
6333         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6334         u32 intr_info;
6335 
6336         switch ((u16)exit_reason.basic) {
6337         case EXIT_REASON_EXCEPTION_NMI:
6338                 intr_info = vmx_get_intr_info(vcpu);
6339                 if (is_nmi(intr_info))
6340                         return true;
6341                 else if (is_page_fault(intr_info))
6342                         return true;
6343                 return vmcs12->exception_bitmap &
6344                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6345         case EXIT_REASON_EXTERNAL_INTERRUPT:
6346                 return nested_exit_on_intr(vcpu);
6347         case EXIT_REASON_TRIPLE_FAULT:
6348                 return true;
6349         case EXIT_REASON_INTERRUPT_WINDOW:
6350                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6351         case EXIT_REASON_NMI_WINDOW:
6352                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6353         case EXIT_REASON_TASK_SWITCH:
6354                 return true;
6355         case EXIT_REASON_CPUID:
6356                 return true;
6357         case EXIT_REASON_HLT:
6358                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6359         case EXIT_REASON_INVD:
6360                 return true;
6361         case EXIT_REASON_INVLPG:
6362                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6363         case EXIT_REASON_RDPMC:
6364                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6365         case EXIT_REASON_RDRAND:
6366                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6367         case EXIT_REASON_RDSEED:
6368                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6369         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6370                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6371         case EXIT_REASON_VMREAD:
6372                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6373                         vmcs12->vmread_bitmap);
6374         case EXIT_REASON_VMWRITE:
6375                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6376                         vmcs12->vmwrite_bitmap);
6377         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6378         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6379         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6380         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6381         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6382                 /*
6383                  * VMX instructions trap unconditionally. This allows L1 to
6384                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6385                  */
6386                 return true;
6387         case EXIT_REASON_CR_ACCESS:
6388                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6389         case EXIT_REASON_DR_ACCESS:
6390                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6391         case EXIT_REASON_IO_INSTRUCTION:
6392                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6393         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6394                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6395         case EXIT_REASON_MSR_READ:
6396         case EXIT_REASON_MSR_WRITE:
6397                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6398         case EXIT_REASON_INVALID_STATE:
6399                 return true;
6400         case EXIT_REASON_MWAIT_INSTRUCTION:
6401                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6402         case EXIT_REASON_MONITOR_TRAP_FLAG:
6403                 return nested_vmx_exit_handled_mtf(vmcs12);
6404         case EXIT_REASON_MONITOR_INSTRUCTION:
6405                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6406         case EXIT_REASON_PAUSE_INSTRUCTION:
6407                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6408                         nested_cpu_has2(vmcs12,
6409                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6410         case EXIT_REASON_MCE_DURING_VMENTRY:
6411                 return true;
6412         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6413                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6414         case EXIT_REASON_APIC_ACCESS:
6415         case EXIT_REASON_APIC_WRITE:
6416         case EXIT_REASON_EOI_INDUCED:
6417                 /*
6418                  * The controls for "virtualize APIC accesses," "APIC-
6419                  * register virtualization," and "virtual-interrupt
6420                  * delivery" only come from vmcs12.
6421                  */
6422                 return true;
6423         case EXIT_REASON_INVPCID:
6424                 return
6425                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6426                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6427         case EXIT_REASON_WBINVD:
6428                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6429         case EXIT_REASON_XSETBV:
6430                 return true;
6431         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6432                 /*
6433                  * This should never happen, since it is not possible to
6434                  * set XSS to a non-zero value---neither in L1 nor in L2.
6435                  * If if it were, XSS would have to be checked against
6436                  * the XSS exit bitmap in vmcs12.
6437                  */
6438                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6439         case EXIT_REASON_UMWAIT:
6440         case EXIT_REASON_TPAUSE:
6441                 return nested_cpu_has2(vmcs12,
6442                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6443         case EXIT_REASON_ENCLS:
6444                 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6445         case EXIT_REASON_NOTIFY:
6446                 /* Notify VM exit is not exposed to L1 */
6447                 return false;
6448         default:
6449                 return true;
6450         }
6451 }
6452 
6453 /*
6454  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6455  * reflected into L1.
6456  */
6457 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6458 {
6459         struct vcpu_vmx *vmx = to_vmx(vcpu);
6460         union vmx_exit_reason exit_reason = vmx->exit_reason;
6461         unsigned long exit_qual;
6462         u32 exit_intr_info;
6463 
6464         WARN_ON_ONCE(vmx->nested.nested_run_pending);
6465 
6466         /*
6467          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6468          * has already loaded L2's state.
6469          */
6470         if (unlikely(vmx->fail)) {
6471                 trace_kvm_nested_vmenter_failed(
6472                         "hardware VM-instruction error: ",
6473                         vmcs_read32(VM_INSTRUCTION_ERROR));
6474                 exit_intr_info = 0;
6475                 exit_qual = 0;
6476                 goto reflect_vmexit;
6477         }
6478 
6479         trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6480 
6481         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6482         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6483                 return false;
6484 
6485         /* If L1 doesn't want the exit, handle it in L0. */
6486         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6487                 return false;
6488 
6489         /*
6490          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6491          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6492          * need to be synthesized by querying the in-kernel LAPIC, but external
6493          * interrupts are never reflected to L1 so it's a non-issue.
6494          */
6495         exit_intr_info = vmx_get_intr_info(vcpu);
6496         if (is_exception_with_error_code(exit_intr_info)) {
6497                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6498 
6499                 vmcs12->vm_exit_intr_error_code =
6500                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6501         }
6502         exit_qual = vmx_get_exit_qual(vcpu);
6503 
6504 reflect_vmexit:
6505         nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6506         return true;
6507 }
6508 
6509 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6510                                 struct kvm_nested_state __user *user_kvm_nested_state,
6511                                 u32 user_data_size)
6512 {
6513         struct vcpu_vmx *vmx;
6514         struct vmcs12 *vmcs12;
6515         struct kvm_nested_state kvm_state = {
6516                 .flags = 0,
6517                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6518                 .size = sizeof(kvm_state),
6519                 .hdr.vmx.flags = 0,
6520                 .hdr.vmx.vmxon_pa = INVALID_GPA,
6521                 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6522                 .hdr.vmx.preemption_timer_deadline = 0,
6523         };
6524         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6525                 &user_kvm_nested_state->data.vmx[0];
6526 
6527         if (!vcpu)
6528                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6529 
6530         vmx = to_vmx(vcpu);
6531         vmcs12 = get_vmcs12(vcpu);
6532 
6533         if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6534             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6535                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6536                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6537 
6538                 if (vmx_has_valid_vmcs12(vcpu)) {
6539                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6540 
6541                         /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6542                         if (nested_vmx_is_evmptr12_set(vmx))
6543                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6544 
6545                         if (is_guest_mode(vcpu) &&
6546                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6547                             vmcs12->vmcs_link_pointer != INVALID_GPA)
6548                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6549                 }
6550 
6551                 if (vmx->nested.smm.vmxon)
6552                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6553 
6554                 if (vmx->nested.smm.guest_mode)
6555                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6556 
6557                 if (is_guest_mode(vcpu)) {
6558                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6559 
6560                         if (vmx->nested.nested_run_pending)
6561                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6562 
6563                         if (vmx->nested.mtf_pending)
6564                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6565 
6566                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6567                             vmx->nested.has_preemption_timer_deadline) {
6568                                 kvm_state.hdr.vmx.flags |=
6569                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6570                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6571                                         vmx->nested.preemption_timer_deadline;
6572                         }
6573                 }
6574         }
6575 
6576         if (user_data_size < kvm_state.size)
6577                 goto out;
6578 
6579         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6580                 return -EFAULT;
6581 
6582         if (!vmx_has_valid_vmcs12(vcpu))
6583                 goto out;
6584 
6585         /*
6586          * When running L2, the authoritative vmcs12 state is in the
6587          * vmcs02. When running L1, the authoritative vmcs12 state is
6588          * in the shadow or enlightened vmcs linked to vmcs01, unless
6589          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6590          * vmcs12 state is in the vmcs12 already.
6591          */
6592         if (is_guest_mode(vcpu)) {
6593                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6594                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6595         } else  {
6596                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6597                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6598                         if (nested_vmx_is_evmptr12_valid(vmx))
6599                                 /*
6600                                  * L1 hypervisor is not obliged to keep eVMCS
6601                                  * clean fields data always up-to-date while
6602                                  * not in guest mode, 'hv_clean_fields' is only
6603                                  * supposed to be actual upon vmentry so we need
6604                                  * to ignore it here and do full copy.
6605                                  */
6606                                 copy_enlightened_to_vmcs12(vmx, 0);
6607                         else if (enable_shadow_vmcs)
6608                                 copy_shadow_to_vmcs12(vmx);
6609                 }
6610         }
6611 
6612         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6613         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6614 
6615         /*
6616          * Copy over the full allocated size of vmcs12 rather than just the size
6617          * of the struct.
6618          */
6619         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6620                 return -EFAULT;
6621 
6622         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6623             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6624                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6625                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6626                         return -EFAULT;
6627         }
6628 out:
6629         return kvm_state.size;
6630 }
6631 
6632 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6633 {
6634         if (is_guest_mode(vcpu)) {
6635                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6636                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6637         }
6638         free_nested(vcpu);
6639 }
6640 
6641 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6642                                 struct kvm_nested_state __user *user_kvm_nested_state,
6643                                 struct kvm_nested_state *kvm_state)
6644 {
6645         struct vcpu_vmx *vmx = to_vmx(vcpu);
6646         struct vmcs12 *vmcs12;
6647         enum vm_entry_failure_code ignored;
6648         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6649                 &user_kvm_nested_state->data.vmx[0];
6650         int ret;
6651 
6652         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6653                 return -EINVAL;
6654 
6655         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6656                 if (kvm_state->hdr.vmx.smm.flags)
6657                         return -EINVAL;
6658 
6659                 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6660                         return -EINVAL;
6661 
6662                 /*
6663                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6664                  * enable eVMCS capability on vCPU. However, since then
6665                  * code was changed such that flag signals vmcs12 should
6666                  * be copied into eVMCS in guest memory.
6667                  *
6668                  * To preserve backwards compatibility, allow user
6669                  * to set this flag even when there is no VMXON region.
6670                  */
6671                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6672                         return -EINVAL;
6673         } else {
6674                 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6675                         return -EINVAL;
6676 
6677                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6678                         return -EINVAL;
6679         }
6680 
6681         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6682             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6683                 return -EINVAL;
6684 
6685         if (kvm_state->hdr.vmx.smm.flags &
6686             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6687                 return -EINVAL;
6688 
6689         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6690                 return -EINVAL;
6691 
6692         /*
6693          * SMM temporarily disables VMX, so we cannot be in guest mode,
6694          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6695          * must be zero.
6696          */
6697         if (is_smm(vcpu) ?
6698                 (kvm_state->flags &
6699                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6700                 : kvm_state->hdr.vmx.smm.flags)
6701                 return -EINVAL;
6702 
6703         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6704             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6705                 return -EINVAL;
6706 
6707         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6708             (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6709              !vmx->nested.enlightened_vmcs_enabled))
6710                         return -EINVAL;
6711 
6712         vmx_leave_nested(vcpu);
6713 
6714         if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6715                 return 0;
6716 
6717         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6718         ret = enter_vmx_operation(vcpu);
6719         if (ret)
6720                 return ret;
6721 
6722         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6723         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6724                 /* See vmx_has_valid_vmcs12.  */
6725                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6726                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6727                     (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6728                         return -EINVAL;
6729                 else
6730                         return 0;
6731         }
6732 
6733         if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6734                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6735                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6736                         return -EINVAL;
6737 
6738                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6739 #ifdef CONFIG_KVM_HYPERV
6740         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6741                 /*
6742                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6743                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6744                  * restored yet. EVMCS will be mapped from
6745                  * nested_get_vmcs12_pages().
6746                  */
6747                 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6748                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6749 #endif
6750         } else {
6751                 return -EINVAL;
6752         }
6753 
6754         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6755                 vmx->nested.smm.vmxon = true;
6756                 vmx->nested.vmxon = false;
6757 
6758                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6759                         vmx->nested.smm.guest_mode = true;
6760         }
6761 
6762         vmcs12 = get_vmcs12(vcpu);
6763         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6764                 return -EFAULT;
6765 
6766         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6767                 return -EINVAL;
6768 
6769         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6770                 return 0;
6771 
6772         vmx->nested.nested_run_pending =
6773                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6774 
6775         vmx->nested.mtf_pending =
6776                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6777 
6778         ret = -EINVAL;
6779         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6780             vmcs12->vmcs_link_pointer != INVALID_GPA) {
6781                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6782 
6783                 if (kvm_state->size <
6784                     sizeof(*kvm_state) +
6785                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6786                         goto error_guest_mode;
6787 
6788                 if (copy_from_user(shadow_vmcs12,
6789                                    user_vmx_nested_state->shadow_vmcs12,
6790                                    sizeof(*shadow_vmcs12))) {
6791                         ret = -EFAULT;
6792                         goto error_guest_mode;
6793                 }
6794 
6795                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6796                     !shadow_vmcs12->hdr.shadow_vmcs)
6797                         goto error_guest_mode;
6798         }
6799 
6800         vmx->nested.has_preemption_timer_deadline = false;
6801         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6802                 vmx->nested.has_preemption_timer_deadline = true;
6803                 vmx->nested.preemption_timer_deadline =
6804                         kvm_state->hdr.vmx.preemption_timer_deadline;
6805         }
6806 
6807         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6808             nested_vmx_check_host_state(vcpu, vmcs12) ||
6809             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6810                 goto error_guest_mode;
6811 
6812         vmx->nested.dirty_vmcs12 = true;
6813         vmx->nested.force_msr_bitmap_recalc = true;
6814         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6815         if (ret)
6816                 goto error_guest_mode;
6817 
6818         if (vmx->nested.mtf_pending)
6819                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6820 
6821         return 0;
6822 
6823 error_guest_mode:
6824         vmx->nested.nested_run_pending = 0;
6825         return ret;
6826 }
6827 
6828 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6829 {
6830         if (enable_shadow_vmcs) {
6831                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6832                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6833         }
6834 }
6835 
6836 /*
6837  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6838  * that madness to get the encoding for comparison.
6839  */
6840 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6841 
6842 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6843 {
6844         /*
6845          * Note these are the so called "index" of the VMCS field encoding, not
6846          * the index into vmcs12.
6847          */
6848         unsigned int max_idx, idx;
6849         int i;
6850 
6851         /*
6852          * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6853          * vmcs12, regardless of whether or not the associated feature is
6854          * exposed to L1.  Simply find the field with the highest index.
6855          */
6856         max_idx = 0;
6857         for (i = 0; i < nr_vmcs12_fields; i++) {
6858                 /* The vmcs12 table is very, very sparsely populated. */
6859                 if (!vmcs12_field_offsets[i])
6860                         continue;
6861 
6862                 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6863                 if (idx > max_idx)
6864                         max_idx = idx;
6865         }
6866 
6867         return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6868 }
6869 
6870 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6871                                            struct nested_vmx_msrs *msrs)
6872 {
6873         msrs->pinbased_ctls_low =
6874                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6875 
6876         msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6877         msrs->pinbased_ctls_high &=
6878                 PIN_BASED_EXT_INTR_MASK |
6879                 PIN_BASED_NMI_EXITING |
6880                 PIN_BASED_VIRTUAL_NMIS |
6881                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6882         msrs->pinbased_ctls_high |=
6883                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6884                 PIN_BASED_VMX_PREEMPTION_TIMER;
6885 }
6886 
6887 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6888                                        struct nested_vmx_msrs *msrs)
6889 {
6890         msrs->exit_ctls_low =
6891                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6892 
6893         msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6894         msrs->exit_ctls_high &=
6895 #ifdef CONFIG_X86_64
6896                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6897 #endif
6898                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6899                 VM_EXIT_CLEAR_BNDCFGS;
6900         msrs->exit_ctls_high |=
6901                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6902                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6903                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6904                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6905 
6906         /* We support free control of debug control saving. */
6907         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6908 }
6909 
6910 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6911                                         struct nested_vmx_msrs *msrs)
6912 {
6913         msrs->entry_ctls_low =
6914                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6915 
6916         msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6917         msrs->entry_ctls_high &=
6918 #ifdef CONFIG_X86_64
6919                 VM_ENTRY_IA32E_MODE |
6920 #endif
6921                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6922         msrs->entry_ctls_high |=
6923                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6924                  VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6925 
6926         /* We support free control of debug control loading. */
6927         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6928 }
6929 
6930 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6931                                            struct nested_vmx_msrs *msrs)
6932 {
6933         msrs->procbased_ctls_low =
6934                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6935 
6936         msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6937         msrs->procbased_ctls_high &=
6938                 CPU_BASED_INTR_WINDOW_EXITING |
6939                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6940                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6941                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6942                 CPU_BASED_CR3_STORE_EXITING |
6943 #ifdef CONFIG_X86_64
6944                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6945 #endif
6946                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6947                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6948                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6949                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6950                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6951         /*
6952          * We can allow some features even when not supported by the
6953          * hardware. For example, L1 can specify an MSR bitmap - and we
6954          * can use it to avoid exits to L1 - even when L0 runs L2
6955          * without MSR bitmaps.
6956          */
6957         msrs->procbased_ctls_high |=
6958                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6959                 CPU_BASED_USE_MSR_BITMAPS;
6960 
6961         /* We support free control of CR3 access interception. */
6962         msrs->procbased_ctls_low &=
6963                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6964 }
6965 
6966 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
6967                                             struct vmcs_config *vmcs_conf,
6968                                             struct nested_vmx_msrs *msrs)
6969 {
6970         msrs->secondary_ctls_low = 0;
6971 
6972         msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6973         msrs->secondary_ctls_high &=
6974                 SECONDARY_EXEC_DESC |
6975                 SECONDARY_EXEC_ENABLE_RDTSCP |
6976                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6977                 SECONDARY_EXEC_WBINVD_EXITING |
6978                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6979                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6980                 SECONDARY_EXEC_RDRAND_EXITING |
6981                 SECONDARY_EXEC_ENABLE_INVPCID |
6982                 SECONDARY_EXEC_ENABLE_VMFUNC |
6983                 SECONDARY_EXEC_RDSEED_EXITING |
6984                 SECONDARY_EXEC_ENABLE_XSAVES |
6985                 SECONDARY_EXEC_TSC_SCALING |
6986                 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6987 
6988         /*
6989          * We can emulate "VMCS shadowing," even if the hardware
6990          * doesn't support it.
6991          */
6992         msrs->secondary_ctls_high |=
6993                 SECONDARY_EXEC_SHADOW_VMCS;
6994 
6995         if (enable_ept) {
6996                 /* nested EPT: emulate EPT also to L1 */
6997                 msrs->secondary_ctls_high |=
6998                         SECONDARY_EXEC_ENABLE_EPT;
6999                 msrs->ept_caps =
7000                         VMX_EPT_PAGE_WALK_4_BIT |
7001                         VMX_EPT_PAGE_WALK_5_BIT |
7002                         VMX_EPTP_WB_BIT |
7003                         VMX_EPT_INVEPT_BIT |
7004                         VMX_EPT_EXECUTE_ONLY_BIT;
7005 
7006                 msrs->ept_caps &= ept_caps;
7007                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7008                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7009                         VMX_EPT_1GB_PAGE_BIT;
7010                 if (enable_ept_ad_bits) {
7011                         msrs->secondary_ctls_high |=
7012                                 SECONDARY_EXEC_ENABLE_PML;
7013                         msrs->ept_caps |= VMX_EPT_AD_BIT;
7014                 }
7015 
7016                 /*
7017                  * Advertise EPTP switching irrespective of hardware support,
7018                  * KVM emulates it in software so long as VMFUNC is supported.
7019                  */
7020                 if (cpu_has_vmx_vmfunc())
7021                         msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7022         }
7023 
7024         /*
7025          * Old versions of KVM use the single-context version without
7026          * checking for support, so declare that it is supported even
7027          * though it is treated as global context.  The alternative is
7028          * not failing the single-context invvpid, and it is worse.
7029          */
7030         if (enable_vpid) {
7031                 msrs->secondary_ctls_high |=
7032                         SECONDARY_EXEC_ENABLE_VPID;
7033                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7034                         VMX_VPID_EXTENT_SUPPORTED_MASK;
7035         }
7036 
7037         if (enable_unrestricted_guest)
7038                 msrs->secondary_ctls_high |=
7039                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
7040 
7041         if (flexpriority_enabled)
7042                 msrs->secondary_ctls_high |=
7043                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7044 
7045         if (enable_sgx)
7046                 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7047 }
7048 
7049 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7050                                        struct nested_vmx_msrs *msrs)
7051 {
7052         msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7053         msrs->misc_low |=
7054                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7055                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7056                 VMX_MISC_ACTIVITY_HLT |
7057                 VMX_MISC_ACTIVITY_WAIT_SIPI;
7058         msrs->misc_high = 0;
7059 }
7060 
7061 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7062 {
7063         /*
7064          * This MSR reports some information about VMX support. We
7065          * should return information about the VMX we emulate for the
7066          * guest, and the VMCS structure we give it - not about the
7067          * VMX support of the underlying hardware.
7068          */
7069         msrs->basic =
7070                 VMCS12_REVISION |
7071                 VMX_BASIC_TRUE_CTLS |
7072                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
7073                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
7074 
7075         if (cpu_has_vmx_basic_inout())
7076                 msrs->basic |= VMX_BASIC_INOUT;
7077 }
7078 
7079 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7080 {
7081         /*
7082          * These MSRs specify bits which the guest must keep fixed on
7083          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7084          * We picked the standard core2 setting.
7085          */
7086 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7087 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
7088         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7089         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7090 
7091         /* These MSRs specify bits which the guest must keep fixed off. */
7092         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7093         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7094 
7095         if (vmx_umip_emulated())
7096                 msrs->cr4_fixed1 |= X86_CR4_UMIP;
7097 }
7098 
7099 /*
7100  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7101  * returned for the various VMX controls MSRs when nested VMX is enabled.
7102  * The same values should also be used to verify that vmcs12 control fields are
7103  * valid during nested entry from L1 to L2.
7104  * Each of these control msrs has a low and high 32-bit half: A low bit is on
7105  * if the corresponding bit in the (32-bit) control field *must* be on, and a
7106  * bit in the high half is on if the corresponding bit in the control field
7107  * may be on. See also vmx_control_verify().
7108  */
7109 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7110 {
7111         struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7112 
7113         /*
7114          * Note that as a general rule, the high half of the MSRs (bits in
7115          * the control fields which may be 1) should be initialized by the
7116          * intersection of the underlying hardware's MSR (i.e., features which
7117          * can be supported) and the list of features we want to expose -
7118          * because they are known to be properly supported in our code.
7119          * Also, usually, the low half of the MSRs (bits which must be 1) can
7120          * be set to 0, meaning that L1 may turn off any of these bits. The
7121          * reason is that if one of these bits is necessary, it will appear
7122          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7123          * fields of vmcs01 and vmcs02, will turn these bits off - and
7124          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7125          * These rules have exceptions below.
7126          */
7127         nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7128 
7129         nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7130 
7131         nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7132 
7133         nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7134 
7135         nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7136 
7137         nested_vmx_setup_misc_data(vmcs_conf, msrs);
7138 
7139         nested_vmx_setup_basic(msrs);
7140 
7141         nested_vmx_setup_cr_fixed(msrs);
7142 
7143         msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7144 }
7145 
7146 void nested_vmx_hardware_unsetup(void)
7147 {
7148         int i;
7149 
7150         if (enable_shadow_vmcs) {
7151                 for (i = 0; i < VMX_BITMAP_NR; i++)
7152                         free_page((unsigned long)vmx_bitmap[i]);
7153         }
7154 }
7155 
7156 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7157 {
7158         int i;
7159 
7160         if (!cpu_has_vmx_shadow_vmcs())
7161                 enable_shadow_vmcs = 0;
7162         if (enable_shadow_vmcs) {
7163                 for (i = 0; i < VMX_BITMAP_NR; i++) {
7164                         /*
7165                          * The vmx_bitmap is not tied to a VM and so should
7166                          * not be charged to a memcg.
7167                          */
7168                         vmx_bitmap[i] = (unsigned long *)
7169                                 __get_free_page(GFP_KERNEL);
7170                         if (!vmx_bitmap[i]) {
7171                                 nested_vmx_hardware_unsetup();
7172                                 return -ENOMEM;
7173                         }
7174                 }
7175 
7176                 init_vmcs_shadow_fields();
7177         }
7178 
7179         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
7180         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
7181         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
7182         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
7183         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
7184         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
7185         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
7186         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmxoff;
7187         exit_handlers[EXIT_REASON_VMON]         = handle_vmxon;
7188         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
7189         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
7190         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
7191 
7192         return 0;
7193 }
7194 
7195 struct kvm_x86_nested_ops vmx_nested_ops = {
7196         .leave_nested = vmx_leave_nested,
7197         .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7198         .check_events = vmx_check_nested_events,
7199         .has_events = vmx_has_nested_events,
7200         .triple_fault = nested_vmx_triple_fault,
7201         .get_state = vmx_get_nested_state,
7202         .set_state = vmx_set_nested_state,
7203         .get_nested_state_pages = vmx_get_nested_state_pages,
7204         .write_log_dirty = nested_vmx_write_pml_buffer,
7205 #ifdef CONFIG_KVM_HYPERV
7206         .enable_evmcs = nested_enable_evmcs,
7207         .get_evmcs_version = nested_get_evmcs_version,
7208         .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7209 #endif
7210 };
7211 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php