1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2021 Intel Corporation. */ 3 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 4 5 #include <asm/sgx.h> 6 7 #include "cpuid.h" 8 #include "kvm_cache_regs.h" 9 #include "nested.h" 10 #include "sgx.h" 11 #include "vmx.h" 12 #include "x86.h" 13 14 bool __read_mostly enable_sgx = 1; 15 module_param_named(sgx, enable_sgx, bool, 0444); 16 17 /* Initial value of guest's virtual SGX_LEPUBKEYHASHn MSRs */ 18 static u64 sgx_pubkey_hash[4] __ro_after_init; 19 20 /* 21 * ENCLS's memory operands use a fixed segment (DS) and a fixed 22 * address size based on the mode. Related prefixes are ignored. 23 */ 24 static int sgx_get_encls_gva(struct kvm_vcpu *vcpu, unsigned long offset, 25 int size, int alignment, gva_t *gva) 26 { 27 struct kvm_segment s; 28 bool fault; 29 30 /* Skip vmcs.GUEST_DS retrieval for 64-bit mode to avoid VMREADs. */ 31 *gva = offset; 32 if (!is_64_bit_mode(vcpu)) { 33 vmx_get_segment(vcpu, &s, VCPU_SREG_DS); 34 *gva += s.base; 35 } 36 37 if (!IS_ALIGNED(*gva, alignment)) { 38 fault = true; 39 } else if (likely(is_64_bit_mode(vcpu))) { 40 *gva = vmx_get_untagged_addr(vcpu, *gva, 0); 41 fault = is_noncanonical_address(*gva, vcpu); 42 } else { 43 *gva &= 0xffffffff; 44 fault = (s.unusable) || 45 (s.type != 2 && s.type != 3) || 46 (*gva > s.limit) || 47 ((s.base != 0 || s.limit != 0xffffffff) && 48 (((u64)*gva + size - 1) > s.limit + 1)); 49 } 50 if (fault) 51 kvm_inject_gp(vcpu, 0); 52 return fault ? -EINVAL : 0; 53 } 54 55 static void sgx_handle_emulation_failure(struct kvm_vcpu *vcpu, u64 addr, 56 unsigned int size) 57 { 58 uint64_t data[2] = { addr, size }; 59 60 __kvm_prepare_emulation_failure_exit(vcpu, data, ARRAY_SIZE(data)); 61 } 62 63 static int sgx_read_hva(struct kvm_vcpu *vcpu, unsigned long hva, void *data, 64 unsigned int size) 65 { 66 if (__copy_from_user(data, (void __user *)hva, size)) { 67 sgx_handle_emulation_failure(vcpu, hva, size); 68 return -EFAULT; 69 } 70 71 return 0; 72 } 73 74 static int sgx_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t gva, bool write, 75 gpa_t *gpa) 76 { 77 struct x86_exception ex; 78 79 if (write) 80 *gpa = kvm_mmu_gva_to_gpa_write(vcpu, gva, &ex); 81 else 82 *gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, &ex); 83 84 if (*gpa == INVALID_GPA) { 85 kvm_inject_emulated_page_fault(vcpu, &ex); 86 return -EFAULT; 87 } 88 89 return 0; 90 } 91 92 static int sgx_gpa_to_hva(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned long *hva) 93 { 94 *hva = kvm_vcpu_gfn_to_hva(vcpu, PFN_DOWN(gpa)); 95 if (kvm_is_error_hva(*hva)) { 96 sgx_handle_emulation_failure(vcpu, gpa, 1); 97 return -EFAULT; 98 } 99 100 *hva |= gpa & ~PAGE_MASK; 101 102 return 0; 103 } 104 105 static int sgx_inject_fault(struct kvm_vcpu *vcpu, gva_t gva, int trapnr) 106 { 107 struct x86_exception ex; 108 109 /* 110 * A non-EPCM #PF indicates a bad userspace HVA. This *should* check 111 * for PFEC.SGX and not assume any #PF on SGX2 originated in the EPC, 112 * but the error code isn't (yet) plumbed through the ENCLS helpers. 113 */ 114 if (trapnr == PF_VECTOR && !boot_cpu_has(X86_FEATURE_SGX2)) { 115 kvm_prepare_emulation_failure_exit(vcpu); 116 return 0; 117 } 118 119 /* 120 * If the guest thinks it's running on SGX2 hardware, inject an SGX 121 * #PF if the fault matches an EPCM fault signature (#GP on SGX1, 122 * #PF on SGX2). The assumption is that EPCM faults are much more 123 * likely than a bad userspace address. 124 */ 125 if ((trapnr == PF_VECTOR || !boot_cpu_has(X86_FEATURE_SGX2)) && 126 guest_cpuid_has(vcpu, X86_FEATURE_SGX2)) { 127 memset(&ex, 0, sizeof(ex)); 128 ex.vector = PF_VECTOR; 129 ex.error_code = PFERR_PRESENT_MASK | PFERR_WRITE_MASK | 130 PFERR_SGX_MASK; 131 ex.address = gva; 132 ex.error_code_valid = true; 133 ex.nested_page_fault = false; 134 kvm_inject_emulated_page_fault(vcpu, &ex); 135 } else { 136 kvm_inject_gp(vcpu, 0); 137 } 138 return 1; 139 } 140 141 static int __handle_encls_ecreate(struct kvm_vcpu *vcpu, 142 struct sgx_pageinfo *pageinfo, 143 unsigned long secs_hva, 144 gva_t secs_gva) 145 { 146 struct sgx_secs *contents = (struct sgx_secs *)pageinfo->contents; 147 struct kvm_cpuid_entry2 *sgx_12_0, *sgx_12_1; 148 u64 attributes, xfrm, size; 149 u32 miscselect; 150 u8 max_size_log2; 151 int trapnr, ret; 152 153 sgx_12_0 = kvm_find_cpuid_entry_index(vcpu, 0x12, 0); 154 sgx_12_1 = kvm_find_cpuid_entry_index(vcpu, 0x12, 1); 155 if (!sgx_12_0 || !sgx_12_1) { 156 kvm_prepare_emulation_failure_exit(vcpu); 157 return 0; 158 } 159 160 miscselect = contents->miscselect; 161 attributes = contents->attributes; 162 xfrm = contents->xfrm; 163 size = contents->size; 164 165 /* Enforce restriction of access to the PROVISIONKEY. */ 166 if (!vcpu->kvm->arch.sgx_provisioning_allowed && 167 (attributes & SGX_ATTR_PROVISIONKEY)) { 168 if (sgx_12_1->eax & SGX_ATTR_PROVISIONKEY) 169 pr_warn_once("SGX PROVISIONKEY advertised but not allowed\n"); 170 kvm_inject_gp(vcpu, 0); 171 return 1; 172 } 173 174 /* 175 * Enforce CPUID restrictions on MISCSELECT, ATTRIBUTES and XFRM. Note 176 * that the allowed XFRM (XFeature Request Mask) isn't strictly bound 177 * by the supported XCR0. FP+SSE *must* be set in XFRM, even if XSAVE 178 * is unsupported, i.e. even if XCR0 itself is completely unsupported. 179 */ 180 if ((u32)miscselect & ~sgx_12_0->ebx || 181 (u32)attributes & ~sgx_12_1->eax || 182 (u32)(attributes >> 32) & ~sgx_12_1->ebx || 183 (u32)xfrm & ~sgx_12_1->ecx || 184 (u32)(xfrm >> 32) & ~sgx_12_1->edx || 185 xfrm & ~(vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE) || 186 (xfrm & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) { 187 kvm_inject_gp(vcpu, 0); 188 return 1; 189 } 190 191 /* Enforce CPUID restriction on max enclave size. */ 192 max_size_log2 = (attributes & SGX_ATTR_MODE64BIT) ? sgx_12_0->edx >> 8 : 193 sgx_12_0->edx; 194 if (size >= BIT_ULL(max_size_log2)) { 195 kvm_inject_gp(vcpu, 0); 196 return 1; 197 } 198 199 /* 200 * sgx_virt_ecreate() returns: 201 * 1) 0: ECREATE was successful 202 * 2) -EFAULT: ECREATE was run but faulted, and trapnr was set to the 203 * exception number. 204 * 3) -EINVAL: access_ok() on @secs_hva failed. This should never 205 * happen as KVM checks host addresses at memslot creation. 206 * sgx_virt_ecreate() has already warned in this case. 207 */ 208 ret = sgx_virt_ecreate(pageinfo, (void __user *)secs_hva, &trapnr); 209 if (!ret) 210 return kvm_skip_emulated_instruction(vcpu); 211 if (ret == -EFAULT) 212 return sgx_inject_fault(vcpu, secs_gva, trapnr); 213 214 return ret; 215 } 216 217 static int handle_encls_ecreate(struct kvm_vcpu *vcpu) 218 { 219 gva_t pageinfo_gva, secs_gva; 220 gva_t metadata_gva, contents_gva; 221 gpa_t metadata_gpa, contents_gpa, secs_gpa; 222 unsigned long metadata_hva, contents_hva, secs_hva; 223 struct sgx_pageinfo pageinfo; 224 struct sgx_secs *contents; 225 struct x86_exception ex; 226 int r; 227 228 if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 32, 32, &pageinfo_gva) || 229 sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva)) 230 return 1; 231 232 /* 233 * Copy the PAGEINFO to local memory, its pointers need to be 234 * translated, i.e. we need to do a deep copy/translate. 235 */ 236 r = kvm_read_guest_virt(vcpu, pageinfo_gva, &pageinfo, 237 sizeof(pageinfo), &ex); 238 if (r == X86EMUL_PROPAGATE_FAULT) { 239 kvm_inject_emulated_page_fault(vcpu, &ex); 240 return 1; 241 } else if (r != X86EMUL_CONTINUE) { 242 sgx_handle_emulation_failure(vcpu, pageinfo_gva, 243 sizeof(pageinfo)); 244 return 0; 245 } 246 247 if (sgx_get_encls_gva(vcpu, pageinfo.metadata, 64, 64, &metadata_gva) || 248 sgx_get_encls_gva(vcpu, pageinfo.contents, 4096, 4096, 249 &contents_gva)) 250 return 1; 251 252 /* 253 * Translate the SECINFO, SOURCE and SECS pointers from GVA to GPA. 254 * Resume the guest on failure to inject a #PF. 255 */ 256 if (sgx_gva_to_gpa(vcpu, metadata_gva, false, &metadata_gpa) || 257 sgx_gva_to_gpa(vcpu, contents_gva, false, &contents_gpa) || 258 sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa)) 259 return 1; 260 261 /* 262 * ...and then to HVA. The order of accesses isn't architectural, i.e. 263 * KVM doesn't have to fully process one address at a time. Exit to 264 * userspace if a GPA is invalid. 265 */ 266 if (sgx_gpa_to_hva(vcpu, metadata_gpa, &metadata_hva) || 267 sgx_gpa_to_hva(vcpu, contents_gpa, &contents_hva) || 268 sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva)) 269 return 0; 270 271 /* 272 * Copy contents into kernel memory to prevent TOCTOU attack. E.g. the 273 * guest could do ECREATE w/ SECS.SGX_ATTR_PROVISIONKEY=0, and 274 * simultaneously set SGX_ATTR_PROVISIONKEY to bypass the check to 275 * enforce restriction of access to the PROVISIONKEY. 276 */ 277 contents = (struct sgx_secs *)__get_free_page(GFP_KERNEL_ACCOUNT); 278 if (!contents) 279 return -ENOMEM; 280 281 /* Exit to userspace if copying from a host userspace address fails. */ 282 if (sgx_read_hva(vcpu, contents_hva, (void *)contents, PAGE_SIZE)) { 283 free_page((unsigned long)contents); 284 return 0; 285 } 286 287 pageinfo.metadata = metadata_hva; 288 pageinfo.contents = (u64)contents; 289 290 r = __handle_encls_ecreate(vcpu, &pageinfo, secs_hva, secs_gva); 291 292 free_page((unsigned long)contents); 293 294 return r; 295 } 296 297 static int handle_encls_einit(struct kvm_vcpu *vcpu) 298 { 299 unsigned long sig_hva, secs_hva, token_hva, rflags; 300 struct vcpu_vmx *vmx = to_vmx(vcpu); 301 gva_t sig_gva, secs_gva, token_gva; 302 gpa_t sig_gpa, secs_gpa, token_gpa; 303 int ret, trapnr; 304 305 if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 1808, 4096, &sig_gva) || 306 sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva) || 307 sgx_get_encls_gva(vcpu, kvm_rdx_read(vcpu), 304, 512, &token_gva)) 308 return 1; 309 310 /* 311 * Translate the SIGSTRUCT, SECS and TOKEN pointers from GVA to GPA. 312 * Resume the guest on failure to inject a #PF. 313 */ 314 if (sgx_gva_to_gpa(vcpu, sig_gva, false, &sig_gpa) || 315 sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa) || 316 sgx_gva_to_gpa(vcpu, token_gva, false, &token_gpa)) 317 return 1; 318 319 /* 320 * ...and then to HVA. The order of accesses isn't architectural, i.e. 321 * KVM doesn't have to fully process one address at a time. Exit to 322 * userspace if a GPA is invalid. Note, all structures are aligned and 323 * cannot split pages. 324 */ 325 if (sgx_gpa_to_hva(vcpu, sig_gpa, &sig_hva) || 326 sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva) || 327 sgx_gpa_to_hva(vcpu, token_gpa, &token_hva)) 328 return 0; 329 330 ret = sgx_virt_einit((void __user *)sig_hva, (void __user *)token_hva, 331 (void __user *)secs_hva, 332 vmx->msr_ia32_sgxlepubkeyhash, &trapnr); 333 334 if (ret == -EFAULT) 335 return sgx_inject_fault(vcpu, secs_gva, trapnr); 336 337 /* 338 * sgx_virt_einit() returns -EINVAL when access_ok() fails on @sig_hva, 339 * @token_hva or @secs_hva. This should never happen as KVM checks host 340 * addresses at memslot creation. sgx_virt_einit() has already warned 341 * in this case, so just return. 342 */ 343 if (ret < 0) 344 return ret; 345 346 rflags = vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | 347 X86_EFLAGS_AF | X86_EFLAGS_SF | 348 X86_EFLAGS_OF); 349 if (ret) 350 rflags |= X86_EFLAGS_ZF; 351 else 352 rflags &= ~X86_EFLAGS_ZF; 353 vmx_set_rflags(vcpu, rflags); 354 355 kvm_rax_write(vcpu, ret); 356 return kvm_skip_emulated_instruction(vcpu); 357 } 358 359 static inline bool encls_leaf_enabled_in_guest(struct kvm_vcpu *vcpu, u32 leaf) 360 { 361 /* 362 * ENCLS generates a #UD if SGX1 isn't supported, i.e. this point will 363 * be reached if and only if the SGX1 leafs are enabled. 364 */ 365 if (leaf >= ECREATE && leaf <= ETRACK) 366 return true; 367 368 if (leaf >= EAUG && leaf <= EMODT) 369 return guest_cpuid_has(vcpu, X86_FEATURE_SGX2); 370 371 return false; 372 } 373 374 static inline bool sgx_enabled_in_guest_bios(struct kvm_vcpu *vcpu) 375 { 376 const u64 bits = FEAT_CTL_SGX_ENABLED | FEAT_CTL_LOCKED; 377 378 return (to_vmx(vcpu)->msr_ia32_feature_control & bits) == bits; 379 } 380 381 int handle_encls(struct kvm_vcpu *vcpu) 382 { 383 u32 leaf = (u32)kvm_rax_read(vcpu); 384 385 if (!enable_sgx || !guest_cpuid_has(vcpu, X86_FEATURE_SGX) || 386 !guest_cpuid_has(vcpu, X86_FEATURE_SGX1)) { 387 kvm_queue_exception(vcpu, UD_VECTOR); 388 } else if (!encls_leaf_enabled_in_guest(vcpu, leaf) || 389 !sgx_enabled_in_guest_bios(vcpu) || !is_paging(vcpu)) { 390 kvm_inject_gp(vcpu, 0); 391 } else { 392 if (leaf == ECREATE) 393 return handle_encls_ecreate(vcpu); 394 if (leaf == EINIT) 395 return handle_encls_einit(vcpu); 396 WARN_ONCE(1, "unexpected exit on ENCLS[%u]", leaf); 397 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 398 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_ENCLS; 399 return 0; 400 } 401 return 1; 402 } 403 404 void setup_default_sgx_lepubkeyhash(void) 405 { 406 /* 407 * Use Intel's default value for Skylake hardware if Launch Control is 408 * not supported, i.e. Intel's hash is hardcoded into silicon, or if 409 * Launch Control is supported and enabled, i.e. mimic the reset value 410 * and let the guest write the MSRs at will. If Launch Control is 411 * supported but disabled, then use the current MSR values as the hash 412 * MSRs exist but are read-only (locked and not writable). 413 */ 414 if (!enable_sgx || boot_cpu_has(X86_FEATURE_SGX_LC) || 415 rdmsrl_safe(MSR_IA32_SGXLEPUBKEYHASH0, &sgx_pubkey_hash[0])) { 416 sgx_pubkey_hash[0] = 0xa6053e051270b7acULL; 417 sgx_pubkey_hash[1] = 0x6cfbe8ba8b3b413dULL; 418 sgx_pubkey_hash[2] = 0xc4916d99f2b3735dULL; 419 sgx_pubkey_hash[3] = 0xd4f8c05909f9bb3bULL; 420 } else { 421 /* MSR_IA32_SGXLEPUBKEYHASH0 is read above */ 422 rdmsrl(MSR_IA32_SGXLEPUBKEYHASH1, sgx_pubkey_hash[1]); 423 rdmsrl(MSR_IA32_SGXLEPUBKEYHASH2, sgx_pubkey_hash[2]); 424 rdmsrl(MSR_IA32_SGXLEPUBKEYHASH3, sgx_pubkey_hash[3]); 425 } 426 } 427 428 void vcpu_setup_sgx_lepubkeyhash(struct kvm_vcpu *vcpu) 429 { 430 struct vcpu_vmx *vmx = to_vmx(vcpu); 431 432 memcpy(vmx->msr_ia32_sgxlepubkeyhash, sgx_pubkey_hash, 433 sizeof(sgx_pubkey_hash)); 434 } 435 436 /* 437 * ECREATE must be intercepted to enforce MISCSELECT, ATTRIBUTES and XFRM 438 * restrictions if the guest's allowed-1 settings diverge from hardware. 439 */ 440 static bool sgx_intercept_encls_ecreate(struct kvm_vcpu *vcpu) 441 { 442 struct kvm_cpuid_entry2 *guest_cpuid; 443 u32 eax, ebx, ecx, edx; 444 445 if (!vcpu->kvm->arch.sgx_provisioning_allowed) 446 return true; 447 448 guest_cpuid = kvm_find_cpuid_entry_index(vcpu, 0x12, 0); 449 if (!guest_cpuid) 450 return true; 451 452 cpuid_count(0x12, 0, &eax, &ebx, &ecx, &edx); 453 if (guest_cpuid->ebx != ebx || guest_cpuid->edx != edx) 454 return true; 455 456 guest_cpuid = kvm_find_cpuid_entry_index(vcpu, 0x12, 1); 457 if (!guest_cpuid) 458 return true; 459 460 cpuid_count(0x12, 1, &eax, &ebx, &ecx, &edx); 461 if (guest_cpuid->eax != eax || guest_cpuid->ebx != ebx || 462 guest_cpuid->ecx != ecx || guest_cpuid->edx != edx) 463 return true; 464 465 return false; 466 } 467 468 void vmx_write_encls_bitmap(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) 469 { 470 /* 471 * There is no software enable bit for SGX that is virtualized by 472 * hardware, e.g. there's no CR4.SGXE, so when SGX is disabled in the 473 * guest (either by the host or by the guest's BIOS) but enabled in the 474 * host, trap all ENCLS leafs and inject #UD/#GP as needed to emulate 475 * the expected system behavior for ENCLS. 476 */ 477 u64 bitmap = -1ull; 478 479 /* Nothing to do if hardware doesn't support SGX */ 480 if (!cpu_has_vmx_encls_vmexit()) 481 return; 482 483 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX) && 484 sgx_enabled_in_guest_bios(vcpu)) { 485 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX1)) { 486 bitmap &= ~GENMASK_ULL(ETRACK, ECREATE); 487 if (sgx_intercept_encls_ecreate(vcpu)) 488 bitmap |= (1 << ECREATE); 489 } 490 491 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX2)) 492 bitmap &= ~GENMASK_ULL(EMODT, EAUG); 493 494 /* 495 * Trap and execute EINIT if launch control is enabled in the 496 * host using the guest's values for launch control MSRs, even 497 * if the guest's values are fixed to hardware default values. 498 * The MSRs are not loaded/saved on VM-Enter/VM-Exit as writing 499 * the MSRs is extraordinarily expensive. 500 */ 501 if (boot_cpu_has(X86_FEATURE_SGX_LC)) 502 bitmap |= (1 << EINIT); 503 504 if (!vmcs12 && is_guest_mode(vcpu)) 505 vmcs12 = get_vmcs12(vcpu); 506 if (vmcs12 && nested_cpu_has_encls_exit(vmcs12)) 507 bitmap |= vmcs12->encls_exiting_bitmap; 508 } 509 vmcs_write64(ENCLS_EXITING_BITMAP, bitmap); 510 } 511
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.