~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kvm/vmx/vmx.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Kernel-based Virtual Machine driver for Linux
  4  *
  5  * This module enables machines with Intel VT-x extensions to run virtual
  6  * machines without emulation or binary translation.
  7  *
  8  * Copyright (C) 2006 Qumranet, Inc.
  9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 10  *
 11  * Authors:
 12  *   Avi Kivity   <avi@qumranet.com>
 13  *   Yaniv Kamay  <yaniv@qumranet.com>
 14  */
 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 16 
 17 #include <linux/highmem.h>
 18 #include <linux/hrtimer.h>
 19 #include <linux/kernel.h>
 20 #include <linux/kvm_host.h>
 21 #include <linux/module.h>
 22 #include <linux/moduleparam.h>
 23 #include <linux/mod_devicetable.h>
 24 #include <linux/mm.h>
 25 #include <linux/objtool.h>
 26 #include <linux/sched.h>
 27 #include <linux/sched/smt.h>
 28 #include <linux/slab.h>
 29 #include <linux/tboot.h>
 30 #include <linux/trace_events.h>
 31 #include <linux/entry-kvm.h>
 32 
 33 #include <asm/apic.h>
 34 #include <asm/asm.h>
 35 #include <asm/cpu.h>
 36 #include <asm/cpu_device_id.h>
 37 #include <asm/debugreg.h>
 38 #include <asm/desc.h>
 39 #include <asm/fpu/api.h>
 40 #include <asm/fpu/xstate.h>
 41 #include <asm/fred.h>
 42 #include <asm/idtentry.h>
 43 #include <asm/io.h>
 44 #include <asm/irq_remapping.h>
 45 #include <asm/reboot.h>
 46 #include <asm/perf_event.h>
 47 #include <asm/mmu_context.h>
 48 #include <asm/mshyperv.h>
 49 #include <asm/mwait.h>
 50 #include <asm/spec-ctrl.h>
 51 #include <asm/vmx.h>
 52 
 53 #include <trace/events/ipi.h>
 54 
 55 #include "capabilities.h"
 56 #include "cpuid.h"
 57 #include "hyperv.h"
 58 #include "kvm_onhyperv.h"
 59 #include "irq.h"
 60 #include "kvm_cache_regs.h"
 61 #include "lapic.h"
 62 #include "mmu.h"
 63 #include "nested.h"
 64 #include "pmu.h"
 65 #include "sgx.h"
 66 #include "trace.h"
 67 #include "vmcs.h"
 68 #include "vmcs12.h"
 69 #include "vmx.h"
 70 #include "x86.h"
 71 #include "x86_ops.h"
 72 #include "smm.h"
 73 #include "vmx_onhyperv.h"
 74 #include "posted_intr.h"
 75 
 76 MODULE_AUTHOR("Qumranet");
 77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
 78 MODULE_LICENSE("GPL");
 79 
 80 #ifdef MODULE
 81 static const struct x86_cpu_id vmx_cpu_id[] = {
 82         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
 83         {}
 84 };
 85 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
 86 #endif
 87 
 88 bool __read_mostly enable_vpid = 1;
 89 module_param_named(vpid, enable_vpid, bool, 0444);
 90 
 91 static bool __read_mostly enable_vnmi = 1;
 92 module_param_named(vnmi, enable_vnmi, bool, 0444);
 93 
 94 bool __read_mostly flexpriority_enabled = 1;
 95 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
 96 
 97 bool __read_mostly enable_ept = 1;
 98 module_param_named(ept, enable_ept, bool, 0444);
 99 
100 bool __read_mostly enable_unrestricted_guest = 1;
101 module_param_named(unrestricted_guest,
102                         enable_unrestricted_guest, bool, 0444);
103 
104 bool __read_mostly enable_ept_ad_bits = 1;
105 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
106 
107 static bool __read_mostly emulate_invalid_guest_state = true;
108 module_param(emulate_invalid_guest_state, bool, 0444);
109 
110 static bool __read_mostly fasteoi = 1;
111 module_param(fasteoi, bool, 0444);
112 
113 module_param(enable_apicv, bool, 0444);
114 
115 bool __read_mostly enable_ipiv = true;
116 module_param(enable_ipiv, bool, 0444);
117 
118 /*
119  * If nested=1, nested virtualization is supported, i.e., guests may use
120  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
121  * use VMX instructions.
122  */
123 static bool __read_mostly nested = 1;
124 module_param(nested, bool, 0444);
125 
126 bool __read_mostly enable_pml = 1;
127 module_param_named(pml, enable_pml, bool, 0444);
128 
129 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
130 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
131 
132 static bool __read_mostly dump_invalid_vmcs = 0;
133 module_param(dump_invalid_vmcs, bool, 0644);
134 
135 #define MSR_BITMAP_MODE_X2APIC          1
136 #define MSR_BITMAP_MODE_X2APIC_APICV    2
137 
138 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
139 
140 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
141 static int __read_mostly cpu_preemption_timer_multi;
142 static bool __read_mostly enable_preemption_timer = 1;
143 #ifdef CONFIG_X86_64
144 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
145 #endif
146 
147 extern bool __read_mostly allow_smaller_maxphyaddr;
148 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
149 
150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
152 #define KVM_VM_CR0_ALWAYS_ON                            \
153         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
154 
155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
158 
159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
160 
161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
162         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
163         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
164         RTIT_STATUS_BYTECNT))
165 
166 /*
167  * List of MSRs that can be directly passed to the guest.
168  * In addition to these x2apic, PT and LBR MSRs are handled specially.
169  */
170 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
171         MSR_IA32_SPEC_CTRL,
172         MSR_IA32_PRED_CMD,
173         MSR_IA32_FLUSH_CMD,
174         MSR_IA32_TSC,
175 #ifdef CONFIG_X86_64
176         MSR_FS_BASE,
177         MSR_GS_BASE,
178         MSR_KERNEL_GS_BASE,
179         MSR_IA32_XFD,
180         MSR_IA32_XFD_ERR,
181 #endif
182         MSR_IA32_SYSENTER_CS,
183         MSR_IA32_SYSENTER_ESP,
184         MSR_IA32_SYSENTER_EIP,
185         MSR_CORE_C1_RES,
186         MSR_CORE_C3_RESIDENCY,
187         MSR_CORE_C6_RESIDENCY,
188         MSR_CORE_C7_RESIDENCY,
189 };
190 
191 /*
192  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
193  * ple_gap:    upper bound on the amount of time between two successive
194  *             executions of PAUSE in a loop. Also indicate if ple enabled.
195  *             According to test, this time is usually smaller than 128 cycles.
196  * ple_window: upper bound on the amount of time a guest is allowed to execute
197  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
198  *             less than 2^12 cycles
199  * Time is measured based on a counter that runs at the same rate as the TSC,
200  * refer SDM volume 3b section 21.6.13 & 22.1.3.
201  */
202 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
203 module_param(ple_gap, uint, 0444);
204 
205 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
206 module_param(ple_window, uint, 0444);
207 
208 /* Default doubles per-vcpu window every exit. */
209 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
210 module_param(ple_window_grow, uint, 0444);
211 
212 /* Default resets per-vcpu window every exit to ple_window. */
213 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
214 module_param(ple_window_shrink, uint, 0444);
215 
216 /* Default is to compute the maximum so we can never overflow. */
217 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
218 module_param(ple_window_max, uint, 0444);
219 
220 /* Default is SYSTEM mode, 1 for host-guest mode */
221 int __read_mostly pt_mode = PT_MODE_SYSTEM;
222 module_param(pt_mode, int, S_IRUGO);
223 
224 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
225 
226 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
227 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
228 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
229 
230 /* Storage for pre module init parameter parsing */
231 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
232 
233 static const struct {
234         const char *option;
235         bool for_parse;
236 } vmentry_l1d_param[] = {
237         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
238         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
239         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
240         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
241         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
242         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
243 };
244 
245 #define L1D_CACHE_ORDER 4
246 static void *vmx_l1d_flush_pages;
247 
248 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
249 {
250         struct page *page;
251         unsigned int i;
252 
253         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
254                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
255                 return 0;
256         }
257 
258         if (!enable_ept) {
259                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
260                 return 0;
261         }
262 
263         if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
264                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
265                 return 0;
266         }
267 
268         /* If set to auto use the default l1tf mitigation method */
269         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
270                 switch (l1tf_mitigation) {
271                 case L1TF_MITIGATION_OFF:
272                         l1tf = VMENTER_L1D_FLUSH_NEVER;
273                         break;
274                 case L1TF_MITIGATION_FLUSH_NOWARN:
275                 case L1TF_MITIGATION_FLUSH:
276                 case L1TF_MITIGATION_FLUSH_NOSMT:
277                         l1tf = VMENTER_L1D_FLUSH_COND;
278                         break;
279                 case L1TF_MITIGATION_FULL:
280                 case L1TF_MITIGATION_FULL_FORCE:
281                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
282                         break;
283                 }
284         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
285                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
286         }
287 
288         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
289             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
290                 /*
291                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
292                  * lifetime and so should not be charged to a memcg.
293                  */
294                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
295                 if (!page)
296                         return -ENOMEM;
297                 vmx_l1d_flush_pages = page_address(page);
298 
299                 /*
300                  * Initialize each page with a different pattern in
301                  * order to protect against KSM in the nested
302                  * virtualization case.
303                  */
304                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
305                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
306                                PAGE_SIZE);
307                 }
308         }
309 
310         l1tf_vmx_mitigation = l1tf;
311 
312         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
313                 static_branch_enable(&vmx_l1d_should_flush);
314         else
315                 static_branch_disable(&vmx_l1d_should_flush);
316 
317         if (l1tf == VMENTER_L1D_FLUSH_COND)
318                 static_branch_enable(&vmx_l1d_flush_cond);
319         else
320                 static_branch_disable(&vmx_l1d_flush_cond);
321         return 0;
322 }
323 
324 static int vmentry_l1d_flush_parse(const char *s)
325 {
326         unsigned int i;
327 
328         if (s) {
329                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
330                         if (vmentry_l1d_param[i].for_parse &&
331                             sysfs_streq(s, vmentry_l1d_param[i].option))
332                                 return i;
333                 }
334         }
335         return -EINVAL;
336 }
337 
338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
339 {
340         int l1tf, ret;
341 
342         l1tf = vmentry_l1d_flush_parse(s);
343         if (l1tf < 0)
344                 return l1tf;
345 
346         if (!boot_cpu_has(X86_BUG_L1TF))
347                 return 0;
348 
349         /*
350          * Has vmx_init() run already? If not then this is the pre init
351          * parameter parsing. In that case just store the value and let
352          * vmx_init() do the proper setup after enable_ept has been
353          * established.
354          */
355         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
356                 vmentry_l1d_flush_param = l1tf;
357                 return 0;
358         }
359 
360         mutex_lock(&vmx_l1d_flush_mutex);
361         ret = vmx_setup_l1d_flush(l1tf);
362         mutex_unlock(&vmx_l1d_flush_mutex);
363         return ret;
364 }
365 
366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
367 {
368         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
369                 return sysfs_emit(s, "???\n");
370 
371         return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
372 }
373 
374 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
375 {
376         u64 msr;
377 
378         if (!vmx->disable_fb_clear)
379                 return;
380 
381         msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
382         msr |= FB_CLEAR_DIS;
383         native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
384         /* Cache the MSR value to avoid reading it later */
385         vmx->msr_ia32_mcu_opt_ctrl = msr;
386 }
387 
388 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
389 {
390         if (!vmx->disable_fb_clear)
391                 return;
392 
393         vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
394         native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
395 }
396 
397 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
398 {
399         /*
400          * Disable VERW's behavior of clearing CPU buffers for the guest if the
401          * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
402          * the mitigation. Disabling the clearing behavior provides a
403          * performance boost for guests that aren't aware that manually clearing
404          * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
405          * and VM-Exit.
406          */
407         vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
408                                 (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
409                                 !boot_cpu_has_bug(X86_BUG_MDS) &&
410                                 !boot_cpu_has_bug(X86_BUG_TAA);
411 
412         /*
413          * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
414          * at VMEntry. Skip the MSR read/write when a guest has no use case to
415          * execute VERW.
416          */
417         if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
418            ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
419             (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
420             (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
421             (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
422             (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
423                 vmx->disable_fb_clear = false;
424 }
425 
426 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
427         .set = vmentry_l1d_flush_set,
428         .get = vmentry_l1d_flush_get,
429 };
430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
431 
432 static u32 vmx_segment_access_rights(struct kvm_segment *var);
433 
434 void vmx_vmexit(void);
435 
436 #define vmx_insn_failed(fmt...)         \
437 do {                                    \
438         WARN_ONCE(1, fmt);              \
439         pr_warn_ratelimited(fmt);       \
440 } while (0)
441 
442 noinline void vmread_error(unsigned long field)
443 {
444         vmx_insn_failed("vmread failed: field=%lx\n", field);
445 }
446 
447 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
448 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
449 {
450         if (fault) {
451                 kvm_spurious_fault();
452         } else {
453                 instrumentation_begin();
454                 vmread_error(field);
455                 instrumentation_end();
456         }
457 }
458 #endif
459 
460 noinline void vmwrite_error(unsigned long field, unsigned long value)
461 {
462         vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
463                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
464 }
465 
466 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
467 {
468         vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
469                         vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
470 }
471 
472 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
473 {
474         vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
475                         vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
476 }
477 
478 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
479 {
480         vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
481                         ext, vpid, gva);
482 }
483 
484 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
485 {
486         vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
487                         ext, eptp, gpa);
488 }
489 
490 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
491 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
492 /*
493  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
494  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
495  */
496 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
497 
498 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
499 static DEFINE_SPINLOCK(vmx_vpid_lock);
500 
501 struct vmcs_config vmcs_config __ro_after_init;
502 struct vmx_capability vmx_capability __ro_after_init;
503 
504 #define VMX_SEGMENT_FIELD(seg)                                  \
505         [VCPU_SREG_##seg] = {                                   \
506                 .selector = GUEST_##seg##_SELECTOR,             \
507                 .base = GUEST_##seg##_BASE,                     \
508                 .limit = GUEST_##seg##_LIMIT,                   \
509                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
510         }
511 
512 static const struct kvm_vmx_segment_field {
513         unsigned selector;
514         unsigned base;
515         unsigned limit;
516         unsigned ar_bytes;
517 } kvm_vmx_segment_fields[] = {
518         VMX_SEGMENT_FIELD(CS),
519         VMX_SEGMENT_FIELD(DS),
520         VMX_SEGMENT_FIELD(ES),
521         VMX_SEGMENT_FIELD(FS),
522         VMX_SEGMENT_FIELD(GS),
523         VMX_SEGMENT_FIELD(SS),
524         VMX_SEGMENT_FIELD(TR),
525         VMX_SEGMENT_FIELD(LDTR),
526 };
527 
528 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
529 {
530         vmx->segment_cache.bitmask = 0;
531 }
532 
533 static unsigned long host_idt_base;
534 
535 #if IS_ENABLED(CONFIG_HYPERV)
536 static bool __read_mostly enlightened_vmcs = true;
537 module_param(enlightened_vmcs, bool, 0444);
538 
539 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
540 {
541         struct hv_enlightened_vmcs *evmcs;
542         hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
543 
544         if (partition_assist_page == INVALID_PAGE)
545                 return -ENOMEM;
546 
547         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
548 
549         evmcs->partition_assist_page = partition_assist_page;
550         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
551         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
552 
553         return 0;
554 }
555 
556 static __init void hv_init_evmcs(void)
557 {
558         int cpu;
559 
560         if (!enlightened_vmcs)
561                 return;
562 
563         /*
564          * Enlightened VMCS usage should be recommended and the host needs
565          * to support eVMCS v1 or above.
566          */
567         if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
568             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
569              KVM_EVMCS_VERSION) {
570 
571                 /* Check that we have assist pages on all online CPUs */
572                 for_each_online_cpu(cpu) {
573                         if (!hv_get_vp_assist_page(cpu)) {
574                                 enlightened_vmcs = false;
575                                 break;
576                         }
577                 }
578 
579                 if (enlightened_vmcs) {
580                         pr_info("Using Hyper-V Enlightened VMCS\n");
581                         static_branch_enable(&__kvm_is_using_evmcs);
582                 }
583 
584                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
585                         vt_x86_ops.enable_l2_tlb_flush
586                                 = hv_enable_l2_tlb_flush;
587         } else {
588                 enlightened_vmcs = false;
589         }
590 }
591 
592 static void hv_reset_evmcs(void)
593 {
594         struct hv_vp_assist_page *vp_ap;
595 
596         if (!kvm_is_using_evmcs())
597                 return;
598 
599         /*
600          * KVM should enable eVMCS if and only if all CPUs have a VP assist
601          * page, and should reject CPU onlining if eVMCS is enabled the CPU
602          * doesn't have a VP assist page allocated.
603          */
604         vp_ap = hv_get_vp_assist_page(smp_processor_id());
605         if (WARN_ON_ONCE(!vp_ap))
606                 return;
607 
608         /*
609          * Reset everything to support using non-enlightened VMCS access later
610          * (e.g. when we reload the module with enlightened_vmcs=0)
611          */
612         vp_ap->nested_control.features.directhypercall = 0;
613         vp_ap->current_nested_vmcs = 0;
614         vp_ap->enlighten_vmentry = 0;
615 }
616 
617 #else /* IS_ENABLED(CONFIG_HYPERV) */
618 static void hv_init_evmcs(void) {}
619 static void hv_reset_evmcs(void) {}
620 #endif /* IS_ENABLED(CONFIG_HYPERV) */
621 
622 /*
623  * Comment's format: document - errata name - stepping - processor name.
624  * Refer from
625  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
626  */
627 static u32 vmx_preemption_cpu_tfms[] = {
628 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
629 0x000206E6,
630 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
631 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
632 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
633 0x00020652,
634 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
635 0x00020655,
636 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
637 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
638 /*
639  * 320767.pdf - AAP86  - B1 -
640  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
641  */
642 0x000106E5,
643 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
644 0x000106A0,
645 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
646 0x000106A1,
647 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
648 0x000106A4,
649  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
650  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
651  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
652 0x000106A5,
653  /* Xeon E3-1220 V2 */
654 0x000306A8,
655 };
656 
657 static inline bool cpu_has_broken_vmx_preemption_timer(void)
658 {
659         u32 eax = cpuid_eax(0x00000001), i;
660 
661         /* Clear the reserved bits */
662         eax &= ~(0x3U << 14 | 0xfU << 28);
663         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
664                 if (eax == vmx_preemption_cpu_tfms[i])
665                         return true;
666 
667         return false;
668 }
669 
670 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
671 {
672         return flexpriority_enabled && lapic_in_kernel(vcpu);
673 }
674 
675 static int vmx_get_passthrough_msr_slot(u32 msr)
676 {
677         int i;
678 
679         switch (msr) {
680         case 0x800 ... 0x8ff:
681                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
682                 return -ENOENT;
683         case MSR_IA32_RTIT_STATUS:
684         case MSR_IA32_RTIT_OUTPUT_BASE:
685         case MSR_IA32_RTIT_OUTPUT_MASK:
686         case MSR_IA32_RTIT_CR3_MATCH:
687         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
688                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
689         case MSR_LBR_SELECT:
690         case MSR_LBR_TOS:
691         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
692         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
693         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
694         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
695         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
696                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
697                 return -ENOENT;
698         }
699 
700         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
701                 if (vmx_possible_passthrough_msrs[i] == msr)
702                         return i;
703         }
704 
705         WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
706         return -ENOENT;
707 }
708 
709 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
710 {
711         int i;
712 
713         i = kvm_find_user_return_msr(msr);
714         if (i >= 0)
715                 return &vmx->guest_uret_msrs[i];
716         return NULL;
717 }
718 
719 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
720                                   struct vmx_uret_msr *msr, u64 data)
721 {
722         unsigned int slot = msr - vmx->guest_uret_msrs;
723         int ret = 0;
724 
725         if (msr->load_into_hardware) {
726                 preempt_disable();
727                 ret = kvm_set_user_return_msr(slot, data, msr->mask);
728                 preempt_enable();
729         }
730         if (!ret)
731                 msr->data = data;
732         return ret;
733 }
734 
735 /*
736  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
737  *
738  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
739  * atomically track post-VMXON state, e.g. this may be called in NMI context.
740  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
741  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
742  * magically in RM, VM86, compat mode, or at CPL>0.
743  */
744 static int kvm_cpu_vmxoff(void)
745 {
746         asm goto("1: vmxoff\n\t"
747                           _ASM_EXTABLE(1b, %l[fault])
748                           ::: "cc", "memory" : fault);
749 
750         cr4_clear_bits(X86_CR4_VMXE);
751         return 0;
752 
753 fault:
754         cr4_clear_bits(X86_CR4_VMXE);
755         return -EIO;
756 }
757 
758 static void vmx_emergency_disable(void)
759 {
760         int cpu = raw_smp_processor_id();
761         struct loaded_vmcs *v;
762 
763         kvm_rebooting = true;
764 
765         /*
766          * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
767          * set in task context.  If this races with VMX is disabled by an NMI,
768          * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
769          * kvm_rebooting set.
770          */
771         if (!(__read_cr4() & X86_CR4_VMXE))
772                 return;
773 
774         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
775                             loaded_vmcss_on_cpu_link)
776                 vmcs_clear(v->vmcs);
777 
778         kvm_cpu_vmxoff();
779 }
780 
781 static void __loaded_vmcs_clear(void *arg)
782 {
783         struct loaded_vmcs *loaded_vmcs = arg;
784         int cpu = raw_smp_processor_id();
785 
786         if (loaded_vmcs->cpu != cpu)
787                 return; /* vcpu migration can race with cpu offline */
788         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
789                 per_cpu(current_vmcs, cpu) = NULL;
790 
791         vmcs_clear(loaded_vmcs->vmcs);
792         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
793                 vmcs_clear(loaded_vmcs->shadow_vmcs);
794 
795         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
796 
797         /*
798          * Ensure all writes to loaded_vmcs, including deleting it from its
799          * current percpu list, complete before setting loaded_vmcs->cpu to
800          * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
801          * and add loaded_vmcs to its percpu list before it's deleted from this
802          * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
803          */
804         smp_wmb();
805 
806         loaded_vmcs->cpu = -1;
807         loaded_vmcs->launched = 0;
808 }
809 
810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
811 {
812         int cpu = loaded_vmcs->cpu;
813 
814         if (cpu != -1)
815                 smp_call_function_single(cpu,
816                          __loaded_vmcs_clear, loaded_vmcs, 1);
817 }
818 
819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
820                                        unsigned field)
821 {
822         bool ret;
823         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
824 
825         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
826                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
827                 vmx->segment_cache.bitmask = 0;
828         }
829         ret = vmx->segment_cache.bitmask & mask;
830         vmx->segment_cache.bitmask |= mask;
831         return ret;
832 }
833 
834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
835 {
836         u16 *p = &vmx->segment_cache.seg[seg].selector;
837 
838         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
839                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
840         return *p;
841 }
842 
843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
844 {
845         ulong *p = &vmx->segment_cache.seg[seg].base;
846 
847         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
848                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
849         return *p;
850 }
851 
852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
853 {
854         u32 *p = &vmx->segment_cache.seg[seg].limit;
855 
856         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
857                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
858         return *p;
859 }
860 
861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
862 {
863         u32 *p = &vmx->segment_cache.seg[seg].ar;
864 
865         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
866                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
867         return *p;
868 }
869 
870 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
871 {
872         u32 eb;
873 
874         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
875              (1u << DB_VECTOR) | (1u << AC_VECTOR);
876         /*
877          * #VE isn't used for VMX.  To test against unexpected changes
878          * related to #VE for VMX, intercept unexpected #VE and warn on it.
879          */
880         if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
881                 eb |= 1u << VE_VECTOR;
882         /*
883          * Guest access to VMware backdoor ports could legitimately
884          * trigger #GP because of TSS I/O permission bitmap.
885          * We intercept those #GP and allow access to them anyway
886          * as VMware does.
887          */
888         if (enable_vmware_backdoor)
889                 eb |= (1u << GP_VECTOR);
890         if ((vcpu->guest_debug &
891              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
892             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
893                 eb |= 1u << BP_VECTOR;
894         if (to_vmx(vcpu)->rmode.vm86_active)
895                 eb = ~0;
896         if (!vmx_need_pf_intercept(vcpu))
897                 eb &= ~(1u << PF_VECTOR);
898 
899         /* When we are running a nested L2 guest and L1 specified for it a
900          * certain exception bitmap, we must trap the same exceptions and pass
901          * them to L1. When running L2, we will only handle the exceptions
902          * specified above if L1 did not want them.
903          */
904         if (is_guest_mode(vcpu))
905                 eb |= get_vmcs12(vcpu)->exception_bitmap;
906         else {
907                 int mask = 0, match = 0;
908 
909                 if (enable_ept && (eb & (1u << PF_VECTOR))) {
910                         /*
911                          * If EPT is enabled, #PF is currently only intercepted
912                          * if MAXPHYADDR is smaller on the guest than on the
913                          * host.  In that case we only care about present,
914                          * non-reserved faults.  For vmcs02, however, PFEC_MASK
915                          * and PFEC_MATCH are set in prepare_vmcs02_rare.
916                          */
917                         mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
918                         match = PFERR_PRESENT_MASK;
919                 }
920                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
921                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
922         }
923 
924         /*
925          * Disabling xfd interception indicates that dynamic xfeatures
926          * might be used in the guest. Always trap #NM in this case
927          * to save guest xfd_err timely.
928          */
929         if (vcpu->arch.xfd_no_write_intercept)
930                 eb |= (1u << NM_VECTOR);
931 
932         vmcs_write32(EXCEPTION_BITMAP, eb);
933 }
934 
935 /*
936  * Check if MSR is intercepted for currently loaded MSR bitmap.
937  */
938 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
939 {
940         if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
941                 return true;
942 
943         return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
944 }
945 
946 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
947 {
948         unsigned int flags = 0;
949 
950         if (vmx->loaded_vmcs->launched)
951                 flags |= VMX_RUN_VMRESUME;
952 
953         /*
954          * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
955          * to change it directly without causing a vmexit.  In that case read
956          * it after vmexit and store it in vmx->spec_ctrl.
957          */
958         if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
959                 flags |= VMX_RUN_SAVE_SPEC_CTRL;
960 
961         return flags;
962 }
963 
964 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
965                 unsigned long entry, unsigned long exit)
966 {
967         vm_entry_controls_clearbit(vmx, entry);
968         vm_exit_controls_clearbit(vmx, exit);
969 }
970 
971 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
972 {
973         unsigned int i;
974 
975         for (i = 0; i < m->nr; ++i) {
976                 if (m->val[i].index == msr)
977                         return i;
978         }
979         return -ENOENT;
980 }
981 
982 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
983 {
984         int i;
985         struct msr_autoload *m = &vmx->msr_autoload;
986 
987         switch (msr) {
988         case MSR_EFER:
989                 if (cpu_has_load_ia32_efer()) {
990                         clear_atomic_switch_msr_special(vmx,
991                                         VM_ENTRY_LOAD_IA32_EFER,
992                                         VM_EXIT_LOAD_IA32_EFER);
993                         return;
994                 }
995                 break;
996         case MSR_CORE_PERF_GLOBAL_CTRL:
997                 if (cpu_has_load_perf_global_ctrl()) {
998                         clear_atomic_switch_msr_special(vmx,
999                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1000                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1001                         return;
1002                 }
1003                 break;
1004         }
1005         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1006         if (i < 0)
1007                 goto skip_guest;
1008         --m->guest.nr;
1009         m->guest.val[i] = m->guest.val[m->guest.nr];
1010         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1011 
1012 skip_guest:
1013         i = vmx_find_loadstore_msr_slot(&m->host, msr);
1014         if (i < 0)
1015                 return;
1016 
1017         --m->host.nr;
1018         m->host.val[i] = m->host.val[m->host.nr];
1019         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1020 }
1021 
1022 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1023                 unsigned long entry, unsigned long exit,
1024                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1025                 u64 guest_val, u64 host_val)
1026 {
1027         vmcs_write64(guest_val_vmcs, guest_val);
1028         if (host_val_vmcs != HOST_IA32_EFER)
1029                 vmcs_write64(host_val_vmcs, host_val);
1030         vm_entry_controls_setbit(vmx, entry);
1031         vm_exit_controls_setbit(vmx, exit);
1032 }
1033 
1034 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1035                                   u64 guest_val, u64 host_val, bool entry_only)
1036 {
1037         int i, j = 0;
1038         struct msr_autoload *m = &vmx->msr_autoload;
1039 
1040         switch (msr) {
1041         case MSR_EFER:
1042                 if (cpu_has_load_ia32_efer()) {
1043                         add_atomic_switch_msr_special(vmx,
1044                                         VM_ENTRY_LOAD_IA32_EFER,
1045                                         VM_EXIT_LOAD_IA32_EFER,
1046                                         GUEST_IA32_EFER,
1047                                         HOST_IA32_EFER,
1048                                         guest_val, host_val);
1049                         return;
1050                 }
1051                 break;
1052         case MSR_CORE_PERF_GLOBAL_CTRL:
1053                 if (cpu_has_load_perf_global_ctrl()) {
1054                         add_atomic_switch_msr_special(vmx,
1055                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1056                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1057                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1058                                         HOST_IA32_PERF_GLOBAL_CTRL,
1059                                         guest_val, host_val);
1060                         return;
1061                 }
1062                 break;
1063         case MSR_IA32_PEBS_ENABLE:
1064                 /* PEBS needs a quiescent period after being disabled (to write
1065                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1066                  * provide that period, so a CPU could write host's record into
1067                  * guest's memory.
1068                  */
1069                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1070         }
1071 
1072         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1073         if (!entry_only)
1074                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1075 
1076         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1077             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1078                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1079                                 "Can't add msr %x\n", msr);
1080                 return;
1081         }
1082         if (i < 0) {
1083                 i = m->guest.nr++;
1084                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1085         }
1086         m->guest.val[i].index = msr;
1087         m->guest.val[i].value = guest_val;
1088 
1089         if (entry_only)
1090                 return;
1091 
1092         if (j < 0) {
1093                 j = m->host.nr++;
1094                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1095         }
1096         m->host.val[j].index = msr;
1097         m->host.val[j].value = host_val;
1098 }
1099 
1100 static bool update_transition_efer(struct vcpu_vmx *vmx)
1101 {
1102         u64 guest_efer = vmx->vcpu.arch.efer;
1103         u64 ignore_bits = 0;
1104         int i;
1105 
1106         /* Shadow paging assumes NX to be available.  */
1107         if (!enable_ept)
1108                 guest_efer |= EFER_NX;
1109 
1110         /*
1111          * LMA and LME handled by hardware; SCE meaningless outside long mode.
1112          */
1113         ignore_bits |= EFER_SCE;
1114 #ifdef CONFIG_X86_64
1115         ignore_bits |= EFER_LMA | EFER_LME;
1116         /* SCE is meaningful only in long mode on Intel */
1117         if (guest_efer & EFER_LMA)
1118                 ignore_bits &= ~(u64)EFER_SCE;
1119 #endif
1120 
1121         /*
1122          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1123          * On CPUs that support "load IA32_EFER", always switch EFER
1124          * atomically, since it's faster than switching it manually.
1125          */
1126         if (cpu_has_load_ia32_efer() ||
1127             (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1128                 if (!(guest_efer & EFER_LMA))
1129                         guest_efer &= ~EFER_LME;
1130                 if (guest_efer != kvm_host.efer)
1131                         add_atomic_switch_msr(vmx, MSR_EFER,
1132                                               guest_efer, kvm_host.efer, false);
1133                 else
1134                         clear_atomic_switch_msr(vmx, MSR_EFER);
1135                 return false;
1136         }
1137 
1138         i = kvm_find_user_return_msr(MSR_EFER);
1139         if (i < 0)
1140                 return false;
1141 
1142         clear_atomic_switch_msr(vmx, MSR_EFER);
1143 
1144         guest_efer &= ~ignore_bits;
1145         guest_efer |= kvm_host.efer & ignore_bits;
1146 
1147         vmx->guest_uret_msrs[i].data = guest_efer;
1148         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1149 
1150         return true;
1151 }
1152 
1153 #ifdef CONFIG_X86_32
1154 /*
1155  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1156  * VMCS rather than the segment table.  KVM uses this helper to figure
1157  * out the current bases to poke them into the VMCS before entry.
1158  */
1159 static unsigned long segment_base(u16 selector)
1160 {
1161         struct desc_struct *table;
1162         unsigned long v;
1163 
1164         if (!(selector & ~SEGMENT_RPL_MASK))
1165                 return 0;
1166 
1167         table = get_current_gdt_ro();
1168 
1169         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1170                 u16 ldt_selector = kvm_read_ldt();
1171 
1172                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1173                         return 0;
1174 
1175                 table = (struct desc_struct *)segment_base(ldt_selector);
1176         }
1177         v = get_desc_base(&table[selector >> 3]);
1178         return v;
1179 }
1180 #endif
1181 
1182 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1183 {
1184         return vmx_pt_mode_is_host_guest() &&
1185                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1186 }
1187 
1188 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1189 {
1190         /* The base must be 128-byte aligned and a legal physical address. */
1191         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1192 }
1193 
1194 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1195 {
1196         u32 i;
1197 
1198         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1199         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1200         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1201         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1202         for (i = 0; i < addr_range; i++) {
1203                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1204                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1205         }
1206 }
1207 
1208 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1209 {
1210         u32 i;
1211 
1212         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1213         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1214         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1215         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1216         for (i = 0; i < addr_range; i++) {
1217                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1218                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1219         }
1220 }
1221 
1222 static void pt_guest_enter(struct vcpu_vmx *vmx)
1223 {
1224         if (vmx_pt_mode_is_system())
1225                 return;
1226 
1227         /*
1228          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1229          * Save host state before VM entry.
1230          */
1231         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1232         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1233                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1234                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1235                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1236         }
1237 }
1238 
1239 static void pt_guest_exit(struct vcpu_vmx *vmx)
1240 {
1241         if (vmx_pt_mode_is_system())
1242                 return;
1243 
1244         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1245                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1246                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1247         }
1248 
1249         /*
1250          * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1251          * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1252          */
1253         if (vmx->pt_desc.host.ctl)
1254                 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1255 }
1256 
1257 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1258                         unsigned long fs_base, unsigned long gs_base)
1259 {
1260         if (unlikely(fs_sel != host->fs_sel)) {
1261                 if (!(fs_sel & 7))
1262                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1263                 else
1264                         vmcs_write16(HOST_FS_SELECTOR, 0);
1265                 host->fs_sel = fs_sel;
1266         }
1267         if (unlikely(gs_sel != host->gs_sel)) {
1268                 if (!(gs_sel & 7))
1269                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1270                 else
1271                         vmcs_write16(HOST_GS_SELECTOR, 0);
1272                 host->gs_sel = gs_sel;
1273         }
1274         if (unlikely(fs_base != host->fs_base)) {
1275                 vmcs_writel(HOST_FS_BASE, fs_base);
1276                 host->fs_base = fs_base;
1277         }
1278         if (unlikely(gs_base != host->gs_base)) {
1279                 vmcs_writel(HOST_GS_BASE, gs_base);
1280                 host->gs_base = gs_base;
1281         }
1282 }
1283 
1284 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1285 {
1286         struct vcpu_vmx *vmx = to_vmx(vcpu);
1287         struct vmcs_host_state *host_state;
1288 #ifdef CONFIG_X86_64
1289         int cpu = raw_smp_processor_id();
1290 #endif
1291         unsigned long fs_base, gs_base;
1292         u16 fs_sel, gs_sel;
1293         int i;
1294 
1295         /*
1296          * Note that guest MSRs to be saved/restored can also be changed
1297          * when guest state is loaded. This happens when guest transitions
1298          * to/from long-mode by setting MSR_EFER.LMA.
1299          */
1300         if (!vmx->guest_uret_msrs_loaded) {
1301                 vmx->guest_uret_msrs_loaded = true;
1302                 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1303                         if (!vmx->guest_uret_msrs[i].load_into_hardware)
1304                                 continue;
1305 
1306                         kvm_set_user_return_msr(i,
1307                                                 vmx->guest_uret_msrs[i].data,
1308                                                 vmx->guest_uret_msrs[i].mask);
1309                 }
1310         }
1311 
1312         if (vmx->nested.need_vmcs12_to_shadow_sync)
1313                 nested_sync_vmcs12_to_shadow(vcpu);
1314 
1315         if (vmx->guest_state_loaded)
1316                 return;
1317 
1318         host_state = &vmx->loaded_vmcs->host_state;
1319 
1320         /*
1321          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1322          * allow segment selectors with cpl > 0 or ti == 1.
1323          */
1324         host_state->ldt_sel = kvm_read_ldt();
1325 
1326 #ifdef CONFIG_X86_64
1327         savesegment(ds, host_state->ds_sel);
1328         savesegment(es, host_state->es_sel);
1329 
1330         gs_base = cpu_kernelmode_gs_base(cpu);
1331         if (likely(is_64bit_mm(current->mm))) {
1332                 current_save_fsgs();
1333                 fs_sel = current->thread.fsindex;
1334                 gs_sel = current->thread.gsindex;
1335                 fs_base = current->thread.fsbase;
1336                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1337         } else {
1338                 savesegment(fs, fs_sel);
1339                 savesegment(gs, gs_sel);
1340                 fs_base = read_msr(MSR_FS_BASE);
1341                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1342         }
1343 
1344         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1345 #else
1346         savesegment(fs, fs_sel);
1347         savesegment(gs, gs_sel);
1348         fs_base = segment_base(fs_sel);
1349         gs_base = segment_base(gs_sel);
1350 #endif
1351 
1352         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1353         vmx->guest_state_loaded = true;
1354 }
1355 
1356 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1357 {
1358         struct vmcs_host_state *host_state;
1359 
1360         if (!vmx->guest_state_loaded)
1361                 return;
1362 
1363         host_state = &vmx->loaded_vmcs->host_state;
1364 
1365         ++vmx->vcpu.stat.host_state_reload;
1366 
1367 #ifdef CONFIG_X86_64
1368         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1369 #endif
1370         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1371                 kvm_load_ldt(host_state->ldt_sel);
1372 #ifdef CONFIG_X86_64
1373                 load_gs_index(host_state->gs_sel);
1374 #else
1375                 loadsegment(gs, host_state->gs_sel);
1376 #endif
1377         }
1378         if (host_state->fs_sel & 7)
1379                 loadsegment(fs, host_state->fs_sel);
1380 #ifdef CONFIG_X86_64
1381         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1382                 loadsegment(ds, host_state->ds_sel);
1383                 loadsegment(es, host_state->es_sel);
1384         }
1385 #endif
1386         invalidate_tss_limit();
1387 #ifdef CONFIG_X86_64
1388         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1389 #endif
1390         load_fixmap_gdt(raw_smp_processor_id());
1391         vmx->guest_state_loaded = false;
1392         vmx->guest_uret_msrs_loaded = false;
1393 }
1394 
1395 #ifdef CONFIG_X86_64
1396 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1397 {
1398         preempt_disable();
1399         if (vmx->guest_state_loaded)
1400                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1401         preempt_enable();
1402         return vmx->msr_guest_kernel_gs_base;
1403 }
1404 
1405 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1406 {
1407         preempt_disable();
1408         if (vmx->guest_state_loaded)
1409                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1410         preempt_enable();
1411         vmx->msr_guest_kernel_gs_base = data;
1412 }
1413 #endif
1414 
1415 static void grow_ple_window(struct kvm_vcpu *vcpu)
1416 {
1417         struct vcpu_vmx *vmx = to_vmx(vcpu);
1418         unsigned int old = vmx->ple_window;
1419 
1420         vmx->ple_window = __grow_ple_window(old, ple_window,
1421                                             ple_window_grow,
1422                                             ple_window_max);
1423 
1424         if (vmx->ple_window != old) {
1425                 vmx->ple_window_dirty = true;
1426                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1427                                             vmx->ple_window, old);
1428         }
1429 }
1430 
1431 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1432 {
1433         struct vcpu_vmx *vmx = to_vmx(vcpu);
1434         unsigned int old = vmx->ple_window;
1435 
1436         vmx->ple_window = __shrink_ple_window(old, ple_window,
1437                                               ple_window_shrink,
1438                                               ple_window);
1439 
1440         if (vmx->ple_window != old) {
1441                 vmx->ple_window_dirty = true;
1442                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1443                                             vmx->ple_window, old);
1444         }
1445 }
1446 
1447 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1448                         struct loaded_vmcs *buddy)
1449 {
1450         struct vcpu_vmx *vmx = to_vmx(vcpu);
1451         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1452         struct vmcs *prev;
1453 
1454         if (!already_loaded) {
1455                 loaded_vmcs_clear(vmx->loaded_vmcs);
1456                 local_irq_disable();
1457 
1458                 /*
1459                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1460                  * this cpu's percpu list, otherwise it may not yet be deleted
1461                  * from its previous cpu's percpu list.  Pairs with the
1462                  * smb_wmb() in __loaded_vmcs_clear().
1463                  */
1464                 smp_rmb();
1465 
1466                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1467                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1468                 local_irq_enable();
1469         }
1470 
1471         prev = per_cpu(current_vmcs, cpu);
1472         if (prev != vmx->loaded_vmcs->vmcs) {
1473                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1474                 vmcs_load(vmx->loaded_vmcs->vmcs);
1475 
1476                 /*
1477                  * No indirect branch prediction barrier needed when switching
1478                  * the active VMCS within a vCPU, unless IBRS is advertised to
1479                  * the vCPU.  To minimize the number of IBPBs executed, KVM
1480                  * performs IBPB on nested VM-Exit (a single nested transition
1481                  * may switch the active VMCS multiple times).
1482                  */
1483                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1484                         indirect_branch_prediction_barrier();
1485         }
1486 
1487         if (!already_loaded) {
1488                 void *gdt = get_current_gdt_ro();
1489 
1490                 /*
1491                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1492                  * TLB entries from its previous association with the vCPU.
1493                  */
1494                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1495 
1496                 /*
1497                  * Linux uses per-cpu TSS and GDT, so set these when switching
1498                  * processors.  See 22.2.4.
1499                  */
1500                 vmcs_writel(HOST_TR_BASE,
1501                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1502                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1503 
1504                 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1505                         /* 22.2.3 */
1506                         vmcs_writel(HOST_IA32_SYSENTER_ESP,
1507                                     (unsigned long)(cpu_entry_stack(cpu) + 1));
1508                 }
1509 
1510                 vmx->loaded_vmcs->cpu = cpu;
1511         }
1512 }
1513 
1514 /*
1515  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1516  * vcpu mutex is already taken.
1517  */
1518 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1519 {
1520         struct vcpu_vmx *vmx = to_vmx(vcpu);
1521 
1522         if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1523                 shrink_ple_window(vcpu);
1524 
1525         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1526 
1527         vmx_vcpu_pi_load(vcpu, cpu);
1528 
1529         vmx->host_debugctlmsr = get_debugctlmsr();
1530 }
1531 
1532 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1533 {
1534         vmx_vcpu_pi_put(vcpu);
1535 
1536         vmx_prepare_switch_to_host(to_vmx(vcpu));
1537 }
1538 
1539 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1540 {
1541         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1542 }
1543 
1544 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1545 {
1546         struct vcpu_vmx *vmx = to_vmx(vcpu);
1547         unsigned long rflags, save_rflags;
1548 
1549         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1550                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1551                 rflags = vmcs_readl(GUEST_RFLAGS);
1552                 if (vmx->rmode.vm86_active) {
1553                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1554                         save_rflags = vmx->rmode.save_rflags;
1555                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1556                 }
1557                 vmx->rflags = rflags;
1558         }
1559         return vmx->rflags;
1560 }
1561 
1562 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1563 {
1564         struct vcpu_vmx *vmx = to_vmx(vcpu);
1565         unsigned long old_rflags;
1566 
1567         /*
1568          * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1569          * is an unrestricted guest in order to mark L2 as needing emulation
1570          * if L1 runs L2 as a restricted guest.
1571          */
1572         if (is_unrestricted_guest(vcpu)) {
1573                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1574                 vmx->rflags = rflags;
1575                 vmcs_writel(GUEST_RFLAGS, rflags);
1576                 return;
1577         }
1578 
1579         old_rflags = vmx_get_rflags(vcpu);
1580         vmx->rflags = rflags;
1581         if (vmx->rmode.vm86_active) {
1582                 vmx->rmode.save_rflags = rflags;
1583                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1584         }
1585         vmcs_writel(GUEST_RFLAGS, rflags);
1586 
1587         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1588                 vmx->emulation_required = vmx_emulation_required(vcpu);
1589 }
1590 
1591 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1592 {
1593         return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1594 }
1595 
1596 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1597 {
1598         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1599         int ret = 0;
1600 
1601         if (interruptibility & GUEST_INTR_STATE_STI)
1602                 ret |= KVM_X86_SHADOW_INT_STI;
1603         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1604                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1605 
1606         return ret;
1607 }
1608 
1609 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1610 {
1611         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1612         u32 interruptibility = interruptibility_old;
1613 
1614         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1615 
1616         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1617                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1618         else if (mask & KVM_X86_SHADOW_INT_STI)
1619                 interruptibility |= GUEST_INTR_STATE_STI;
1620 
1621         if ((interruptibility != interruptibility_old))
1622                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1623 }
1624 
1625 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1626 {
1627         struct vcpu_vmx *vmx = to_vmx(vcpu);
1628         unsigned long value;
1629 
1630         /*
1631          * Any MSR write that attempts to change bits marked reserved will
1632          * case a #GP fault.
1633          */
1634         if (data & vmx->pt_desc.ctl_bitmask)
1635                 return 1;
1636 
1637         /*
1638          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1639          * result in a #GP unless the same write also clears TraceEn.
1640          */
1641         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1642                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1643                 return 1;
1644 
1645         /*
1646          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1647          * and FabricEn would cause #GP, if
1648          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1649          */
1650         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1651                 !(data & RTIT_CTL_FABRIC_EN) &&
1652                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1653                                         PT_CAP_single_range_output))
1654                 return 1;
1655 
1656         /*
1657          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1658          * utilize encodings marked reserved will cause a #GP fault.
1659          */
1660         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1661         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1662                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1663                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1664                 return 1;
1665         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1666                                                 PT_CAP_cycle_thresholds);
1667         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1668                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1669                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1670                 return 1;
1671         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1672         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1673                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1674                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1675                 return 1;
1676 
1677         /*
1678          * If ADDRx_CFG is reserved or the encodings is >2 will
1679          * cause a #GP fault.
1680          */
1681         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1682         if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1683                 return 1;
1684         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1685         if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1686                 return 1;
1687         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1688         if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1689                 return 1;
1690         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1691         if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1692                 return 1;
1693 
1694         return 0;
1695 }
1696 
1697 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1698                                   void *insn, int insn_len)
1699 {
1700         /*
1701          * Emulation of instructions in SGX enclaves is impossible as RIP does
1702          * not point at the failing instruction, and even if it did, the code
1703          * stream is inaccessible.  Inject #UD instead of exiting to userspace
1704          * so that guest userspace can't DoS the guest simply by triggering
1705          * emulation (enclaves are CPL3 only).
1706          */
1707         if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1708                 kvm_queue_exception(vcpu, UD_VECTOR);
1709                 return X86EMUL_PROPAGATE_FAULT;
1710         }
1711         return X86EMUL_CONTINUE;
1712 }
1713 
1714 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1715 {
1716         union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1717         unsigned long rip, orig_rip;
1718         u32 instr_len;
1719 
1720         /*
1721          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1722          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1723          * set when EPT misconfig occurs.  In practice, real hardware updates
1724          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1725          * (namely Hyper-V) don't set it due to it being undefined behavior,
1726          * i.e. we end up advancing IP with some random value.
1727          */
1728         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1729             exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1730                 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1731 
1732                 /*
1733                  * Emulating an enclave's instructions isn't supported as KVM
1734                  * cannot access the enclave's memory or its true RIP, e.g. the
1735                  * vmcs.GUEST_RIP points at the exit point of the enclave, not
1736                  * the RIP that actually triggered the VM-Exit.  But, because
1737                  * most instructions that cause VM-Exit will #UD in an enclave,
1738                  * most instruction-based VM-Exits simply do not occur.
1739                  *
1740                  * There are a few exceptions, notably the debug instructions
1741                  * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1742                  * and generate #DB/#BP as expected, which KVM might intercept.
1743                  * But again, the CPU does the dirty work and saves an instr
1744                  * length of zero so VMMs don't shoot themselves in the foot.
1745                  * WARN if KVM tries to skip a non-zero length instruction on
1746                  * a VM-Exit from an enclave.
1747                  */
1748                 if (!instr_len)
1749                         goto rip_updated;
1750 
1751                 WARN_ONCE(exit_reason.enclave_mode,
1752                           "skipping instruction after SGX enclave VM-Exit");
1753 
1754                 orig_rip = kvm_rip_read(vcpu);
1755                 rip = orig_rip + instr_len;
1756 #ifdef CONFIG_X86_64
1757                 /*
1758                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1759                  * mode, but just finding out that we are in 64-bit mode is
1760                  * quite expensive.  Only do it if there was a carry.
1761                  */
1762                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1763                         rip = (u32)rip;
1764 #endif
1765                 kvm_rip_write(vcpu, rip);
1766         } else {
1767                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1768                         return 0;
1769         }
1770 
1771 rip_updated:
1772         /* skipping an emulated instruction also counts */
1773         vmx_set_interrupt_shadow(vcpu, 0);
1774 
1775         return 1;
1776 }
1777 
1778 /*
1779  * Recognizes a pending MTF VM-exit and records the nested state for later
1780  * delivery.
1781  */
1782 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1783 {
1784         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1785         struct vcpu_vmx *vmx = to_vmx(vcpu);
1786 
1787         if (!is_guest_mode(vcpu))
1788                 return;
1789 
1790         /*
1791          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1792          * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1793          * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1794          * intercepted #DB deliberately avoids single-step #DB and MTF updates
1795          * as ICEBP is higher priority than both.  As instruction emulation is
1796          * completed at this point (i.e. KVM is at the instruction boundary),
1797          * any #DB exception pending delivery must be a debug-trap of lower
1798          * priority than MTF.  Record the pending MTF state to be delivered in
1799          * vmx_check_nested_events().
1800          */
1801         if (nested_cpu_has_mtf(vmcs12) &&
1802             (!vcpu->arch.exception.pending ||
1803              vcpu->arch.exception.vector == DB_VECTOR) &&
1804             (!vcpu->arch.exception_vmexit.pending ||
1805              vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1806                 vmx->nested.mtf_pending = true;
1807                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1808         } else {
1809                 vmx->nested.mtf_pending = false;
1810         }
1811 }
1812 
1813 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1814 {
1815         vmx_update_emulated_instruction(vcpu);
1816         return skip_emulated_instruction(vcpu);
1817 }
1818 
1819 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1820 {
1821         /*
1822          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1823          * explicitly skip the instruction because if the HLT state is set,
1824          * then the instruction is already executing and RIP has already been
1825          * advanced.
1826          */
1827         if (kvm_hlt_in_guest(vcpu->kvm) &&
1828                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1829                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1830 }
1831 
1832 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1833 {
1834         struct kvm_queued_exception *ex = &vcpu->arch.exception;
1835         u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1836         struct vcpu_vmx *vmx = to_vmx(vcpu);
1837 
1838         kvm_deliver_exception_payload(vcpu, ex);
1839 
1840         if (ex->has_error_code) {
1841                 /*
1842                  * Despite the error code being architecturally defined as 32
1843                  * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1844                  * VMX don't actually supporting setting bits 31:16.  Hardware
1845                  * will (should) never provide a bogus error code, but AMD CPUs
1846                  * do generate error codes with bits 31:16 set, and so KVM's
1847                  * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1848                  * the upper bits to avoid VM-Fail, losing information that
1849                  * doesn't really exist is preferable to killing the VM.
1850                  */
1851                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1852                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1853         }
1854 
1855         if (vmx->rmode.vm86_active) {
1856                 int inc_eip = 0;
1857                 if (kvm_exception_is_soft(ex->vector))
1858                         inc_eip = vcpu->arch.event_exit_inst_len;
1859                 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1860                 return;
1861         }
1862 
1863         WARN_ON_ONCE(vmx->emulation_required);
1864 
1865         if (kvm_exception_is_soft(ex->vector)) {
1866                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1867                              vmx->vcpu.arch.event_exit_inst_len);
1868                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1869         } else
1870                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1871 
1872         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1873 
1874         vmx_clear_hlt(vcpu);
1875 }
1876 
1877 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1878                                bool load_into_hardware)
1879 {
1880         struct vmx_uret_msr *uret_msr;
1881 
1882         uret_msr = vmx_find_uret_msr(vmx, msr);
1883         if (!uret_msr)
1884                 return;
1885 
1886         uret_msr->load_into_hardware = load_into_hardware;
1887 }
1888 
1889 /*
1890  * Configuring user return MSRs to automatically save, load, and restore MSRs
1891  * that need to be shoved into hardware when running the guest.  Note, omitting
1892  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1893  * loaded into hardware when running the guest.
1894  */
1895 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1896 {
1897 #ifdef CONFIG_X86_64
1898         bool load_syscall_msrs;
1899 
1900         /*
1901          * The SYSCALL MSRs are only needed on long mode guests, and only
1902          * when EFER.SCE is set.
1903          */
1904         load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1905                             (vmx->vcpu.arch.efer & EFER_SCE);
1906 
1907         vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1908         vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1909         vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1910 #endif
1911         vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1912 
1913         vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1914                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1915                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1916 
1917         /*
1918          * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1919          * kernel and old userspace.  If those guests run on a tsx=off host, do
1920          * allow guests to use TSX_CTRL, but don't change the value in hardware
1921          * so that TSX remains always disabled.
1922          */
1923         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1924 
1925         /*
1926          * The set of MSRs to load may have changed, reload MSRs before the
1927          * next VM-Enter.
1928          */
1929         vmx->guest_uret_msrs_loaded = false;
1930 }
1931 
1932 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1933 {
1934         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1935 
1936         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1937                 return vmcs12->tsc_offset;
1938 
1939         return 0;
1940 }
1941 
1942 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1943 {
1944         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1945 
1946         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1947             nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1948                 return vmcs12->tsc_multiplier;
1949 
1950         return kvm_caps.default_tsc_scaling_ratio;
1951 }
1952 
1953 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1954 {
1955         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1956 }
1957 
1958 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1959 {
1960         vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1961 }
1962 
1963 /*
1964  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1965  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1966  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1967  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1968  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1969  */
1970 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED                  | \
1971                                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX  | \
1972                                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1973                                         FEAT_CTL_SGX_LC_ENABLED          | \
1974                                         FEAT_CTL_SGX_ENABLED             | \
1975                                         FEAT_CTL_LMCE_ENABLED)
1976 
1977 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1978                                                     struct msr_data *msr)
1979 {
1980         uint64_t valid_bits;
1981 
1982         /*
1983          * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1984          * exposed to the guest.
1985          */
1986         WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1987                      ~KVM_SUPPORTED_FEATURE_CONTROL);
1988 
1989         if (!msr->host_initiated &&
1990             (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1991                 return false;
1992 
1993         if (msr->host_initiated)
1994                 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1995         else
1996                 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1997 
1998         return !(msr->data & ~valid_bits);
1999 }
2000 
2001 int vmx_get_msr_feature(struct kvm_msr_entry *msr)
2002 {
2003         switch (msr->index) {
2004         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2005                 if (!nested)
2006                         return 1;
2007                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
2008         default:
2009                 return KVM_MSR_RET_INVALID;
2010         }
2011 }
2012 
2013 /*
2014  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2015  * Returns 0 on success, non-0 otherwise.
2016  * Assumes vcpu_load() was already called.
2017  */
2018 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2019 {
2020         struct vcpu_vmx *vmx = to_vmx(vcpu);
2021         struct vmx_uret_msr *msr;
2022         u32 index;
2023 
2024         switch (msr_info->index) {
2025 #ifdef CONFIG_X86_64
2026         case MSR_FS_BASE:
2027                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2028                 break;
2029         case MSR_GS_BASE:
2030                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2031                 break;
2032         case MSR_KERNEL_GS_BASE:
2033                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2034                 break;
2035 #endif
2036         case MSR_EFER:
2037                 return kvm_get_msr_common(vcpu, msr_info);
2038         case MSR_IA32_TSX_CTRL:
2039                 if (!msr_info->host_initiated &&
2040                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2041                         return 1;
2042                 goto find_uret_msr;
2043         case MSR_IA32_UMWAIT_CONTROL:
2044                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2045                         return 1;
2046 
2047                 msr_info->data = vmx->msr_ia32_umwait_control;
2048                 break;
2049         case MSR_IA32_SPEC_CTRL:
2050                 if (!msr_info->host_initiated &&
2051                     !guest_has_spec_ctrl_msr(vcpu))
2052                         return 1;
2053 
2054                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2055                 break;
2056         case MSR_IA32_SYSENTER_CS:
2057                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2058                 break;
2059         case MSR_IA32_SYSENTER_EIP:
2060                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2061                 break;
2062         case MSR_IA32_SYSENTER_ESP:
2063                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2064                 break;
2065         case MSR_IA32_BNDCFGS:
2066                 if (!kvm_mpx_supported() ||
2067                     (!msr_info->host_initiated &&
2068                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2069                         return 1;
2070                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2071                 break;
2072         case MSR_IA32_MCG_EXT_CTL:
2073                 if (!msr_info->host_initiated &&
2074                     !(vmx->msr_ia32_feature_control &
2075                       FEAT_CTL_LMCE_ENABLED))
2076                         return 1;
2077                 msr_info->data = vcpu->arch.mcg_ext_ctl;
2078                 break;
2079         case MSR_IA32_FEAT_CTL:
2080                 msr_info->data = vmx->msr_ia32_feature_control;
2081                 break;
2082         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2083                 if (!msr_info->host_initiated &&
2084                     !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2085                         return 1;
2086                 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2087                         [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2088                 break;
2089         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2090                 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2091                         return 1;
2092                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2093                                     &msr_info->data))
2094                         return 1;
2095 #ifdef CONFIG_KVM_HYPERV
2096                 /*
2097                  * Enlightened VMCS v1 doesn't have certain VMCS fields but
2098                  * instead of just ignoring the features, different Hyper-V
2099                  * versions are either trying to use them and fail or do some
2100                  * sanity checking and refuse to boot. Filter all unsupported
2101                  * features out.
2102                  */
2103                 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2104                         nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2105                                                         &msr_info->data);
2106 #endif
2107                 break;
2108         case MSR_IA32_RTIT_CTL:
2109                 if (!vmx_pt_mode_is_host_guest())
2110                         return 1;
2111                 msr_info->data = vmx->pt_desc.guest.ctl;
2112                 break;
2113         case MSR_IA32_RTIT_STATUS:
2114                 if (!vmx_pt_mode_is_host_guest())
2115                         return 1;
2116                 msr_info->data = vmx->pt_desc.guest.status;
2117                 break;
2118         case MSR_IA32_RTIT_CR3_MATCH:
2119                 if (!vmx_pt_mode_is_host_guest() ||
2120                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2121                                                 PT_CAP_cr3_filtering))
2122                         return 1;
2123                 msr_info->data = vmx->pt_desc.guest.cr3_match;
2124                 break;
2125         case MSR_IA32_RTIT_OUTPUT_BASE:
2126                 if (!vmx_pt_mode_is_host_guest() ||
2127                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2128                                         PT_CAP_topa_output) &&
2129                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2130                                         PT_CAP_single_range_output)))
2131                         return 1;
2132                 msr_info->data = vmx->pt_desc.guest.output_base;
2133                 break;
2134         case MSR_IA32_RTIT_OUTPUT_MASK:
2135                 if (!vmx_pt_mode_is_host_guest() ||
2136                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
2137                                         PT_CAP_topa_output) &&
2138                          !intel_pt_validate_cap(vmx->pt_desc.caps,
2139                                         PT_CAP_single_range_output)))
2140                         return 1;
2141                 msr_info->data = vmx->pt_desc.guest.output_mask;
2142                 break;
2143         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2144                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2145                 if (!vmx_pt_mode_is_host_guest() ||
2146                     (index >= 2 * vmx->pt_desc.num_address_ranges))
2147                         return 1;
2148                 if (index % 2)
2149                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2150                 else
2151                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2152                 break;
2153         case MSR_IA32_DEBUGCTLMSR:
2154                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2155                 break;
2156         default:
2157         find_uret_msr:
2158                 msr = vmx_find_uret_msr(vmx, msr_info->index);
2159                 if (msr) {
2160                         msr_info->data = msr->data;
2161                         break;
2162                 }
2163                 return kvm_get_msr_common(vcpu, msr_info);
2164         }
2165 
2166         return 0;
2167 }
2168 
2169 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2170                                                     u64 data)
2171 {
2172 #ifdef CONFIG_X86_64
2173         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2174                 return (u32)data;
2175 #endif
2176         return (unsigned long)data;
2177 }
2178 
2179 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2180 {
2181         u64 debugctl = 0;
2182 
2183         if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2184             (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2185                 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2186 
2187         if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2188             (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2189                 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2190 
2191         return debugctl;
2192 }
2193 
2194 /*
2195  * Writes msr value into the appropriate "register".
2196  * Returns 0 on success, non-0 otherwise.
2197  * Assumes vcpu_load() was already called.
2198  */
2199 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2200 {
2201         struct vcpu_vmx *vmx = to_vmx(vcpu);
2202         struct vmx_uret_msr *msr;
2203         int ret = 0;
2204         u32 msr_index = msr_info->index;
2205         u64 data = msr_info->data;
2206         u32 index;
2207 
2208         switch (msr_index) {
2209         case MSR_EFER:
2210                 ret = kvm_set_msr_common(vcpu, msr_info);
2211                 break;
2212 #ifdef CONFIG_X86_64
2213         case MSR_FS_BASE:
2214                 vmx_segment_cache_clear(vmx);
2215                 vmcs_writel(GUEST_FS_BASE, data);
2216                 break;
2217         case MSR_GS_BASE:
2218                 vmx_segment_cache_clear(vmx);
2219                 vmcs_writel(GUEST_GS_BASE, data);
2220                 break;
2221         case MSR_KERNEL_GS_BASE:
2222                 vmx_write_guest_kernel_gs_base(vmx, data);
2223                 break;
2224         case MSR_IA32_XFD:
2225                 ret = kvm_set_msr_common(vcpu, msr_info);
2226                 /*
2227                  * Always intercepting WRMSR could incur non-negligible
2228                  * overhead given xfd might be changed frequently in
2229                  * guest context switch. Disable write interception
2230                  * upon the first write with a non-zero value (indicating
2231                  * potential usage on dynamic xfeatures). Also update
2232                  * exception bitmap to trap #NM for proper virtualization
2233                  * of guest xfd_err.
2234                  */
2235                 if (!ret && data) {
2236                         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2237                                                       MSR_TYPE_RW);
2238                         vcpu->arch.xfd_no_write_intercept = true;
2239                         vmx_update_exception_bitmap(vcpu);
2240                 }
2241                 break;
2242 #endif
2243         case MSR_IA32_SYSENTER_CS:
2244                 if (is_guest_mode(vcpu))
2245                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
2246                 vmcs_write32(GUEST_SYSENTER_CS, data);
2247                 break;
2248         case MSR_IA32_SYSENTER_EIP:
2249                 if (is_guest_mode(vcpu)) {
2250                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2251                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
2252                 }
2253                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2254                 break;
2255         case MSR_IA32_SYSENTER_ESP:
2256                 if (is_guest_mode(vcpu)) {
2257                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2258                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2259                 }
2260                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2261                 break;
2262         case MSR_IA32_DEBUGCTLMSR: {
2263                 u64 invalid;
2264 
2265                 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2266                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2267                         kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2268                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2269                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2270                 }
2271 
2272                 if (invalid)
2273                         return 1;
2274 
2275                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2276                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2277                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2278 
2279                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2280                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2281                     (data & DEBUGCTLMSR_LBR))
2282                         intel_pmu_create_guest_lbr_event(vcpu);
2283                 return 0;
2284         }
2285         case MSR_IA32_BNDCFGS:
2286                 if (!kvm_mpx_supported() ||
2287                     (!msr_info->host_initiated &&
2288                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2289                         return 1;
2290                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2291                     (data & MSR_IA32_BNDCFGS_RSVD))
2292                         return 1;
2293 
2294                 if (is_guest_mode(vcpu) &&
2295                     ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2296                      (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2297                         get_vmcs12(vcpu)->guest_bndcfgs = data;
2298 
2299                 vmcs_write64(GUEST_BNDCFGS, data);
2300                 break;
2301         case MSR_IA32_UMWAIT_CONTROL:
2302                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2303                         return 1;
2304 
2305                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2306                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2307                         return 1;
2308 
2309                 vmx->msr_ia32_umwait_control = data;
2310                 break;
2311         case MSR_IA32_SPEC_CTRL:
2312                 if (!msr_info->host_initiated &&
2313                     !guest_has_spec_ctrl_msr(vcpu))
2314                         return 1;
2315 
2316                 if (kvm_spec_ctrl_test_value(data))
2317                         return 1;
2318 
2319                 vmx->spec_ctrl = data;
2320                 if (!data)
2321                         break;
2322 
2323                 /*
2324                  * For non-nested:
2325                  * When it's written (to non-zero) for the first time, pass
2326                  * it through.
2327                  *
2328                  * For nested:
2329                  * The handling of the MSR bitmap for L2 guests is done in
2330                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2331                  * vmcs02.msr_bitmap here since it gets completely overwritten
2332                  * in the merging. We update the vmcs01 here for L1 as well
2333                  * since it will end up touching the MSR anyway now.
2334                  */
2335                 vmx_disable_intercept_for_msr(vcpu,
2336                                               MSR_IA32_SPEC_CTRL,
2337                                               MSR_TYPE_RW);
2338                 break;
2339         case MSR_IA32_TSX_CTRL:
2340                 if (!msr_info->host_initiated &&
2341                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2342                         return 1;
2343                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2344                         return 1;
2345                 goto find_uret_msr;
2346         case MSR_IA32_CR_PAT:
2347                 ret = kvm_set_msr_common(vcpu, msr_info);
2348                 if (ret)
2349                         break;
2350 
2351                 if (is_guest_mode(vcpu) &&
2352                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2353                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2354 
2355                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2356                         vmcs_write64(GUEST_IA32_PAT, data);
2357                 break;
2358         case MSR_IA32_MCG_EXT_CTL:
2359                 if ((!msr_info->host_initiated &&
2360                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2361                        FEAT_CTL_LMCE_ENABLED)) ||
2362                     (data & ~MCG_EXT_CTL_LMCE_EN))
2363                         return 1;
2364                 vcpu->arch.mcg_ext_ctl = data;
2365                 break;
2366         case MSR_IA32_FEAT_CTL:
2367                 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2368                         return 1;
2369 
2370                 vmx->msr_ia32_feature_control = data;
2371                 if (msr_info->host_initiated && data == 0)
2372                         vmx_leave_nested(vcpu);
2373 
2374                 /* SGX may be enabled/disabled by guest's firmware */
2375                 vmx_write_encls_bitmap(vcpu, NULL);
2376                 break;
2377         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2378                 /*
2379                  * On real hardware, the LE hash MSRs are writable before
2380                  * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2381                  * at which point SGX related bits in IA32_FEATURE_CONTROL
2382                  * become writable.
2383                  *
2384                  * KVM does not emulate SGX activation for simplicity, so
2385                  * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2386                  * is unlocked.  This is technically not architectural
2387                  * behavior, but it's close enough.
2388                  */
2389                 if (!msr_info->host_initiated &&
2390                     (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2391                     ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2392                     !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2393                         return 1;
2394                 vmx->msr_ia32_sgxlepubkeyhash
2395                         [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2396                 break;
2397         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2398                 if (!msr_info->host_initiated)
2399                         return 1; /* they are read-only */
2400                 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2401                         return 1;
2402                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2403         case MSR_IA32_RTIT_CTL:
2404                 if (!vmx_pt_mode_is_host_guest() ||
2405                         vmx_rtit_ctl_check(vcpu, data) ||
2406                         vmx->nested.vmxon)
2407                         return 1;
2408                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2409                 vmx->pt_desc.guest.ctl = data;
2410                 pt_update_intercept_for_msr(vcpu);
2411                 break;
2412         case MSR_IA32_RTIT_STATUS:
2413                 if (!pt_can_write_msr(vmx))
2414                         return 1;
2415                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2416                         return 1;
2417                 vmx->pt_desc.guest.status = data;
2418                 break;
2419         case MSR_IA32_RTIT_CR3_MATCH:
2420                 if (!pt_can_write_msr(vmx))
2421                         return 1;
2422                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2423                                            PT_CAP_cr3_filtering))
2424                         return 1;
2425                 vmx->pt_desc.guest.cr3_match = data;
2426                 break;
2427         case MSR_IA32_RTIT_OUTPUT_BASE:
2428                 if (!pt_can_write_msr(vmx))
2429                         return 1;
2430                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2431                                            PT_CAP_topa_output) &&
2432                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2433                                            PT_CAP_single_range_output))
2434                         return 1;
2435                 if (!pt_output_base_valid(vcpu, data))
2436                         return 1;
2437                 vmx->pt_desc.guest.output_base = data;
2438                 break;
2439         case MSR_IA32_RTIT_OUTPUT_MASK:
2440                 if (!pt_can_write_msr(vmx))
2441                         return 1;
2442                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2443                                            PT_CAP_topa_output) &&
2444                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2445                                            PT_CAP_single_range_output))
2446                         return 1;
2447                 vmx->pt_desc.guest.output_mask = data;
2448                 break;
2449         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2450                 if (!pt_can_write_msr(vmx))
2451                         return 1;
2452                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2453                 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2454                         return 1;
2455                 if (is_noncanonical_address(data, vcpu))
2456                         return 1;
2457                 if (index % 2)
2458                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2459                 else
2460                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2461                 break;
2462         case MSR_IA32_PERF_CAPABILITIES:
2463                 if (data && !vcpu_to_pmu(vcpu)->version)
2464                         return 1;
2465                 if (data & PMU_CAP_LBR_FMT) {
2466                         if ((data & PMU_CAP_LBR_FMT) !=
2467                             (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2468                                 return 1;
2469                         if (!cpuid_model_is_consistent(vcpu))
2470                                 return 1;
2471                 }
2472                 if (data & PERF_CAP_PEBS_FORMAT) {
2473                         if ((data & PERF_CAP_PEBS_MASK) !=
2474                             (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2475                                 return 1;
2476                         if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2477                                 return 1;
2478                         if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2479                                 return 1;
2480                         if (!cpuid_model_is_consistent(vcpu))
2481                                 return 1;
2482                 }
2483                 ret = kvm_set_msr_common(vcpu, msr_info);
2484                 break;
2485 
2486         default:
2487         find_uret_msr:
2488                 msr = vmx_find_uret_msr(vmx, msr_index);
2489                 if (msr)
2490                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2491                 else
2492                         ret = kvm_set_msr_common(vcpu, msr_info);
2493         }
2494 
2495         /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2496         if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2497                 vmx_update_fb_clear_dis(vcpu, vmx);
2498 
2499         return ret;
2500 }
2501 
2502 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2503 {
2504         unsigned long guest_owned_bits;
2505 
2506         kvm_register_mark_available(vcpu, reg);
2507 
2508         switch (reg) {
2509         case VCPU_REGS_RSP:
2510                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2511                 break;
2512         case VCPU_REGS_RIP:
2513                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2514                 break;
2515         case VCPU_EXREG_PDPTR:
2516                 if (enable_ept)
2517                         ept_save_pdptrs(vcpu);
2518                 break;
2519         case VCPU_EXREG_CR0:
2520                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2521 
2522                 vcpu->arch.cr0 &= ~guest_owned_bits;
2523                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2524                 break;
2525         case VCPU_EXREG_CR3:
2526                 /*
2527                  * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2528                  * CR3 is loaded into hardware, not the guest's CR3.
2529                  */
2530                 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2531                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2532                 break;
2533         case VCPU_EXREG_CR4:
2534                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2535 
2536                 vcpu->arch.cr4 &= ~guest_owned_bits;
2537                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2538                 break;
2539         default:
2540                 KVM_BUG_ON(1, vcpu->kvm);
2541                 break;
2542         }
2543 }
2544 
2545 /*
2546  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2547  * directly instead of going through cpu_has(), to ensure KVM is trapping
2548  * ENCLS whenever it's supported in hardware.  It does not matter whether
2549  * the host OS supports or has enabled SGX.
2550  */
2551 static bool cpu_has_sgx(void)
2552 {
2553         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2554 }
2555 
2556 /*
2557  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2558  * can't be used due to errata where VM Exit may incorrectly clear
2559  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2560  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2561  */
2562 static bool cpu_has_perf_global_ctrl_bug(void)
2563 {
2564         switch (boot_cpu_data.x86_vfm) {
2565         case INTEL_NEHALEM_EP:  /* AAK155 */
2566         case INTEL_NEHALEM:     /* AAP115 */
2567         case INTEL_WESTMERE:    /* AAT100 */
2568         case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */
2569         case INTEL_NEHALEM_EX:  /* BA97 */
2570                 return true;
2571         default:
2572                 break;
2573         }
2574 
2575         return false;
2576 }
2577 
2578 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2579 {
2580         u32 vmx_msr_low, vmx_msr_high;
2581         u32 ctl = ctl_min | ctl_opt;
2582 
2583         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2584 
2585         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2586         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2587 
2588         /* Ensure minimum (required) set of control bits are supported. */
2589         if (ctl_min & ~ctl)
2590                 return -EIO;
2591 
2592         *result = ctl;
2593         return 0;
2594 }
2595 
2596 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2597 {
2598         u64 allowed;
2599 
2600         rdmsrl(msr, allowed);
2601 
2602         return  ctl_opt & allowed;
2603 }
2604 
2605 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2606                              struct vmx_capability *vmx_cap)
2607 {
2608         u32 vmx_msr_low, vmx_msr_high;
2609         u32 _pin_based_exec_control = 0;
2610         u32 _cpu_based_exec_control = 0;
2611         u32 _cpu_based_2nd_exec_control = 0;
2612         u64 _cpu_based_3rd_exec_control = 0;
2613         u32 _vmexit_control = 0;
2614         u32 _vmentry_control = 0;
2615         u64 misc_msr;
2616         int i;
2617 
2618         /*
2619          * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2620          * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2621          * intercepts writes to PAT and EFER, i.e. never enables those controls.
2622          */
2623         struct {
2624                 u32 entry_control;
2625                 u32 exit_control;
2626         } const vmcs_entry_exit_pairs[] = {
2627                 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,  VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2628                 { VM_ENTRY_LOAD_IA32_PAT,               VM_EXIT_LOAD_IA32_PAT },
2629                 { VM_ENTRY_LOAD_IA32_EFER,              VM_EXIT_LOAD_IA32_EFER },
2630                 { VM_ENTRY_LOAD_BNDCFGS,                VM_EXIT_CLEAR_BNDCFGS },
2631                 { VM_ENTRY_LOAD_IA32_RTIT_CTL,          VM_EXIT_CLEAR_IA32_RTIT_CTL },
2632         };
2633 
2634         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2635 
2636         if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2637                                 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2638                                 MSR_IA32_VMX_PROCBASED_CTLS,
2639                                 &_cpu_based_exec_control))
2640                 return -EIO;
2641         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2642                 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2643                                         KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2644                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2645                                         &_cpu_based_2nd_exec_control))
2646                         return -EIO;
2647         }
2648         if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2649                 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2650 
2651 #ifndef CONFIG_X86_64
2652         if (!(_cpu_based_2nd_exec_control &
2653                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2654                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2655 #endif
2656 
2657         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2658                 _cpu_based_2nd_exec_control &= ~(
2659                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2660                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2661                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2662 
2663         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2664                 &vmx_cap->ept, &vmx_cap->vpid);
2665 
2666         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2667             vmx_cap->ept) {
2668                 pr_warn_once("EPT CAP should not exist if not support "
2669                                 "1-setting enable EPT VM-execution control\n");
2670 
2671                 if (error_on_inconsistent_vmcs_config)
2672                         return -EIO;
2673 
2674                 vmx_cap->ept = 0;
2675                 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2676         }
2677         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2678             vmx_cap->vpid) {
2679                 pr_warn_once("VPID CAP should not exist if not support "
2680                                 "1-setting enable VPID VM-execution control\n");
2681 
2682                 if (error_on_inconsistent_vmcs_config)
2683                         return -EIO;
2684 
2685                 vmx_cap->vpid = 0;
2686         }
2687 
2688         if (!cpu_has_sgx())
2689                 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2690 
2691         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2692                 _cpu_based_3rd_exec_control =
2693                         adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2694                                               MSR_IA32_VMX_PROCBASED_CTLS3);
2695 
2696         if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2697                                 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2698                                 MSR_IA32_VMX_EXIT_CTLS,
2699                                 &_vmexit_control))
2700                 return -EIO;
2701 
2702         if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2703                                 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2704                                 MSR_IA32_VMX_PINBASED_CTLS,
2705                                 &_pin_based_exec_control))
2706                 return -EIO;
2707 
2708         if (cpu_has_broken_vmx_preemption_timer())
2709                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2710         if (!(_cpu_based_2nd_exec_control &
2711                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2712                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2713 
2714         if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2715                                 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2716                                 MSR_IA32_VMX_ENTRY_CTLS,
2717                                 &_vmentry_control))
2718                 return -EIO;
2719 
2720         for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2721                 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2722                 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2723 
2724                 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2725                         continue;
2726 
2727                 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2728                              _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2729 
2730                 if (error_on_inconsistent_vmcs_config)
2731                         return -EIO;
2732 
2733                 _vmentry_control &= ~n_ctrl;
2734                 _vmexit_control &= ~x_ctrl;
2735         }
2736 
2737         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2738 
2739         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2740         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2741                 return -EIO;
2742 
2743 #ifdef CONFIG_X86_64
2744         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2745         if (vmx_msr_high & (1u<<16))
2746                 return -EIO;
2747 #endif
2748 
2749         /* Require Write-Back (WB) memory type for VMCS accesses. */
2750         if (((vmx_msr_high >> 18) & 15) != 6)
2751                 return -EIO;
2752 
2753         rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2754 
2755         vmcs_conf->size = vmx_msr_high & 0x1fff;
2756         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2757 
2758         vmcs_conf->revision_id = vmx_msr_low;
2759 
2760         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2761         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2762         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2763         vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2764         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2765         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2766         vmcs_conf->misc = misc_msr;
2767 
2768 #if IS_ENABLED(CONFIG_HYPERV)
2769         if (enlightened_vmcs)
2770                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2771 #endif
2772 
2773         return 0;
2774 }
2775 
2776 static bool __kvm_is_vmx_supported(void)
2777 {
2778         int cpu = smp_processor_id();
2779 
2780         if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2781                 pr_err("VMX not supported by CPU %d\n", cpu);
2782                 return false;
2783         }
2784 
2785         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2786             !this_cpu_has(X86_FEATURE_VMX)) {
2787                 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2788                 return false;
2789         }
2790 
2791         return true;
2792 }
2793 
2794 static bool kvm_is_vmx_supported(void)
2795 {
2796         bool supported;
2797 
2798         migrate_disable();
2799         supported = __kvm_is_vmx_supported();
2800         migrate_enable();
2801 
2802         return supported;
2803 }
2804 
2805 int vmx_check_processor_compat(void)
2806 {
2807         int cpu = raw_smp_processor_id();
2808         struct vmcs_config vmcs_conf;
2809         struct vmx_capability vmx_cap;
2810 
2811         if (!__kvm_is_vmx_supported())
2812                 return -EIO;
2813 
2814         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2815                 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2816                 return -EIO;
2817         }
2818         if (nested)
2819                 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2820         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2821                 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2822                 return -EIO;
2823         }
2824         return 0;
2825 }
2826 
2827 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2828 {
2829         u64 msr;
2830 
2831         cr4_set_bits(X86_CR4_VMXE);
2832 
2833         asm goto("1: vmxon %[vmxon_pointer]\n\t"
2834                           _ASM_EXTABLE(1b, %l[fault])
2835                           : : [vmxon_pointer] "m"(vmxon_pointer)
2836                           : : fault);
2837         return 0;
2838 
2839 fault:
2840         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2841                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2842         cr4_clear_bits(X86_CR4_VMXE);
2843 
2844         return -EFAULT;
2845 }
2846 
2847 int vmx_hardware_enable(void)
2848 {
2849         int cpu = raw_smp_processor_id();
2850         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2851         int r;
2852 
2853         if (cr4_read_shadow() & X86_CR4_VMXE)
2854                 return -EBUSY;
2855 
2856         /*
2857          * This can happen if we hot-added a CPU but failed to allocate
2858          * VP assist page for it.
2859          */
2860         if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2861                 return -EFAULT;
2862 
2863         intel_pt_handle_vmx(1);
2864 
2865         r = kvm_cpu_vmxon(phys_addr);
2866         if (r) {
2867                 intel_pt_handle_vmx(0);
2868                 return r;
2869         }
2870 
2871         return 0;
2872 }
2873 
2874 static void vmclear_local_loaded_vmcss(void)
2875 {
2876         int cpu = raw_smp_processor_id();
2877         struct loaded_vmcs *v, *n;
2878 
2879         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2880                                  loaded_vmcss_on_cpu_link)
2881                 __loaded_vmcs_clear(v);
2882 }
2883 
2884 void vmx_hardware_disable(void)
2885 {
2886         vmclear_local_loaded_vmcss();
2887 
2888         if (kvm_cpu_vmxoff())
2889                 kvm_spurious_fault();
2890 
2891         hv_reset_evmcs();
2892 
2893         intel_pt_handle_vmx(0);
2894 }
2895 
2896 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2897 {
2898         int node = cpu_to_node(cpu);
2899         struct page *pages;
2900         struct vmcs *vmcs;
2901 
2902         pages = __alloc_pages_node(node, flags, 0);
2903         if (!pages)
2904                 return NULL;
2905         vmcs = page_address(pages);
2906         memset(vmcs, 0, vmcs_config.size);
2907 
2908         /* KVM supports Enlightened VMCS v1 only */
2909         if (kvm_is_using_evmcs())
2910                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2911         else
2912                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2913 
2914         if (shadow)
2915                 vmcs->hdr.shadow_vmcs = 1;
2916         return vmcs;
2917 }
2918 
2919 void free_vmcs(struct vmcs *vmcs)
2920 {
2921         free_page((unsigned long)vmcs);
2922 }
2923 
2924 /*
2925  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2926  */
2927 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2928 {
2929         if (!loaded_vmcs->vmcs)
2930                 return;
2931         loaded_vmcs_clear(loaded_vmcs);
2932         free_vmcs(loaded_vmcs->vmcs);
2933         loaded_vmcs->vmcs = NULL;
2934         if (loaded_vmcs->msr_bitmap)
2935                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2936         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2937 }
2938 
2939 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2940 {
2941         loaded_vmcs->vmcs = alloc_vmcs(false);
2942         if (!loaded_vmcs->vmcs)
2943                 return -ENOMEM;
2944 
2945         vmcs_clear(loaded_vmcs->vmcs);
2946 
2947         loaded_vmcs->shadow_vmcs = NULL;
2948         loaded_vmcs->hv_timer_soft_disabled = false;
2949         loaded_vmcs->cpu = -1;
2950         loaded_vmcs->launched = 0;
2951 
2952         if (cpu_has_vmx_msr_bitmap()) {
2953                 loaded_vmcs->msr_bitmap = (unsigned long *)
2954                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2955                 if (!loaded_vmcs->msr_bitmap)
2956                         goto out_vmcs;
2957                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2958         }
2959 
2960         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2961         memset(&loaded_vmcs->controls_shadow, 0,
2962                 sizeof(struct vmcs_controls_shadow));
2963 
2964         return 0;
2965 
2966 out_vmcs:
2967         free_loaded_vmcs(loaded_vmcs);
2968         return -ENOMEM;
2969 }
2970 
2971 static void free_kvm_area(void)
2972 {
2973         int cpu;
2974 
2975         for_each_possible_cpu(cpu) {
2976                 free_vmcs(per_cpu(vmxarea, cpu));
2977                 per_cpu(vmxarea, cpu) = NULL;
2978         }
2979 }
2980 
2981 static __init int alloc_kvm_area(void)
2982 {
2983         int cpu;
2984 
2985         for_each_possible_cpu(cpu) {
2986                 struct vmcs *vmcs;
2987 
2988                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2989                 if (!vmcs) {
2990                         free_kvm_area();
2991                         return -ENOMEM;
2992                 }
2993 
2994                 /*
2995                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2996                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2997                  * revision_id reported by MSR_IA32_VMX_BASIC.
2998                  *
2999                  * However, even though not explicitly documented by
3000                  * TLFS, VMXArea passed as VMXON argument should
3001                  * still be marked with revision_id reported by
3002                  * physical CPU.
3003                  */
3004                 if (kvm_is_using_evmcs())
3005                         vmcs->hdr.revision_id = vmcs_config.revision_id;
3006 
3007                 per_cpu(vmxarea, cpu) = vmcs;
3008         }
3009         return 0;
3010 }
3011 
3012 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3013                 struct kvm_segment *save)
3014 {
3015         if (!emulate_invalid_guest_state) {
3016                 /*
3017                  * CS and SS RPL should be equal during guest entry according
3018                  * to VMX spec, but in reality it is not always so. Since vcpu
3019                  * is in the middle of the transition from real mode to
3020                  * protected mode it is safe to assume that RPL 0 is a good
3021                  * default value.
3022                  */
3023                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3024                         save->selector &= ~SEGMENT_RPL_MASK;
3025                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3026                 save->s = 1;
3027         }
3028         __vmx_set_segment(vcpu, save, seg);
3029 }
3030 
3031 static void enter_pmode(struct kvm_vcpu *vcpu)
3032 {
3033         unsigned long flags;
3034         struct vcpu_vmx *vmx = to_vmx(vcpu);
3035 
3036         /*
3037          * Update real mode segment cache. It may be not up-to-date if segment
3038          * register was written while vcpu was in a guest mode.
3039          */
3040         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3041         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3042         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3043         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3044         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3045         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3046 
3047         vmx->rmode.vm86_active = 0;
3048 
3049         __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3050 
3051         flags = vmcs_readl(GUEST_RFLAGS);
3052         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3053         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3054         vmcs_writel(GUEST_RFLAGS, flags);
3055 
3056         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3057                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3058 
3059         vmx_update_exception_bitmap(vcpu);
3060 
3061         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3062         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3063         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3064         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3065         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3066         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3067 }
3068 
3069 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3070 {
3071         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3072         struct kvm_segment var = *save;
3073 
3074         var.dpl = 0x3;
3075         if (seg == VCPU_SREG_CS)
3076                 var.type = 0x3;
3077 
3078         if (!emulate_invalid_guest_state) {
3079                 var.selector = var.base >> 4;
3080                 var.base = var.base & 0xffff0;
3081                 var.limit = 0xffff;
3082                 var.g = 0;
3083                 var.db = 0;
3084                 var.present = 1;
3085                 var.s = 1;
3086                 var.l = 0;
3087                 var.unusable = 0;
3088                 var.type = 0x3;
3089                 var.avl = 0;
3090                 if (save->base & 0xf)
3091                         pr_warn_once("segment base is not paragraph aligned "
3092                                      "when entering protected mode (seg=%d)", seg);
3093         }
3094 
3095         vmcs_write16(sf->selector, var.selector);
3096         vmcs_writel(sf->base, var.base);
3097         vmcs_write32(sf->limit, var.limit);
3098         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3099 }
3100 
3101 static void enter_rmode(struct kvm_vcpu *vcpu)
3102 {
3103         unsigned long flags;
3104         struct vcpu_vmx *vmx = to_vmx(vcpu);
3105         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3106 
3107         /*
3108          * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3109          * as using VM86 is unnecessary if unrestricted guest is enabled, and
3110          * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3111          * should VM-Fail and KVM should reject userspace attempts to stuff
3112          * CR0.PG=0 when L2 is active.
3113          */
3114         WARN_ON_ONCE(is_guest_mode(vcpu));
3115 
3116         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3117         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3118         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3119         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3120         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3121         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3122         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3123 
3124         vmx->rmode.vm86_active = 1;
3125 
3126         vmx_segment_cache_clear(vmx);
3127 
3128         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3129         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3130         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3131 
3132         flags = vmcs_readl(GUEST_RFLAGS);
3133         vmx->rmode.save_rflags = flags;
3134 
3135         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3136 
3137         vmcs_writel(GUEST_RFLAGS, flags);
3138         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3139         vmx_update_exception_bitmap(vcpu);
3140 
3141         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3142         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3143         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3144         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3145         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3146         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3147 }
3148 
3149 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3150 {
3151         struct vcpu_vmx *vmx = to_vmx(vcpu);
3152 
3153         /* Nothing to do if hardware doesn't support EFER. */
3154         if (!vmx_find_uret_msr(vmx, MSR_EFER))
3155                 return 0;
3156 
3157         vcpu->arch.efer = efer;
3158 #ifdef CONFIG_X86_64
3159         if (efer & EFER_LMA)
3160                 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3161         else
3162                 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3163 #else
3164         if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3165                 return 1;
3166 #endif
3167 
3168         vmx_setup_uret_msrs(vmx);
3169         return 0;
3170 }
3171 
3172 #ifdef CONFIG_X86_64
3173 
3174 static void enter_lmode(struct kvm_vcpu *vcpu)
3175 {
3176         u32 guest_tr_ar;
3177 
3178         vmx_segment_cache_clear(to_vmx(vcpu));
3179 
3180         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3181         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3182                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3183                                      __func__);
3184                 vmcs_write32(GUEST_TR_AR_BYTES,
3185                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3186                              | VMX_AR_TYPE_BUSY_64_TSS);
3187         }
3188         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3189 }
3190 
3191 static void exit_lmode(struct kvm_vcpu *vcpu)
3192 {
3193         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3194 }
3195 
3196 #endif
3197 
3198 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3199 {
3200         struct vcpu_vmx *vmx = to_vmx(vcpu);
3201 
3202         /*
3203          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3204          * the CPU is not required to invalidate guest-physical mappings on
3205          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3206          * associated with the root EPT structure and not any particular VPID
3207          * (INVVPID also isn't required to invalidate guest-physical mappings).
3208          */
3209         if (enable_ept) {
3210                 ept_sync_global();
3211         } else if (enable_vpid) {
3212                 if (cpu_has_vmx_invvpid_global()) {
3213                         vpid_sync_vcpu_global();
3214                 } else {
3215                         vpid_sync_vcpu_single(vmx->vpid);
3216                         vpid_sync_vcpu_single(vmx->nested.vpid02);
3217                 }
3218         }
3219 }
3220 
3221 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3222 {
3223         if (is_guest_mode(vcpu))
3224                 return nested_get_vpid02(vcpu);
3225         return to_vmx(vcpu)->vpid;
3226 }
3227 
3228 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3229 {
3230         struct kvm_mmu *mmu = vcpu->arch.mmu;
3231         u64 root_hpa = mmu->root.hpa;
3232 
3233         /* No flush required if the current context is invalid. */
3234         if (!VALID_PAGE(root_hpa))
3235                 return;
3236 
3237         if (enable_ept)
3238                 ept_sync_context(construct_eptp(vcpu, root_hpa,
3239                                                 mmu->root_role.level));
3240         else
3241                 vpid_sync_context(vmx_get_current_vpid(vcpu));
3242 }
3243 
3244 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3245 {
3246         /*
3247          * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3248          * vmx_flush_tlb_guest() for an explanation of why this is ok.
3249          */
3250         vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3251 }
3252 
3253 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3254 {
3255         /*
3256          * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3257          * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3258          * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3259          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3260          * i.e. no explicit INVVPID is necessary.
3261          */
3262         vpid_sync_context(vmx_get_current_vpid(vcpu));
3263 }
3264 
3265 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3266 {
3267         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3268 
3269         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3270                 return;
3271 
3272         if (is_pae_paging(vcpu)) {
3273                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3274                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3275                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3276                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3277         }
3278 }
3279 
3280 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3281 {
3282         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3283 
3284         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3285                 return;
3286 
3287         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3288         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3289         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3290         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3291 
3292         kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3293 }
3294 
3295 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3296                           CPU_BASED_CR3_STORE_EXITING)
3297 
3298 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3299 {
3300         if (is_guest_mode(vcpu))
3301                 return nested_guest_cr0_valid(vcpu, cr0);
3302 
3303         if (to_vmx(vcpu)->nested.vmxon)
3304                 return nested_host_cr0_valid(vcpu, cr0);
3305 
3306         return true;
3307 }
3308 
3309 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3310 {
3311         struct vcpu_vmx *vmx = to_vmx(vcpu);
3312         unsigned long hw_cr0, old_cr0_pg;
3313         u32 tmp;
3314 
3315         old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3316 
3317         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3318         if (enable_unrestricted_guest)
3319                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3320         else {
3321                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3322                 if (!enable_ept)
3323                         hw_cr0 |= X86_CR0_WP;
3324 
3325                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3326                         enter_pmode(vcpu);
3327 
3328                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3329                         enter_rmode(vcpu);
3330         }
3331 
3332         vmcs_writel(CR0_READ_SHADOW, cr0);
3333         vmcs_writel(GUEST_CR0, hw_cr0);
3334         vcpu->arch.cr0 = cr0;
3335         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3336 
3337 #ifdef CONFIG_X86_64
3338         if (vcpu->arch.efer & EFER_LME) {
3339                 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3340                         enter_lmode(vcpu);
3341                 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3342                         exit_lmode(vcpu);
3343         }
3344 #endif
3345 
3346         if (enable_ept && !enable_unrestricted_guest) {
3347                 /*
3348                  * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3349                  * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3350                  * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3351                  * KVM's CR3 is installed.
3352                  */
3353                 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3354                         vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3355 
3356                 /*
3357                  * When running with EPT but not unrestricted guest, KVM must
3358                  * intercept CR3 accesses when paging is _disabled_.  This is
3359                  * necessary because restricted guests can't actually run with
3360                  * paging disabled, and so KVM stuffs its own CR3 in order to
3361                  * run the guest when identity mapped page tables.
3362                  *
3363                  * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3364                  * update, it may be stale with respect to CR3 interception,
3365                  * e.g. after nested VM-Enter.
3366                  *
3367                  * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3368                  * stores to forward them to L1, even if KVM does not need to
3369                  * intercept them to preserve its identity mapped page tables.
3370                  */
3371                 if (!(cr0 & X86_CR0_PG)) {
3372                         exec_controls_setbit(vmx, CR3_EXITING_BITS);
3373                 } else if (!is_guest_mode(vcpu)) {
3374                         exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3375                 } else {
3376                         tmp = exec_controls_get(vmx);
3377                         tmp &= ~CR3_EXITING_BITS;
3378                         tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3379                         exec_controls_set(vmx, tmp);
3380                 }
3381 
3382                 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3383                 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3384                         vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3385 
3386                 /*
3387                  * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3388                  * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3389                  */
3390                 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3391                         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3392         }
3393 
3394         /* depends on vcpu->arch.cr0 to be set to a new value */
3395         vmx->emulation_required = vmx_emulation_required(vcpu);
3396 }
3397 
3398 static int vmx_get_max_ept_level(void)
3399 {
3400         if (cpu_has_vmx_ept_5levels())
3401                 return 5;
3402         return 4;
3403 }
3404 
3405 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3406 {
3407         u64 eptp = VMX_EPTP_MT_WB;
3408 
3409         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3410 
3411         if (enable_ept_ad_bits &&
3412             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3413                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3414         eptp |= root_hpa;
3415 
3416         return eptp;
3417 }
3418 
3419 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3420 {
3421         struct kvm *kvm = vcpu->kvm;
3422         bool update_guest_cr3 = true;
3423         unsigned long guest_cr3;
3424         u64 eptp;
3425 
3426         if (enable_ept) {
3427                 eptp = construct_eptp(vcpu, root_hpa, root_level);
3428                 vmcs_write64(EPT_POINTER, eptp);
3429 
3430                 hv_track_root_tdp(vcpu, root_hpa);
3431 
3432                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3433                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3434                 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3435                         guest_cr3 = vcpu->arch.cr3;
3436                 else /* vmcs.GUEST_CR3 is already up-to-date. */
3437                         update_guest_cr3 = false;
3438                 vmx_ept_load_pdptrs(vcpu);
3439         } else {
3440                 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3441                             kvm_get_active_cr3_lam_bits(vcpu);
3442         }
3443 
3444         if (update_guest_cr3)
3445                 vmcs_writel(GUEST_CR3, guest_cr3);
3446 }
3447 
3448 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3449 {
3450         /*
3451          * We operate under the default treatment of SMM, so VMX cannot be
3452          * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3453          * i.e. is a reserved bit, is handled by common x86 code.
3454          */
3455         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3456                 return false;
3457 
3458         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3459                 return false;
3460 
3461         return true;
3462 }
3463 
3464 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3465 {
3466         unsigned long old_cr4 = kvm_read_cr4(vcpu);
3467         struct vcpu_vmx *vmx = to_vmx(vcpu);
3468         unsigned long hw_cr4;
3469 
3470         /*
3471          * Pass through host's Machine Check Enable value to hw_cr4, which
3472          * is in force while we are in guest mode.  Do not let guests control
3473          * this bit, even if host CR4.MCE == 0.
3474          */
3475         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3476         if (enable_unrestricted_guest)
3477                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3478         else if (vmx->rmode.vm86_active)
3479                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3480         else
3481                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3482 
3483         if (vmx_umip_emulated()) {
3484                 if (cr4 & X86_CR4_UMIP) {
3485                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3486                         hw_cr4 &= ~X86_CR4_UMIP;
3487                 } else if (!is_guest_mode(vcpu) ||
3488                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3489                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3490                 }
3491         }
3492 
3493         vcpu->arch.cr4 = cr4;
3494         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3495 
3496         if (!enable_unrestricted_guest) {
3497                 if (enable_ept) {
3498                         if (!is_paging(vcpu)) {
3499                                 hw_cr4 &= ~X86_CR4_PAE;
3500                                 hw_cr4 |= X86_CR4_PSE;
3501                         } else if (!(cr4 & X86_CR4_PAE)) {
3502                                 hw_cr4 &= ~X86_CR4_PAE;
3503                         }
3504                 }
3505 
3506                 /*
3507                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3508                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3509                  * to be manually disabled when guest switches to non-paging
3510                  * mode.
3511                  *
3512                  * If !enable_unrestricted_guest, the CPU is always running
3513                  * with CR0.PG=1 and CR4 needs to be modified.
3514                  * If enable_unrestricted_guest, the CPU automatically
3515                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3516                  */
3517                 if (!is_paging(vcpu))
3518                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3519         }
3520 
3521         vmcs_writel(CR4_READ_SHADOW, cr4);
3522         vmcs_writel(GUEST_CR4, hw_cr4);
3523 
3524         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3525                 kvm_update_cpuid_runtime(vcpu);
3526 }
3527 
3528 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3529 {
3530         struct vcpu_vmx *vmx = to_vmx(vcpu);
3531         u32 ar;
3532 
3533         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3534                 *var = vmx->rmode.segs[seg];
3535                 if (seg == VCPU_SREG_TR
3536                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3537                         return;
3538                 var->base = vmx_read_guest_seg_base(vmx, seg);
3539                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3540                 return;
3541         }
3542         var->base = vmx_read_guest_seg_base(vmx, seg);
3543         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3544         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3545         ar = vmx_read_guest_seg_ar(vmx, seg);
3546         var->unusable = (ar >> 16) & 1;
3547         var->type = ar & 15;
3548         var->s = (ar >> 4) & 1;
3549         var->dpl = (ar >> 5) & 3;
3550         /*
3551          * Some userspaces do not preserve unusable property. Since usable
3552          * segment has to be present according to VMX spec we can use present
3553          * property to amend userspace bug by making unusable segment always
3554          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3555          * segment as unusable.
3556          */
3557         var->present = !var->unusable;
3558         var->avl = (ar >> 12) & 1;
3559         var->l = (ar >> 13) & 1;
3560         var->db = (ar >> 14) & 1;
3561         var->g = (ar >> 15) & 1;
3562 }
3563 
3564 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3565 {
3566         struct kvm_segment s;
3567 
3568         if (to_vmx(vcpu)->rmode.vm86_active) {
3569                 vmx_get_segment(vcpu, &s, seg);
3570                 return s.base;
3571         }
3572         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3573 }
3574 
3575 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3576 {
3577         struct vcpu_vmx *vmx = to_vmx(vcpu);
3578 
3579         if (unlikely(vmx->rmode.vm86_active))
3580                 return 0;
3581         else {
3582                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3583                 return VMX_AR_DPL(ar);
3584         }
3585 }
3586 
3587 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3588 {
3589         u32 ar;
3590 
3591         ar = var->type & 15;
3592         ar |= (var->s & 1) << 4;
3593         ar |= (var->dpl & 3) << 5;
3594         ar |= (var->present & 1) << 7;
3595         ar |= (var->avl & 1) << 12;
3596         ar |= (var->l & 1) << 13;
3597         ar |= (var->db & 1) << 14;
3598         ar |= (var->g & 1) << 15;
3599         ar |= (var->unusable || !var->present) << 16;
3600 
3601         return ar;
3602 }
3603 
3604 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3605 {
3606         struct vcpu_vmx *vmx = to_vmx(vcpu);
3607         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3608 
3609         vmx_segment_cache_clear(vmx);
3610 
3611         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3612                 vmx->rmode.segs[seg] = *var;
3613                 if (seg == VCPU_SREG_TR)
3614                         vmcs_write16(sf->selector, var->selector);
3615                 else if (var->s)
3616                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3617                 return;
3618         }
3619 
3620         vmcs_writel(sf->base, var->base);
3621         vmcs_write32(sf->limit, var->limit);
3622         vmcs_write16(sf->selector, var->selector);
3623 
3624         /*
3625          *   Fix the "Accessed" bit in AR field of segment registers for older
3626          * qemu binaries.
3627          *   IA32 arch specifies that at the time of processor reset the
3628          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3629          * is setting it to 0 in the userland code. This causes invalid guest
3630          * state vmexit when "unrestricted guest" mode is turned on.
3631          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3632          * tree. Newer qemu binaries with that qemu fix would not need this
3633          * kvm hack.
3634          */
3635         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3636                 var->type |= 0x1; /* Accessed */
3637 
3638         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3639 }
3640 
3641 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3642 {
3643         __vmx_set_segment(vcpu, var, seg);
3644 
3645         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3646 }
3647 
3648 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3649 {
3650         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3651 
3652         *db = (ar >> 14) & 1;
3653         *l = (ar >> 13) & 1;
3654 }
3655 
3656 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3657 {
3658         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3659         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3660 }
3661 
3662 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3663 {
3664         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3665         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3666 }
3667 
3668 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3669 {
3670         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3671         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3672 }
3673 
3674 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3675 {
3676         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3677         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3678 }
3679 
3680 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3681 {
3682         struct kvm_segment var;
3683         u32 ar;
3684 
3685         vmx_get_segment(vcpu, &var, seg);
3686         var.dpl = 0x3;
3687         if (seg == VCPU_SREG_CS)
3688                 var.type = 0x3;
3689         ar = vmx_segment_access_rights(&var);
3690 
3691         if (var.base != (var.selector << 4))
3692                 return false;
3693         if (var.limit != 0xffff)
3694                 return false;
3695         if (ar != 0xf3)
3696                 return false;
3697 
3698         return true;
3699 }
3700 
3701 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3702 {
3703         struct kvm_segment cs;
3704         unsigned int cs_rpl;
3705 
3706         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3707         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3708 
3709         if (cs.unusable)
3710                 return false;
3711         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3712                 return false;
3713         if (!cs.s)
3714                 return false;
3715         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3716                 if (cs.dpl > cs_rpl)
3717                         return false;
3718         } else {
3719                 if (cs.dpl != cs_rpl)
3720                         return false;
3721         }
3722         if (!cs.present)
3723                 return false;
3724 
3725         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3726         return true;
3727 }
3728 
3729 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3730 {
3731         struct kvm_segment ss;
3732         unsigned int ss_rpl;
3733 
3734         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3735         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3736 
3737         if (ss.unusable)
3738                 return true;
3739         if (ss.type != 3 && ss.type != 7)
3740                 return false;
3741         if (!ss.s)
3742                 return false;
3743         if (ss.dpl != ss_rpl) /* DPL != RPL */
3744                 return false;
3745         if (!ss.present)
3746                 return false;
3747 
3748         return true;
3749 }
3750 
3751 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3752 {
3753         struct kvm_segment var;
3754         unsigned int rpl;
3755 
3756         vmx_get_segment(vcpu, &var, seg);
3757         rpl = var.selector & SEGMENT_RPL_MASK;
3758 
3759         if (var.unusable)
3760                 return true;
3761         if (!var.s)
3762                 return false;
3763         if (!var.present)
3764                 return false;
3765         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3766                 if (var.dpl < rpl) /* DPL < RPL */
3767                         return false;
3768         }
3769 
3770         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3771          * rights flags
3772          */
3773         return true;
3774 }
3775 
3776 static bool tr_valid(struct kvm_vcpu *vcpu)
3777 {
3778         struct kvm_segment tr;
3779 
3780         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3781 
3782         if (tr.unusable)
3783                 return false;
3784         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3785                 return false;
3786         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3787                 return false;
3788         if (!tr.present)
3789                 return false;
3790 
3791         return true;
3792 }
3793 
3794 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3795 {
3796         struct kvm_segment ldtr;
3797 
3798         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3799 
3800         if (ldtr.unusable)
3801                 return true;
3802         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3803                 return false;
3804         if (ldtr.type != 2)
3805                 return false;
3806         if (!ldtr.present)
3807                 return false;
3808 
3809         return true;
3810 }
3811 
3812 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3813 {
3814         struct kvm_segment cs, ss;
3815 
3816         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3817         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3818 
3819         return ((cs.selector & SEGMENT_RPL_MASK) ==
3820                  (ss.selector & SEGMENT_RPL_MASK));
3821 }
3822 
3823 /*
3824  * Check if guest state is valid. Returns true if valid, false if
3825  * not.
3826  * We assume that registers are always usable
3827  */
3828 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3829 {
3830         /* real mode guest state checks */
3831         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3832                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3833                         return false;
3834                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3835                         return false;
3836                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3837                         return false;
3838                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3839                         return false;
3840                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3841                         return false;
3842                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3843                         return false;
3844         } else {
3845         /* protected mode guest state checks */
3846                 if (!cs_ss_rpl_check(vcpu))
3847                         return false;
3848                 if (!code_segment_valid(vcpu))
3849                         return false;
3850                 if (!stack_segment_valid(vcpu))
3851                         return false;
3852                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3853                         return false;
3854                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3855                         return false;
3856                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3857                         return false;
3858                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3859                         return false;
3860                 if (!tr_valid(vcpu))
3861                         return false;
3862                 if (!ldtr_valid(vcpu))
3863                         return false;
3864         }
3865         /* TODO:
3866          * - Add checks on RIP
3867          * - Add checks on RFLAGS
3868          */
3869 
3870         return true;
3871 }
3872 
3873 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3874 {
3875         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3876         u16 data;
3877         int i;
3878 
3879         for (i = 0; i < 3; i++) {
3880                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3881                         return -EFAULT;
3882         }
3883 
3884         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3885         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3886                 return -EFAULT;
3887 
3888         data = ~0;
3889         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3890                 return -EFAULT;
3891 
3892         return 0;
3893 }
3894 
3895 static int init_rmode_identity_map(struct kvm *kvm)
3896 {
3897         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3898         int i, r = 0;
3899         void __user *uaddr;
3900         u32 tmp;
3901 
3902         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3903         mutex_lock(&kvm->slots_lock);
3904 
3905         if (likely(kvm_vmx->ept_identity_pagetable_done))
3906                 goto out;
3907 
3908         if (!kvm_vmx->ept_identity_map_addr)
3909                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3910 
3911         uaddr = __x86_set_memory_region(kvm,
3912                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3913                                         kvm_vmx->ept_identity_map_addr,
3914                                         PAGE_SIZE);
3915         if (IS_ERR(uaddr)) {
3916                 r = PTR_ERR(uaddr);
3917                 goto out;
3918         }
3919 
3920         /* Set up identity-mapping pagetable for EPT in real mode */
3921         for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3922                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3923                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3924                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3925                         r = -EFAULT;
3926                         goto out;
3927                 }
3928         }
3929         kvm_vmx->ept_identity_pagetable_done = true;
3930 
3931 out:
3932         mutex_unlock(&kvm->slots_lock);
3933         return r;
3934 }
3935 
3936 static void seg_setup(int seg)
3937 {
3938         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3939         unsigned int ar;
3940 
3941         vmcs_write16(sf->selector, 0);
3942         vmcs_writel(sf->base, 0);
3943         vmcs_write32(sf->limit, 0xffff);
3944         ar = 0x93;
3945         if (seg == VCPU_SREG_CS)
3946                 ar |= 0x08; /* code segment */
3947 
3948         vmcs_write32(sf->ar_bytes, ar);
3949 }
3950 
3951 int allocate_vpid(void)
3952 {
3953         int vpid;
3954 
3955         if (!enable_vpid)
3956                 return 0;
3957         spin_lock(&vmx_vpid_lock);
3958         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3959         if (vpid < VMX_NR_VPIDS)
3960                 __set_bit(vpid, vmx_vpid_bitmap);
3961         else
3962                 vpid = 0;
3963         spin_unlock(&vmx_vpid_lock);
3964         return vpid;
3965 }
3966 
3967 void free_vpid(int vpid)
3968 {
3969         if (!enable_vpid || vpid == 0)
3970                 return;
3971         spin_lock(&vmx_vpid_lock);
3972         __clear_bit(vpid, vmx_vpid_bitmap);
3973         spin_unlock(&vmx_vpid_lock);
3974 }
3975 
3976 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3977 {
3978         /*
3979          * When KVM is a nested hypervisor on top of Hyper-V and uses
3980          * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3981          * bitmap has changed.
3982          */
3983         if (kvm_is_using_evmcs()) {
3984                 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3985 
3986                 if (evmcs->hv_enlightenments_control.msr_bitmap)
3987                         evmcs->hv_clean_fields &=
3988                                 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3989         }
3990 
3991         vmx->nested.force_msr_bitmap_recalc = true;
3992 }
3993 
3994 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3995 {
3996         struct vcpu_vmx *vmx = to_vmx(vcpu);
3997         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3998         int idx;
3999 
4000         if (!cpu_has_vmx_msr_bitmap())
4001                 return;
4002 
4003         vmx_msr_bitmap_l01_changed(vmx);
4004 
4005         /*
4006          * Mark the desired intercept state in shadow bitmap, this is needed
4007          * for resync when the MSR filters change.
4008          */
4009         idx = vmx_get_passthrough_msr_slot(msr);
4010         if (idx >= 0) {
4011                 if (type & MSR_TYPE_R)
4012                         clear_bit(idx, vmx->shadow_msr_intercept.read);
4013                 if (type & MSR_TYPE_W)
4014                         clear_bit(idx, vmx->shadow_msr_intercept.write);
4015         }
4016 
4017         if ((type & MSR_TYPE_R) &&
4018             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4019                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4020                 type &= ~MSR_TYPE_R;
4021         }
4022 
4023         if ((type & MSR_TYPE_W) &&
4024             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4025                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4026                 type &= ~MSR_TYPE_W;
4027         }
4028 
4029         if (type & MSR_TYPE_R)
4030                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4031 
4032         if (type & MSR_TYPE_W)
4033                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4034 }
4035 
4036 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4037 {
4038         struct vcpu_vmx *vmx = to_vmx(vcpu);
4039         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4040         int idx;
4041 
4042         if (!cpu_has_vmx_msr_bitmap())
4043                 return;
4044 
4045         vmx_msr_bitmap_l01_changed(vmx);
4046 
4047         /*
4048          * Mark the desired intercept state in shadow bitmap, this is needed
4049          * for resync when the MSR filter changes.
4050          */
4051         idx = vmx_get_passthrough_msr_slot(msr);
4052         if (idx >= 0) {
4053                 if (type & MSR_TYPE_R)
4054                         set_bit(idx, vmx->shadow_msr_intercept.read);
4055                 if (type & MSR_TYPE_W)
4056                         set_bit(idx, vmx->shadow_msr_intercept.write);
4057         }
4058 
4059         if (type & MSR_TYPE_R)
4060                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4061 
4062         if (type & MSR_TYPE_W)
4063                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4064 }
4065 
4066 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4067 {
4068         /*
4069          * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4070          * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4071          * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4072          */
4073         const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4074         const int write_idx = read_idx + (0x800 / sizeof(u64));
4075         struct vcpu_vmx *vmx = to_vmx(vcpu);
4076         u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4077         u8 mode;
4078 
4079         if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4080                 return;
4081 
4082         if (cpu_has_secondary_exec_ctrls() &&
4083             (secondary_exec_controls_get(vmx) &
4084              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4085                 mode = MSR_BITMAP_MODE_X2APIC;
4086                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4087                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4088         } else {
4089                 mode = 0;
4090         }
4091 
4092         if (mode == vmx->x2apic_msr_bitmap_mode)
4093                 return;
4094 
4095         vmx->x2apic_msr_bitmap_mode = mode;
4096 
4097         /*
4098          * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4099          * registers (0x840 and above) intercepted, KVM doesn't support them.
4100          * Intercept all writes by default and poke holes as needed.  Pass
4101          * through reads for all valid registers by default in x2APIC+APICv
4102          * mode, only the current timer count needs on-demand emulation by KVM.
4103          */
4104         if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4105                 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4106         else
4107                 msr_bitmap[read_idx] = ~0ull;
4108         msr_bitmap[write_idx] = ~0ull;
4109 
4110         /*
4111          * TPR reads and writes can be virtualized even if virtual interrupt
4112          * delivery is not in use.
4113          */
4114         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4115                                   !(mode & MSR_BITMAP_MODE_X2APIC));
4116 
4117         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4118                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4119                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4120                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4121                 if (enable_ipiv)
4122                         vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4123         }
4124 }
4125 
4126 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4127 {
4128         struct vcpu_vmx *vmx = to_vmx(vcpu);
4129         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4130         u32 i;
4131 
4132         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4133         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4134         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4135         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4136         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4137                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4138                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4139         }
4140 }
4141 
4142 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4143 {
4144         struct vcpu_vmx *vmx = to_vmx(vcpu);
4145         u32 i;
4146 
4147         if (!cpu_has_vmx_msr_bitmap())
4148                 return;
4149 
4150         /*
4151          * Redo intercept permissions for MSRs that KVM is passing through to
4152          * the guest.  Disabling interception will check the new MSR filter and
4153          * ensure that KVM enables interception if usersepace wants to filter
4154          * the MSR.  MSRs that KVM is already intercepting don't need to be
4155          * refreshed since KVM is going to intercept them regardless of what
4156          * userspace wants.
4157          */
4158         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4159                 u32 msr = vmx_possible_passthrough_msrs[i];
4160 
4161                 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4162                         vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4163 
4164                 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4165                         vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4166         }
4167 
4168         /* PT MSRs can be passed through iff PT is exposed to the guest. */
4169         if (vmx_pt_mode_is_host_guest())
4170                 pt_update_intercept_for_msr(vcpu);
4171 }
4172 
4173 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4174                                                      int pi_vec)
4175 {
4176 #ifdef CONFIG_SMP
4177         if (vcpu->mode == IN_GUEST_MODE) {
4178                 /*
4179                  * The vector of the virtual has already been set in the PIR.
4180                  * Send a notification event to deliver the virtual interrupt
4181                  * unless the vCPU is the currently running vCPU, i.e. the
4182                  * event is being sent from a fastpath VM-Exit handler, in
4183                  * which case the PIR will be synced to the vIRR before
4184                  * re-entering the guest.
4185                  *
4186                  * When the target is not the running vCPU, the following
4187                  * possibilities emerge:
4188                  *
4189                  * Case 1: vCPU stays in non-root mode. Sending a notification
4190                  * event posts the interrupt to the vCPU.
4191                  *
4192                  * Case 2: vCPU exits to root mode and is still runnable. The
4193                  * PIR will be synced to the vIRR before re-entering the guest.
4194                  * Sending a notification event is ok as the host IRQ handler
4195                  * will ignore the spurious event.
4196                  *
4197                  * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4198                  * has already synced PIR to vIRR and never blocks the vCPU if
4199                  * the vIRR is not empty. Therefore, a blocked vCPU here does
4200                  * not wait for any requested interrupts in PIR, and sending a
4201                  * notification event also results in a benign, spurious event.
4202                  */
4203 
4204                 if (vcpu != kvm_get_running_vcpu())
4205                         __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4206                 return;
4207         }
4208 #endif
4209         /*
4210          * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4211          * otherwise do nothing as KVM will grab the highest priority pending
4212          * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4213          */
4214         kvm_vcpu_wake_up(vcpu);
4215 }
4216 
4217 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4218                                                 int vector)
4219 {
4220         struct vcpu_vmx *vmx = to_vmx(vcpu);
4221 
4222         if (is_guest_mode(vcpu) &&
4223             vector == vmx->nested.posted_intr_nv) {
4224                 /*
4225                  * If a posted intr is not recognized by hardware,
4226                  * we will accomplish it in the next vmentry.
4227                  */
4228                 vmx->nested.pi_pending = true;
4229                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4230 
4231                 /*
4232                  * This pairs with the smp_mb_*() after setting vcpu->mode in
4233                  * vcpu_enter_guest() to guarantee the vCPU sees the event
4234                  * request if triggering a posted interrupt "fails" because
4235                  * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4236                  * the smb_wmb() in kvm_make_request() only ensures everything
4237                  * done before making the request is visible when the request
4238                  * is visible, it doesn't ensure ordering between the store to
4239                  * vcpu->requests and the load from vcpu->mode.
4240                  */
4241                 smp_mb__after_atomic();
4242 
4243                 /* the PIR and ON have been set by L1. */
4244                 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4245                 return 0;
4246         }
4247         return -1;
4248 }
4249 /*
4250  * Send interrupt to vcpu via posted interrupt way.
4251  * 1. If target vcpu is running(non-root mode), send posted interrupt
4252  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4253  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4254  * interrupt from PIR in next vmentry.
4255  */
4256 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4257 {
4258         struct vcpu_vmx *vmx = to_vmx(vcpu);
4259         int r;
4260 
4261         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4262         if (!r)
4263                 return 0;
4264 
4265         /* Note, this is called iff the local APIC is in-kernel. */
4266         if (!vcpu->arch.apic->apicv_active)
4267                 return -1;
4268 
4269         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4270                 return 0;
4271 
4272         /* If a previous notification has sent the IPI, nothing to do.  */
4273         if (pi_test_and_set_on(&vmx->pi_desc))
4274                 return 0;
4275 
4276         /*
4277          * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4278          * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4279          * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4280          * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4281          */
4282         kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4283         return 0;
4284 }
4285 
4286 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4287                            int trig_mode, int vector)
4288 {
4289         struct kvm_vcpu *vcpu = apic->vcpu;
4290 
4291         if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4292                 kvm_lapic_set_irr(vector, apic);
4293                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4294                 kvm_vcpu_kick(vcpu);
4295         } else {
4296                 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4297                                            trig_mode, vector);
4298         }
4299 }
4300 
4301 /*
4302  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4303  * will not change in the lifetime of the guest.
4304  * Note that host-state that does change is set elsewhere. E.g., host-state
4305  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4306  */
4307 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4308 {
4309         u32 low32, high32;
4310         unsigned long tmpl;
4311         unsigned long cr0, cr3, cr4;
4312 
4313         cr0 = read_cr0();
4314         WARN_ON(cr0 & X86_CR0_TS);
4315         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4316 
4317         /*
4318          * Save the most likely value for this task's CR3 in the VMCS.
4319          * We can't use __get_current_cr3_fast() because we're not atomic.
4320          */
4321         cr3 = __read_cr3();
4322         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
4323         vmx->loaded_vmcs->host_state.cr3 = cr3;
4324 
4325         /* Save the most likely value for this task's CR4 in the VMCS. */
4326         cr4 = cr4_read_shadow();
4327         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4328         vmx->loaded_vmcs->host_state.cr4 = cr4;
4329 
4330         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4331 #ifdef CONFIG_X86_64
4332         /*
4333          * Load null selectors, so we can avoid reloading them in
4334          * vmx_prepare_switch_to_host(), in case userspace uses
4335          * the null selectors too (the expected case).
4336          */
4337         vmcs_write16(HOST_DS_SELECTOR, 0);
4338         vmcs_write16(HOST_ES_SELECTOR, 0);
4339 #else
4340         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4341         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4342 #endif
4343         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4344         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4345 
4346         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4347 
4348         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4349 
4350         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4351         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4352 
4353         /*
4354          * SYSENTER is used for 32-bit system calls on either 32-bit or
4355          * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4356          * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4357          * have already done so!).
4358          */
4359         if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4360                 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4361 
4362         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4363         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4364 
4365         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4366                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4367                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4368         }
4369 
4370         if (cpu_has_load_ia32_efer())
4371                 vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4372 }
4373 
4374 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4375 {
4376         struct kvm_vcpu *vcpu = &vmx->vcpu;
4377 
4378         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4379                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4380         if (!enable_ept) {
4381                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4382                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4383         }
4384         if (is_guest_mode(&vmx->vcpu))
4385                 vcpu->arch.cr4_guest_owned_bits &=
4386                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4387         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4388 }
4389 
4390 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4391 {
4392         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4393 
4394         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4395                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4396 
4397         if (!enable_vnmi)
4398                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4399 
4400         if (!enable_preemption_timer)
4401                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4402 
4403         return pin_based_exec_ctrl;
4404 }
4405 
4406 static u32 vmx_vmentry_ctrl(void)
4407 {
4408         u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4409 
4410         if (vmx_pt_mode_is_system())
4411                 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4412                                   VM_ENTRY_LOAD_IA32_RTIT_CTL);
4413         /*
4414          * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4415          */
4416         vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4417                           VM_ENTRY_LOAD_IA32_EFER |
4418                           VM_ENTRY_IA32E_MODE);
4419 
4420         if (cpu_has_perf_global_ctrl_bug())
4421                 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4422 
4423         return vmentry_ctrl;
4424 }
4425 
4426 static u32 vmx_vmexit_ctrl(void)
4427 {
4428         u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4429 
4430         /*
4431          * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4432          * nested virtualization and thus allowed to be set in vmcs12.
4433          */
4434         vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4435                          VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4436 
4437         if (vmx_pt_mode_is_system())
4438                 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4439                                  VM_EXIT_CLEAR_IA32_RTIT_CTL);
4440 
4441         if (cpu_has_perf_global_ctrl_bug())
4442                 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4443 
4444         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4445         return vmexit_ctrl &
4446                 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4447 }
4448 
4449 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4450 {
4451         struct vcpu_vmx *vmx = to_vmx(vcpu);
4452 
4453         if (is_guest_mode(vcpu)) {
4454                 vmx->nested.update_vmcs01_apicv_status = true;
4455                 return;
4456         }
4457 
4458         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4459 
4460         if (kvm_vcpu_apicv_active(vcpu)) {
4461                 secondary_exec_controls_setbit(vmx,
4462                                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
4463                                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4464                 if (enable_ipiv)
4465                         tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4466         } else {
4467                 secondary_exec_controls_clearbit(vmx,
4468                                                  SECONDARY_EXEC_APIC_REGISTER_VIRT |
4469                                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4470                 if (enable_ipiv)
4471                         tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4472         }
4473 
4474         vmx_update_msr_bitmap_x2apic(vcpu);
4475 }
4476 
4477 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4478 {
4479         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4480 
4481         /*
4482          * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4483          * vmcs12 and propagated to vmcs02 when set in vmcs12.
4484          */
4485         exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4486                           CPU_BASED_USE_IO_BITMAPS |
4487                           CPU_BASED_MONITOR_TRAP_FLAG |
4488                           CPU_BASED_PAUSE_EXITING);
4489 
4490         /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4491         exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4492                           CPU_BASED_NMI_WINDOW_EXITING);
4493 
4494         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4495                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4496 
4497         if (!cpu_need_tpr_shadow(&vmx->vcpu))
4498                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4499 
4500 #ifdef CONFIG_X86_64
4501         if (exec_control & CPU_BASED_TPR_SHADOW)
4502                 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4503                                   CPU_BASED_CR8_STORE_EXITING);
4504         else
4505                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4506                                 CPU_BASED_CR8_LOAD_EXITING;
4507 #endif
4508         /* No need to intercept CR3 access or INVPLG when using EPT. */
4509         if (enable_ept)
4510                 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4511                                   CPU_BASED_CR3_STORE_EXITING |
4512                                   CPU_BASED_INVLPG_EXITING);
4513         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4514                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4515                                 CPU_BASED_MONITOR_EXITING);
4516         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4517                 exec_control &= ~CPU_BASED_HLT_EXITING;
4518         return exec_control;
4519 }
4520 
4521 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4522 {
4523         u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4524 
4525         /*
4526          * IPI virtualization relies on APICv. Disable IPI virtualization if
4527          * APICv is inhibited.
4528          */
4529         if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4530                 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4531 
4532         return exec_control;
4533 }
4534 
4535 /*
4536  * Adjust a single secondary execution control bit to intercept/allow an
4537  * instruction in the guest.  This is usually done based on whether or not a
4538  * feature has been exposed to the guest in order to correctly emulate faults.
4539  */
4540 static inline void
4541 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4542                                   u32 control, bool enabled, bool exiting)
4543 {
4544         /*
4545          * If the control is for an opt-in feature, clear the control if the
4546          * feature is not exposed to the guest, i.e. not enabled.  If the
4547          * control is opt-out, i.e. an exiting control, clear the control if
4548          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4549          * disabled for the associated instruction.  Note, the caller is
4550          * responsible presetting exec_control to set all supported bits.
4551          */
4552         if (enabled == exiting)
4553                 *exec_control &= ~control;
4554 
4555         /*
4556          * Update the nested MSR settings so that a nested VMM can/can't set
4557          * controls for features that are/aren't exposed to the guest.
4558          */
4559         if (nested) {
4560                 /*
4561                  * All features that can be added or removed to VMX MSRs must
4562                  * be supported in the first place for nested virtualization.
4563                  */
4564                 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4565                         enabled = false;
4566 
4567                 if (enabled)
4568                         vmx->nested.msrs.secondary_ctls_high |= control;
4569                 else
4570                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4571         }
4572 }
4573 
4574 /*
4575  * Wrapper macro for the common case of adjusting a secondary execution control
4576  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4577  * verifies that the control is actually supported by KVM and hardware.
4578  */
4579 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)     \
4580 ({                                                                                              \
4581         struct kvm_vcpu *__vcpu = &(vmx)->vcpu;                                                 \
4582         bool __enabled;                                                                         \
4583                                                                                                 \
4584         if (cpu_has_vmx_##name()) {                                                             \
4585                 if (kvm_is_governed_feature(X86_FEATURE_##feat_name))                           \
4586                         __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);             \
4587                 else                                                                            \
4588                         __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);           \
4589                 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4590                                                   __enabled, exiting);                          \
4591         }                                                                                       \
4592 })
4593 
4594 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4595 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4596         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4597 
4598 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4599         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4600 
4601 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4602 {
4603         struct kvm_vcpu *vcpu = &vmx->vcpu;
4604 
4605         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4606 
4607         if (vmx_pt_mode_is_system())
4608                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4609         if (!cpu_need_virtualize_apic_accesses(vcpu))
4610                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4611         if (vmx->vpid == 0)
4612                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4613         if (!enable_ept) {
4614                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4615                 exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4616                 enable_unrestricted_guest = 0;
4617         }
4618         if (!enable_unrestricted_guest)
4619                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4620         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4621                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4622         if (!kvm_vcpu_apicv_active(vcpu))
4623                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4624                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4625         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4626 
4627         /*
4628          * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4629          * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4630          */
4631         exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4632 
4633         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4634          * in vmx_set_cr4.  */
4635         exec_control &= ~SECONDARY_EXEC_DESC;
4636 
4637         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4638            (handle_vmptrld).
4639            We can NOT enable shadow_vmcs here because we don't have yet
4640            a current VMCS12
4641         */
4642         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4643 
4644         /*
4645          * PML is enabled/disabled when dirty logging of memsmlots changes, but
4646          * it needs to be set here when dirty logging is already active, e.g.
4647          * if this vCPU was created after dirty logging was enabled.
4648          */
4649         if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4650                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4651 
4652         vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4653 
4654         /*
4655          * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4656          * feature is exposed to the guest.  This creates a virtualization hole
4657          * if both are supported in hardware but only one is exposed to the
4658          * guest, but letting the guest execute RDTSCP or RDPID when either one
4659          * is advertised is preferable to emulating the advertised instruction
4660          * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4661          */
4662         if (cpu_has_vmx_rdtscp()) {
4663                 bool rdpid_or_rdtscp_enabled =
4664                         guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4665                         guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4666 
4667                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4668                                                   SECONDARY_EXEC_ENABLE_RDTSCP,
4669                                                   rdpid_or_rdtscp_enabled, false);
4670         }
4671 
4672         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4673 
4674         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4675         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4676 
4677         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4678                                     ENABLE_USR_WAIT_PAUSE, false);
4679 
4680         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4681                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4682 
4683         if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4684                 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4685 
4686         return exec_control;
4687 }
4688 
4689 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4690 {
4691         return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4692 }
4693 
4694 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4695 {
4696         struct page *pages;
4697         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4698 
4699         if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4700                 return 0;
4701 
4702         if (kvm_vmx->pid_table)
4703                 return 0;
4704 
4705         pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4706                             vmx_get_pid_table_order(kvm));
4707         if (!pages)
4708                 return -ENOMEM;
4709 
4710         kvm_vmx->pid_table = (void *)page_address(pages);
4711         return 0;
4712 }
4713 
4714 int vmx_vcpu_precreate(struct kvm *kvm)
4715 {
4716         return vmx_alloc_ipiv_pid_table(kvm);
4717 }
4718 
4719 #define VMX_XSS_EXIT_BITMAP 0
4720 
4721 static void init_vmcs(struct vcpu_vmx *vmx)
4722 {
4723         struct kvm *kvm = vmx->vcpu.kvm;
4724         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4725 
4726         if (nested)
4727                 nested_vmx_set_vmcs_shadowing_bitmap();
4728 
4729         if (cpu_has_vmx_msr_bitmap())
4730                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4731 
4732         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4733 
4734         /* Control */
4735         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4736 
4737         exec_controls_set(vmx, vmx_exec_control(vmx));
4738 
4739         if (cpu_has_secondary_exec_ctrls()) {
4740                 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4741                 if (vmx->ve_info)
4742                         vmcs_write64(VE_INFORMATION_ADDRESS,
4743                                      __pa(vmx->ve_info));
4744         }
4745 
4746         if (cpu_has_tertiary_exec_ctrls())
4747                 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4748 
4749         if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4750                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4751                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4752                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4753                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4754 
4755                 vmcs_write16(GUEST_INTR_STATUS, 0);
4756 
4757                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4758                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4759         }
4760 
4761         if (vmx_can_use_ipiv(&vmx->vcpu)) {
4762                 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4763                 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4764         }
4765 
4766         if (!kvm_pause_in_guest(kvm)) {
4767                 vmcs_write32(PLE_GAP, ple_gap);
4768                 vmx->ple_window = ple_window;
4769                 vmx->ple_window_dirty = true;
4770         }
4771 
4772         if (kvm_notify_vmexit_enabled(kvm))
4773                 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4774 
4775         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4776         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4777         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4778 
4779         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4780         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4781         vmx_set_constant_host_state(vmx);
4782         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4783         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4784 
4785         if (cpu_has_vmx_vmfunc())
4786                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4787 
4788         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4789         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4790         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4791         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4792         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4793 
4794         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4795                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4796 
4797         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4798 
4799         /* 22.2.1, 20.8.1 */
4800         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4801 
4802         vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4803         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4804 
4805         set_cr4_guest_host_mask(vmx);
4806 
4807         if (vmx->vpid != 0)
4808                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4809 
4810         if (cpu_has_vmx_xsaves())
4811                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4812 
4813         if (enable_pml) {
4814                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4815                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4816         }
4817 
4818         vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4819 
4820         if (vmx_pt_mode_is_host_guest()) {
4821                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4822                 /* Bit[6~0] are forced to 1, writes are ignored. */
4823                 vmx->pt_desc.guest.output_mask = 0x7F;
4824                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4825         }
4826 
4827         vmcs_write32(GUEST_SYSENTER_CS, 0);
4828         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4829         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4830         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4831 
4832         if (cpu_has_vmx_tpr_shadow()) {
4833                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4834                 if (cpu_need_tpr_shadow(&vmx->vcpu))
4835                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4836                                      __pa(vmx->vcpu.arch.apic->regs));
4837                 vmcs_write32(TPR_THRESHOLD, 0);
4838         }
4839 
4840         vmx_setup_uret_msrs(vmx);
4841 }
4842 
4843 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4844 {
4845         struct vcpu_vmx *vmx = to_vmx(vcpu);
4846 
4847         init_vmcs(vmx);
4848 
4849         if (nested)
4850                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4851 
4852         vcpu_setup_sgx_lepubkeyhash(vcpu);
4853 
4854         vmx->nested.posted_intr_nv = -1;
4855         vmx->nested.vmxon_ptr = INVALID_GPA;
4856         vmx->nested.current_vmptr = INVALID_GPA;
4857 
4858 #ifdef CONFIG_KVM_HYPERV
4859         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4860 #endif
4861 
4862         vcpu->arch.microcode_version = 0x100000000ULL;
4863         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4864 
4865         /*
4866          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4867          * or POSTED_INTR_WAKEUP_VECTOR.
4868          */
4869         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4870         __pi_set_sn(&vmx->pi_desc);
4871 }
4872 
4873 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4874 {
4875         struct vcpu_vmx *vmx = to_vmx(vcpu);
4876 
4877         if (!init_event)
4878                 __vmx_vcpu_reset(vcpu);
4879 
4880         vmx->rmode.vm86_active = 0;
4881         vmx->spec_ctrl = 0;
4882 
4883         vmx->msr_ia32_umwait_control = 0;
4884 
4885         vmx->hv_deadline_tsc = -1;
4886         kvm_set_cr8(vcpu, 0);
4887 
4888         vmx_segment_cache_clear(vmx);
4889         kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4890 
4891         seg_setup(VCPU_SREG_CS);
4892         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4893         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4894 
4895         seg_setup(VCPU_SREG_DS);
4896         seg_setup(VCPU_SREG_ES);
4897         seg_setup(VCPU_SREG_FS);
4898         seg_setup(VCPU_SREG_GS);
4899         seg_setup(VCPU_SREG_SS);
4900 
4901         vmcs_write16(GUEST_TR_SELECTOR, 0);
4902         vmcs_writel(GUEST_TR_BASE, 0);
4903         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4904         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4905 
4906         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4907         vmcs_writel(GUEST_LDTR_BASE, 0);
4908         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4909         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4910 
4911         vmcs_writel(GUEST_GDTR_BASE, 0);
4912         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4913 
4914         vmcs_writel(GUEST_IDTR_BASE, 0);
4915         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4916 
4917         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4918         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4919         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4920         if (kvm_mpx_supported())
4921                 vmcs_write64(GUEST_BNDCFGS, 0);
4922 
4923         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4924 
4925         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4926 
4927         vpid_sync_context(vmx->vpid);
4928 
4929         vmx_update_fb_clear_dis(vcpu, vmx);
4930 }
4931 
4932 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4933 {
4934         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4935 }
4936 
4937 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4938 {
4939         if (!enable_vnmi ||
4940             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4941                 vmx_enable_irq_window(vcpu);
4942                 return;
4943         }
4944 
4945         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4946 }
4947 
4948 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4949 {
4950         struct vcpu_vmx *vmx = to_vmx(vcpu);
4951         uint32_t intr;
4952         int irq = vcpu->arch.interrupt.nr;
4953 
4954         trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4955 
4956         ++vcpu->stat.irq_injections;
4957         if (vmx->rmode.vm86_active) {
4958                 int inc_eip = 0;
4959                 if (vcpu->arch.interrupt.soft)
4960                         inc_eip = vcpu->arch.event_exit_inst_len;
4961                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4962                 return;
4963         }
4964         intr = irq | INTR_INFO_VALID_MASK;
4965         if (vcpu->arch.interrupt.soft) {
4966                 intr |= INTR_TYPE_SOFT_INTR;
4967                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4968                              vmx->vcpu.arch.event_exit_inst_len);
4969         } else
4970                 intr |= INTR_TYPE_EXT_INTR;
4971         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4972 
4973         vmx_clear_hlt(vcpu);
4974 }
4975 
4976 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4977 {
4978         struct vcpu_vmx *vmx = to_vmx(vcpu);
4979 
4980         if (!enable_vnmi) {
4981                 /*
4982                  * Tracking the NMI-blocked state in software is built upon
4983                  * finding the next open IRQ window. This, in turn, depends on
4984                  * well-behaving guests: They have to keep IRQs disabled at
4985                  * least as long as the NMI handler runs. Otherwise we may
4986                  * cause NMI nesting, maybe breaking the guest. But as this is
4987                  * highly unlikely, we can live with the residual risk.
4988                  */
4989                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4990                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4991         }
4992 
4993         ++vcpu->stat.nmi_injections;
4994         vmx->loaded_vmcs->nmi_known_unmasked = false;
4995 
4996         if (vmx->rmode.vm86_active) {
4997                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4998                 return;
4999         }
5000 
5001         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5002                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5003 
5004         vmx_clear_hlt(vcpu);
5005 }
5006 
5007 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5008 {
5009         struct vcpu_vmx *vmx = to_vmx(vcpu);
5010         bool masked;
5011 
5012         if (!enable_vnmi)
5013                 return vmx->loaded_vmcs->soft_vnmi_blocked;
5014         if (vmx->loaded_vmcs->nmi_known_unmasked)
5015                 return false;
5016         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5017         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5018         return masked;
5019 }
5020 
5021 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5022 {
5023         struct vcpu_vmx *vmx = to_vmx(vcpu);
5024 
5025         if (!enable_vnmi) {
5026                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5027                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5028                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
5029                 }
5030         } else {
5031                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5032                 if (masked)
5033                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5034                                       GUEST_INTR_STATE_NMI);
5035                 else
5036                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5037                                         GUEST_INTR_STATE_NMI);
5038         }
5039 }
5040 
5041 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5042 {
5043         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5044                 return false;
5045 
5046         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5047                 return true;
5048 
5049         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5050                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5051                  GUEST_INTR_STATE_NMI));
5052 }
5053 
5054 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5055 {
5056         if (to_vmx(vcpu)->nested.nested_run_pending)
5057                 return -EBUSY;
5058 
5059         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5060         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5061                 return -EBUSY;
5062 
5063         return !vmx_nmi_blocked(vcpu);
5064 }
5065 
5066 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5067 {
5068         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5069                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5070                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5071 }
5072 
5073 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5074 {
5075         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5076                 return false;
5077 
5078         return __vmx_interrupt_blocked(vcpu);
5079 }
5080 
5081 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5082 {
5083         if (to_vmx(vcpu)->nested.nested_run_pending)
5084                 return -EBUSY;
5085 
5086         /*
5087          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5088          * e.g. if the IRQ arrived asynchronously after checking nested events.
5089          */
5090         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5091                 return -EBUSY;
5092 
5093         return !vmx_interrupt_blocked(vcpu);
5094 }
5095 
5096 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5097 {
5098         void __user *ret;
5099 
5100         if (enable_unrestricted_guest)
5101                 return 0;
5102 
5103         mutex_lock(&kvm->slots_lock);
5104         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5105                                       PAGE_SIZE * 3);
5106         mutex_unlock(&kvm->slots_lock);
5107 
5108         if (IS_ERR(ret))
5109                 return PTR_ERR(ret);
5110 
5111         to_kvm_vmx(kvm)->tss_addr = addr;
5112 
5113         return init_rmode_tss(kvm, ret);
5114 }
5115 
5116 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5117 {
5118         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5119         return 0;
5120 }
5121 
5122 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5123 {
5124         switch (vec) {
5125         case BP_VECTOR:
5126                 /*
5127                  * Update instruction length as we may reinject the exception
5128                  * from user space while in guest debugging mode.
5129                  */
5130                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5131                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5132                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5133                         return false;
5134                 fallthrough;
5135         case DB_VECTOR:
5136                 return !(vcpu->guest_debug &
5137                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5138         case DE_VECTOR:
5139         case OF_VECTOR:
5140         case BR_VECTOR:
5141         case UD_VECTOR:
5142         case DF_VECTOR:
5143         case SS_VECTOR:
5144         case GP_VECTOR:
5145         case MF_VECTOR:
5146                 return true;
5147         }
5148         return false;
5149 }
5150 
5151 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5152                                   int vec, u32 err_code)
5153 {
5154         /*
5155          * Instruction with address size override prefix opcode 0x67
5156          * Cause the #SS fault with 0 error code in VM86 mode.
5157          */
5158         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5159                 if (kvm_emulate_instruction(vcpu, 0)) {
5160                         if (vcpu->arch.halt_request) {
5161                                 vcpu->arch.halt_request = 0;
5162                                 return kvm_emulate_halt_noskip(vcpu);
5163                         }
5164                         return 1;
5165                 }
5166                 return 0;
5167         }
5168 
5169         /*
5170          * Forward all other exceptions that are valid in real mode.
5171          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5172          *        the required debugging infrastructure rework.
5173          */
5174         kvm_queue_exception(vcpu, vec);
5175         return 1;
5176 }
5177 
5178 static int handle_machine_check(struct kvm_vcpu *vcpu)
5179 {
5180         /* handled by vmx_vcpu_run() */
5181         return 1;
5182 }
5183 
5184 /*
5185  * If the host has split lock detection disabled, then #AC is
5186  * unconditionally injected into the guest, which is the pre split lock
5187  * detection behaviour.
5188  *
5189  * If the host has split lock detection enabled then #AC is
5190  * only injected into the guest when:
5191  *  - Guest CPL == 3 (user mode)
5192  *  - Guest has #AC detection enabled in CR0
5193  *  - Guest EFLAGS has AC bit set
5194  */
5195 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5196 {
5197         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5198                 return true;
5199 
5200         return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5201                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5202 }
5203 
5204 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5205 {
5206         struct vcpu_vmx *vmx = to_vmx(vcpu);
5207         struct kvm_run *kvm_run = vcpu->run;
5208         u32 intr_info, ex_no, error_code;
5209         unsigned long cr2, dr6;
5210         u32 vect_info;
5211 
5212         vect_info = vmx->idt_vectoring_info;
5213         intr_info = vmx_get_intr_info(vcpu);
5214 
5215         /*
5216          * Machine checks are handled by handle_exception_irqoff(), or by
5217          * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5218          * vmx_vcpu_enter_exit().
5219          */
5220         if (is_machine_check(intr_info) || is_nmi(intr_info))
5221                 return 1;
5222 
5223         /*
5224          * Queue the exception here instead of in handle_nm_fault_irqoff().
5225          * This ensures the nested_vmx check is not skipped so vmexit can
5226          * be reflected to L1 (when it intercepts #NM) before reaching this
5227          * point.
5228          */
5229         if (is_nm_fault(intr_info)) {
5230                 kvm_queue_exception(vcpu, NM_VECTOR);
5231                 return 1;
5232         }
5233 
5234         if (is_invalid_opcode(intr_info))
5235                 return handle_ud(vcpu);
5236 
5237         if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5238                 struct vmx_ve_information *ve_info = vmx->ve_info;
5239 
5240                 WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5241                           "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5242                 dump_vmcs(vcpu);
5243                 kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5244                 return 1;
5245         }
5246 
5247         error_code = 0;
5248         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5249                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5250 
5251         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5252                 WARN_ON_ONCE(!enable_vmware_backdoor);
5253 
5254                 /*
5255                  * VMware backdoor emulation on #GP interception only handles
5256                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5257                  * error code on #GP.
5258                  */
5259                 if (error_code) {
5260                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5261                         return 1;
5262                 }
5263                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5264         }
5265 
5266         /*
5267          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5268          * MMIO, it is better to report an internal error.
5269          * See the comments in vmx_handle_exit.
5270          */
5271         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5272             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5273                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5274                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5275                 vcpu->run->internal.ndata = 4;
5276                 vcpu->run->internal.data[0] = vect_info;
5277                 vcpu->run->internal.data[1] = intr_info;
5278                 vcpu->run->internal.data[2] = error_code;
5279                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5280                 return 0;
5281         }
5282 
5283         if (is_page_fault(intr_info)) {
5284                 cr2 = vmx_get_exit_qual(vcpu);
5285                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5286                         /*
5287                          * EPT will cause page fault only if we need to
5288                          * detect illegal GPAs.
5289                          */
5290                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5291                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5292                         return 1;
5293                 } else
5294                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5295         }
5296 
5297         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5298 
5299         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5300                 return handle_rmode_exception(vcpu, ex_no, error_code);
5301 
5302         switch (ex_no) {
5303         case DB_VECTOR:
5304                 dr6 = vmx_get_exit_qual(vcpu);
5305                 if (!(vcpu->guest_debug &
5306                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5307                         /*
5308                          * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5309                          * instruction.  ICEBP generates a trap-like #DB, but
5310                          * despite its interception control being tied to #DB,
5311                          * is an instruction intercept, i.e. the VM-Exit occurs
5312                          * on the ICEBP itself.  Use the inner "skip" helper to
5313                          * avoid single-step #DB and MTF updates, as ICEBP is
5314                          * higher priority.  Note, skipping ICEBP still clears
5315                          * STI and MOVSS blocking.
5316                          *
5317                          * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5318                          * if single-step is enabled in RFLAGS and STI or MOVSS
5319                          * blocking is active, as the CPU doesn't set the bit
5320                          * on VM-Exit due to #DB interception.  VM-Entry has a
5321                          * consistency check that a single-step #DB is pending
5322                          * in this scenario as the previous instruction cannot
5323                          * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5324                          * don't modify RFLAGS), therefore the one instruction
5325                          * delay when activating single-step breakpoints must
5326                          * have already expired.  Note, the CPU sets/clears BS
5327                          * as appropriate for all other VM-Exits types.
5328                          */
5329                         if (is_icebp(intr_info))
5330                                 WARN_ON(!skip_emulated_instruction(vcpu));
5331                         else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5332                                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5333                                   (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5334                                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5335                                             vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5336 
5337                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5338                         return 1;
5339                 }
5340                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5341                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5342                 fallthrough;
5343         case BP_VECTOR:
5344                 /*
5345                  * Update instruction length as we may reinject #BP from
5346                  * user space while in guest debugging mode. Reading it for
5347                  * #DB as well causes no harm, it is not used in that case.
5348                  */
5349                 vmx->vcpu.arch.event_exit_inst_len =
5350                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5351                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5352                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5353                 kvm_run->debug.arch.exception = ex_no;
5354                 break;
5355         case AC_VECTOR:
5356                 if (vmx_guest_inject_ac(vcpu)) {
5357                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5358                         return 1;
5359                 }
5360 
5361                 /*
5362                  * Handle split lock. Depending on detection mode this will
5363                  * either warn and disable split lock detection for this
5364                  * task or force SIGBUS on it.
5365                  */
5366                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5367                         return 1;
5368                 fallthrough;
5369         default:
5370                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5371                 kvm_run->ex.exception = ex_no;
5372                 kvm_run->ex.error_code = error_code;
5373                 break;
5374         }
5375         return 0;
5376 }
5377 
5378 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5379 {
5380         ++vcpu->stat.irq_exits;
5381         return 1;
5382 }
5383 
5384 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5385 {
5386         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5387         vcpu->mmio_needed = 0;
5388         return 0;
5389 }
5390 
5391 static int handle_io(struct kvm_vcpu *vcpu)
5392 {
5393         unsigned long exit_qualification;
5394         int size, in, string;
5395         unsigned port;
5396 
5397         exit_qualification = vmx_get_exit_qual(vcpu);
5398         string = (exit_qualification & 16) != 0;
5399 
5400         ++vcpu->stat.io_exits;
5401 
5402         if (string)
5403                 return kvm_emulate_instruction(vcpu, 0);
5404 
5405         port = exit_qualification >> 16;
5406         size = (exit_qualification & 7) + 1;
5407         in = (exit_qualification & 8) != 0;
5408 
5409         return kvm_fast_pio(vcpu, size, port, in);
5410 }
5411 
5412 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5413 {
5414         /*
5415          * Patch in the VMCALL instruction:
5416          */
5417         hypercall[0] = 0x0f;
5418         hypercall[1] = 0x01;
5419         hypercall[2] = 0xc1;
5420 }
5421 
5422 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5423 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5424 {
5425         if (is_guest_mode(vcpu)) {
5426                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5427                 unsigned long orig_val = val;
5428 
5429                 /*
5430                  * We get here when L2 changed cr0 in a way that did not change
5431                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5432                  * but did change L0 shadowed bits. So we first calculate the
5433                  * effective cr0 value that L1 would like to write into the
5434                  * hardware. It consists of the L2-owned bits from the new
5435                  * value combined with the L1-owned bits from L1's guest_cr0.
5436                  */
5437                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5438                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5439 
5440                 if (kvm_set_cr0(vcpu, val))
5441                         return 1;
5442                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5443                 return 0;
5444         } else {
5445                 return kvm_set_cr0(vcpu, val);
5446         }
5447 }
5448 
5449 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5450 {
5451         if (is_guest_mode(vcpu)) {
5452                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5453                 unsigned long orig_val = val;
5454 
5455                 /* analogously to handle_set_cr0 */
5456                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5457                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5458                 if (kvm_set_cr4(vcpu, val))
5459                         return 1;
5460                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5461                 return 0;
5462         } else
5463                 return kvm_set_cr4(vcpu, val);
5464 }
5465 
5466 static int handle_desc(struct kvm_vcpu *vcpu)
5467 {
5468         /*
5469          * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5470          * and other code needs to be updated if UMIP can be guest owned.
5471          */
5472         BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5473 
5474         WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5475         return kvm_emulate_instruction(vcpu, 0);
5476 }
5477 
5478 static int handle_cr(struct kvm_vcpu *vcpu)
5479 {
5480         unsigned long exit_qualification, val;
5481         int cr;
5482         int reg;
5483         int err;
5484         int ret;
5485 
5486         exit_qualification = vmx_get_exit_qual(vcpu);
5487         cr = exit_qualification & 15;
5488         reg = (exit_qualification >> 8) & 15;
5489         switch ((exit_qualification >> 4) & 3) {
5490         case 0: /* mov to cr */
5491                 val = kvm_register_read(vcpu, reg);
5492                 trace_kvm_cr_write(cr, val);
5493                 switch (cr) {
5494                 case 0:
5495                         err = handle_set_cr0(vcpu, val);
5496                         return kvm_complete_insn_gp(vcpu, err);
5497                 case 3:
5498                         WARN_ON_ONCE(enable_unrestricted_guest);
5499 
5500                         err = kvm_set_cr3(vcpu, val);
5501                         return kvm_complete_insn_gp(vcpu, err);
5502                 case 4:
5503                         err = handle_set_cr4(vcpu, val);
5504                         return kvm_complete_insn_gp(vcpu, err);
5505                 case 8: {
5506                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5507                                 u8 cr8 = (u8)val;
5508                                 err = kvm_set_cr8(vcpu, cr8);
5509                                 ret = kvm_complete_insn_gp(vcpu, err);
5510                                 if (lapic_in_kernel(vcpu))
5511                                         return ret;
5512                                 if (cr8_prev <= cr8)
5513                                         return ret;
5514                                 /*
5515                                  * TODO: we might be squashing a
5516                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5517                                  * KVM_EXIT_DEBUG here.
5518                                  */
5519                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5520                                 return 0;
5521                         }
5522                 }
5523                 break;
5524         case 2: /* clts */
5525                 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5526                 return -EIO;
5527         case 1: /*mov from cr*/
5528                 switch (cr) {
5529                 case 3:
5530                         WARN_ON_ONCE(enable_unrestricted_guest);
5531 
5532                         val = kvm_read_cr3(vcpu);
5533                         kvm_register_write(vcpu, reg, val);
5534                         trace_kvm_cr_read(cr, val);
5535                         return kvm_skip_emulated_instruction(vcpu);
5536                 case 8:
5537                         val = kvm_get_cr8(vcpu);
5538                         kvm_register_write(vcpu, reg, val);
5539                         trace_kvm_cr_read(cr, val);
5540                         return kvm_skip_emulated_instruction(vcpu);
5541                 }
5542                 break;
5543         case 3: /* lmsw */
5544                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5545                 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5546                 kvm_lmsw(vcpu, val);
5547 
5548                 return kvm_skip_emulated_instruction(vcpu);
5549         default:
5550                 break;
5551         }
5552         vcpu->run->exit_reason = 0;
5553         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5554                (int)(exit_qualification >> 4) & 3, cr);
5555         return 0;
5556 }
5557 
5558 static int handle_dr(struct kvm_vcpu *vcpu)
5559 {
5560         unsigned long exit_qualification;
5561         int dr, dr7, reg;
5562         int err = 1;
5563 
5564         exit_qualification = vmx_get_exit_qual(vcpu);
5565         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5566 
5567         /* First, if DR does not exist, trigger UD */
5568         if (!kvm_require_dr(vcpu, dr))
5569                 return 1;
5570 
5571         if (vmx_get_cpl(vcpu) > 0)
5572                 goto out;
5573 
5574         dr7 = vmcs_readl(GUEST_DR7);
5575         if (dr7 & DR7_GD) {
5576                 /*
5577                  * As the vm-exit takes precedence over the debug trap, we
5578                  * need to emulate the latter, either for the host or the
5579                  * guest debugging itself.
5580                  */
5581                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5582                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5583                         vcpu->run->debug.arch.dr7 = dr7;
5584                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5585                         vcpu->run->debug.arch.exception = DB_VECTOR;
5586                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5587                         return 0;
5588                 } else {
5589                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5590                         return 1;
5591                 }
5592         }
5593 
5594         if (vcpu->guest_debug == 0) {
5595                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5596 
5597                 /*
5598                  * No more DR vmexits; force a reload of the debug registers
5599                  * and reenter on this instruction.  The next vmexit will
5600                  * retrieve the full state of the debug registers.
5601                  */
5602                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5603                 return 1;
5604         }
5605 
5606         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5607         if (exit_qualification & TYPE_MOV_FROM_DR) {
5608                 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5609                 err = 0;
5610         } else {
5611                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5612         }
5613 
5614 out:
5615         return kvm_complete_insn_gp(vcpu, err);
5616 }
5617 
5618 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5619 {
5620         get_debugreg(vcpu->arch.db[0], 0);
5621         get_debugreg(vcpu->arch.db[1], 1);
5622         get_debugreg(vcpu->arch.db[2], 2);
5623         get_debugreg(vcpu->arch.db[3], 3);
5624         get_debugreg(vcpu->arch.dr6, 6);
5625         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5626 
5627         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5628         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5629 
5630         /*
5631          * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5632          * a stale dr6 from the guest.
5633          */
5634         set_debugreg(DR6_RESERVED, 6);
5635 }
5636 
5637 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5638 {
5639         vmcs_writel(GUEST_DR7, val);
5640 }
5641 
5642 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5643 {
5644         kvm_apic_update_ppr(vcpu);
5645         return 1;
5646 }
5647 
5648 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5649 {
5650         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5651 
5652         kvm_make_request(KVM_REQ_EVENT, vcpu);
5653 
5654         ++vcpu->stat.irq_window_exits;
5655         return 1;
5656 }
5657 
5658 static int handle_invlpg(struct kvm_vcpu *vcpu)
5659 {
5660         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5661 
5662         kvm_mmu_invlpg(vcpu, exit_qualification);
5663         return kvm_skip_emulated_instruction(vcpu);
5664 }
5665 
5666 static int handle_apic_access(struct kvm_vcpu *vcpu)
5667 {
5668         if (likely(fasteoi)) {
5669                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5670                 int access_type, offset;
5671 
5672                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5673                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5674                 /*
5675                  * Sane guest uses MOV to write EOI, with written value
5676                  * not cared. So make a short-circuit here by avoiding
5677                  * heavy instruction emulation.
5678                  */
5679                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5680                     (offset == APIC_EOI)) {
5681                         kvm_lapic_set_eoi(vcpu);
5682                         return kvm_skip_emulated_instruction(vcpu);
5683                 }
5684         }
5685         return kvm_emulate_instruction(vcpu, 0);
5686 }
5687 
5688 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5689 {
5690         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5691         int vector = exit_qualification & 0xff;
5692 
5693         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5694         kvm_apic_set_eoi_accelerated(vcpu, vector);
5695         return 1;
5696 }
5697 
5698 static int handle_apic_write(struct kvm_vcpu *vcpu)
5699 {
5700         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5701 
5702         /*
5703          * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5704          * hardware has done any necessary aliasing, offset adjustments, etc...
5705          * for the access.  I.e. the correct value has already been  written to
5706          * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5707          * retrieve the register value and emulate the access.
5708          */
5709         u32 offset = exit_qualification & 0xff0;
5710 
5711         kvm_apic_write_nodecode(vcpu, offset);
5712         return 1;
5713 }
5714 
5715 static int handle_task_switch(struct kvm_vcpu *vcpu)
5716 {
5717         struct vcpu_vmx *vmx = to_vmx(vcpu);
5718         unsigned long exit_qualification;
5719         bool has_error_code = false;
5720         u32 error_code = 0;
5721         u16 tss_selector;
5722         int reason, type, idt_v, idt_index;
5723 
5724         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5725         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5726         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5727 
5728         exit_qualification = vmx_get_exit_qual(vcpu);
5729 
5730         reason = (u32)exit_qualification >> 30;
5731         if (reason == TASK_SWITCH_GATE && idt_v) {
5732                 switch (type) {
5733                 case INTR_TYPE_NMI_INTR:
5734                         vcpu->arch.nmi_injected = false;
5735                         vmx_set_nmi_mask(vcpu, true);
5736                         break;
5737                 case INTR_TYPE_EXT_INTR:
5738                 case INTR_TYPE_SOFT_INTR:
5739                         kvm_clear_interrupt_queue(vcpu);
5740                         break;
5741                 case INTR_TYPE_HARD_EXCEPTION:
5742                         if (vmx->idt_vectoring_info &
5743                             VECTORING_INFO_DELIVER_CODE_MASK) {
5744                                 has_error_code = true;
5745                                 error_code =
5746                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5747                         }
5748                         fallthrough;
5749                 case INTR_TYPE_SOFT_EXCEPTION:
5750                         kvm_clear_exception_queue(vcpu);
5751                         break;
5752                 default:
5753                         break;
5754                 }
5755         }
5756         tss_selector = exit_qualification;
5757 
5758         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5759                        type != INTR_TYPE_EXT_INTR &&
5760                        type != INTR_TYPE_NMI_INTR))
5761                 WARN_ON(!skip_emulated_instruction(vcpu));
5762 
5763         /*
5764          * TODO: What about debug traps on tss switch?
5765          *       Are we supposed to inject them and update dr6?
5766          */
5767         return kvm_task_switch(vcpu, tss_selector,
5768                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5769                                reason, has_error_code, error_code);
5770 }
5771 
5772 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5773 {
5774         unsigned long exit_qualification;
5775         gpa_t gpa;
5776         u64 error_code;
5777 
5778         exit_qualification = vmx_get_exit_qual(vcpu);
5779 
5780         /*
5781          * EPT violation happened while executing iret from NMI,
5782          * "blocked by NMI" bit has to be set before next VM entry.
5783          * There are errata that may cause this bit to not be set:
5784          * AAK134, BY25.
5785          */
5786         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5787                         enable_vnmi &&
5788                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5789                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5790 
5791         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5792         trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5793 
5794         /* Is it a read fault? */
5795         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5796                      ? PFERR_USER_MASK : 0;
5797         /* Is it a write fault? */
5798         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5799                       ? PFERR_WRITE_MASK : 0;
5800         /* Is it a fetch fault? */
5801         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5802                       ? PFERR_FETCH_MASK : 0;
5803         /* ept page table entry is present? */
5804         error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5805                       ? PFERR_PRESENT_MASK : 0;
5806 
5807         error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5808                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5809 
5810         /*
5811          * Check that the GPA doesn't exceed physical memory limits, as that is
5812          * a guest page fault.  We have to emulate the instruction here, because
5813          * if the illegal address is that of a paging structure, then
5814          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5815          * would also use advanced VM-exit information for EPT violations to
5816          * reconstruct the page fault error code.
5817          */
5818         if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5819                 return kvm_emulate_instruction(vcpu, 0);
5820 
5821         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5822 }
5823 
5824 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5825 {
5826         gpa_t gpa;
5827 
5828         if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5829                 return 1;
5830 
5831         /*
5832          * A nested guest cannot optimize MMIO vmexits, because we have an
5833          * nGPA here instead of the required GPA.
5834          */
5835         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5836         if (!is_guest_mode(vcpu) &&
5837             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5838                 trace_kvm_fast_mmio(gpa);
5839                 return kvm_skip_emulated_instruction(vcpu);
5840         }
5841 
5842         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5843 }
5844 
5845 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5846 {
5847         if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5848                 return -EIO;
5849 
5850         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5851         ++vcpu->stat.nmi_window_exits;
5852         kvm_make_request(KVM_REQ_EVENT, vcpu);
5853 
5854         return 1;
5855 }
5856 
5857 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5858 {
5859         struct vcpu_vmx *vmx = to_vmx(vcpu);
5860 
5861         return vmx->emulation_required && !vmx->rmode.vm86_active &&
5862                (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5863 }
5864 
5865 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5866 {
5867         struct vcpu_vmx *vmx = to_vmx(vcpu);
5868         bool intr_window_requested;
5869         unsigned count = 130;
5870 
5871         intr_window_requested = exec_controls_get(vmx) &
5872                                 CPU_BASED_INTR_WINDOW_EXITING;
5873 
5874         while (vmx->emulation_required && count-- != 0) {
5875                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5876                         return handle_interrupt_window(&vmx->vcpu);
5877 
5878                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5879                         return 1;
5880 
5881                 if (!kvm_emulate_instruction(vcpu, 0))
5882                         return 0;
5883 
5884                 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5885                         kvm_prepare_emulation_failure_exit(vcpu);
5886                         return 0;
5887                 }
5888 
5889                 if (vcpu->arch.halt_request) {
5890                         vcpu->arch.halt_request = 0;
5891                         return kvm_emulate_halt_noskip(vcpu);
5892                 }
5893 
5894                 /*
5895                  * Note, return 1 and not 0, vcpu_run() will invoke
5896                  * xfer_to_guest_mode() which will create a proper return
5897                  * code.
5898                  */
5899                 if (__xfer_to_guest_mode_work_pending())
5900                         return 1;
5901         }
5902 
5903         return 1;
5904 }
5905 
5906 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5907 {
5908         if (vmx_emulation_required_with_pending_exception(vcpu)) {
5909                 kvm_prepare_emulation_failure_exit(vcpu);
5910                 return 0;
5911         }
5912 
5913         return 1;
5914 }
5915 
5916 /*
5917  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5918  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5919  */
5920 static int handle_pause(struct kvm_vcpu *vcpu)
5921 {
5922         if (!kvm_pause_in_guest(vcpu->kvm))
5923                 grow_ple_window(vcpu);
5924 
5925         /*
5926          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5927          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5928          * never set PAUSE_EXITING and just set PLE if supported,
5929          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5930          */
5931         kvm_vcpu_on_spin(vcpu, true);
5932         return kvm_skip_emulated_instruction(vcpu);
5933 }
5934 
5935 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5936 {
5937         return 1;
5938 }
5939 
5940 static int handle_invpcid(struct kvm_vcpu *vcpu)
5941 {
5942         u32 vmx_instruction_info;
5943         unsigned long type;
5944         gva_t gva;
5945         struct {
5946                 u64 pcid;
5947                 u64 gla;
5948         } operand;
5949         int gpr_index;
5950 
5951         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5952                 kvm_queue_exception(vcpu, UD_VECTOR);
5953                 return 1;
5954         }
5955 
5956         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5957         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5958         type = kvm_register_read(vcpu, gpr_index);
5959 
5960         /* According to the Intel instruction reference, the memory operand
5961          * is read even if it isn't needed (e.g., for type==all)
5962          */
5963         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5964                                 vmx_instruction_info, false,
5965                                 sizeof(operand), &gva))
5966                 return 1;
5967 
5968         return kvm_handle_invpcid(vcpu, type, gva);
5969 }
5970 
5971 static int handle_pml_full(struct kvm_vcpu *vcpu)
5972 {
5973         unsigned long exit_qualification;
5974 
5975         trace_kvm_pml_full(vcpu->vcpu_id);
5976 
5977         exit_qualification = vmx_get_exit_qual(vcpu);
5978 
5979         /*
5980          * PML buffer FULL happened while executing iret from NMI,
5981          * "blocked by NMI" bit has to be set before next VM entry.
5982          */
5983         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5984                         enable_vnmi &&
5985                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5986                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5987                                 GUEST_INTR_STATE_NMI);
5988 
5989         /*
5990          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5991          * here.., and there's no userspace involvement needed for PML.
5992          */
5993         return 1;
5994 }
5995 
5996 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5997                                                    bool force_immediate_exit)
5998 {
5999         struct vcpu_vmx *vmx = to_vmx(vcpu);
6000 
6001         /*
6002          * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6003          * due to the timer expiring while it was "soft" disabled, just eat the
6004          * exit and re-enter the guest.
6005          */
6006         if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6007                 return EXIT_FASTPATH_REENTER_GUEST;
6008 
6009         /*
6010          * If the timer expired because KVM used it to force an immediate exit,
6011          * then mission accomplished.
6012          */
6013         if (force_immediate_exit)
6014                 return EXIT_FASTPATH_EXIT_HANDLED;
6015 
6016         /*
6017          * If L2 is active, go down the slow path as emulating the guest timer
6018          * expiration likely requires synthesizing a nested VM-Exit.
6019          */
6020         if (is_guest_mode(vcpu))
6021                 return EXIT_FASTPATH_NONE;
6022 
6023         kvm_lapic_expired_hv_timer(vcpu);
6024         return EXIT_FASTPATH_REENTER_GUEST;
6025 }
6026 
6027 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6028 {
6029         /*
6030          * This non-fastpath handler is reached if and only if the preemption
6031          * timer was being used to emulate a guest timer while L2 is active.
6032          * All other scenarios are supposed to be handled in the fastpath.
6033          */
6034         WARN_ON_ONCE(!is_guest_mode(vcpu));
6035         kvm_lapic_expired_hv_timer(vcpu);
6036         return 1;
6037 }
6038 
6039 /*
6040  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6041  * are overwritten by nested_vmx_setup() when nested=1.
6042  */
6043 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6044 {
6045         kvm_queue_exception(vcpu, UD_VECTOR);
6046         return 1;
6047 }
6048 
6049 #ifndef CONFIG_X86_SGX_KVM
6050 static int handle_encls(struct kvm_vcpu *vcpu)
6051 {
6052         /*
6053          * SGX virtualization is disabled.  There is no software enable bit for
6054          * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6055          * the guest from executing ENCLS (when SGX is supported by hardware).
6056          */
6057         kvm_queue_exception(vcpu, UD_VECTOR);
6058         return 1;
6059 }
6060 #endif /* CONFIG_X86_SGX_KVM */
6061 
6062 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6063 {
6064         /*
6065          * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6066          * VM-Exits. Unconditionally set the flag here and leave the handling to
6067          * vmx_handle_exit().
6068          */
6069         to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6070         return 1;
6071 }
6072 
6073 static int handle_notify(struct kvm_vcpu *vcpu)
6074 {
6075         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6076         bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6077 
6078         ++vcpu->stat.notify_window_exits;
6079 
6080         /*
6081          * Notify VM exit happened while executing iret from NMI,
6082          * "blocked by NMI" bit has to be set before next VM entry.
6083          */
6084         if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6085                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6086                               GUEST_INTR_STATE_NMI);
6087 
6088         if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6089             context_invalid) {
6090                 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6091                 vcpu->run->notify.flags = context_invalid ?
6092                                           KVM_NOTIFY_CONTEXT_INVALID : 0;
6093                 return 0;
6094         }
6095 
6096         return 1;
6097 }
6098 
6099 /*
6100  * The exit handlers return 1 if the exit was handled fully and guest execution
6101  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6102  * to be done to userspace and return 0.
6103  */
6104 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6105         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6106         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6107         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6108         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6109         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6110         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6111         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6112         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6113         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6114         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6115         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6116         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
6117         [EXIT_REASON_INVD]                    = kvm_emulate_invd,
6118         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6119         [EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6120         [EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6121         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
6122         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
6123         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
6124         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
6125         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
6126         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
6127         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
6128         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
6129         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
6130         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6131         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6132         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6133         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6134         [EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6135         [EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6136         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6137         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6138         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
6139         [EXIT_REASON_LDTR_TR]                 = handle_desc,
6140         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6141         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6142         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6143         [EXIT_REASON_MWAIT_INSTRUCTION]       = kvm_emulate_mwait,
6144         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6145         [EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6146         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6147         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6148         [EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6149         [EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6150         [EXIT_REASON_PML_FULL]                = handle_pml_full,
6151         [EXIT_REASON_INVPCID]                 = handle_invpcid,
6152         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
6153         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
6154         [EXIT_REASON_ENCLS]                   = handle_encls,
6155         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6156         [EXIT_REASON_NOTIFY]                  = handle_notify,
6157 };
6158 
6159 static const int kvm_vmx_max_exit_handlers =
6160         ARRAY_SIZE(kvm_vmx_exit_handlers);
6161 
6162 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6163                        u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6164 {
6165         struct vcpu_vmx *vmx = to_vmx(vcpu);
6166 
6167         *reason = vmx->exit_reason.full;
6168         *info1 = vmx_get_exit_qual(vcpu);
6169         if (!(vmx->exit_reason.failed_vmentry)) {
6170                 *info2 = vmx->idt_vectoring_info;
6171                 *intr_info = vmx_get_intr_info(vcpu);
6172                 if (is_exception_with_error_code(*intr_info))
6173                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6174                 else
6175                         *error_code = 0;
6176         } else {
6177                 *info2 = 0;
6178                 *intr_info = 0;
6179                 *error_code = 0;
6180         }
6181 }
6182 
6183 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6184 {
6185         if (vmx->pml_pg) {
6186                 __free_page(vmx->pml_pg);
6187                 vmx->pml_pg = NULL;
6188         }
6189 }
6190 
6191 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6192 {
6193         struct vcpu_vmx *vmx = to_vmx(vcpu);
6194         u64 *pml_buf;
6195         u16 pml_idx;
6196 
6197         pml_idx = vmcs_read16(GUEST_PML_INDEX);
6198 
6199         /* Do nothing if PML buffer is empty */
6200         if (pml_idx == (PML_ENTITY_NUM - 1))
6201                 return;
6202 
6203         /* PML index always points to next available PML buffer entity */
6204         if (pml_idx >= PML_ENTITY_NUM)
6205                 pml_idx = 0;
6206         else
6207                 pml_idx++;
6208 
6209         pml_buf = page_address(vmx->pml_pg);
6210         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6211                 u64 gpa;
6212 
6213                 gpa = pml_buf[pml_idx];
6214                 WARN_ON(gpa & (PAGE_SIZE - 1));
6215                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6216         }
6217 
6218         /* reset PML index */
6219         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6220 }
6221 
6222 static void vmx_dump_sel(char *name, uint32_t sel)
6223 {
6224         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6225                name, vmcs_read16(sel),
6226                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6227                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6228                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6229 }
6230 
6231 static void vmx_dump_dtsel(char *name, uint32_t limit)
6232 {
6233         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6234                name, vmcs_read32(limit),
6235                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6236 }
6237 
6238 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6239 {
6240         unsigned int i;
6241         struct vmx_msr_entry *e;
6242 
6243         pr_err("MSR %s:\n", name);
6244         for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6245                 pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6246 }
6247 
6248 void dump_vmcs(struct kvm_vcpu *vcpu)
6249 {
6250         struct vcpu_vmx *vmx = to_vmx(vcpu);
6251         u32 vmentry_ctl, vmexit_ctl;
6252         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6253         u64 tertiary_exec_control;
6254         unsigned long cr4;
6255         int efer_slot;
6256 
6257         if (!dump_invalid_vmcs) {
6258                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6259                 return;
6260         }
6261 
6262         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6263         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6264         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6265         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6266         cr4 = vmcs_readl(GUEST_CR4);
6267 
6268         if (cpu_has_secondary_exec_ctrls())
6269                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6270         else
6271                 secondary_exec_control = 0;
6272 
6273         if (cpu_has_tertiary_exec_ctrls())
6274                 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6275         else
6276                 tertiary_exec_control = 0;
6277 
6278         pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6279                vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6280         pr_err("*** Guest State ***\n");
6281         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6282                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6283                vmcs_readl(CR0_GUEST_HOST_MASK));
6284         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6285                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6286         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6287         if (cpu_has_vmx_ept()) {
6288                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6289                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6290                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6291                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6292         }
6293         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6294                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6295         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6296                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6297         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6298                vmcs_readl(GUEST_SYSENTER_ESP),
6299                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6300         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6301         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6302         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6303         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6304         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6305         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6306         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6307         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6308         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6309         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6310         efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6311         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6312                 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6313         else if (efer_slot >= 0)
6314                 pr_err("EFER= 0x%016llx (autoload)\n",
6315                        vmx->msr_autoload.guest.val[efer_slot].value);
6316         else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6317                 pr_err("EFER= 0x%016llx (effective)\n",
6318                        vcpu->arch.efer | (EFER_LMA | EFER_LME));
6319         else
6320                 pr_err("EFER= 0x%016llx (effective)\n",
6321                        vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6322         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6323                 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6324         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6325                vmcs_read64(GUEST_IA32_DEBUGCTL),
6326                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6327         if (cpu_has_load_perf_global_ctrl() &&
6328             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6329                 pr_err("PerfGlobCtl = 0x%016llx\n",
6330                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6331         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6332                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6333         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6334                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6335                vmcs_read32(GUEST_ACTIVITY_STATE));
6336         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6337                 pr_err("InterruptStatus = %04x\n",
6338                        vmcs_read16(GUEST_INTR_STATUS));
6339         if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6340                 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6341         if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6342                 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6343 
6344         pr_err("*** Host State ***\n");
6345         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6346                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6347         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6348                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6349                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6350                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6351                vmcs_read16(HOST_TR_SELECTOR));
6352         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6353                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6354                vmcs_readl(HOST_TR_BASE));
6355         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6356                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6357         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6358                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6359                vmcs_readl(HOST_CR4));
6360         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6361                vmcs_readl(HOST_IA32_SYSENTER_ESP),
6362                vmcs_read32(HOST_IA32_SYSENTER_CS),
6363                vmcs_readl(HOST_IA32_SYSENTER_EIP));
6364         if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6365                 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6366         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6367                 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6368         if (cpu_has_load_perf_global_ctrl() &&
6369             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6370                 pr_err("PerfGlobCtl = 0x%016llx\n",
6371                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6372         if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6373                 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6374 
6375         pr_err("*** Control State ***\n");
6376         pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6377                cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6378         pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6379                pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6380         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6381                vmcs_read32(EXCEPTION_BITMAP),
6382                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6383                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6384         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6385                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6386                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6387                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6388         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6389                vmcs_read32(VM_EXIT_INTR_INFO),
6390                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6391                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6392         pr_err("        reason=%08x qualification=%016lx\n",
6393                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6394         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6395                vmcs_read32(IDT_VECTORING_INFO_FIELD),
6396                vmcs_read32(IDT_VECTORING_ERROR_CODE));
6397         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6398         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6399                 pr_err("TSC Multiplier = 0x%016llx\n",
6400                        vmcs_read64(TSC_MULTIPLIER));
6401         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6402                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6403                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
6404                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6405                 }
6406                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6407                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6408                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6409                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6410         }
6411         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6412                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6413         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6414                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6415         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6416                 pr_err("PLE Gap=%08x Window=%08x\n",
6417                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6418         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6419                 pr_err("Virtual processor ID = 0x%04x\n",
6420                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
6421         if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6422                 struct vmx_ve_information *ve_info = vmx->ve_info;
6423                 u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6424 
6425                 /*
6426                  * If KVM is dumping the VMCS, then something has gone wrong
6427                  * already.  Derefencing an address from the VMCS, which could
6428                  * very well be corrupted, is a terrible idea.  The virtual
6429                  * address is known so use it.
6430                  */
6431                 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6432                        ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6433                 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6434                        ve_info->exit_reason, ve_info->delivery,
6435                        ve_info->exit_qualification,
6436                        ve_info->guest_linear_address,
6437                        ve_info->guest_physical_address, ve_info->eptp_index);
6438         }
6439 }
6440 
6441 /*
6442  * The guest has exited.  See if we can fix it or if we need userspace
6443  * assistance.
6444  */
6445 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6446 {
6447         struct vcpu_vmx *vmx = to_vmx(vcpu);
6448         union vmx_exit_reason exit_reason = vmx->exit_reason;
6449         u32 vectoring_info = vmx->idt_vectoring_info;
6450         u16 exit_handler_index;
6451 
6452         /*
6453          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6454          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6455          * querying dirty_bitmap, we only need to kick all vcpus out of guest
6456          * mode as if vcpus is in root mode, the PML buffer must has been
6457          * flushed already.  Note, PML is never enabled in hardware while
6458          * running L2.
6459          */
6460         if (enable_pml && !is_guest_mode(vcpu))
6461                 vmx_flush_pml_buffer(vcpu);
6462 
6463         /*
6464          * KVM should never reach this point with a pending nested VM-Enter.
6465          * More specifically, short-circuiting VM-Entry to emulate L2 due to
6466          * invalid guest state should never happen as that means KVM knowingly
6467          * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6468          */
6469         if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6470                 return -EIO;
6471 
6472         if (is_guest_mode(vcpu)) {
6473                 /*
6474                  * PML is never enabled when running L2, bail immediately if a
6475                  * PML full exit occurs as something is horribly wrong.
6476                  */
6477                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6478                         goto unexpected_vmexit;
6479 
6480                 /*
6481                  * The host physical addresses of some pages of guest memory
6482                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6483                  * Page). The CPU may write to these pages via their host
6484                  * physical address while L2 is running, bypassing any
6485                  * address-translation-based dirty tracking (e.g. EPT write
6486                  * protection).
6487                  *
6488                  * Mark them dirty on every exit from L2 to prevent them from
6489                  * getting out of sync with dirty tracking.
6490                  */
6491                 nested_mark_vmcs12_pages_dirty(vcpu);
6492 
6493                 /*
6494                  * Synthesize a triple fault if L2 state is invalid.  In normal
6495                  * operation, nested VM-Enter rejects any attempt to enter L2
6496                  * with invalid state.  However, those checks are skipped if
6497                  * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6498                  * L2 state is invalid, it means either L1 modified SMRAM state
6499                  * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6500                  * doing so is architecturally allowed in the RSM case, and is
6501                  * the least awful solution for the userspace case without
6502                  * risking false positives.
6503                  */
6504                 if (vmx->emulation_required) {
6505                         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6506                         return 1;
6507                 }
6508 
6509                 if (nested_vmx_reflect_vmexit(vcpu))
6510                         return 1;
6511         }
6512 
6513         /* If guest state is invalid, start emulating.  L2 is handled above. */
6514         if (vmx->emulation_required)
6515                 return handle_invalid_guest_state(vcpu);
6516 
6517         if (exit_reason.failed_vmentry) {
6518                 dump_vmcs(vcpu);
6519                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6520                 vcpu->run->fail_entry.hardware_entry_failure_reason
6521                         = exit_reason.full;
6522                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6523                 return 0;
6524         }
6525 
6526         if (unlikely(vmx->fail)) {
6527                 dump_vmcs(vcpu);
6528                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6529                 vcpu->run->fail_entry.hardware_entry_failure_reason
6530                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6531                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6532                 return 0;
6533         }
6534 
6535         /*
6536          * Note:
6537          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6538          * delivery event since it indicates guest is accessing MMIO.
6539          * The vm-exit can be triggered again after return to guest that
6540          * will cause infinite loop.
6541          */
6542         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6543             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6544              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6545              exit_reason.basic != EXIT_REASON_PML_FULL &&
6546              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6547              exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6548              exit_reason.basic != EXIT_REASON_NOTIFY)) {
6549                 int ndata = 3;
6550 
6551                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6552                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6553                 vcpu->run->internal.data[0] = vectoring_info;
6554                 vcpu->run->internal.data[1] = exit_reason.full;
6555                 vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu);
6556                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6557                         vcpu->run->internal.data[ndata++] =
6558                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6559                 }
6560                 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6561                 vcpu->run->internal.ndata = ndata;
6562                 return 0;
6563         }
6564 
6565         if (unlikely(!enable_vnmi &&
6566                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
6567                 if (!vmx_interrupt_blocked(vcpu)) {
6568                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6569                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6570                            vcpu->arch.nmi_pending) {
6571                         /*
6572                          * This CPU don't support us in finding the end of an
6573                          * NMI-blocked window if the guest runs with IRQs
6574                          * disabled. So we pull the trigger after 1 s of
6575                          * futile waiting, but inform the user about this.
6576                          */
6577                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6578                                "state on VCPU %d after 1 s timeout\n",
6579                                __func__, vcpu->vcpu_id);
6580                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6581                 }
6582         }
6583 
6584         if (exit_fastpath != EXIT_FASTPATH_NONE)
6585                 return 1;
6586 
6587         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6588                 goto unexpected_vmexit;
6589 #ifdef CONFIG_MITIGATION_RETPOLINE
6590         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6591                 return kvm_emulate_wrmsr(vcpu);
6592         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6593                 return handle_preemption_timer(vcpu);
6594         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6595                 return handle_interrupt_window(vcpu);
6596         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6597                 return handle_external_interrupt(vcpu);
6598         else if (exit_reason.basic == EXIT_REASON_HLT)
6599                 return kvm_emulate_halt(vcpu);
6600         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6601                 return handle_ept_misconfig(vcpu);
6602 #endif
6603 
6604         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6605                                                 kvm_vmx_max_exit_handlers);
6606         if (!kvm_vmx_exit_handlers[exit_handler_index])
6607                 goto unexpected_vmexit;
6608 
6609         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6610 
6611 unexpected_vmexit:
6612         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6613                     exit_reason.full);
6614         dump_vmcs(vcpu);
6615         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6616         vcpu->run->internal.suberror =
6617                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6618         vcpu->run->internal.ndata = 2;
6619         vcpu->run->internal.data[0] = exit_reason.full;
6620         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6621         return 0;
6622 }
6623 
6624 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6625 {
6626         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6627 
6628         /*
6629          * Exit to user space when bus lock detected to inform that there is
6630          * a bus lock in guest.
6631          */
6632         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6633                 if (ret > 0)
6634                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6635 
6636                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6637                 return 0;
6638         }
6639         return ret;
6640 }
6641 
6642 /*
6643  * Software based L1D cache flush which is used when microcode providing
6644  * the cache control MSR is not loaded.
6645  *
6646  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6647  * flush it is required to read in 64 KiB because the replacement algorithm
6648  * is not exactly LRU. This could be sized at runtime via topology
6649  * information but as all relevant affected CPUs have 32KiB L1D cache size
6650  * there is no point in doing so.
6651  */
6652 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6653 {
6654         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6655 
6656         /*
6657          * This code is only executed when the flush mode is 'cond' or
6658          * 'always'
6659          */
6660         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6661                 bool flush_l1d;
6662 
6663                 /*
6664                  * Clear the per-vcpu flush bit, it gets set again if the vCPU
6665                  * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6666                  * exits to userspace, or if KVM reaches one of the unsafe
6667                  * VMEXIT handlers, e.g. if KVM calls into the emulator.
6668                  */
6669                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6670                 vcpu->arch.l1tf_flush_l1d = false;
6671 
6672                 /*
6673                  * Clear the per-cpu flush bit, it gets set again from
6674                  * the interrupt handlers.
6675                  */
6676                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6677                 kvm_clear_cpu_l1tf_flush_l1d();
6678 
6679                 if (!flush_l1d)
6680                         return;
6681         }
6682 
6683         vcpu->stat.l1d_flush++;
6684 
6685         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6686                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6687                 return;
6688         }
6689 
6690         asm volatile(
6691                 /* First ensure the pages are in the TLB */
6692                 "xorl   %%eax, %%eax\n"
6693                 ".Lpopulate_tlb:\n\t"
6694                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6695                 "addl   $4096, %%eax\n\t"
6696                 "cmpl   %%eax, %[size]\n\t"
6697                 "jne    .Lpopulate_tlb\n\t"
6698                 "xorl   %%eax, %%eax\n\t"
6699                 "cpuid\n\t"
6700                 /* Now fill the cache */
6701                 "xorl   %%eax, %%eax\n"
6702                 ".Lfill_cache:\n"
6703                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6704                 "addl   $64, %%eax\n\t"
6705                 "cmpl   %%eax, %[size]\n\t"
6706                 "jne    .Lfill_cache\n\t"
6707                 "lfence\n"
6708                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6709                     [size] "r" (size)
6710                 : "eax", "ebx", "ecx", "edx");
6711 }
6712 
6713 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6714 {
6715         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6716         int tpr_threshold;
6717 
6718         if (is_guest_mode(vcpu) &&
6719                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6720                 return;
6721 
6722         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6723         if (is_guest_mode(vcpu))
6724                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6725         else
6726                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6727 }
6728 
6729 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6730 {
6731         struct vcpu_vmx *vmx = to_vmx(vcpu);
6732         u32 sec_exec_control;
6733 
6734         if (!lapic_in_kernel(vcpu))
6735                 return;
6736 
6737         if (!flexpriority_enabled &&
6738             !cpu_has_vmx_virtualize_x2apic_mode())
6739                 return;
6740 
6741         /* Postpone execution until vmcs01 is the current VMCS. */
6742         if (is_guest_mode(vcpu)) {
6743                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6744                 return;
6745         }
6746 
6747         sec_exec_control = secondary_exec_controls_get(vmx);
6748         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6749                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6750 
6751         switch (kvm_get_apic_mode(vcpu)) {
6752         case LAPIC_MODE_INVALID:
6753                 WARN_ONCE(true, "Invalid local APIC state");
6754                 break;
6755         case LAPIC_MODE_DISABLED:
6756                 break;
6757         case LAPIC_MODE_XAPIC:
6758                 if (flexpriority_enabled) {
6759                         sec_exec_control |=
6760                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6761                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6762 
6763                         /*
6764                          * Flush the TLB, reloading the APIC access page will
6765                          * only do so if its physical address has changed, but
6766                          * the guest may have inserted a non-APIC mapping into
6767                          * the TLB while the APIC access page was disabled.
6768                          */
6769                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6770                 }
6771                 break;
6772         case LAPIC_MODE_X2APIC:
6773                 if (cpu_has_vmx_virtualize_x2apic_mode())
6774                         sec_exec_control |=
6775                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6776                 break;
6777         }
6778         secondary_exec_controls_set(vmx, sec_exec_control);
6779 
6780         vmx_update_msr_bitmap_x2apic(vcpu);
6781 }
6782 
6783 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6784 {
6785         const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6786         struct kvm *kvm = vcpu->kvm;
6787         struct kvm_memslots *slots = kvm_memslots(kvm);
6788         struct kvm_memory_slot *slot;
6789         unsigned long mmu_seq;
6790         kvm_pfn_t pfn;
6791 
6792         /* Defer reload until vmcs01 is the current VMCS. */
6793         if (is_guest_mode(vcpu)) {
6794                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6795                 return;
6796         }
6797 
6798         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6799             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6800                 return;
6801 
6802         /*
6803          * Explicitly grab the memslot using KVM's internal slot ID to ensure
6804          * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6805          * be impossible for userspace to create a memslot for the APIC when
6806          * APICv is enabled, but paranoia won't hurt in this case.
6807          */
6808         slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6809         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6810                 return;
6811 
6812         /*
6813          * Ensure that the mmu_notifier sequence count is read before KVM
6814          * retrieves the pfn from the primary MMU.  Note, the memslot is
6815          * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6816          * in kvm_mmu_invalidate_end().
6817          */
6818         mmu_seq = kvm->mmu_invalidate_seq;
6819         smp_rmb();
6820 
6821         /*
6822          * No need to retry if the memslot does not exist or is invalid.  KVM
6823          * controls the APIC-access page memslot, and only deletes the memslot
6824          * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6825          */
6826         pfn = gfn_to_pfn_memslot(slot, gfn);
6827         if (is_error_noslot_pfn(pfn))
6828                 return;
6829 
6830         read_lock(&vcpu->kvm->mmu_lock);
6831         if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6832                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6833                 read_unlock(&vcpu->kvm->mmu_lock);
6834                 goto out;
6835         }
6836 
6837         vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6838         read_unlock(&vcpu->kvm->mmu_lock);
6839 
6840         /*
6841          * No need for a manual TLB flush at this point, KVM has already done a
6842          * flush if there were SPTEs pointing at the previous page.
6843          */
6844 out:
6845         /*
6846          * Do not pin apic access page in memory, the MMU notifier
6847          * will call us again if it is migrated or swapped out.
6848          */
6849         kvm_release_pfn_clean(pfn);
6850 }
6851 
6852 void vmx_hwapic_isr_update(int max_isr)
6853 {
6854         u16 status;
6855         u8 old;
6856 
6857         if (max_isr == -1)
6858                 max_isr = 0;
6859 
6860         status = vmcs_read16(GUEST_INTR_STATUS);
6861         old = status >> 8;
6862         if (max_isr != old) {
6863                 status &= 0xff;
6864                 status |= max_isr << 8;
6865                 vmcs_write16(GUEST_INTR_STATUS, status);
6866         }
6867 }
6868 
6869 static void vmx_set_rvi(int vector)
6870 {
6871         u16 status;
6872         u8 old;
6873 
6874         if (vector == -1)
6875                 vector = 0;
6876 
6877         status = vmcs_read16(GUEST_INTR_STATUS);
6878         old = (u8)status & 0xff;
6879         if ((u8)vector != old) {
6880                 status &= ~0xff;
6881                 status |= (u8)vector;
6882                 vmcs_write16(GUEST_INTR_STATUS, status);
6883         }
6884 }
6885 
6886 void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6887 {
6888         /*
6889          * When running L2, updating RVI is only relevant when
6890          * vmcs12 virtual-interrupt-delivery enabled.
6891          * However, it can be enabled only when L1 also
6892          * intercepts external-interrupts and in that case
6893          * we should not update vmcs02 RVI but instead intercept
6894          * interrupt. Therefore, do nothing when running L2.
6895          */
6896         if (!is_guest_mode(vcpu))
6897                 vmx_set_rvi(max_irr);
6898 }
6899 
6900 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6901 {
6902         struct vcpu_vmx *vmx = to_vmx(vcpu);
6903         int max_irr;
6904         bool got_posted_interrupt;
6905 
6906         if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6907                 return -EIO;
6908 
6909         if (pi_test_on(&vmx->pi_desc)) {
6910                 pi_clear_on(&vmx->pi_desc);
6911                 /*
6912                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6913                  * But on x86 this is just a compiler barrier anyway.
6914                  */
6915                 smp_mb__after_atomic();
6916                 got_posted_interrupt =
6917                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6918         } else {
6919                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6920                 got_posted_interrupt = false;
6921         }
6922 
6923         /*
6924          * Newly recognized interrupts are injected via either virtual interrupt
6925          * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6926          * disabled in two cases:
6927          *
6928          * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6929          * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6930          * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6931          * into L2, but KVM doesn't use virtual interrupt delivery to inject
6932          * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6933          *
6934          * 2) If APICv is disabled for this vCPU, assigned devices may still
6935          * attempt to post interrupts.  The posted interrupt vector will cause
6936          * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6937          */
6938         if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6939                 vmx_set_rvi(max_irr);
6940         else if (got_posted_interrupt)
6941                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6942 
6943         return max_irr;
6944 }
6945 
6946 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6947 {
6948         if (!kvm_vcpu_apicv_active(vcpu))
6949                 return;
6950 
6951         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6952         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6953         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6954         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6955 }
6956 
6957 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6958 {
6959         struct vcpu_vmx *vmx = to_vmx(vcpu);
6960 
6961         pi_clear_on(&vmx->pi_desc);
6962         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6963 }
6964 
6965 void vmx_do_interrupt_irqoff(unsigned long entry);
6966 void vmx_do_nmi_irqoff(void);
6967 
6968 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6969 {
6970         /*
6971          * Save xfd_err to guest_fpu before interrupt is enabled, so the
6972          * MSR value is not clobbered by the host activity before the guest
6973          * has chance to consume it.
6974          *
6975          * Do not blindly read xfd_err here, since this exception might
6976          * be caused by L1 interception on a platform which doesn't
6977          * support xfd at all.
6978          *
6979          * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6980          * only when xfd contains a non-zero value.
6981          *
6982          * Queuing exception is done in vmx_handle_exit. See comment there.
6983          */
6984         if (vcpu->arch.guest_fpu.fpstate->xfd)
6985                 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6986 }
6987 
6988 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6989 {
6990         /* if exit due to PF check for async PF */
6991         if (is_page_fault(intr_info))
6992                 vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6993         /* if exit due to NM, handle before interrupts are enabled */
6994         else if (is_nm_fault(intr_info))
6995                 handle_nm_fault_irqoff(vcpu);
6996         /* Handle machine checks before interrupts are enabled */
6997         else if (is_machine_check(intr_info))
6998                 kvm_machine_check();
6999 }
7000 
7001 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7002                                              u32 intr_info)
7003 {
7004         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7005 
7006         if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7007             "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7008                 return;
7009 
7010         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7011         if (cpu_feature_enabled(X86_FEATURE_FRED))
7012                 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7013         else
7014                 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7015         kvm_after_interrupt(vcpu);
7016 
7017         vcpu->arch.at_instruction_boundary = true;
7018 }
7019 
7020 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7021 {
7022         struct vcpu_vmx *vmx = to_vmx(vcpu);
7023 
7024         if (vmx->emulation_required)
7025                 return;
7026 
7027         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7028                 handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7029         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7030                 handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7031 }
7032 
7033 /*
7034  * The kvm parameter can be NULL (module initialization, or invocation before
7035  * VM creation). Be sure to check the kvm parameter before using it.
7036  */
7037 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7038 {
7039         switch (index) {
7040         case MSR_IA32_SMBASE:
7041                 if (!IS_ENABLED(CONFIG_KVM_SMM))
7042                         return false;
7043                 /*
7044                  * We cannot do SMM unless we can run the guest in big
7045                  * real mode.
7046                  */
7047                 return enable_unrestricted_guest || emulate_invalid_guest_state;
7048         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7049                 return nested;
7050         case MSR_AMD64_VIRT_SPEC_CTRL:
7051         case MSR_AMD64_TSC_RATIO:
7052                 /* This is AMD only.  */
7053                 return false;
7054         default:
7055                 return true;
7056         }
7057 }
7058 
7059 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7060 {
7061         u32 exit_intr_info;
7062         bool unblock_nmi;
7063         u8 vector;
7064         bool idtv_info_valid;
7065 
7066         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7067 
7068         if (enable_vnmi) {
7069                 if (vmx->loaded_vmcs->nmi_known_unmasked)
7070                         return;
7071 
7072                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7073                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7074                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7075                 /*
7076                  * SDM 3: 27.7.1.2 (September 2008)
7077                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7078                  * a guest IRET fault.
7079                  * SDM 3: 23.2.2 (September 2008)
7080                  * Bit 12 is undefined in any of the following cases:
7081                  *  If the VM exit sets the valid bit in the IDT-vectoring
7082                  *   information field.
7083                  *  If the VM exit is due to a double fault.
7084                  */
7085                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7086                     vector != DF_VECTOR && !idtv_info_valid)
7087                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7088                                       GUEST_INTR_STATE_NMI);
7089                 else
7090                         vmx->loaded_vmcs->nmi_known_unmasked =
7091                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7092                                   & GUEST_INTR_STATE_NMI);
7093         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7094                 vmx->loaded_vmcs->vnmi_blocked_time +=
7095                         ktime_to_ns(ktime_sub(ktime_get(),
7096                                               vmx->loaded_vmcs->entry_time));
7097 }
7098 
7099 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7100                                       u32 idt_vectoring_info,
7101                                       int instr_len_field,
7102                                       int error_code_field)
7103 {
7104         u8 vector;
7105         int type;
7106         bool idtv_info_valid;
7107 
7108         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7109 
7110         vcpu->arch.nmi_injected = false;
7111         kvm_clear_exception_queue(vcpu);
7112         kvm_clear_interrupt_queue(vcpu);
7113 
7114         if (!idtv_info_valid)
7115                 return;
7116 
7117         kvm_make_request(KVM_REQ_EVENT, vcpu);
7118 
7119         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7120         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7121 
7122         switch (type) {
7123         case INTR_TYPE_NMI_INTR:
7124                 vcpu->arch.nmi_injected = true;
7125                 /*
7126                  * SDM 3: 27.7.1.2 (September 2008)
7127                  * Clear bit "block by NMI" before VM entry if a NMI
7128                  * delivery faulted.
7129                  */
7130                 vmx_set_nmi_mask(vcpu, false);
7131                 break;
7132         case INTR_TYPE_SOFT_EXCEPTION:
7133                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7134                 fallthrough;
7135         case INTR_TYPE_HARD_EXCEPTION:
7136                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7137                         u32 err = vmcs_read32(error_code_field);
7138                         kvm_requeue_exception_e(vcpu, vector, err);
7139                 } else
7140                         kvm_requeue_exception(vcpu, vector);
7141                 break;
7142         case INTR_TYPE_SOFT_INTR:
7143                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7144                 fallthrough;
7145         case INTR_TYPE_EXT_INTR:
7146                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7147                 break;
7148         default:
7149                 break;
7150         }
7151 }
7152 
7153 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7154 {
7155         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7156                                   VM_EXIT_INSTRUCTION_LEN,
7157                                   IDT_VECTORING_ERROR_CODE);
7158 }
7159 
7160 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7161 {
7162         __vmx_complete_interrupts(vcpu,
7163                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7164                                   VM_ENTRY_INSTRUCTION_LEN,
7165                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7166 
7167         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7168 }
7169 
7170 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7171 {
7172         int i, nr_msrs;
7173         struct perf_guest_switch_msr *msrs;
7174         struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7175 
7176         pmu->host_cross_mapped_mask = 0;
7177         if (pmu->pebs_enable & pmu->global_ctrl)
7178                 intel_pmu_cross_mapped_check(pmu);
7179 
7180         /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7181         msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7182         if (!msrs)
7183                 return;
7184 
7185         for (i = 0; i < nr_msrs; i++)
7186                 if (msrs[i].host == msrs[i].guest)
7187                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7188                 else
7189                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7190                                         msrs[i].host, false);
7191 }
7192 
7193 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7194 {
7195         struct vcpu_vmx *vmx = to_vmx(vcpu);
7196         u64 tscl;
7197         u32 delta_tsc;
7198 
7199         if (force_immediate_exit) {
7200                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7201                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7202         } else if (vmx->hv_deadline_tsc != -1) {
7203                 tscl = rdtsc();
7204                 if (vmx->hv_deadline_tsc > tscl)
7205                         /* set_hv_timer ensures the delta fits in 32-bits */
7206                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7207                                 cpu_preemption_timer_multi);
7208                 else
7209                         delta_tsc = 0;
7210 
7211                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7212                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7213         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7214                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7215                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7216         }
7217 }
7218 
7219 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7220 {
7221         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7222                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7223                 vmcs_writel(HOST_RSP, host_rsp);
7224         }
7225 }
7226 
7227 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7228                                         unsigned int flags)
7229 {
7230         u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7231 
7232         if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7233                 return;
7234 
7235         if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7236                 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7237 
7238         /*
7239          * If the guest/host SPEC_CTRL values differ, restore the host value.
7240          *
7241          * For legacy IBRS, the IBRS bit always needs to be written after
7242          * transitioning from a less privileged predictor mode, regardless of
7243          * whether the guest/host values differ.
7244          */
7245         if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7246             vmx->spec_ctrl != hostval)
7247                 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7248 
7249         barrier_nospec();
7250 }
7251 
7252 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7253                                              bool force_immediate_exit)
7254 {
7255         /*
7256          * If L2 is active, some VMX preemption timer exits can be handled in
7257          * the fastpath even, all other exits must use the slow path.
7258          */
7259         if (is_guest_mode(vcpu) &&
7260             to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7261                 return EXIT_FASTPATH_NONE;
7262 
7263         switch (to_vmx(vcpu)->exit_reason.basic) {
7264         case EXIT_REASON_MSR_WRITE:
7265                 return handle_fastpath_set_msr_irqoff(vcpu);
7266         case EXIT_REASON_PREEMPTION_TIMER:
7267                 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7268         default:
7269                 return EXIT_FASTPATH_NONE;
7270         }
7271 }
7272 
7273 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7274                                         unsigned int flags)
7275 {
7276         struct vcpu_vmx *vmx = to_vmx(vcpu);
7277 
7278         guest_state_enter_irqoff();
7279 
7280         /*
7281          * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7282          * mitigation for MDS is done late in VMentry and is still
7283          * executed in spite of L1D Flush. This is because an extra VERW
7284          * should not matter much after the big hammer L1D Flush.
7285          */
7286         if (static_branch_unlikely(&vmx_l1d_should_flush))
7287                 vmx_l1d_flush(vcpu);
7288         else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7289                  kvm_arch_has_assigned_device(vcpu->kvm))
7290                 mds_clear_cpu_buffers();
7291 
7292         vmx_disable_fb_clear(vmx);
7293 
7294         if (vcpu->arch.cr2 != native_read_cr2())
7295                 native_write_cr2(vcpu->arch.cr2);
7296 
7297         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7298                                    flags);
7299 
7300         vcpu->arch.cr2 = native_read_cr2();
7301         vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7302 
7303         vmx->idt_vectoring_info = 0;
7304 
7305         vmx_enable_fb_clear(vmx);
7306 
7307         if (unlikely(vmx->fail)) {
7308                 vmx->exit_reason.full = 0xdead;
7309                 goto out;
7310         }
7311 
7312         vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7313         if (likely(!vmx->exit_reason.failed_vmentry))
7314                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7315 
7316         if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7317             is_nmi(vmx_get_intr_info(vcpu))) {
7318                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7319                 if (cpu_feature_enabled(X86_FEATURE_FRED))
7320                         fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7321                 else
7322                         vmx_do_nmi_irqoff();
7323                 kvm_after_interrupt(vcpu);
7324         }
7325 
7326 out:
7327         guest_state_exit_irqoff();
7328 }
7329 
7330 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7331 {
7332         struct vcpu_vmx *vmx = to_vmx(vcpu);
7333         unsigned long cr3, cr4;
7334 
7335         /* Record the guest's net vcpu time for enforced NMI injections. */
7336         if (unlikely(!enable_vnmi &&
7337                      vmx->loaded_vmcs->soft_vnmi_blocked))
7338                 vmx->loaded_vmcs->entry_time = ktime_get();
7339 
7340         /*
7341          * Don't enter VMX if guest state is invalid, let the exit handler
7342          * start emulation until we arrive back to a valid state.  Synthesize a
7343          * consistency check VM-Exit due to invalid guest state and bail.
7344          */
7345         if (unlikely(vmx->emulation_required)) {
7346                 vmx->fail = 0;
7347 
7348                 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7349                 vmx->exit_reason.failed_vmentry = 1;
7350                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7351                 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7352                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7353                 vmx->exit_intr_info = 0;
7354                 return EXIT_FASTPATH_NONE;
7355         }
7356 
7357         trace_kvm_entry(vcpu, force_immediate_exit);
7358 
7359         if (vmx->ple_window_dirty) {
7360                 vmx->ple_window_dirty = false;
7361                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7362         }
7363 
7364         /*
7365          * We did this in prepare_switch_to_guest, because it needs to
7366          * be within srcu_read_lock.
7367          */
7368         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7369 
7370         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7371                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7372         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7373                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7374         vcpu->arch.regs_dirty = 0;
7375 
7376         /*
7377          * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7378          * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7379          * it switches back to the current->mm, which can occur in KVM context
7380          * when switching to a temporary mm to patch kernel code, e.g. if KVM
7381          * toggles a static key while handling a VM-Exit.
7382          */
7383         cr3 = __get_current_cr3_fast();
7384         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7385                 vmcs_writel(HOST_CR3, cr3);
7386                 vmx->loaded_vmcs->host_state.cr3 = cr3;
7387         }
7388 
7389         cr4 = cr4_read_shadow();
7390         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7391                 vmcs_writel(HOST_CR4, cr4);
7392                 vmx->loaded_vmcs->host_state.cr4 = cr4;
7393         }
7394 
7395         /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7396         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7397                 set_debugreg(vcpu->arch.dr6, 6);
7398 
7399         /* When single-stepping over STI and MOV SS, we must clear the
7400          * corresponding interruptibility bits in the guest state. Otherwise
7401          * vmentry fails as it then expects bit 14 (BS) in pending debug
7402          * exceptions being set, but that's not correct for the guest debugging
7403          * case. */
7404         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7405                 vmx_set_interrupt_shadow(vcpu, 0);
7406 
7407         kvm_load_guest_xsave_state(vcpu);
7408 
7409         pt_guest_enter(vmx);
7410 
7411         atomic_switch_perf_msrs(vmx);
7412         if (intel_pmu_lbr_is_enabled(vcpu))
7413                 vmx_passthrough_lbr_msrs(vcpu);
7414 
7415         if (enable_preemption_timer)
7416                 vmx_update_hv_timer(vcpu, force_immediate_exit);
7417         else if (force_immediate_exit)
7418                 smp_send_reschedule(vcpu->cpu);
7419 
7420         kvm_wait_lapic_expire(vcpu);
7421 
7422         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7423         vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7424 
7425         /* All fields are clean at this point */
7426         if (kvm_is_using_evmcs()) {
7427                 current_evmcs->hv_clean_fields |=
7428                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7429 
7430                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7431         }
7432 
7433         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7434         if (vmx->host_debugctlmsr)
7435                 update_debugctlmsr(vmx->host_debugctlmsr);
7436 
7437 #ifndef CONFIG_X86_64
7438         /*
7439          * The sysexit path does not restore ds/es, so we must set them to
7440          * a reasonable value ourselves.
7441          *
7442          * We can't defer this to vmx_prepare_switch_to_host() since that
7443          * function may be executed in interrupt context, which saves and
7444          * restore segments around it, nullifying its effect.
7445          */
7446         loadsegment(ds, __USER_DS);
7447         loadsegment(es, __USER_DS);
7448 #endif
7449 
7450         pt_guest_exit(vmx);
7451 
7452         kvm_load_host_xsave_state(vcpu);
7453 
7454         if (is_guest_mode(vcpu)) {
7455                 /*
7456                  * Track VMLAUNCH/VMRESUME that have made past guest state
7457                  * checking.
7458                  */
7459                 if (vmx->nested.nested_run_pending &&
7460                     !vmx->exit_reason.failed_vmentry)
7461                         ++vcpu->stat.nested_run;
7462 
7463                 vmx->nested.nested_run_pending = 0;
7464         }
7465 
7466         if (unlikely(vmx->fail))
7467                 return EXIT_FASTPATH_NONE;
7468 
7469         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7470                 kvm_machine_check();
7471 
7472         trace_kvm_exit(vcpu, KVM_ISA_VMX);
7473 
7474         if (unlikely(vmx->exit_reason.failed_vmentry))
7475                 return EXIT_FASTPATH_NONE;
7476 
7477         vmx->loaded_vmcs->launched = 1;
7478 
7479         vmx_recover_nmi_blocking(vmx);
7480         vmx_complete_interrupts(vmx);
7481 
7482         return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7483 }
7484 
7485 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7486 {
7487         struct vcpu_vmx *vmx = to_vmx(vcpu);
7488 
7489         if (enable_pml)
7490                 vmx_destroy_pml_buffer(vmx);
7491         free_vpid(vmx->vpid);
7492         nested_vmx_free_vcpu(vcpu);
7493         free_loaded_vmcs(vmx->loaded_vmcs);
7494         free_page((unsigned long)vmx->ve_info);
7495 }
7496 
7497 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7498 {
7499         struct vmx_uret_msr *tsx_ctrl;
7500         struct vcpu_vmx *vmx;
7501         int i, err;
7502 
7503         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7504         vmx = to_vmx(vcpu);
7505 
7506         INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7507 
7508         err = -ENOMEM;
7509 
7510         vmx->vpid = allocate_vpid();
7511 
7512         /*
7513          * If PML is turned on, failure on enabling PML just results in failure
7514          * of creating the vcpu, therefore we can simplify PML logic (by
7515          * avoiding dealing with cases, such as enabling PML partially on vcpus
7516          * for the guest), etc.
7517          */
7518         if (enable_pml) {
7519                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7520                 if (!vmx->pml_pg)
7521                         goto free_vpid;
7522         }
7523 
7524         for (i = 0; i < kvm_nr_uret_msrs; ++i)
7525                 vmx->guest_uret_msrs[i].mask = -1ull;
7526         if (boot_cpu_has(X86_FEATURE_RTM)) {
7527                 /*
7528                  * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7529                  * Keep the host value unchanged to avoid changing CPUID bits
7530                  * under the host kernel's feet.
7531                  */
7532                 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7533                 if (tsx_ctrl)
7534                         tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7535         }
7536 
7537         err = alloc_loaded_vmcs(&vmx->vmcs01);
7538         if (err < 0)
7539                 goto free_pml;
7540 
7541         /*
7542          * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7543          * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7544          * feature only for vmcs01, KVM currently isn't equipped to realize any
7545          * performance benefits from enabling it for vmcs02.
7546          */
7547         if (kvm_is_using_evmcs() &&
7548             (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7549                 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7550 
7551                 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7552         }
7553 
7554         /* The MSR bitmap starts with all ones */
7555         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7556         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7557 
7558         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7559 #ifdef CONFIG_X86_64
7560         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7561         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7562         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7563 #endif
7564         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7565         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7566         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7567         if (kvm_cstate_in_guest(vcpu->kvm)) {
7568                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7569                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7570                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7571                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7572         }
7573 
7574         vmx->loaded_vmcs = &vmx->vmcs01;
7575 
7576         if (cpu_need_virtualize_apic_accesses(vcpu)) {
7577                 err = kvm_alloc_apic_access_page(vcpu->kvm);
7578                 if (err)
7579                         goto free_vmcs;
7580         }
7581 
7582         if (enable_ept && !enable_unrestricted_guest) {
7583                 err = init_rmode_identity_map(vcpu->kvm);
7584                 if (err)
7585                         goto free_vmcs;
7586         }
7587 
7588         err = -ENOMEM;
7589         if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7590                 struct page *page;
7591 
7592                 BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7593 
7594                 /* ve_info must be page aligned. */
7595                 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7596                 if (!page)
7597                         goto free_vmcs;
7598 
7599                 vmx->ve_info = page_to_virt(page);
7600         }
7601 
7602         if (vmx_can_use_ipiv(vcpu))
7603                 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7604                            __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7605 
7606         return 0;
7607 
7608 free_vmcs:
7609         free_loaded_vmcs(vmx->loaded_vmcs);
7610 free_pml:
7611         vmx_destroy_pml_buffer(vmx);
7612 free_vpid:
7613         free_vpid(vmx->vpid);
7614         return err;
7615 }
7616 
7617 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7618 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7619 
7620 int vmx_vm_init(struct kvm *kvm)
7621 {
7622         if (!ple_gap)
7623                 kvm->arch.pause_in_guest = true;
7624 
7625         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7626                 switch (l1tf_mitigation) {
7627                 case L1TF_MITIGATION_OFF:
7628                 case L1TF_MITIGATION_FLUSH_NOWARN:
7629                         /* 'I explicitly don't care' is set */
7630                         break;
7631                 case L1TF_MITIGATION_FLUSH:
7632                 case L1TF_MITIGATION_FLUSH_NOSMT:
7633                 case L1TF_MITIGATION_FULL:
7634                         /*
7635                          * Warn upon starting the first VM in a potentially
7636                          * insecure environment.
7637                          */
7638                         if (sched_smt_active())
7639                                 pr_warn_once(L1TF_MSG_SMT);
7640                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7641                                 pr_warn_once(L1TF_MSG_L1D);
7642                         break;
7643                 case L1TF_MITIGATION_FULL_FORCE:
7644                         /* Flush is enforced */
7645                         break;
7646                 }
7647         }
7648         return 0;
7649 }
7650 
7651 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7652 {
7653         /*
7654          * Force UC for host MMIO regions, as allowing the guest to access MMIO
7655          * with cacheable accesses will result in Machine Checks.
7656          */
7657         if (is_mmio)
7658                 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7659 
7660         /*
7661          * Force WB and ignore guest PAT if the VM does NOT have a non-coherent
7662          * device attached.  Letting the guest control memory types on Intel
7663          * CPUs may result in unexpected behavior, and so KVM's ABI is to trust
7664          * the guest to behave only as a last resort.
7665          */
7666         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7667                 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7668 
7669         return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7670 }
7671 
7672 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7673 {
7674         /*
7675          * These bits in the secondary execution controls field
7676          * are dynamic, the others are mostly based on the hypervisor
7677          * architecture and the guest's CPUID.  Do not touch the
7678          * dynamic bits.
7679          */
7680         u32 mask =
7681                 SECONDARY_EXEC_SHADOW_VMCS |
7682                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7683                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7684                 SECONDARY_EXEC_DESC;
7685 
7686         u32 cur_ctl = secondary_exec_controls_get(vmx);
7687 
7688         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7689 }
7690 
7691 /*
7692  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7693  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7694  */
7695 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7696 {
7697         struct vcpu_vmx *vmx = to_vmx(vcpu);
7698         struct kvm_cpuid_entry2 *entry;
7699 
7700         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7701         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7702 
7703 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7704         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7705                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7706 } while (0)
7707 
7708         entry = kvm_find_cpuid_entry(vcpu, 0x1);
7709         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7710         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7711         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7712         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7713         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7714         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7715         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7716         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7717         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7718         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7719         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7720         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7721         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7722         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7723 
7724         entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7725         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7726         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7727         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7728         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7729         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7730         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7731 
7732         entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7733         cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7734 
7735 #undef cr4_fixed1_update
7736 }
7737 
7738 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7739 {
7740         struct vcpu_vmx *vmx = to_vmx(vcpu);
7741         struct kvm_cpuid_entry2 *best = NULL;
7742         int i;
7743 
7744         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7745                 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7746                 if (!best)
7747                         return;
7748                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7749                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7750                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7751                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7752         }
7753 
7754         /* Get the number of configurable Address Ranges for filtering */
7755         vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7756                                                 PT_CAP_num_address_ranges);
7757 
7758         /* Initialize and clear the no dependency bits */
7759         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7760                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7761                         RTIT_CTL_BRANCH_EN);
7762 
7763         /*
7764          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7765          * will inject an #GP
7766          */
7767         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7768                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7769 
7770         /*
7771          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7772          * PSBFreq can be set
7773          */
7774         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7775                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7776                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7777 
7778         /*
7779          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7780          */
7781         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7782                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7783                                               RTIT_CTL_MTC_RANGE);
7784 
7785         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7786         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7787                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7788                                                         RTIT_CTL_PTW_EN);
7789 
7790         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7791         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7792                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7793 
7794         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7795         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7796                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7797 
7798         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7799         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7800                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7801 
7802         /* unmask address range configure area */
7803         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7804                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7805 }
7806 
7807 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7808 {
7809         struct vcpu_vmx *vmx = to_vmx(vcpu);
7810 
7811         /*
7812          * XSAVES is effectively enabled if and only if XSAVE is also exposed
7813          * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7814          * set if and only if XSAVE is supported.
7815          */
7816         if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7817             guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7818                 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7819 
7820         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7821         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7822 
7823         vmx_setup_uret_msrs(vmx);
7824 
7825         if (cpu_has_secondary_exec_ctrls())
7826                 vmcs_set_secondary_exec_control(vmx,
7827                                                 vmx_secondary_exec_control(vmx));
7828 
7829         if (guest_can_use(vcpu, X86_FEATURE_VMX))
7830                 vmx->msr_ia32_feature_control_valid_bits |=
7831                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7832                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7833         else
7834                 vmx->msr_ia32_feature_control_valid_bits &=
7835                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7836                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7837 
7838         if (guest_can_use(vcpu, X86_FEATURE_VMX))
7839                 nested_vmx_cr_fixed1_bits_update(vcpu);
7840 
7841         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7842                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7843                 update_intel_pt_cfg(vcpu);
7844 
7845         if (boot_cpu_has(X86_FEATURE_RTM)) {
7846                 struct vmx_uret_msr *msr;
7847                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7848                 if (msr) {
7849                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7850                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7851                 }
7852         }
7853 
7854         if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7855                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7856                                           !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7857 
7858         if (boot_cpu_has(X86_FEATURE_IBPB))
7859                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7860                                           !guest_has_pred_cmd_msr(vcpu));
7861 
7862         if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7863                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7864                                           !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7865 
7866         set_cr4_guest_host_mask(vmx);
7867 
7868         vmx_write_encls_bitmap(vcpu, NULL);
7869         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7870                 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7871         else
7872                 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7873 
7874         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7875                 vmx->msr_ia32_feature_control_valid_bits |=
7876                         FEAT_CTL_SGX_LC_ENABLED;
7877         else
7878                 vmx->msr_ia32_feature_control_valid_bits &=
7879                         ~FEAT_CTL_SGX_LC_ENABLED;
7880 
7881         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7882         vmx_update_exception_bitmap(vcpu);
7883 }
7884 
7885 static __init u64 vmx_get_perf_capabilities(void)
7886 {
7887         u64 perf_cap = PMU_CAP_FW_WRITES;
7888         u64 host_perf_cap = 0;
7889 
7890         if (!enable_pmu)
7891                 return 0;
7892 
7893         if (boot_cpu_has(X86_FEATURE_PDCM))
7894                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7895 
7896         if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7897                 x86_perf_get_lbr(&vmx_lbr_caps);
7898 
7899                 /*
7900                  * KVM requires LBR callstack support, as the overhead due to
7901                  * context switching LBRs without said support is too high.
7902                  * See intel_pmu_create_guest_lbr_event() for more info.
7903                  */
7904                 if (!vmx_lbr_caps.has_callstack)
7905                         memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7906                 else if (vmx_lbr_caps.nr)
7907                         perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7908         }
7909 
7910         if (vmx_pebs_supported()) {
7911                 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7912 
7913                 /*
7914                  * Disallow adaptive PEBS as it is functionally broken, can be
7915                  * used by the guest to read *host* LBRs, and can be used to
7916                  * bypass userspace event filters.  To correctly and safely
7917                  * support adaptive PEBS, KVM needs to:
7918                  *
7919                  * 1. Account for the ADAPTIVE flag when (re)programming fixed
7920                  *    counters.
7921                  *
7922                  * 2. Gain support from perf (or take direct control of counter
7923                  *    programming) to support events without adaptive PEBS
7924                  *    enabled for the hardware counter.
7925                  *
7926                  * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7927                  *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7928                  *
7929                  * 4. Document which PMU events are effectively exposed to the
7930                  *    guest via adaptive PEBS, and make adaptive PEBS mutually
7931                  *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7932                  */
7933                 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7934         }
7935 
7936         return perf_cap;
7937 }
7938 
7939 static __init void vmx_set_cpu_caps(void)
7940 {
7941         kvm_set_cpu_caps();
7942 
7943         /* CPUID 0x1 */
7944         if (nested)
7945                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7946 
7947         /* CPUID 0x7 */
7948         if (kvm_mpx_supported())
7949                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7950         if (!cpu_has_vmx_invpcid())
7951                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7952         if (vmx_pt_mode_is_host_guest())
7953                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7954         if (vmx_pebs_supported()) {
7955                 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7956                 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7957         }
7958 
7959         if (!enable_pmu)
7960                 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7961         kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7962 
7963         if (!enable_sgx) {
7964                 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7965                 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7966                 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7967                 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7968         }
7969 
7970         if (vmx_umip_emulated())
7971                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7972 
7973         /* CPUID 0xD.1 */
7974         kvm_caps.supported_xss = 0;
7975         if (!cpu_has_vmx_xsaves())
7976                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7977 
7978         /* CPUID 0x80000001 and 0x7 (RDPID) */
7979         if (!cpu_has_vmx_rdtscp()) {
7980                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7981                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7982         }
7983 
7984         if (cpu_has_vmx_waitpkg())
7985                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7986 }
7987 
7988 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7989                                   struct x86_instruction_info *info)
7990 {
7991         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7992         unsigned short port;
7993         bool intercept;
7994         int size;
7995 
7996         if (info->intercept == x86_intercept_in ||
7997             info->intercept == x86_intercept_ins) {
7998                 port = info->src_val;
7999                 size = info->dst_bytes;
8000         } else {
8001                 port = info->dst_val;
8002                 size = info->src_bytes;
8003         }
8004 
8005         /*
8006          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8007          * VM-exits depend on the 'unconditional IO exiting' VM-execution
8008          * control.
8009          *
8010          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8011          */
8012         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8013                 intercept = nested_cpu_has(vmcs12,
8014                                            CPU_BASED_UNCOND_IO_EXITING);
8015         else
8016                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
8017 
8018         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8019         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
8020 }
8021 
8022 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8023                         struct x86_instruction_info *info,
8024                         enum x86_intercept_stage stage,
8025                         struct x86_exception *exception)
8026 {
8027         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8028 
8029         switch (info->intercept) {
8030         /*
8031          * RDPID causes #UD if disabled through secondary execution controls.
8032          * Because it is marked as EmulateOnUD, we need to intercept it here.
8033          * Note, RDPID is hidden behind ENABLE_RDTSCP.
8034          */
8035         case x86_intercept_rdpid:
8036                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8037                         exception->vector = UD_VECTOR;
8038                         exception->error_code_valid = false;
8039                         return X86EMUL_PROPAGATE_FAULT;
8040                 }
8041                 break;
8042 
8043         case x86_intercept_in:
8044         case x86_intercept_ins:
8045         case x86_intercept_out:
8046         case x86_intercept_outs:
8047                 return vmx_check_intercept_io(vcpu, info);
8048 
8049         case x86_intercept_lgdt:
8050         case x86_intercept_lidt:
8051         case x86_intercept_lldt:
8052         case x86_intercept_ltr:
8053         case x86_intercept_sgdt:
8054         case x86_intercept_sidt:
8055         case x86_intercept_sldt:
8056         case x86_intercept_str:
8057                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8058                         return X86EMUL_CONTINUE;
8059 
8060                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8061                 break;
8062 
8063         case x86_intercept_pause:
8064                 /*
8065                  * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8066                  * with vanilla NOPs in the emulator.  Apply the interception
8067                  * check only to actual PAUSE instructions.  Don't check
8068                  * PAUSE-loop-exiting, software can't expect a given PAUSE to
8069                  * exit, i.e. KVM is within its rights to allow L2 to execute
8070                  * the PAUSE.
8071                  */
8072                 if ((info->rep_prefix != REPE_PREFIX) ||
8073                     !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8074                         return X86EMUL_CONTINUE;
8075 
8076                 break;
8077 
8078         /* TODO: check more intercepts... */
8079         default:
8080                 break;
8081         }
8082 
8083         return X86EMUL_UNHANDLEABLE;
8084 }
8085 
8086 #ifdef CONFIG_X86_64
8087 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8088 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8089                                   u64 divisor, u64 *result)
8090 {
8091         u64 low = a << shift, high = a >> (64 - shift);
8092 
8093         /* To avoid the overflow on divq */
8094         if (high >= divisor)
8095                 return 1;
8096 
8097         /* Low hold the result, high hold rem which is discarded */
8098         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8099             "rm" (divisor), "" (low), "1" (high));
8100         *result = low;
8101 
8102         return 0;
8103 }
8104 
8105 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8106                      bool *expired)
8107 {
8108         struct vcpu_vmx *vmx;
8109         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8110         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8111 
8112         vmx = to_vmx(vcpu);
8113         tscl = rdtsc();
8114         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8115         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8116         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8117                                                     ktimer->timer_advance_ns);
8118 
8119         if (delta_tsc > lapic_timer_advance_cycles)
8120                 delta_tsc -= lapic_timer_advance_cycles;
8121         else
8122                 delta_tsc = 0;
8123 
8124         /* Convert to host delta tsc if tsc scaling is enabled */
8125         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8126             delta_tsc && u64_shl_div_u64(delta_tsc,
8127                                 kvm_caps.tsc_scaling_ratio_frac_bits,
8128                                 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8129                 return -ERANGE;
8130 
8131         /*
8132          * If the delta tsc can't fit in the 32 bit after the multi shift,
8133          * we can't use the preemption timer.
8134          * It's possible that it fits on later vmentries, but checking
8135          * on every vmentry is costly so we just use an hrtimer.
8136          */
8137         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8138                 return -ERANGE;
8139 
8140         vmx->hv_deadline_tsc = tscl + delta_tsc;
8141         *expired = !delta_tsc;
8142         return 0;
8143 }
8144 
8145 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8146 {
8147         to_vmx(vcpu)->hv_deadline_tsc = -1;
8148 }
8149 #endif
8150 
8151 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8152 {
8153         struct vcpu_vmx *vmx = to_vmx(vcpu);
8154 
8155         if (WARN_ON_ONCE(!enable_pml))
8156                 return;
8157 
8158         if (is_guest_mode(vcpu)) {
8159                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8160                 return;
8161         }
8162 
8163         /*
8164          * Note, nr_memslots_dirty_logging can be changed concurrent with this
8165          * code, but in that case another update request will be made and so
8166          * the guest will never run with a stale PML value.
8167          */
8168         if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8169                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8170         else
8171                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8172 }
8173 
8174 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8175 {
8176         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8177                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8178                         FEAT_CTL_LMCE_ENABLED;
8179         else
8180                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8181                         ~FEAT_CTL_LMCE_ENABLED;
8182 }
8183 
8184 #ifdef CONFIG_KVM_SMM
8185 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8186 {
8187         /* we need a nested vmexit to enter SMM, postpone if run is pending */
8188         if (to_vmx(vcpu)->nested.nested_run_pending)
8189                 return -EBUSY;
8190         return !is_smm(vcpu);
8191 }
8192 
8193 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8194 {
8195         struct vcpu_vmx *vmx = to_vmx(vcpu);
8196 
8197         /*
8198          * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8199          * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8200          * SMI and RSM only modify state that is saved and restored via SMRAM.
8201          * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8202          * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8203          */
8204         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8205         if (vmx->nested.smm.guest_mode)
8206                 nested_vmx_vmexit(vcpu, -1, 0, 0);
8207 
8208         vmx->nested.smm.vmxon = vmx->nested.vmxon;
8209         vmx->nested.vmxon = false;
8210         vmx_clear_hlt(vcpu);
8211         return 0;
8212 }
8213 
8214 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8215 {
8216         struct vcpu_vmx *vmx = to_vmx(vcpu);
8217         int ret;
8218 
8219         if (vmx->nested.smm.vmxon) {
8220                 vmx->nested.vmxon = true;
8221                 vmx->nested.smm.vmxon = false;
8222         }
8223 
8224         if (vmx->nested.smm.guest_mode) {
8225                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8226                 if (ret)
8227                         return ret;
8228 
8229                 vmx->nested.nested_run_pending = 1;
8230                 vmx->nested.smm.guest_mode = false;
8231         }
8232         return 0;
8233 }
8234 
8235 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8236 {
8237         /* RSM will cause a vmexit anyway.  */
8238 }
8239 #endif
8240 
8241 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8242 {
8243         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8244 }
8245 
8246 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8247 {
8248         if (is_guest_mode(vcpu)) {
8249                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8250 
8251                 if (hrtimer_try_to_cancel(timer) == 1)
8252                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8253         }
8254 }
8255 
8256 void vmx_hardware_unsetup(void)
8257 {
8258         kvm_set_posted_intr_wakeup_handler(NULL);
8259 
8260         if (nested)
8261                 nested_vmx_hardware_unsetup();
8262 
8263         free_kvm_area();
8264 }
8265 
8266 void vmx_vm_destroy(struct kvm *kvm)
8267 {
8268         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8269 
8270         free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8271 }
8272 
8273 /*
8274  * Note, the SDM states that the linear address is masked *after* the modified
8275  * canonicality check, whereas KVM masks (untags) the address and then performs
8276  * a "normal" canonicality check.  Functionally, the two methods are identical,
8277  * and when the masking occurs relative to the canonicality check isn't visible
8278  * to software, i.e. KVM's behavior doesn't violate the SDM.
8279  */
8280 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8281 {
8282         int lam_bit;
8283         unsigned long cr3_bits;
8284 
8285         if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8286                 return gva;
8287 
8288         if (!is_64_bit_mode(vcpu))
8289                 return gva;
8290 
8291         /*
8292          * Bit 63 determines if the address should be treated as user address
8293          * or a supervisor address.
8294          */
8295         if (!(gva & BIT_ULL(63))) {
8296                 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8297                 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8298                         return gva;
8299 
8300                 /* LAM_U48 is ignored if LAM_U57 is set. */
8301                 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8302         } else {
8303                 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8304                         return gva;
8305 
8306                 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8307         }
8308 
8309         /*
8310          * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8311          * Bit 63 is retained from the raw virtual address so that untagging
8312          * doesn't change a user access to a supervisor access, and vice versa.
8313          */
8314         return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8315 }
8316 
8317 static unsigned int vmx_handle_intel_pt_intr(void)
8318 {
8319         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8320 
8321         /* '' on failure so that the !PT case can use a RET0 static call. */
8322         if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8323                 return 0;
8324 
8325         kvm_make_request(KVM_REQ_PMI, vcpu);
8326         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8327                   (unsigned long *)&vcpu->arch.pmu.global_status);
8328         return 1;
8329 }
8330 
8331 static __init void vmx_setup_user_return_msrs(void)
8332 {
8333 
8334         /*
8335          * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8336          * will emulate SYSCALL in legacy mode if the vendor string in guest
8337          * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8338          * support this emulation, MSR_STAR is included in the list for i386,
8339          * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8340          * into hardware and is here purely for emulation purposes.
8341          */
8342         const u32 vmx_uret_msrs_list[] = {
8343         #ifdef CONFIG_X86_64
8344                 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8345         #endif
8346                 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8347                 MSR_IA32_TSX_CTRL,
8348         };
8349         int i;
8350 
8351         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8352 
8353         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8354                 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8355 }
8356 
8357 static void __init vmx_setup_me_spte_mask(void)
8358 {
8359         u64 me_mask = 0;
8360 
8361         /*
8362          * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8363          * kvm_host.maxphyaddr.  On MKTME and/or TDX capable systems,
8364          * boot_cpu_data.x86_phys_bits holds the actual physical address
8365          * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8366          * MAXPHYADDR reported by CPUID.  Those bits between are KeyID bits.
8367          */
8368         if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8369                 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8370                                     kvm_host.maxphyaddr - 1);
8371 
8372         /*
8373          * Unlike SME, host kernel doesn't support setting up any
8374          * MKTME KeyID on Intel platforms.  No memory encryption
8375          * bits should be included into the SPTE.
8376          */
8377         kvm_mmu_set_me_spte_mask(0, me_mask);
8378 }
8379 
8380 __init int vmx_hardware_setup(void)
8381 {
8382         unsigned long host_bndcfgs;
8383         struct desc_ptr dt;
8384         int r;
8385 
8386         store_idt(&dt);
8387         host_idt_base = dt.address;
8388 
8389         vmx_setup_user_return_msrs();
8390 
8391         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8392                 return -EIO;
8393 
8394         if (cpu_has_perf_global_ctrl_bug())
8395                 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8396                              "does not work properly. Using workaround\n");
8397 
8398         if (boot_cpu_has(X86_FEATURE_NX))
8399                 kvm_enable_efer_bits(EFER_NX);
8400 
8401         if (boot_cpu_has(X86_FEATURE_MPX)) {
8402                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8403                 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8404         }
8405 
8406         if (!cpu_has_vmx_mpx())
8407                 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8408                                              XFEATURE_MASK_BNDCSR);
8409 
8410         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8411             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8412                 enable_vpid = 0;
8413 
8414         if (!cpu_has_vmx_ept() ||
8415             !cpu_has_vmx_ept_4levels() ||
8416             !cpu_has_vmx_ept_mt_wb() ||
8417             !cpu_has_vmx_invept_global())
8418                 enable_ept = 0;
8419 
8420         /* NX support is required for shadow paging. */
8421         if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8422                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8423                 return -EOPNOTSUPP;
8424         }
8425 
8426         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8427                 enable_ept_ad_bits = 0;
8428 
8429         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8430                 enable_unrestricted_guest = 0;
8431 
8432         if (!cpu_has_vmx_flexpriority())
8433                 flexpriority_enabled = 0;
8434 
8435         if (!cpu_has_virtual_nmis())
8436                 enable_vnmi = 0;
8437 
8438 #ifdef CONFIG_X86_SGX_KVM
8439         if (!cpu_has_vmx_encls_vmexit())
8440                 enable_sgx = false;
8441 #endif
8442 
8443         /*
8444          * set_apic_access_page_addr() is used to reload apic access
8445          * page upon invalidation.  No need to do anything if not
8446          * using the APIC_ACCESS_ADDR VMCS field.
8447          */
8448         if (!flexpriority_enabled)
8449                 vt_x86_ops.set_apic_access_page_addr = NULL;
8450 
8451         if (!cpu_has_vmx_tpr_shadow())
8452                 vt_x86_ops.update_cr8_intercept = NULL;
8453 
8454 #if IS_ENABLED(CONFIG_HYPERV)
8455         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8456             && enable_ept) {
8457                 vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8458                 vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8459         }
8460 #endif
8461 
8462         if (!cpu_has_vmx_ple()) {
8463                 ple_gap = 0;
8464                 ple_window = 0;
8465                 ple_window_grow = 0;
8466                 ple_window_max = 0;
8467                 ple_window_shrink = 0;
8468         }
8469 
8470         if (!cpu_has_vmx_apicv())
8471                 enable_apicv = 0;
8472         if (!enable_apicv)
8473                 vt_x86_ops.sync_pir_to_irr = NULL;
8474 
8475         if (!enable_apicv || !cpu_has_vmx_ipiv())
8476                 enable_ipiv = false;
8477 
8478         if (cpu_has_vmx_tsc_scaling())
8479                 kvm_caps.has_tsc_control = true;
8480 
8481         kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8482         kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8483         kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8484         kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8485 
8486         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8487 
8488         if (enable_ept)
8489                 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8490                                       cpu_has_vmx_ept_execute_only());
8491 
8492         /*
8493          * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8494          * bits to shadow_zero_check.
8495          */
8496         vmx_setup_me_spte_mask();
8497 
8498         kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8499                           ept_caps_to_lpage_level(vmx_capability.ept));
8500 
8501         /*
8502          * Only enable PML when hardware supports PML feature, and both EPT
8503          * and EPT A/D bit features are enabled -- PML depends on them to work.
8504          */
8505         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8506                 enable_pml = 0;
8507 
8508         if (!enable_pml)
8509                 vt_x86_ops.cpu_dirty_log_size = 0;
8510 
8511         if (!cpu_has_vmx_preemption_timer())
8512                 enable_preemption_timer = false;
8513 
8514         if (enable_preemption_timer) {
8515                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8516 
8517                 cpu_preemption_timer_multi =
8518                         vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8519 
8520                 if (tsc_khz)
8521                         use_timer_freq = (u64)tsc_khz * 1000;
8522                 use_timer_freq >>= cpu_preemption_timer_multi;
8523 
8524                 /*
8525                  * KVM "disables" the preemption timer by setting it to its max
8526                  * value.  Don't use the timer if it might cause spurious exits
8527                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8528                  */
8529                 if (use_timer_freq > 0xffffffffu / 10)
8530                         enable_preemption_timer = false;
8531         }
8532 
8533         if (!enable_preemption_timer) {
8534                 vt_x86_ops.set_hv_timer = NULL;
8535                 vt_x86_ops.cancel_hv_timer = NULL;
8536         }
8537 
8538         kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8539         kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8540 
8541         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8542                 return -EINVAL;
8543         if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8544                 pt_mode = PT_MODE_SYSTEM;
8545         if (pt_mode == PT_MODE_HOST_GUEST)
8546                 vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8547         else
8548                 vt_init_ops.handle_intel_pt_intr = NULL;
8549 
8550         setup_default_sgx_lepubkeyhash();
8551 
8552         if (nested) {
8553                 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8554 
8555                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8556                 if (r)
8557                         return r;
8558         }
8559 
8560         vmx_set_cpu_caps();
8561 
8562         r = alloc_kvm_area();
8563         if (r && nested)
8564                 nested_vmx_hardware_unsetup();
8565 
8566         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8567 
8568         return r;
8569 }
8570 
8571 static void vmx_cleanup_l1d_flush(void)
8572 {
8573         if (vmx_l1d_flush_pages) {
8574                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8575                 vmx_l1d_flush_pages = NULL;
8576         }
8577         /* Restore state so sysfs ignores VMX */
8578         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8579 }
8580 
8581 static void __vmx_exit(void)
8582 {
8583         allow_smaller_maxphyaddr = false;
8584 
8585         cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8586 
8587         vmx_cleanup_l1d_flush();
8588 }
8589 
8590 static void vmx_exit(void)
8591 {
8592         kvm_exit();
8593         __vmx_exit();
8594         kvm_x86_vendor_exit();
8595 
8596 }
8597 module_exit(vmx_exit);
8598 
8599 static int __init vmx_init(void)
8600 {
8601         int r, cpu;
8602 
8603         if (!kvm_is_vmx_supported())
8604                 return -EOPNOTSUPP;
8605 
8606         /*
8607          * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8608          * to unwind if a later step fails.
8609          */
8610         hv_init_evmcs();
8611 
8612         r = kvm_x86_vendor_init(&vt_init_ops);
8613         if (r)
8614                 return r;
8615 
8616         /*
8617          * Must be called after common x86 init so enable_ept is properly set
8618          * up. Hand the parameter mitigation value in which was stored in
8619          * the pre module init parser. If no parameter was given, it will
8620          * contain 'auto' which will be turned into the default 'cond'
8621          * mitigation mode.
8622          */
8623         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8624         if (r)
8625                 goto err_l1d_flush;
8626 
8627         for_each_possible_cpu(cpu) {
8628                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8629 
8630                 pi_init_cpu(cpu);
8631         }
8632 
8633         cpu_emergency_register_virt_callback(vmx_emergency_disable);
8634 
8635         vmx_check_vmcs12_offsets();
8636 
8637         /*
8638          * Shadow paging doesn't have a (further) performance penalty
8639          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8640          * by default
8641          */
8642         if (!enable_ept)
8643                 allow_smaller_maxphyaddr = true;
8644 
8645         /*
8646          * Common KVM initialization _must_ come last, after this, /dev/kvm is
8647          * exposed to userspace!
8648          */
8649         r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8650                      THIS_MODULE);
8651         if (r)
8652                 goto err_kvm_init;
8653 
8654         return 0;
8655 
8656 err_kvm_init:
8657         __vmx_exit();
8658 err_l1d_flush:
8659         kvm_x86_vendor_exit();
8660         return r;
8661 }
8662 module_init(vmx_init);
8663 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php