1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 /* 96 * Note, kvm_caps fields should *never* have default values, all fields must be 97 * recomputed from scratch during vendor module load, e.g. to account for a 98 * vendor module being reloaded with different module parameters. 99 */ 100 struct kvm_caps kvm_caps __read_mostly; 101 EXPORT_SYMBOL_GPL(kvm_caps); 102 103 struct kvm_host_values kvm_host __read_mostly; 104 EXPORT_SYMBOL_GPL(kvm_host); 105 106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 107 108 #define emul_to_vcpu(ctxt) \ 109 ((struct kvm_vcpu *)(ctxt)->vcpu) 110 111 /* EFER defaults: 112 * - enable syscall per default because its emulated by KVM 113 * - enable LME and LMA per default on 64 bit KVM 114 */ 115 #ifdef CONFIG_X86_64 116 static 117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 118 #else 119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 120 #endif 121 122 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 123 124 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 125 126 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 127 128 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 129 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 130 131 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 132 static void process_nmi(struct kvm_vcpu *vcpu); 133 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 134 static void store_regs(struct kvm_vcpu *vcpu); 135 static int sync_regs(struct kvm_vcpu *vcpu); 136 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 137 138 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 139 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 140 141 static DEFINE_MUTEX(vendor_module_lock); 142 struct kvm_x86_ops kvm_x86_ops __read_mostly; 143 144 #define KVM_X86_OP(func) \ 145 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 146 *(((struct kvm_x86_ops *)0)->func)); 147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 149 #include <asm/kvm-x86-ops.h> 150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 152 153 static bool __read_mostly ignore_msrs = 0; 154 module_param(ignore_msrs, bool, 0644); 155 156 bool __read_mostly report_ignored_msrs = true; 157 module_param(report_ignored_msrs, bool, 0644); 158 EXPORT_SYMBOL_GPL(report_ignored_msrs); 159 160 unsigned int min_timer_period_us = 200; 161 module_param(min_timer_period_us, uint, 0644); 162 163 static bool __read_mostly kvmclock_periodic_sync = true; 164 module_param(kvmclock_periodic_sync, bool, 0444); 165 166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 167 static u32 __read_mostly tsc_tolerance_ppm = 250; 168 module_param(tsc_tolerance_ppm, uint, 0644); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, 0444); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, 0444); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, 0644); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* Enable/disable SMT_RSB bug mitigation */ 197 static bool __read_mostly mitigate_smt_rsb; 198 module_param(mitigate_smt_rsb, bool, 0444); 199 200 /* 201 * Restoring the host value for MSRs that are only consumed when running in 202 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 203 * returns to userspace, i.e. the kernel can run with the guest's value. 204 */ 205 #define KVM_MAX_NR_USER_RETURN_MSRS 16 206 207 struct kvm_user_return_msrs { 208 struct user_return_notifier urn; 209 bool registered; 210 struct kvm_user_return_msr_values { 211 u64 host; 212 u64 curr; 213 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 214 }; 215 216 u32 __read_mostly kvm_nr_uret_msrs; 217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 219 static struct kvm_user_return_msrs __percpu *user_return_msrs; 220 221 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 222 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 223 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 224 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 225 226 bool __read_mostly allow_smaller_maxphyaddr = 0; 227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 228 229 bool __read_mostly enable_apicv = true; 230 EXPORT_SYMBOL_GPL(enable_apicv); 231 232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 233 KVM_GENERIC_VM_STATS(), 234 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 235 STATS_DESC_COUNTER(VM, mmu_pte_write), 236 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 237 STATS_DESC_COUNTER(VM, mmu_flooded), 238 STATS_DESC_COUNTER(VM, mmu_recycled), 239 STATS_DESC_COUNTER(VM, mmu_cache_miss), 240 STATS_DESC_ICOUNTER(VM, mmu_unsync), 241 STATS_DESC_ICOUNTER(VM, pages_4k), 242 STATS_DESC_ICOUNTER(VM, pages_2m), 243 STATS_DESC_ICOUNTER(VM, pages_1g), 244 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 245 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 246 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 247 }; 248 249 const struct kvm_stats_header kvm_vm_stats_header = { 250 .name_size = KVM_STATS_NAME_SIZE, 251 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 252 .id_offset = sizeof(struct kvm_stats_header), 253 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 254 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 255 sizeof(kvm_vm_stats_desc), 256 }; 257 258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 259 KVM_GENERIC_VCPU_STATS(), 260 STATS_DESC_COUNTER(VCPU, pf_taken), 261 STATS_DESC_COUNTER(VCPU, pf_fixed), 262 STATS_DESC_COUNTER(VCPU, pf_emulate), 263 STATS_DESC_COUNTER(VCPU, pf_spurious), 264 STATS_DESC_COUNTER(VCPU, pf_fast), 265 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 266 STATS_DESC_COUNTER(VCPU, pf_guest), 267 STATS_DESC_COUNTER(VCPU, tlb_flush), 268 STATS_DESC_COUNTER(VCPU, invlpg), 269 STATS_DESC_COUNTER(VCPU, exits), 270 STATS_DESC_COUNTER(VCPU, io_exits), 271 STATS_DESC_COUNTER(VCPU, mmio_exits), 272 STATS_DESC_COUNTER(VCPU, signal_exits), 273 STATS_DESC_COUNTER(VCPU, irq_window_exits), 274 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 275 STATS_DESC_COUNTER(VCPU, l1d_flush), 276 STATS_DESC_COUNTER(VCPU, halt_exits), 277 STATS_DESC_COUNTER(VCPU, request_irq_exits), 278 STATS_DESC_COUNTER(VCPU, irq_exits), 279 STATS_DESC_COUNTER(VCPU, host_state_reload), 280 STATS_DESC_COUNTER(VCPU, fpu_reload), 281 STATS_DESC_COUNTER(VCPU, insn_emulation), 282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 283 STATS_DESC_COUNTER(VCPU, hypercalls), 284 STATS_DESC_COUNTER(VCPU, irq_injections), 285 STATS_DESC_COUNTER(VCPU, nmi_injections), 286 STATS_DESC_COUNTER(VCPU, req_event), 287 STATS_DESC_COUNTER(VCPU, nested_run), 288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 289 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 290 STATS_DESC_COUNTER(VCPU, preemption_reported), 291 STATS_DESC_COUNTER(VCPU, preemption_other), 292 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 293 STATS_DESC_COUNTER(VCPU, notify_window_exits), 294 }; 295 296 const struct kvm_stats_header kvm_vcpu_stats_header = { 297 .name_size = KVM_STATS_NAME_SIZE, 298 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 299 .id_offset = sizeof(struct kvm_stats_header), 300 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 301 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 302 sizeof(kvm_vcpu_stats_desc), 303 }; 304 305 static struct kmem_cache *x86_emulator_cache; 306 307 /* 308 * When called, it means the previous get/set msr reached an invalid msr. 309 * Return true if we want to ignore/silent this failed msr access. 310 */ 311 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 312 { 313 const char *op = write ? "wrmsr" : "rdmsr"; 314 315 if (ignore_msrs) { 316 if (report_ignored_msrs) 317 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 318 op, msr, data); 319 /* Mask the error */ 320 return true; 321 } else { 322 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 323 op, msr, data); 324 return false; 325 } 326 } 327 328 static struct kmem_cache *kvm_alloc_emulator_cache(void) 329 { 330 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 331 unsigned int size = sizeof(struct x86_emulate_ctxt); 332 333 return kmem_cache_create_usercopy("x86_emulator", size, 334 __alignof__(struct x86_emulate_ctxt), 335 SLAB_ACCOUNT, useroffset, 336 size - useroffset, NULL); 337 } 338 339 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 340 341 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 342 { 343 int i; 344 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 345 vcpu->arch.apf.gfns[i] = ~0; 346 } 347 348 static void kvm_on_user_return(struct user_return_notifier *urn) 349 { 350 unsigned slot; 351 struct kvm_user_return_msrs *msrs 352 = container_of(urn, struct kvm_user_return_msrs, urn); 353 struct kvm_user_return_msr_values *values; 354 unsigned long flags; 355 356 /* 357 * Disabling irqs at this point since the following code could be 358 * interrupted and executed through kvm_arch_hardware_disable() 359 */ 360 local_irq_save(flags); 361 if (msrs->registered) { 362 msrs->registered = false; 363 user_return_notifier_unregister(urn); 364 } 365 local_irq_restore(flags); 366 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 367 values = &msrs->values[slot]; 368 if (values->host != values->curr) { 369 wrmsrl(kvm_uret_msrs_list[slot], values->host); 370 values->curr = values->host; 371 } 372 } 373 } 374 375 static int kvm_probe_user_return_msr(u32 msr) 376 { 377 u64 val; 378 int ret; 379 380 preempt_disable(); 381 ret = rdmsrl_safe(msr, &val); 382 if (ret) 383 goto out; 384 ret = wrmsrl_safe(msr, val); 385 out: 386 preempt_enable(); 387 return ret; 388 } 389 390 int kvm_add_user_return_msr(u32 msr) 391 { 392 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 393 394 if (kvm_probe_user_return_msr(msr)) 395 return -1; 396 397 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 398 return kvm_nr_uret_msrs++; 399 } 400 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 401 402 int kvm_find_user_return_msr(u32 msr) 403 { 404 int i; 405 406 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 407 if (kvm_uret_msrs_list[i] == msr) 408 return i; 409 } 410 return -1; 411 } 412 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 413 414 static void kvm_user_return_msr_cpu_online(void) 415 { 416 unsigned int cpu = smp_processor_id(); 417 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 418 u64 value; 419 int i; 420 421 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 422 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 423 msrs->values[i].host = value; 424 msrs->values[i].curr = value; 425 } 426 } 427 428 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 429 { 430 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 431 int err; 432 433 value = (value & mask) | (msrs->values[slot].host & ~mask); 434 if (value == msrs->values[slot].curr) 435 return 0; 436 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 437 if (err) 438 return 1; 439 440 msrs->values[slot].curr = value; 441 if (!msrs->registered) { 442 msrs->urn.on_user_return = kvm_on_user_return; 443 user_return_notifier_register(&msrs->urn); 444 msrs->registered = true; 445 } 446 return 0; 447 } 448 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 449 450 static void drop_user_return_notifiers(void) 451 { 452 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 453 454 if (msrs->registered) 455 kvm_on_user_return(&msrs->urn); 456 } 457 458 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 459 { 460 return vcpu->arch.apic_base; 461 } 462 463 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 464 { 465 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 466 } 467 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 468 469 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 470 { 471 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 472 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 473 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 474 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 475 476 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 477 return 1; 478 if (!msr_info->host_initiated) { 479 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 480 return 1; 481 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 482 return 1; 483 } 484 485 kvm_lapic_set_base(vcpu, msr_info->data); 486 kvm_recalculate_apic_map(vcpu->kvm); 487 return 0; 488 } 489 490 /* 491 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 492 * 493 * Hardware virtualization extension instructions may fault if a reboot turns 494 * off virtualization while processes are running. Usually after catching the 495 * fault we just panic; during reboot instead the instruction is ignored. 496 */ 497 noinstr void kvm_spurious_fault(void) 498 { 499 /* Fault while not rebooting. We want the trace. */ 500 BUG_ON(!kvm_rebooting); 501 } 502 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 503 504 #define EXCPT_BENIGN 0 505 #define EXCPT_CONTRIBUTORY 1 506 #define EXCPT_PF 2 507 508 static int exception_class(int vector) 509 { 510 switch (vector) { 511 case PF_VECTOR: 512 return EXCPT_PF; 513 case DE_VECTOR: 514 case TS_VECTOR: 515 case NP_VECTOR: 516 case SS_VECTOR: 517 case GP_VECTOR: 518 return EXCPT_CONTRIBUTORY; 519 default: 520 break; 521 } 522 return EXCPT_BENIGN; 523 } 524 525 #define EXCPT_FAULT 0 526 #define EXCPT_TRAP 1 527 #define EXCPT_ABORT 2 528 #define EXCPT_INTERRUPT 3 529 #define EXCPT_DB 4 530 531 static int exception_type(int vector) 532 { 533 unsigned int mask; 534 535 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 536 return EXCPT_INTERRUPT; 537 538 mask = 1 << vector; 539 540 /* 541 * #DBs can be trap-like or fault-like, the caller must check other CPU 542 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 543 */ 544 if (mask & (1 << DB_VECTOR)) 545 return EXCPT_DB; 546 547 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 548 return EXCPT_TRAP; 549 550 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 551 return EXCPT_ABORT; 552 553 /* Reserved exceptions will result in fault */ 554 return EXCPT_FAULT; 555 } 556 557 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 558 struct kvm_queued_exception *ex) 559 { 560 if (!ex->has_payload) 561 return; 562 563 switch (ex->vector) { 564 case DB_VECTOR: 565 /* 566 * "Certain debug exceptions may clear bit 0-3. The 567 * remaining contents of the DR6 register are never 568 * cleared by the processor". 569 */ 570 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 571 /* 572 * In order to reflect the #DB exception payload in guest 573 * dr6, three components need to be considered: active low 574 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 575 * DR6_BS and DR6_BT) 576 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 577 * In the target guest dr6: 578 * FIXED_1 bits should always be set. 579 * Active low bits should be cleared if 1-setting in payload. 580 * Active high bits should be set if 1-setting in payload. 581 * 582 * Note, the payload is compatible with the pending debug 583 * exceptions/exit qualification under VMX, that active_low bits 584 * are active high in payload. 585 * So they need to be flipped for DR6. 586 */ 587 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 588 vcpu->arch.dr6 |= ex->payload; 589 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 590 591 /* 592 * The #DB payload is defined as compatible with the 'pending 593 * debug exceptions' field under VMX, not DR6. While bit 12 is 594 * defined in the 'pending debug exceptions' field (enabled 595 * breakpoint), it is reserved and must be zero in DR6. 596 */ 597 vcpu->arch.dr6 &= ~BIT(12); 598 break; 599 case PF_VECTOR: 600 vcpu->arch.cr2 = ex->payload; 601 break; 602 } 603 604 ex->has_payload = false; 605 ex->payload = 0; 606 } 607 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 608 609 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 610 bool has_error_code, u32 error_code, 611 bool has_payload, unsigned long payload) 612 { 613 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 614 615 ex->vector = vector; 616 ex->injected = false; 617 ex->pending = true; 618 ex->has_error_code = has_error_code; 619 ex->error_code = error_code; 620 ex->has_payload = has_payload; 621 ex->payload = payload; 622 } 623 624 /* Forcibly leave the nested mode in cases like a vCPU reset */ 625 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 626 { 627 kvm_x86_ops.nested_ops->leave_nested(vcpu); 628 } 629 630 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 631 unsigned nr, bool has_error, u32 error_code, 632 bool has_payload, unsigned long payload, bool reinject) 633 { 634 u32 prev_nr; 635 int class1, class2; 636 637 kvm_make_request(KVM_REQ_EVENT, vcpu); 638 639 /* 640 * If the exception is destined for L2 and isn't being reinjected, 641 * morph it to a VM-Exit if L1 wants to intercept the exception. A 642 * previously injected exception is not checked because it was checked 643 * when it was original queued, and re-checking is incorrect if _L1_ 644 * injected the exception, in which case it's exempt from interception. 645 */ 646 if (!reinject && is_guest_mode(vcpu) && 647 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 648 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 649 has_payload, payload); 650 return; 651 } 652 653 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 654 queue: 655 if (reinject) { 656 /* 657 * On VM-Entry, an exception can be pending if and only 658 * if event injection was blocked by nested_run_pending. 659 * In that case, however, vcpu_enter_guest() requests an 660 * immediate exit, and the guest shouldn't proceed far 661 * enough to need reinjection. 662 */ 663 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 664 vcpu->arch.exception.injected = true; 665 if (WARN_ON_ONCE(has_payload)) { 666 /* 667 * A reinjected event has already 668 * delivered its payload. 669 */ 670 has_payload = false; 671 payload = 0; 672 } 673 } else { 674 vcpu->arch.exception.pending = true; 675 vcpu->arch.exception.injected = false; 676 } 677 vcpu->arch.exception.has_error_code = has_error; 678 vcpu->arch.exception.vector = nr; 679 vcpu->arch.exception.error_code = error_code; 680 vcpu->arch.exception.has_payload = has_payload; 681 vcpu->arch.exception.payload = payload; 682 if (!is_guest_mode(vcpu)) 683 kvm_deliver_exception_payload(vcpu, 684 &vcpu->arch.exception); 685 return; 686 } 687 688 /* to check exception */ 689 prev_nr = vcpu->arch.exception.vector; 690 if (prev_nr == DF_VECTOR) { 691 /* triple fault -> shutdown */ 692 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 693 return; 694 } 695 class1 = exception_class(prev_nr); 696 class2 = exception_class(nr); 697 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 698 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 699 /* 700 * Synthesize #DF. Clear the previously injected or pending 701 * exception so as not to incorrectly trigger shutdown. 702 */ 703 vcpu->arch.exception.injected = false; 704 vcpu->arch.exception.pending = false; 705 706 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 707 } else { 708 /* replace previous exception with a new one in a hope 709 that instruction re-execution will regenerate lost 710 exception */ 711 goto queue; 712 } 713 } 714 715 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 716 { 717 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 718 } 719 EXPORT_SYMBOL_GPL(kvm_queue_exception); 720 721 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 722 { 723 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 724 } 725 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 726 727 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 728 unsigned long payload) 729 { 730 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 731 } 732 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 733 734 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 735 u32 error_code, unsigned long payload) 736 { 737 kvm_multiple_exception(vcpu, nr, true, error_code, 738 true, payload, false); 739 } 740 741 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 742 { 743 if (err) 744 kvm_inject_gp(vcpu, 0); 745 else 746 return kvm_skip_emulated_instruction(vcpu); 747 748 return 1; 749 } 750 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 751 752 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 753 { 754 if (err) { 755 kvm_inject_gp(vcpu, 0); 756 return 1; 757 } 758 759 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 760 EMULTYPE_COMPLETE_USER_EXIT); 761 } 762 763 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 764 { 765 ++vcpu->stat.pf_guest; 766 767 /* 768 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 769 * whether or not L1 wants to intercept "regular" #PF. 770 */ 771 if (is_guest_mode(vcpu) && fault->async_page_fault) 772 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 773 true, fault->error_code, 774 true, fault->address); 775 else 776 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 777 fault->address); 778 } 779 780 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 781 struct x86_exception *fault) 782 { 783 struct kvm_mmu *fault_mmu; 784 WARN_ON_ONCE(fault->vector != PF_VECTOR); 785 786 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 787 vcpu->arch.walk_mmu; 788 789 /* 790 * Invalidate the TLB entry for the faulting address, if it exists, 791 * else the access will fault indefinitely (and to emulate hardware). 792 */ 793 if ((fault->error_code & PFERR_PRESENT_MASK) && 794 !(fault->error_code & PFERR_RSVD_MASK)) 795 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 796 KVM_MMU_ROOT_CURRENT); 797 798 fault_mmu->inject_page_fault(vcpu, fault); 799 } 800 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 801 802 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 803 { 804 atomic_inc(&vcpu->arch.nmi_queued); 805 kvm_make_request(KVM_REQ_NMI, vcpu); 806 } 807 808 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 809 { 810 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 811 } 812 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 813 814 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 815 { 816 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 817 } 818 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 819 820 /* 821 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 822 * a #GP and return false. 823 */ 824 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 825 { 826 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl) 827 return true; 828 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 829 return false; 830 } 831 832 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 833 { 834 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 835 return true; 836 837 kvm_queue_exception(vcpu, UD_VECTOR); 838 return false; 839 } 840 EXPORT_SYMBOL_GPL(kvm_require_dr); 841 842 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 843 { 844 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 845 } 846 847 /* 848 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 849 */ 850 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 851 { 852 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 853 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 854 gpa_t real_gpa; 855 int i; 856 int ret; 857 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 858 859 /* 860 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 861 * to an L1 GPA. 862 */ 863 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 864 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 865 if (real_gpa == INVALID_GPA) 866 return 0; 867 868 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 869 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 870 cr3 & GENMASK(11, 5), sizeof(pdpte)); 871 if (ret < 0) 872 return 0; 873 874 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 875 if ((pdpte[i] & PT_PRESENT_MASK) && 876 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 877 return 0; 878 } 879 } 880 881 /* 882 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 883 * Shadow page roots need to be reconstructed instead. 884 */ 885 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 886 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 887 888 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 889 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 890 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 891 vcpu->arch.pdptrs_from_userspace = false; 892 893 return 1; 894 } 895 EXPORT_SYMBOL_GPL(load_pdptrs); 896 897 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 898 { 899 #ifdef CONFIG_X86_64 900 if (cr0 & 0xffffffff00000000UL) 901 return false; 902 #endif 903 904 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 905 return false; 906 907 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 908 return false; 909 910 return kvm_x86_call(is_valid_cr0)(vcpu, cr0); 911 } 912 913 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 914 { 915 /* 916 * CR0.WP is incorporated into the MMU role, but only for non-nested, 917 * indirect shadow MMUs. If paging is disabled, no updates are needed 918 * as there are no permission bits to emulate. If TDP is enabled, the 919 * MMU's metadata needs to be updated, e.g. so that emulating guest 920 * translations does the right thing, but there's no need to unload the 921 * root as CR0.WP doesn't affect SPTEs. 922 */ 923 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 924 if (!(cr0 & X86_CR0_PG)) 925 return; 926 927 if (tdp_enabled) { 928 kvm_init_mmu(vcpu); 929 return; 930 } 931 } 932 933 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 934 kvm_clear_async_pf_completion_queue(vcpu); 935 kvm_async_pf_hash_reset(vcpu); 936 937 /* 938 * Clearing CR0.PG is defined to flush the TLB from the guest's 939 * perspective. 940 */ 941 if (!(cr0 & X86_CR0_PG)) 942 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 943 } 944 945 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 946 kvm_mmu_reset_context(vcpu); 947 } 948 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 949 950 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 951 { 952 unsigned long old_cr0 = kvm_read_cr0(vcpu); 953 954 if (!kvm_is_valid_cr0(vcpu, cr0)) 955 return 1; 956 957 cr0 |= X86_CR0_ET; 958 959 /* Write to CR0 reserved bits are ignored, even on Intel. */ 960 cr0 &= ~CR0_RESERVED_BITS; 961 962 #ifdef CONFIG_X86_64 963 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 964 (cr0 & X86_CR0_PG)) { 965 int cs_db, cs_l; 966 967 if (!is_pae(vcpu)) 968 return 1; 969 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 970 if (cs_l) 971 return 1; 972 } 973 #endif 974 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 975 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 976 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 977 return 1; 978 979 if (!(cr0 & X86_CR0_PG) && 980 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 981 return 1; 982 983 kvm_x86_call(set_cr0)(vcpu, cr0); 984 985 kvm_post_set_cr0(vcpu, old_cr0, cr0); 986 987 return 0; 988 } 989 EXPORT_SYMBOL_GPL(kvm_set_cr0); 990 991 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 992 { 993 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 994 } 995 EXPORT_SYMBOL_GPL(kvm_lmsw); 996 997 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 998 { 999 if (vcpu->arch.guest_state_protected) 1000 return; 1001 1002 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1003 1004 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1005 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1006 1007 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1008 vcpu->arch.ia32_xss != kvm_host.xss) 1009 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1010 } 1011 1012 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1013 vcpu->arch.pkru != vcpu->arch.host_pkru && 1014 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1015 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1016 write_pkru(vcpu->arch.pkru); 1017 } 1018 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1019 1020 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1021 { 1022 if (vcpu->arch.guest_state_protected) 1023 return; 1024 1025 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1026 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1027 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1028 vcpu->arch.pkru = rdpkru(); 1029 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1030 write_pkru(vcpu->arch.host_pkru); 1031 } 1032 1033 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1034 1035 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1036 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); 1037 1038 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1039 vcpu->arch.ia32_xss != kvm_host.xss) 1040 wrmsrl(MSR_IA32_XSS, kvm_host.xss); 1041 } 1042 1043 } 1044 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1045 1046 #ifdef CONFIG_X86_64 1047 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1048 { 1049 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1050 } 1051 #endif 1052 1053 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1054 { 1055 u64 xcr0 = xcr; 1056 u64 old_xcr0 = vcpu->arch.xcr0; 1057 u64 valid_bits; 1058 1059 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1060 if (index != XCR_XFEATURE_ENABLED_MASK) 1061 return 1; 1062 if (!(xcr0 & XFEATURE_MASK_FP)) 1063 return 1; 1064 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1065 return 1; 1066 1067 /* 1068 * Do not allow the guest to set bits that we do not support 1069 * saving. However, xcr0 bit 0 is always set, even if the 1070 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1071 */ 1072 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1073 if (xcr0 & ~valid_bits) 1074 return 1; 1075 1076 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1077 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1078 return 1; 1079 1080 if (xcr0 & XFEATURE_MASK_AVX512) { 1081 if (!(xcr0 & XFEATURE_MASK_YMM)) 1082 return 1; 1083 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1084 return 1; 1085 } 1086 1087 if ((xcr0 & XFEATURE_MASK_XTILE) && 1088 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1089 return 1; 1090 1091 vcpu->arch.xcr0 = xcr0; 1092 1093 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1094 kvm_update_cpuid_runtime(vcpu); 1095 return 0; 1096 } 1097 1098 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1099 { 1100 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1101 if (kvm_x86_call(get_cpl)(vcpu) != 0 || 1102 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1103 kvm_inject_gp(vcpu, 0); 1104 return 1; 1105 } 1106 1107 return kvm_skip_emulated_instruction(vcpu); 1108 } 1109 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1110 1111 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1112 { 1113 if (cr4 & cr4_reserved_bits) 1114 return false; 1115 1116 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1117 return false; 1118 1119 return true; 1120 } 1121 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1122 1123 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1124 { 1125 return __kvm_is_valid_cr4(vcpu, cr4) && 1126 kvm_x86_call(is_valid_cr4)(vcpu, cr4); 1127 } 1128 1129 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1130 { 1131 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1132 kvm_mmu_reset_context(vcpu); 1133 1134 /* 1135 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1136 * according to the SDM; however, stale prev_roots could be reused 1137 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1138 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1139 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1140 * so fall through. 1141 */ 1142 if (!tdp_enabled && 1143 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1144 kvm_mmu_unload(vcpu); 1145 1146 /* 1147 * The TLB has to be flushed for all PCIDs if any of the following 1148 * (architecturally required) changes happen: 1149 * - CR4.PCIDE is changed from 1 to 0 1150 * - CR4.PGE is toggled 1151 * 1152 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1153 */ 1154 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1155 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1156 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1157 1158 /* 1159 * The TLB has to be flushed for the current PCID if any of the 1160 * following (architecturally required) changes happen: 1161 * - CR4.SMEP is changed from 0 to 1 1162 * - CR4.PAE is toggled 1163 */ 1164 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1165 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1166 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1167 1168 } 1169 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1170 1171 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1172 { 1173 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1174 1175 if (!kvm_is_valid_cr4(vcpu, cr4)) 1176 return 1; 1177 1178 if (is_long_mode(vcpu)) { 1179 if (!(cr4 & X86_CR4_PAE)) 1180 return 1; 1181 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1182 return 1; 1183 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1184 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1185 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1186 return 1; 1187 1188 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1189 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1190 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1191 return 1; 1192 } 1193 1194 kvm_x86_call(set_cr4)(vcpu, cr4); 1195 1196 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1197 1198 return 0; 1199 } 1200 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1201 1202 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1203 { 1204 struct kvm_mmu *mmu = vcpu->arch.mmu; 1205 unsigned long roots_to_free = 0; 1206 int i; 1207 1208 /* 1209 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1210 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1211 * also via the emulator. KVM's TDP page tables are not in the scope of 1212 * the invalidation, but the guest's TLB entries need to be flushed as 1213 * the CPU may have cached entries in its TLB for the target PCID. 1214 */ 1215 if (unlikely(tdp_enabled)) { 1216 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1217 return; 1218 } 1219 1220 /* 1221 * If neither the current CR3 nor any of the prev_roots use the given 1222 * PCID, then nothing needs to be done here because a resync will 1223 * happen anyway before switching to any other CR3. 1224 */ 1225 if (kvm_get_active_pcid(vcpu) == pcid) { 1226 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1227 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1228 } 1229 1230 /* 1231 * If PCID is disabled, there is no need to free prev_roots even if the 1232 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1233 * with PCIDE=0. 1234 */ 1235 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1236 return; 1237 1238 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1239 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1240 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1241 1242 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1243 } 1244 1245 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1246 { 1247 bool skip_tlb_flush = false; 1248 unsigned long pcid = 0; 1249 #ifdef CONFIG_X86_64 1250 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1251 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1252 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1253 pcid = cr3 & X86_CR3_PCID_MASK; 1254 } 1255 #endif 1256 1257 /* PDPTRs are always reloaded for PAE paging. */ 1258 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1259 goto handle_tlb_flush; 1260 1261 /* 1262 * Do not condition the GPA check on long mode, this helper is used to 1263 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1264 * the current vCPU mode is accurate. 1265 */ 1266 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1267 return 1; 1268 1269 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1270 return 1; 1271 1272 if (cr3 != kvm_read_cr3(vcpu)) 1273 kvm_mmu_new_pgd(vcpu, cr3); 1274 1275 vcpu->arch.cr3 = cr3; 1276 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1277 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1278 1279 handle_tlb_flush: 1280 /* 1281 * A load of CR3 that flushes the TLB flushes only the current PCID, 1282 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1283 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1284 * and it's impossible to use a non-zero PCID when PCID is disabled, 1285 * i.e. only PCID=0 can be relevant. 1286 */ 1287 if (!skip_tlb_flush) 1288 kvm_invalidate_pcid(vcpu, pcid); 1289 1290 return 0; 1291 } 1292 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1293 1294 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1295 { 1296 if (cr8 & CR8_RESERVED_BITS) 1297 return 1; 1298 if (lapic_in_kernel(vcpu)) 1299 kvm_lapic_set_tpr(vcpu, cr8); 1300 else 1301 vcpu->arch.cr8 = cr8; 1302 return 0; 1303 } 1304 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1305 1306 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1307 { 1308 if (lapic_in_kernel(vcpu)) 1309 return kvm_lapic_get_cr8(vcpu); 1310 else 1311 return vcpu->arch.cr8; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1314 1315 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1316 { 1317 int i; 1318 1319 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1320 for (i = 0; i < KVM_NR_DB_REGS; i++) 1321 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1322 } 1323 } 1324 1325 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1326 { 1327 unsigned long dr7; 1328 1329 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1330 dr7 = vcpu->arch.guest_debug_dr7; 1331 else 1332 dr7 = vcpu->arch.dr7; 1333 kvm_x86_call(set_dr7)(vcpu, dr7); 1334 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1335 if (dr7 & DR7_BP_EN_MASK) 1336 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1337 } 1338 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1339 1340 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1341 { 1342 u64 fixed = DR6_FIXED_1; 1343 1344 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1345 fixed |= DR6_RTM; 1346 1347 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1348 fixed |= DR6_BUS_LOCK; 1349 return fixed; 1350 } 1351 1352 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1353 { 1354 size_t size = ARRAY_SIZE(vcpu->arch.db); 1355 1356 switch (dr) { 1357 case 0 ... 3: 1358 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1359 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1360 vcpu->arch.eff_db[dr] = val; 1361 break; 1362 case 4: 1363 case 6: 1364 if (!kvm_dr6_valid(val)) 1365 return 1; /* #GP */ 1366 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1367 break; 1368 case 5: 1369 default: /* 7 */ 1370 if (!kvm_dr7_valid(val)) 1371 return 1; /* #GP */ 1372 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1373 kvm_update_dr7(vcpu); 1374 break; 1375 } 1376 1377 return 0; 1378 } 1379 EXPORT_SYMBOL_GPL(kvm_set_dr); 1380 1381 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1382 { 1383 size_t size = ARRAY_SIZE(vcpu->arch.db); 1384 1385 switch (dr) { 1386 case 0 ... 3: 1387 return vcpu->arch.db[array_index_nospec(dr, size)]; 1388 case 4: 1389 case 6: 1390 return vcpu->arch.dr6; 1391 case 5: 1392 default: /* 7 */ 1393 return vcpu->arch.dr7; 1394 } 1395 } 1396 EXPORT_SYMBOL_GPL(kvm_get_dr); 1397 1398 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1399 { 1400 u32 ecx = kvm_rcx_read(vcpu); 1401 u64 data; 1402 1403 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1404 kvm_inject_gp(vcpu, 0); 1405 return 1; 1406 } 1407 1408 kvm_rax_write(vcpu, (u32)data); 1409 kvm_rdx_write(vcpu, data >> 32); 1410 return kvm_skip_emulated_instruction(vcpu); 1411 } 1412 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1413 1414 /* 1415 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1416 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1417 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1418 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1419 * MSRs that KVM emulates without strictly requiring host support. 1420 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1421 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1422 * msrs_to_save and emulated_msrs. 1423 */ 1424 1425 static const u32 msrs_to_save_base[] = { 1426 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1427 MSR_STAR, 1428 #ifdef CONFIG_X86_64 1429 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1430 #endif 1431 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1432 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1433 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1434 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1435 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1436 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1437 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1438 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1439 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1440 MSR_IA32_UMWAIT_CONTROL, 1441 1442 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1443 }; 1444 1445 static const u32 msrs_to_save_pmu[] = { 1446 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1447 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1448 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1449 MSR_CORE_PERF_GLOBAL_CTRL, 1450 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1451 1452 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */ 1453 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1454 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1455 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1456 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1457 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1458 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1459 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1460 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1461 1462 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1463 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1464 1465 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */ 1466 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1467 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1468 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1469 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1470 1471 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1472 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1473 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1474 }; 1475 1476 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1477 ARRAY_SIZE(msrs_to_save_pmu)]; 1478 static unsigned num_msrs_to_save; 1479 1480 static const u32 emulated_msrs_all[] = { 1481 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1482 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1483 1484 #ifdef CONFIG_KVM_HYPERV 1485 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1486 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1487 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1488 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1489 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1490 HV_X64_MSR_RESET, 1491 HV_X64_MSR_VP_INDEX, 1492 HV_X64_MSR_VP_RUNTIME, 1493 HV_X64_MSR_SCONTROL, 1494 HV_X64_MSR_STIMER0_CONFIG, 1495 HV_X64_MSR_VP_ASSIST_PAGE, 1496 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1497 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1498 HV_X64_MSR_SYNDBG_OPTIONS, 1499 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1500 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1501 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1502 #endif 1503 1504 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1505 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1506 1507 MSR_IA32_TSC_ADJUST, 1508 MSR_IA32_TSC_DEADLINE, 1509 MSR_IA32_ARCH_CAPABILITIES, 1510 MSR_IA32_PERF_CAPABILITIES, 1511 MSR_IA32_MISC_ENABLE, 1512 MSR_IA32_MCG_STATUS, 1513 MSR_IA32_MCG_CTL, 1514 MSR_IA32_MCG_EXT_CTL, 1515 MSR_IA32_SMBASE, 1516 MSR_SMI_COUNT, 1517 MSR_PLATFORM_INFO, 1518 MSR_MISC_FEATURES_ENABLES, 1519 MSR_AMD64_VIRT_SPEC_CTRL, 1520 MSR_AMD64_TSC_RATIO, 1521 MSR_IA32_POWER_CTL, 1522 MSR_IA32_UCODE_REV, 1523 1524 /* 1525 * KVM always supports the "true" VMX control MSRs, even if the host 1526 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1527 * doesn't strictly require them to exist in the host (ignoring that 1528 * KVM would refuse to load in the first place if the core set of MSRs 1529 * aren't supported). 1530 */ 1531 MSR_IA32_VMX_BASIC, 1532 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1533 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1534 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1535 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1536 MSR_IA32_VMX_MISC, 1537 MSR_IA32_VMX_CR0_FIXED0, 1538 MSR_IA32_VMX_CR4_FIXED0, 1539 MSR_IA32_VMX_VMCS_ENUM, 1540 MSR_IA32_VMX_PROCBASED_CTLS2, 1541 MSR_IA32_VMX_EPT_VPID_CAP, 1542 MSR_IA32_VMX_VMFUNC, 1543 1544 MSR_K7_HWCR, 1545 MSR_KVM_POLL_CONTROL, 1546 }; 1547 1548 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1549 static unsigned num_emulated_msrs; 1550 1551 /* 1552 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1553 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1554 * feature MSRs, but are handled separately to allow expedited lookups. 1555 */ 1556 static const u32 msr_based_features_all_except_vmx[] = { 1557 MSR_AMD64_DE_CFG, 1558 MSR_IA32_UCODE_REV, 1559 MSR_IA32_ARCH_CAPABILITIES, 1560 MSR_IA32_PERF_CAPABILITIES, 1561 }; 1562 1563 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1564 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1565 static unsigned int num_msr_based_features; 1566 1567 /* 1568 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1569 * patch, are immutable once the vCPU model is defined. 1570 */ 1571 static bool kvm_is_immutable_feature_msr(u32 msr) 1572 { 1573 int i; 1574 1575 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1576 return true; 1577 1578 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1579 if (msr == msr_based_features_all_except_vmx[i]) 1580 return msr != MSR_IA32_UCODE_REV; 1581 } 1582 1583 return false; 1584 } 1585 1586 /* 1587 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1588 * does not yet virtualize. These include: 1589 * 10 - MISC_PACKAGE_CTRLS 1590 * 11 - ENERGY_FILTERING_CTL 1591 * 12 - DOITM 1592 * 18 - FB_CLEAR_CTRL 1593 * 21 - XAPIC_DISABLE_STATUS 1594 * 23 - OVERCLOCKING_STATUS 1595 */ 1596 1597 #define KVM_SUPPORTED_ARCH_CAP \ 1598 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1599 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1600 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1601 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1602 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1603 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO) 1604 1605 static u64 kvm_get_arch_capabilities(void) 1606 { 1607 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1608 1609 /* 1610 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1611 * the nested hypervisor runs with NX huge pages. If it is not, 1612 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1613 * L1 guests, so it need not worry about its own (L2) guests. 1614 */ 1615 data |= ARCH_CAP_PSCHANGE_MC_NO; 1616 1617 /* 1618 * If we're doing cache flushes (either "always" or "cond") 1619 * we will do one whenever the guest does a vmlaunch/vmresume. 1620 * If an outer hypervisor is doing the cache flush for us 1621 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1622 * capability to the guest too, and if EPT is disabled we're not 1623 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1624 * require a nested hypervisor to do a flush of its own. 1625 */ 1626 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1627 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1628 1629 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1630 data |= ARCH_CAP_RDCL_NO; 1631 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1632 data |= ARCH_CAP_SSB_NO; 1633 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1634 data |= ARCH_CAP_MDS_NO; 1635 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1636 data |= ARCH_CAP_RFDS_NO; 1637 1638 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1639 /* 1640 * If RTM=0 because the kernel has disabled TSX, the host might 1641 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1642 * and therefore knows that there cannot be TAA) but keep 1643 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1644 * and we want to allow migrating those guests to tsx=off hosts. 1645 */ 1646 data &= ~ARCH_CAP_TAA_NO; 1647 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1648 data |= ARCH_CAP_TAA_NO; 1649 } else { 1650 /* 1651 * Nothing to do here; we emulate TSX_CTRL if present on the 1652 * host so the guest can choose between disabling TSX or 1653 * using VERW to clear CPU buffers. 1654 */ 1655 } 1656 1657 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1658 data |= ARCH_CAP_GDS_NO; 1659 1660 return data; 1661 } 1662 1663 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1664 { 1665 switch (msr->index) { 1666 case MSR_IA32_ARCH_CAPABILITIES: 1667 msr->data = kvm_get_arch_capabilities(); 1668 break; 1669 case MSR_IA32_PERF_CAPABILITIES: 1670 msr->data = kvm_caps.supported_perf_cap; 1671 break; 1672 case MSR_IA32_UCODE_REV: 1673 rdmsrl_safe(msr->index, &msr->data); 1674 break; 1675 default: 1676 return kvm_x86_call(get_msr_feature)(msr); 1677 } 1678 return 0; 1679 } 1680 1681 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1682 { 1683 struct kvm_msr_entry msr; 1684 int r; 1685 1686 /* Unconditionally clear the output for simplicity */ 1687 msr.data = 0; 1688 msr.index = index; 1689 r = kvm_get_msr_feature(&msr); 1690 1691 if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false)) 1692 r = 0; 1693 1694 *data = msr.data; 1695 1696 return r; 1697 } 1698 1699 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1700 { 1701 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1702 return false; 1703 1704 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1705 return false; 1706 1707 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1708 return false; 1709 1710 if (efer & (EFER_LME | EFER_LMA) && 1711 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1712 return false; 1713 1714 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1715 return false; 1716 1717 return true; 1718 1719 } 1720 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1721 { 1722 if (efer & efer_reserved_bits) 1723 return false; 1724 1725 return __kvm_valid_efer(vcpu, efer); 1726 } 1727 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1728 1729 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1730 { 1731 u64 old_efer = vcpu->arch.efer; 1732 u64 efer = msr_info->data; 1733 int r; 1734 1735 if (efer & efer_reserved_bits) 1736 return 1; 1737 1738 if (!msr_info->host_initiated) { 1739 if (!__kvm_valid_efer(vcpu, efer)) 1740 return 1; 1741 1742 if (is_paging(vcpu) && 1743 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1744 return 1; 1745 } 1746 1747 efer &= ~EFER_LMA; 1748 efer |= vcpu->arch.efer & EFER_LMA; 1749 1750 r = kvm_x86_call(set_efer)(vcpu, efer); 1751 if (r) { 1752 WARN_ON(r > 0); 1753 return r; 1754 } 1755 1756 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1757 kvm_mmu_reset_context(vcpu); 1758 1759 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1760 (efer & EFER_SVME)) 1761 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1762 1763 return 0; 1764 } 1765 1766 void kvm_enable_efer_bits(u64 mask) 1767 { 1768 efer_reserved_bits &= ~mask; 1769 } 1770 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1771 1772 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1773 { 1774 struct kvm_x86_msr_filter *msr_filter; 1775 struct msr_bitmap_range *ranges; 1776 struct kvm *kvm = vcpu->kvm; 1777 bool allowed; 1778 int idx; 1779 u32 i; 1780 1781 /* x2APIC MSRs do not support filtering. */ 1782 if (index >= 0x800 && index <= 0x8ff) 1783 return true; 1784 1785 idx = srcu_read_lock(&kvm->srcu); 1786 1787 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1788 if (!msr_filter) { 1789 allowed = true; 1790 goto out; 1791 } 1792 1793 allowed = msr_filter->default_allow; 1794 ranges = msr_filter->ranges; 1795 1796 for (i = 0; i < msr_filter->count; i++) { 1797 u32 start = ranges[i].base; 1798 u32 end = start + ranges[i].nmsrs; 1799 u32 flags = ranges[i].flags; 1800 unsigned long *bitmap = ranges[i].bitmap; 1801 1802 if ((index >= start) && (index < end) && (flags & type)) { 1803 allowed = test_bit(index - start, bitmap); 1804 break; 1805 } 1806 } 1807 1808 out: 1809 srcu_read_unlock(&kvm->srcu, idx); 1810 1811 return allowed; 1812 } 1813 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1814 1815 /* 1816 * Write @data into the MSR specified by @index. Select MSR specific fault 1817 * checks are bypassed if @host_initiated is %true. 1818 * Returns 0 on success, non-0 otherwise. 1819 * Assumes vcpu_load() was already called. 1820 */ 1821 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1822 bool host_initiated) 1823 { 1824 struct msr_data msr; 1825 1826 switch (index) { 1827 case MSR_FS_BASE: 1828 case MSR_GS_BASE: 1829 case MSR_KERNEL_GS_BASE: 1830 case MSR_CSTAR: 1831 case MSR_LSTAR: 1832 if (is_noncanonical_address(data, vcpu)) 1833 return 1; 1834 break; 1835 case MSR_IA32_SYSENTER_EIP: 1836 case MSR_IA32_SYSENTER_ESP: 1837 /* 1838 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1839 * non-canonical address is written on Intel but not on 1840 * AMD (which ignores the top 32-bits, because it does 1841 * not implement 64-bit SYSENTER). 1842 * 1843 * 64-bit code should hence be able to write a non-canonical 1844 * value on AMD. Making the address canonical ensures that 1845 * vmentry does not fail on Intel after writing a non-canonical 1846 * value, and that something deterministic happens if the guest 1847 * invokes 64-bit SYSENTER. 1848 */ 1849 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1850 break; 1851 case MSR_TSC_AUX: 1852 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1853 return 1; 1854 1855 if (!host_initiated && 1856 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1857 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1858 return 1; 1859 1860 /* 1861 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1862 * incomplete and conflicting architectural behavior. Current 1863 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1864 * reserved and always read as zeros. Enforce Intel's reserved 1865 * bits check if the guest CPU is Intel compatible, otherwise 1866 * clear the bits. This ensures cross-vendor migration will 1867 * provide consistent behavior for the guest. 1868 */ 1869 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0) 1870 return 1; 1871 1872 data = (u32)data; 1873 break; 1874 } 1875 1876 msr.data = data; 1877 msr.index = index; 1878 msr.host_initiated = host_initiated; 1879 1880 return kvm_x86_call(set_msr)(vcpu, &msr); 1881 } 1882 1883 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1884 u32 index, u64 data, bool host_initiated) 1885 { 1886 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1887 1888 if (ret == KVM_MSR_RET_INVALID) 1889 if (kvm_msr_ignored_check(index, data, true)) 1890 ret = 0; 1891 1892 return ret; 1893 } 1894 1895 /* 1896 * Read the MSR specified by @index into @data. Select MSR specific fault 1897 * checks are bypassed if @host_initiated is %true. 1898 * Returns 0 on success, non-0 otherwise. 1899 * Assumes vcpu_load() was already called. 1900 */ 1901 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1902 bool host_initiated) 1903 { 1904 struct msr_data msr; 1905 int ret; 1906 1907 switch (index) { 1908 case MSR_TSC_AUX: 1909 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1910 return 1; 1911 1912 if (!host_initiated && 1913 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1914 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1915 return 1; 1916 break; 1917 } 1918 1919 msr.index = index; 1920 msr.host_initiated = host_initiated; 1921 1922 ret = kvm_x86_call(get_msr)(vcpu, &msr); 1923 if (!ret) 1924 *data = msr.data; 1925 return ret; 1926 } 1927 1928 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1929 u32 index, u64 *data, bool host_initiated) 1930 { 1931 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1932 1933 if (ret == KVM_MSR_RET_INVALID) { 1934 /* Unconditionally clear *data for simplicity */ 1935 *data = 0; 1936 if (kvm_msr_ignored_check(index, 0, false)) 1937 ret = 0; 1938 } 1939 1940 return ret; 1941 } 1942 1943 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1944 { 1945 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1946 return KVM_MSR_RET_FILTERED; 1947 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1948 } 1949 1950 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1951 { 1952 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1953 return KVM_MSR_RET_FILTERED; 1954 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1955 } 1956 1957 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1958 { 1959 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1960 } 1961 EXPORT_SYMBOL_GPL(kvm_get_msr); 1962 1963 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1964 { 1965 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1966 } 1967 EXPORT_SYMBOL_GPL(kvm_set_msr); 1968 1969 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1970 { 1971 if (!vcpu->run->msr.error) { 1972 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1973 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1974 } 1975 } 1976 1977 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1978 { 1979 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1980 } 1981 1982 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1983 { 1984 complete_userspace_rdmsr(vcpu); 1985 return complete_emulated_msr_access(vcpu); 1986 } 1987 1988 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1989 { 1990 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1991 } 1992 1993 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1994 { 1995 complete_userspace_rdmsr(vcpu); 1996 return complete_fast_msr_access(vcpu); 1997 } 1998 1999 static u64 kvm_msr_reason(int r) 2000 { 2001 switch (r) { 2002 case KVM_MSR_RET_INVALID: 2003 return KVM_MSR_EXIT_REASON_UNKNOWN; 2004 case KVM_MSR_RET_FILTERED: 2005 return KVM_MSR_EXIT_REASON_FILTER; 2006 default: 2007 return KVM_MSR_EXIT_REASON_INVAL; 2008 } 2009 } 2010 2011 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2012 u32 exit_reason, u64 data, 2013 int (*completion)(struct kvm_vcpu *vcpu), 2014 int r) 2015 { 2016 u64 msr_reason = kvm_msr_reason(r); 2017 2018 /* Check if the user wanted to know about this MSR fault */ 2019 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2020 return 0; 2021 2022 vcpu->run->exit_reason = exit_reason; 2023 vcpu->run->msr.error = 0; 2024 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2025 vcpu->run->msr.reason = msr_reason; 2026 vcpu->run->msr.index = index; 2027 vcpu->run->msr.data = data; 2028 vcpu->arch.complete_userspace_io = completion; 2029 2030 return 1; 2031 } 2032 2033 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2034 { 2035 u32 ecx = kvm_rcx_read(vcpu); 2036 u64 data; 2037 int r; 2038 2039 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2040 2041 if (!r) { 2042 trace_kvm_msr_read(ecx, data); 2043 2044 kvm_rax_write(vcpu, data & -1u); 2045 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2046 } else { 2047 /* MSR read failed? See if we should ask user space */ 2048 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2049 complete_fast_rdmsr, r)) 2050 return 0; 2051 trace_kvm_msr_read_ex(ecx); 2052 } 2053 2054 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2055 } 2056 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2057 2058 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2059 { 2060 u32 ecx = kvm_rcx_read(vcpu); 2061 u64 data = kvm_read_edx_eax(vcpu); 2062 int r; 2063 2064 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2065 2066 if (!r) { 2067 trace_kvm_msr_write(ecx, data); 2068 } else { 2069 /* MSR write failed? See if we should ask user space */ 2070 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2071 complete_fast_msr_access, r)) 2072 return 0; 2073 /* Signal all other negative errors to userspace */ 2074 if (r < 0) 2075 return r; 2076 trace_kvm_msr_write_ex(ecx, data); 2077 } 2078 2079 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2080 } 2081 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2082 2083 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2084 { 2085 return kvm_skip_emulated_instruction(vcpu); 2086 } 2087 2088 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2089 { 2090 /* Treat an INVD instruction as a NOP and just skip it. */ 2091 return kvm_emulate_as_nop(vcpu); 2092 } 2093 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2094 2095 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2096 { 2097 kvm_queue_exception(vcpu, UD_VECTOR); 2098 return 1; 2099 } 2100 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2101 2102 2103 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2104 { 2105 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2106 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2107 return kvm_handle_invalid_op(vcpu); 2108 2109 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2110 return kvm_emulate_as_nop(vcpu); 2111 } 2112 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2113 { 2114 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2115 } 2116 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2117 2118 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2119 { 2120 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2121 } 2122 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2123 2124 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2125 { 2126 xfer_to_guest_mode_prepare(); 2127 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2128 xfer_to_guest_mode_work_pending(); 2129 } 2130 2131 /* 2132 * The fast path for frequent and performance sensitive wrmsr emulation, 2133 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2134 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2135 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2136 * other cases which must be called after interrupts are enabled on the host. 2137 */ 2138 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2139 { 2140 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2141 return 1; 2142 2143 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2144 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2145 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2146 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2147 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2148 2149 return 1; 2150 } 2151 2152 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2153 { 2154 if (!kvm_can_use_hv_timer(vcpu)) 2155 return 1; 2156 2157 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2158 return 0; 2159 } 2160 2161 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2162 { 2163 u32 msr = kvm_rcx_read(vcpu); 2164 u64 data; 2165 fastpath_t ret = EXIT_FASTPATH_NONE; 2166 2167 kvm_vcpu_srcu_read_lock(vcpu); 2168 2169 switch (msr) { 2170 case APIC_BASE_MSR + (APIC_ICR >> 4): 2171 data = kvm_read_edx_eax(vcpu); 2172 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2173 kvm_skip_emulated_instruction(vcpu); 2174 ret = EXIT_FASTPATH_EXIT_HANDLED; 2175 } 2176 break; 2177 case MSR_IA32_TSC_DEADLINE: 2178 data = kvm_read_edx_eax(vcpu); 2179 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2180 kvm_skip_emulated_instruction(vcpu); 2181 ret = EXIT_FASTPATH_REENTER_GUEST; 2182 } 2183 break; 2184 default: 2185 break; 2186 } 2187 2188 if (ret != EXIT_FASTPATH_NONE) 2189 trace_kvm_msr_write(msr, data); 2190 2191 kvm_vcpu_srcu_read_unlock(vcpu); 2192 2193 return ret; 2194 } 2195 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2196 2197 /* 2198 * Adapt set_msr() to msr_io()'s calling convention 2199 */ 2200 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2201 { 2202 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2203 } 2204 2205 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2206 { 2207 u64 val; 2208 2209 /* 2210 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2211 * not support modifying the guest vCPU model on the fly, e.g. changing 2212 * the nVMX capabilities while L2 is running is nonsensical. Allow 2213 * writes of the same value, e.g. to allow userspace to blindly stuff 2214 * all MSRs when emulating RESET. 2215 */ 2216 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && 2217 (do_get_msr(vcpu, index, &val) || *data != val)) 2218 return -EINVAL; 2219 2220 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2221 } 2222 2223 #ifdef CONFIG_X86_64 2224 struct pvclock_clock { 2225 int vclock_mode; 2226 u64 cycle_last; 2227 u64 mask; 2228 u32 mult; 2229 u32 shift; 2230 u64 base_cycles; 2231 u64 offset; 2232 }; 2233 2234 struct pvclock_gtod_data { 2235 seqcount_t seq; 2236 2237 struct pvclock_clock clock; /* extract of a clocksource struct */ 2238 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2239 2240 ktime_t offs_boot; 2241 u64 wall_time_sec; 2242 }; 2243 2244 static struct pvclock_gtod_data pvclock_gtod_data; 2245 2246 static void update_pvclock_gtod(struct timekeeper *tk) 2247 { 2248 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2249 2250 write_seqcount_begin(&vdata->seq); 2251 2252 /* copy pvclock gtod data */ 2253 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2254 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2255 vdata->clock.mask = tk->tkr_mono.mask; 2256 vdata->clock.mult = tk->tkr_mono.mult; 2257 vdata->clock.shift = tk->tkr_mono.shift; 2258 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2259 vdata->clock.offset = tk->tkr_mono.base; 2260 2261 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2262 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2263 vdata->raw_clock.mask = tk->tkr_raw.mask; 2264 vdata->raw_clock.mult = tk->tkr_raw.mult; 2265 vdata->raw_clock.shift = tk->tkr_raw.shift; 2266 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2267 vdata->raw_clock.offset = tk->tkr_raw.base; 2268 2269 vdata->wall_time_sec = tk->xtime_sec; 2270 2271 vdata->offs_boot = tk->offs_boot; 2272 2273 write_seqcount_end(&vdata->seq); 2274 } 2275 2276 static s64 get_kvmclock_base_ns(void) 2277 { 2278 /* Count up from boot time, but with the frequency of the raw clock. */ 2279 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2280 } 2281 #else 2282 static s64 get_kvmclock_base_ns(void) 2283 { 2284 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2285 return ktime_get_boottime_ns(); 2286 } 2287 #endif 2288 2289 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2290 { 2291 int version; 2292 int r; 2293 struct pvclock_wall_clock wc; 2294 u32 wc_sec_hi; 2295 u64 wall_nsec; 2296 2297 if (!wall_clock) 2298 return; 2299 2300 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2301 if (r) 2302 return; 2303 2304 if (version & 1) 2305 ++version; /* first time write, random junk */ 2306 2307 ++version; 2308 2309 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2310 return; 2311 2312 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2313 2314 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2315 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2316 wc.version = version; 2317 2318 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2319 2320 if (sec_hi_ofs) { 2321 wc_sec_hi = wall_nsec >> 32; 2322 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2323 &wc_sec_hi, sizeof(wc_sec_hi)); 2324 } 2325 2326 version++; 2327 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2328 } 2329 2330 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2331 bool old_msr, bool host_initiated) 2332 { 2333 struct kvm_arch *ka = &vcpu->kvm->arch; 2334 2335 if (vcpu->vcpu_id == 0 && !host_initiated) { 2336 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2337 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2338 2339 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2340 } 2341 2342 vcpu->arch.time = system_time; 2343 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2344 2345 /* we verify if the enable bit is set... */ 2346 if (system_time & 1) 2347 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2348 sizeof(struct pvclock_vcpu_time_info)); 2349 else 2350 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2351 2352 return; 2353 } 2354 2355 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2356 { 2357 do_shl32_div32(dividend, divisor); 2358 return dividend; 2359 } 2360 2361 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2362 s8 *pshift, u32 *pmultiplier) 2363 { 2364 uint64_t scaled64; 2365 int32_t shift = 0; 2366 uint64_t tps64; 2367 uint32_t tps32; 2368 2369 tps64 = base_hz; 2370 scaled64 = scaled_hz; 2371 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2372 tps64 >>= 1; 2373 shift--; 2374 } 2375 2376 tps32 = (uint32_t)tps64; 2377 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2378 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2379 scaled64 >>= 1; 2380 else 2381 tps32 <<= 1; 2382 shift++; 2383 } 2384 2385 *pshift = shift; 2386 *pmultiplier = div_frac(scaled64, tps32); 2387 } 2388 2389 #ifdef CONFIG_X86_64 2390 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2391 #endif 2392 2393 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2394 static unsigned long max_tsc_khz; 2395 2396 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2397 { 2398 u64 v = (u64)khz * (1000000 + ppm); 2399 do_div(v, 1000000); 2400 return v; 2401 } 2402 2403 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2404 2405 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2406 { 2407 u64 ratio; 2408 2409 /* Guest TSC same frequency as host TSC? */ 2410 if (!scale) { 2411 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2412 return 0; 2413 } 2414 2415 /* TSC scaling supported? */ 2416 if (!kvm_caps.has_tsc_control) { 2417 if (user_tsc_khz > tsc_khz) { 2418 vcpu->arch.tsc_catchup = 1; 2419 vcpu->arch.tsc_always_catchup = 1; 2420 return 0; 2421 } else { 2422 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2423 return -1; 2424 } 2425 } 2426 2427 /* TSC scaling required - calculate ratio */ 2428 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2429 user_tsc_khz, tsc_khz); 2430 2431 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2432 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2433 user_tsc_khz); 2434 return -1; 2435 } 2436 2437 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2438 return 0; 2439 } 2440 2441 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2442 { 2443 u32 thresh_lo, thresh_hi; 2444 int use_scaling = 0; 2445 2446 /* tsc_khz can be zero if TSC calibration fails */ 2447 if (user_tsc_khz == 0) { 2448 /* set tsc_scaling_ratio to a safe value */ 2449 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2450 return -1; 2451 } 2452 2453 /* Compute a scale to convert nanoseconds in TSC cycles */ 2454 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2455 &vcpu->arch.virtual_tsc_shift, 2456 &vcpu->arch.virtual_tsc_mult); 2457 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2458 2459 /* 2460 * Compute the variation in TSC rate which is acceptable 2461 * within the range of tolerance and decide if the 2462 * rate being applied is within that bounds of the hardware 2463 * rate. If so, no scaling or compensation need be done. 2464 */ 2465 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2466 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2467 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2468 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2469 user_tsc_khz, thresh_lo, thresh_hi); 2470 use_scaling = 1; 2471 } 2472 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2473 } 2474 2475 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2476 { 2477 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2478 vcpu->arch.virtual_tsc_mult, 2479 vcpu->arch.virtual_tsc_shift); 2480 tsc += vcpu->arch.this_tsc_write; 2481 return tsc; 2482 } 2483 2484 #ifdef CONFIG_X86_64 2485 static inline bool gtod_is_based_on_tsc(int mode) 2486 { 2487 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2488 } 2489 #endif 2490 2491 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2492 { 2493 #ifdef CONFIG_X86_64 2494 struct kvm_arch *ka = &vcpu->kvm->arch; 2495 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2496 2497 /* 2498 * To use the masterclock, the host clocksource must be based on TSC 2499 * and all vCPUs must have matching TSCs. Note, the count for matching 2500 * vCPUs doesn't include the reference vCPU, hence "+1". 2501 */ 2502 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2503 atomic_read(&vcpu->kvm->online_vcpus)) && 2504 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2505 2506 /* 2507 * Request a masterclock update if the masterclock needs to be toggled 2508 * on/off, or when starting a new generation and the masterclock is 2509 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2510 * taken _after_ the new generation is created). 2511 */ 2512 if ((ka->use_master_clock && new_generation) || 2513 (ka->use_master_clock != use_master_clock)) 2514 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2515 2516 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2517 atomic_read(&vcpu->kvm->online_vcpus), 2518 ka->use_master_clock, gtod->clock.vclock_mode); 2519 #endif 2520 } 2521 2522 /* 2523 * Multiply tsc by a fixed point number represented by ratio. 2524 * 2525 * The most significant 64-N bits (mult) of ratio represent the 2526 * integral part of the fixed point number; the remaining N bits 2527 * (frac) represent the fractional part, ie. ratio represents a fixed 2528 * point number (mult + frac * 2^(-N)). 2529 * 2530 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2531 */ 2532 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2533 { 2534 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2535 } 2536 2537 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2538 { 2539 u64 _tsc = tsc; 2540 2541 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2542 _tsc = __scale_tsc(ratio, tsc); 2543 2544 return _tsc; 2545 } 2546 2547 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2548 { 2549 u64 tsc; 2550 2551 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2552 2553 return target_tsc - tsc; 2554 } 2555 2556 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2557 { 2558 return vcpu->arch.l1_tsc_offset + 2559 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2560 } 2561 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2562 2563 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2564 { 2565 u64 nested_offset; 2566 2567 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2568 nested_offset = l1_offset; 2569 else 2570 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2571 kvm_caps.tsc_scaling_ratio_frac_bits); 2572 2573 nested_offset += l2_offset; 2574 return nested_offset; 2575 } 2576 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2577 2578 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2579 { 2580 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2581 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2582 kvm_caps.tsc_scaling_ratio_frac_bits); 2583 2584 return l1_multiplier; 2585 } 2586 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2587 2588 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2589 { 2590 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2591 vcpu->arch.l1_tsc_offset, 2592 l1_offset); 2593 2594 vcpu->arch.l1_tsc_offset = l1_offset; 2595 2596 /* 2597 * If we are here because L1 chose not to trap WRMSR to TSC then 2598 * according to the spec this should set L1's TSC (as opposed to 2599 * setting L1's offset for L2). 2600 */ 2601 if (is_guest_mode(vcpu)) 2602 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2603 l1_offset, 2604 kvm_x86_call(get_l2_tsc_offset)(vcpu), 2605 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2606 else 2607 vcpu->arch.tsc_offset = l1_offset; 2608 2609 kvm_x86_call(write_tsc_offset)(vcpu); 2610 } 2611 2612 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2613 { 2614 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2615 2616 /* Userspace is changing the multiplier while L2 is active */ 2617 if (is_guest_mode(vcpu)) 2618 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2619 l1_multiplier, 2620 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2621 else 2622 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2623 2624 if (kvm_caps.has_tsc_control) 2625 kvm_x86_call(write_tsc_multiplier)(vcpu); 2626 } 2627 2628 static inline bool kvm_check_tsc_unstable(void) 2629 { 2630 #ifdef CONFIG_X86_64 2631 /* 2632 * TSC is marked unstable when we're running on Hyper-V, 2633 * 'TSC page' clocksource is good. 2634 */ 2635 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2636 return false; 2637 #endif 2638 return check_tsc_unstable(); 2639 } 2640 2641 /* 2642 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2643 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2644 * participates in. 2645 */ 2646 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2647 u64 ns, bool matched) 2648 { 2649 struct kvm *kvm = vcpu->kvm; 2650 2651 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2652 2653 /* 2654 * We also track th most recent recorded KHZ, write and time to 2655 * allow the matching interval to be extended at each write. 2656 */ 2657 kvm->arch.last_tsc_nsec = ns; 2658 kvm->arch.last_tsc_write = tsc; 2659 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2660 kvm->arch.last_tsc_offset = offset; 2661 2662 vcpu->arch.last_guest_tsc = tsc; 2663 2664 kvm_vcpu_write_tsc_offset(vcpu, offset); 2665 2666 if (!matched) { 2667 /* 2668 * We split periods of matched TSC writes into generations. 2669 * For each generation, we track the original measured 2670 * nanosecond time, offset, and write, so if TSCs are in 2671 * sync, we can match exact offset, and if not, we can match 2672 * exact software computation in compute_guest_tsc() 2673 * 2674 * These values are tracked in kvm->arch.cur_xxx variables. 2675 */ 2676 kvm->arch.cur_tsc_generation++; 2677 kvm->arch.cur_tsc_nsec = ns; 2678 kvm->arch.cur_tsc_write = tsc; 2679 kvm->arch.cur_tsc_offset = offset; 2680 kvm->arch.nr_vcpus_matched_tsc = 0; 2681 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2682 kvm->arch.nr_vcpus_matched_tsc++; 2683 } 2684 2685 /* Keep track of which generation this VCPU has synchronized to */ 2686 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2687 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2688 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2689 2690 kvm_track_tsc_matching(vcpu, !matched); 2691 } 2692 2693 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2694 { 2695 u64 data = user_value ? *user_value : 0; 2696 struct kvm *kvm = vcpu->kvm; 2697 u64 offset, ns, elapsed; 2698 unsigned long flags; 2699 bool matched = false; 2700 bool synchronizing = false; 2701 2702 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2703 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2704 ns = get_kvmclock_base_ns(); 2705 elapsed = ns - kvm->arch.last_tsc_nsec; 2706 2707 if (vcpu->arch.virtual_tsc_khz) { 2708 if (data == 0) { 2709 /* 2710 * Force synchronization when creating a vCPU, or when 2711 * userspace explicitly writes a zero value. 2712 */ 2713 synchronizing = true; 2714 } else if (kvm->arch.user_set_tsc) { 2715 u64 tsc_exp = kvm->arch.last_tsc_write + 2716 nsec_to_cycles(vcpu, elapsed); 2717 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2718 /* 2719 * Here lies UAPI baggage: when a user-initiated TSC write has 2720 * a small delta (1 second) of virtual cycle time against the 2721 * previously set vCPU, we assume that they were intended to be 2722 * in sync and the delta was only due to the racy nature of the 2723 * legacy API. 2724 * 2725 * This trick falls down when restoring a guest which genuinely 2726 * has been running for less time than the 1 second of imprecision 2727 * which we allow for in the legacy API. In this case, the first 2728 * value written by userspace (on any vCPU) should not be subject 2729 * to this 'correction' to make it sync up with values that only 2730 * come from the kernel's default vCPU creation. Make the 1-second 2731 * slop hack only trigger if the user_set_tsc flag is already set. 2732 */ 2733 synchronizing = data < tsc_exp + tsc_hz && 2734 data + tsc_hz > tsc_exp; 2735 } 2736 } 2737 2738 if (user_value) 2739 kvm->arch.user_set_tsc = true; 2740 2741 /* 2742 * For a reliable TSC, we can match TSC offsets, and for an unstable 2743 * TSC, we add elapsed time in this computation. We could let the 2744 * compensation code attempt to catch up if we fall behind, but 2745 * it's better to try to match offsets from the beginning. 2746 */ 2747 if (synchronizing && 2748 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2749 if (!kvm_check_tsc_unstable()) { 2750 offset = kvm->arch.cur_tsc_offset; 2751 } else { 2752 u64 delta = nsec_to_cycles(vcpu, elapsed); 2753 data += delta; 2754 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2755 } 2756 matched = true; 2757 } 2758 2759 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2760 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2761 } 2762 2763 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2764 s64 adjustment) 2765 { 2766 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2767 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2768 } 2769 2770 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2771 { 2772 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2773 WARN_ON(adjustment < 0); 2774 adjustment = kvm_scale_tsc((u64) adjustment, 2775 vcpu->arch.l1_tsc_scaling_ratio); 2776 adjust_tsc_offset_guest(vcpu, adjustment); 2777 } 2778 2779 #ifdef CONFIG_X86_64 2780 2781 static u64 read_tsc(void) 2782 { 2783 u64 ret = (u64)rdtsc_ordered(); 2784 u64 last = pvclock_gtod_data.clock.cycle_last; 2785 2786 if (likely(ret >= last)) 2787 return ret; 2788 2789 /* 2790 * GCC likes to generate cmov here, but this branch is extremely 2791 * predictable (it's just a function of time and the likely is 2792 * very likely) and there's a data dependence, so force GCC 2793 * to generate a branch instead. I don't barrier() because 2794 * we don't actually need a barrier, and if this function 2795 * ever gets inlined it will generate worse code. 2796 */ 2797 asm volatile (""); 2798 return last; 2799 } 2800 2801 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2802 int *mode) 2803 { 2804 u64 tsc_pg_val; 2805 long v; 2806 2807 switch (clock->vclock_mode) { 2808 case VDSO_CLOCKMODE_HVCLOCK: 2809 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2810 tsc_timestamp, &tsc_pg_val)) { 2811 /* TSC page valid */ 2812 *mode = VDSO_CLOCKMODE_HVCLOCK; 2813 v = (tsc_pg_val - clock->cycle_last) & 2814 clock->mask; 2815 } else { 2816 /* TSC page invalid */ 2817 *mode = VDSO_CLOCKMODE_NONE; 2818 } 2819 break; 2820 case VDSO_CLOCKMODE_TSC: 2821 *mode = VDSO_CLOCKMODE_TSC; 2822 *tsc_timestamp = read_tsc(); 2823 v = (*tsc_timestamp - clock->cycle_last) & 2824 clock->mask; 2825 break; 2826 default: 2827 *mode = VDSO_CLOCKMODE_NONE; 2828 } 2829 2830 if (*mode == VDSO_CLOCKMODE_NONE) 2831 *tsc_timestamp = v = 0; 2832 2833 return v * clock->mult; 2834 } 2835 2836 /* 2837 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2838 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2839 */ 2840 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2841 { 2842 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2843 unsigned long seq; 2844 int mode; 2845 u64 ns; 2846 2847 do { 2848 seq = read_seqcount_begin(>od->seq); 2849 ns = gtod->raw_clock.base_cycles; 2850 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2851 ns >>= gtod->raw_clock.shift; 2852 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2853 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2854 *t = ns; 2855 2856 return mode; 2857 } 2858 2859 /* 2860 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2861 * no boot time offset. 2862 */ 2863 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2864 { 2865 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2866 unsigned long seq; 2867 int mode; 2868 u64 ns; 2869 2870 do { 2871 seq = read_seqcount_begin(>od->seq); 2872 ns = gtod->clock.base_cycles; 2873 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2874 ns >>= gtod->clock.shift; 2875 ns += ktime_to_ns(gtod->clock.offset); 2876 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2877 *t = ns; 2878 2879 return mode; 2880 } 2881 2882 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2883 { 2884 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2885 unsigned long seq; 2886 int mode; 2887 u64 ns; 2888 2889 do { 2890 seq = read_seqcount_begin(>od->seq); 2891 ts->tv_sec = gtod->wall_time_sec; 2892 ns = gtod->clock.base_cycles; 2893 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2894 ns >>= gtod->clock.shift; 2895 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2896 2897 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2898 ts->tv_nsec = ns; 2899 2900 return mode; 2901 } 2902 2903 /* 2904 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 2905 * reports the TSC value from which it do so. Returns true if host is 2906 * using TSC based clocksource. 2907 */ 2908 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2909 { 2910 /* checked again under seqlock below */ 2911 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2912 return false; 2913 2914 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 2915 tsc_timestamp)); 2916 } 2917 2918 /* 2919 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 2920 * so. Returns true if host is using TSC based clocksource. 2921 */ 2922 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2923 { 2924 /* checked again under seqlock below */ 2925 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2926 return false; 2927 2928 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 2929 tsc_timestamp)); 2930 } 2931 2932 /* 2933 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 2934 * so. Returns true if host is using TSC based clocksource. 2935 * 2936 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 2937 * for that. 2938 */ 2939 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2940 u64 *tsc_timestamp) 2941 { 2942 /* checked again under seqlock below */ 2943 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2944 return false; 2945 2946 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2947 } 2948 #endif 2949 2950 /* 2951 * 2952 * Assuming a stable TSC across physical CPUS, and a stable TSC 2953 * across virtual CPUs, the following condition is possible. 2954 * Each numbered line represents an event visible to both 2955 * CPUs at the next numbered event. 2956 * 2957 * "timespecX" represents host monotonic time. "tscX" represents 2958 * RDTSC value. 2959 * 2960 * VCPU0 on CPU0 | VCPU1 on CPU1 2961 * 2962 * 1. read timespec0,tsc0 2963 * 2. | timespec1 = timespec0 + N 2964 * | tsc1 = tsc0 + M 2965 * 3. transition to guest | transition to guest 2966 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2967 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2968 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2969 * 2970 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2971 * 2972 * - ret0 < ret1 2973 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2974 * ... 2975 * - 0 < N - M => M < N 2976 * 2977 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2978 * always the case (the difference between two distinct xtime instances 2979 * might be smaller then the difference between corresponding TSC reads, 2980 * when updating guest vcpus pvclock areas). 2981 * 2982 * To avoid that problem, do not allow visibility of distinct 2983 * system_timestamp/tsc_timestamp values simultaneously: use a master 2984 * copy of host monotonic time values. Update that master copy 2985 * in lockstep. 2986 * 2987 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2988 * 2989 */ 2990 2991 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2992 { 2993 #ifdef CONFIG_X86_64 2994 struct kvm_arch *ka = &kvm->arch; 2995 int vclock_mode; 2996 bool host_tsc_clocksource, vcpus_matched; 2997 2998 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2999 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 3000 atomic_read(&kvm->online_vcpus)); 3001 3002 /* 3003 * If the host uses TSC clock, then passthrough TSC as stable 3004 * to the guest. 3005 */ 3006 host_tsc_clocksource = kvm_get_time_and_clockread( 3007 &ka->master_kernel_ns, 3008 &ka->master_cycle_now); 3009 3010 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3011 && !ka->backwards_tsc_observed 3012 && !ka->boot_vcpu_runs_old_kvmclock; 3013 3014 if (ka->use_master_clock) 3015 atomic_set(&kvm_guest_has_master_clock, 1); 3016 3017 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3018 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3019 vcpus_matched); 3020 #endif 3021 } 3022 3023 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3024 { 3025 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3026 } 3027 3028 static void __kvm_start_pvclock_update(struct kvm *kvm) 3029 { 3030 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3031 write_seqcount_begin(&kvm->arch.pvclock_sc); 3032 } 3033 3034 static void kvm_start_pvclock_update(struct kvm *kvm) 3035 { 3036 kvm_make_mclock_inprogress_request(kvm); 3037 3038 /* no guest entries from this point */ 3039 __kvm_start_pvclock_update(kvm); 3040 } 3041 3042 static void kvm_end_pvclock_update(struct kvm *kvm) 3043 { 3044 struct kvm_arch *ka = &kvm->arch; 3045 struct kvm_vcpu *vcpu; 3046 unsigned long i; 3047 3048 write_seqcount_end(&ka->pvclock_sc); 3049 raw_spin_unlock_irq(&ka->tsc_write_lock); 3050 kvm_for_each_vcpu(i, vcpu, kvm) 3051 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3052 3053 /* guest entries allowed */ 3054 kvm_for_each_vcpu(i, vcpu, kvm) 3055 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3056 } 3057 3058 static void kvm_update_masterclock(struct kvm *kvm) 3059 { 3060 kvm_hv_request_tsc_page_update(kvm); 3061 kvm_start_pvclock_update(kvm); 3062 pvclock_update_vm_gtod_copy(kvm); 3063 kvm_end_pvclock_update(kvm); 3064 } 3065 3066 /* 3067 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3068 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3069 * can change during boot even if the TSC is constant, as it's possible for KVM 3070 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3071 * notification when calibration completes, but practically speaking calibration 3072 * will complete before userspace is alive enough to create VMs. 3073 */ 3074 static unsigned long get_cpu_tsc_khz(void) 3075 { 3076 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3077 return tsc_khz; 3078 else 3079 return __this_cpu_read(cpu_tsc_khz); 3080 } 3081 3082 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3083 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3084 { 3085 struct kvm_arch *ka = &kvm->arch; 3086 struct pvclock_vcpu_time_info hv_clock; 3087 3088 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3089 get_cpu(); 3090 3091 data->flags = 0; 3092 if (ka->use_master_clock && 3093 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3094 #ifdef CONFIG_X86_64 3095 struct timespec64 ts; 3096 3097 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3098 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3099 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3100 } else 3101 #endif 3102 data->host_tsc = rdtsc(); 3103 3104 data->flags |= KVM_CLOCK_TSC_STABLE; 3105 hv_clock.tsc_timestamp = ka->master_cycle_now; 3106 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3107 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3108 &hv_clock.tsc_shift, 3109 &hv_clock.tsc_to_system_mul); 3110 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3111 } else { 3112 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3113 } 3114 3115 put_cpu(); 3116 } 3117 3118 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3119 { 3120 struct kvm_arch *ka = &kvm->arch; 3121 unsigned seq; 3122 3123 do { 3124 seq = read_seqcount_begin(&ka->pvclock_sc); 3125 __get_kvmclock(kvm, data); 3126 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3127 } 3128 3129 u64 get_kvmclock_ns(struct kvm *kvm) 3130 { 3131 struct kvm_clock_data data; 3132 3133 get_kvmclock(kvm, &data); 3134 return data.clock; 3135 } 3136 3137 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3138 struct gfn_to_pfn_cache *gpc, 3139 unsigned int offset, 3140 bool force_tsc_unstable) 3141 { 3142 struct kvm_vcpu_arch *vcpu = &v->arch; 3143 struct pvclock_vcpu_time_info *guest_hv_clock; 3144 unsigned long flags; 3145 3146 read_lock_irqsave(&gpc->lock, flags); 3147 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3148 read_unlock_irqrestore(&gpc->lock, flags); 3149 3150 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3151 return; 3152 3153 read_lock_irqsave(&gpc->lock, flags); 3154 } 3155 3156 guest_hv_clock = (void *)(gpc->khva + offset); 3157 3158 /* 3159 * This VCPU is paused, but it's legal for a guest to read another 3160 * VCPU's kvmclock, so we really have to follow the specification where 3161 * it says that version is odd if data is being modified, and even after 3162 * it is consistent. 3163 */ 3164 3165 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3166 smp_wmb(); 3167 3168 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3169 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3170 3171 if (vcpu->pvclock_set_guest_stopped_request) { 3172 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3173 vcpu->pvclock_set_guest_stopped_request = false; 3174 } 3175 3176 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3177 3178 if (force_tsc_unstable) 3179 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3180 3181 smp_wmb(); 3182 3183 guest_hv_clock->version = ++vcpu->hv_clock.version; 3184 3185 kvm_gpc_mark_dirty_in_slot(gpc); 3186 read_unlock_irqrestore(&gpc->lock, flags); 3187 3188 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3189 } 3190 3191 static int kvm_guest_time_update(struct kvm_vcpu *v) 3192 { 3193 unsigned long flags, tgt_tsc_khz; 3194 unsigned seq; 3195 struct kvm_vcpu_arch *vcpu = &v->arch; 3196 struct kvm_arch *ka = &v->kvm->arch; 3197 s64 kernel_ns; 3198 u64 tsc_timestamp, host_tsc; 3199 u8 pvclock_flags; 3200 bool use_master_clock; 3201 #ifdef CONFIG_KVM_XEN 3202 /* 3203 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3204 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3205 * This default behaviour led to bugs in some guest kernels which cause 3206 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3207 */ 3208 bool xen_pvclock_tsc_unstable = 3209 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3210 #endif 3211 3212 kernel_ns = 0; 3213 host_tsc = 0; 3214 3215 /* 3216 * If the host uses TSC clock, then passthrough TSC as stable 3217 * to the guest. 3218 */ 3219 do { 3220 seq = read_seqcount_begin(&ka->pvclock_sc); 3221 use_master_clock = ka->use_master_clock; 3222 if (use_master_clock) { 3223 host_tsc = ka->master_cycle_now; 3224 kernel_ns = ka->master_kernel_ns; 3225 } 3226 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3227 3228 /* Keep irq disabled to prevent changes to the clock */ 3229 local_irq_save(flags); 3230 tgt_tsc_khz = get_cpu_tsc_khz(); 3231 if (unlikely(tgt_tsc_khz == 0)) { 3232 local_irq_restore(flags); 3233 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3234 return 1; 3235 } 3236 if (!use_master_clock) { 3237 host_tsc = rdtsc(); 3238 kernel_ns = get_kvmclock_base_ns(); 3239 } 3240 3241 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3242 3243 /* 3244 * We may have to catch up the TSC to match elapsed wall clock 3245 * time for two reasons, even if kvmclock is used. 3246 * 1) CPU could have been running below the maximum TSC rate 3247 * 2) Broken TSC compensation resets the base at each VCPU 3248 * entry to avoid unknown leaps of TSC even when running 3249 * again on the same CPU. This may cause apparent elapsed 3250 * time to disappear, and the guest to stand still or run 3251 * very slowly. 3252 */ 3253 if (vcpu->tsc_catchup) { 3254 u64 tsc = compute_guest_tsc(v, kernel_ns); 3255 if (tsc > tsc_timestamp) { 3256 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3257 tsc_timestamp = tsc; 3258 } 3259 } 3260 3261 local_irq_restore(flags); 3262 3263 /* With all the info we got, fill in the values */ 3264 3265 if (kvm_caps.has_tsc_control) 3266 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3267 v->arch.l1_tsc_scaling_ratio); 3268 3269 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3270 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3271 &vcpu->hv_clock.tsc_shift, 3272 &vcpu->hv_clock.tsc_to_system_mul); 3273 vcpu->hw_tsc_khz = tgt_tsc_khz; 3274 kvm_xen_update_tsc_info(v); 3275 } 3276 3277 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3278 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3279 vcpu->last_guest_tsc = tsc_timestamp; 3280 3281 /* If the host uses TSC clocksource, then it is stable */ 3282 pvclock_flags = 0; 3283 if (use_master_clock) 3284 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3285 3286 vcpu->hv_clock.flags = pvclock_flags; 3287 3288 if (vcpu->pv_time.active) 3289 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3290 #ifdef CONFIG_KVM_XEN 3291 if (vcpu->xen.vcpu_info_cache.active) 3292 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3293 offsetof(struct compat_vcpu_info, time), 3294 xen_pvclock_tsc_unstable); 3295 if (vcpu->xen.vcpu_time_info_cache.active) 3296 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3297 xen_pvclock_tsc_unstable); 3298 #endif 3299 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3300 return 0; 3301 } 3302 3303 /* 3304 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3305 * which it started (i.e. its epoch, when its kvmclock was zero). 3306 * 3307 * In fact those clocks are subtly different; wall clock frequency is 3308 * adjusted by NTP and has leap seconds, while the kvmclock is a 3309 * simple function of the TSC without any such adjustment. 3310 * 3311 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3312 * that and kvmclock, but even that would be subject to change over 3313 * time. 3314 * 3315 * Attempt to calculate the epoch at a given moment using the *same* 3316 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3317 * wallclock and kvmclock times, and subtracting one from the other. 3318 * 3319 * Fall back to using their values at slightly different moments by 3320 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3321 */ 3322 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3323 { 3324 #ifdef CONFIG_X86_64 3325 struct pvclock_vcpu_time_info hv_clock; 3326 struct kvm_arch *ka = &kvm->arch; 3327 unsigned long seq, local_tsc_khz; 3328 struct timespec64 ts; 3329 uint64_t host_tsc; 3330 3331 do { 3332 seq = read_seqcount_begin(&ka->pvclock_sc); 3333 3334 local_tsc_khz = 0; 3335 if (!ka->use_master_clock) 3336 break; 3337 3338 /* 3339 * The TSC read and the call to get_cpu_tsc_khz() must happen 3340 * on the same CPU. 3341 */ 3342 get_cpu(); 3343 3344 local_tsc_khz = get_cpu_tsc_khz(); 3345 3346 if (local_tsc_khz && 3347 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3348 local_tsc_khz = 0; /* Fall back to old method */ 3349 3350 put_cpu(); 3351 3352 /* 3353 * These values must be snapshotted within the seqcount loop. 3354 * After that, it's just mathematics which can happen on any 3355 * CPU at any time. 3356 */ 3357 hv_clock.tsc_timestamp = ka->master_cycle_now; 3358 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3359 3360 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3361 3362 /* 3363 * If the conditions were right, and obtaining the wallclock+TSC was 3364 * successful, calculate the KVM clock at the corresponding time and 3365 * subtract one from the other to get the guest's epoch in nanoseconds 3366 * since 1970-01-01. 3367 */ 3368 if (local_tsc_khz) { 3369 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3370 &hv_clock.tsc_shift, 3371 &hv_clock.tsc_to_system_mul); 3372 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3373 __pvclock_read_cycles(&hv_clock, host_tsc); 3374 } 3375 #endif 3376 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3377 } 3378 3379 /* 3380 * kvmclock updates which are isolated to a given vcpu, such as 3381 * vcpu->cpu migration, should not allow system_timestamp from 3382 * the rest of the vcpus to remain static. Otherwise ntp frequency 3383 * correction applies to one vcpu's system_timestamp but not 3384 * the others. 3385 * 3386 * So in those cases, request a kvmclock update for all vcpus. 3387 * We need to rate-limit these requests though, as they can 3388 * considerably slow guests that have a large number of vcpus. 3389 * The time for a remote vcpu to update its kvmclock is bound 3390 * by the delay we use to rate-limit the updates. 3391 */ 3392 3393 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3394 3395 static void kvmclock_update_fn(struct work_struct *work) 3396 { 3397 unsigned long i; 3398 struct delayed_work *dwork = to_delayed_work(work); 3399 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3400 kvmclock_update_work); 3401 struct kvm *kvm = container_of(ka, struct kvm, arch); 3402 struct kvm_vcpu *vcpu; 3403 3404 kvm_for_each_vcpu(i, vcpu, kvm) { 3405 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3406 kvm_vcpu_kick(vcpu); 3407 } 3408 } 3409 3410 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3411 { 3412 struct kvm *kvm = v->kvm; 3413 3414 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3415 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3416 KVMCLOCK_UPDATE_DELAY); 3417 } 3418 3419 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3420 3421 static void kvmclock_sync_fn(struct work_struct *work) 3422 { 3423 struct delayed_work *dwork = to_delayed_work(work); 3424 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3425 kvmclock_sync_work); 3426 struct kvm *kvm = container_of(ka, struct kvm, arch); 3427 3428 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3429 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3430 KVMCLOCK_SYNC_PERIOD); 3431 } 3432 3433 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3434 static bool is_mci_control_msr(u32 msr) 3435 { 3436 return (msr & 3) == 0; 3437 } 3438 static bool is_mci_status_msr(u32 msr) 3439 { 3440 return (msr & 3) == 1; 3441 } 3442 3443 /* 3444 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3445 */ 3446 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3447 { 3448 /* McStatusWrEn enabled? */ 3449 if (guest_cpuid_is_amd_compatible(vcpu)) 3450 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3451 3452 return false; 3453 } 3454 3455 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3456 { 3457 u64 mcg_cap = vcpu->arch.mcg_cap; 3458 unsigned bank_num = mcg_cap & 0xff; 3459 u32 msr = msr_info->index; 3460 u64 data = msr_info->data; 3461 u32 offset, last_msr; 3462 3463 switch (msr) { 3464 case MSR_IA32_MCG_STATUS: 3465 vcpu->arch.mcg_status = data; 3466 break; 3467 case MSR_IA32_MCG_CTL: 3468 if (!(mcg_cap & MCG_CTL_P) && 3469 (data || !msr_info->host_initiated)) 3470 return 1; 3471 if (data != 0 && data != ~(u64)0) 3472 return 1; 3473 vcpu->arch.mcg_ctl = data; 3474 break; 3475 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3476 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3477 if (msr > last_msr) 3478 return 1; 3479 3480 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3481 return 1; 3482 /* An attempt to write a 1 to a reserved bit raises #GP */ 3483 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3484 return 1; 3485 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3486 last_msr + 1 - MSR_IA32_MC0_CTL2); 3487 vcpu->arch.mci_ctl2_banks[offset] = data; 3488 break; 3489 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3490 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3491 if (msr > last_msr) 3492 return 1; 3493 3494 /* 3495 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3496 * values are architecturally undefined. But, some Linux 3497 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3498 * issue on AMD K8s, allow bit 10 to be clear when setting all 3499 * other bits in order to avoid an uncaught #GP in the guest. 3500 * 3501 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3502 * single-bit ECC data errors. 3503 */ 3504 if (is_mci_control_msr(msr) && 3505 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3506 return 1; 3507 3508 /* 3509 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3510 * AMD-based CPUs allow non-zero values, but if and only if 3511 * HWCR[McStatusWrEn] is set. 3512 */ 3513 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3514 data != 0 && !can_set_mci_status(vcpu)) 3515 return 1; 3516 3517 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3518 last_msr + 1 - MSR_IA32_MC0_CTL); 3519 vcpu->arch.mce_banks[offset] = data; 3520 break; 3521 default: 3522 return 1; 3523 } 3524 return 0; 3525 } 3526 3527 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3528 { 3529 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3530 3531 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3532 } 3533 3534 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3535 { 3536 gpa_t gpa = data & ~0x3f; 3537 3538 /* Bits 4:5 are reserved, Should be zero */ 3539 if (data & 0x30) 3540 return 1; 3541 3542 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3543 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3544 return 1; 3545 3546 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3547 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3548 return 1; 3549 3550 if (!lapic_in_kernel(vcpu)) 3551 return data ? 1 : 0; 3552 3553 vcpu->arch.apf.msr_en_val = data; 3554 3555 if (!kvm_pv_async_pf_enabled(vcpu)) { 3556 kvm_clear_async_pf_completion_queue(vcpu); 3557 kvm_async_pf_hash_reset(vcpu); 3558 return 0; 3559 } 3560 3561 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3562 sizeof(u64))) 3563 return 1; 3564 3565 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3566 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3567 3568 kvm_async_pf_wakeup_all(vcpu); 3569 3570 return 0; 3571 } 3572 3573 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3574 { 3575 /* Bits 8-63 are reserved */ 3576 if (data >> 8) 3577 return 1; 3578 3579 if (!lapic_in_kernel(vcpu)) 3580 return 1; 3581 3582 vcpu->arch.apf.msr_int_val = data; 3583 3584 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3585 3586 return 0; 3587 } 3588 3589 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3590 { 3591 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3592 vcpu->arch.time = 0; 3593 } 3594 3595 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3596 { 3597 ++vcpu->stat.tlb_flush; 3598 kvm_x86_call(flush_tlb_all)(vcpu); 3599 3600 /* Flushing all ASIDs flushes the current ASID... */ 3601 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3602 } 3603 3604 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3605 { 3606 ++vcpu->stat.tlb_flush; 3607 3608 if (!tdp_enabled) { 3609 /* 3610 * A TLB flush on behalf of the guest is equivalent to 3611 * INVPCID(all), toggling CR4.PGE, etc., which requires 3612 * a forced sync of the shadow page tables. Ensure all the 3613 * roots are synced and the guest TLB in hardware is clean. 3614 */ 3615 kvm_mmu_sync_roots(vcpu); 3616 kvm_mmu_sync_prev_roots(vcpu); 3617 } 3618 3619 kvm_x86_call(flush_tlb_guest)(vcpu); 3620 3621 /* 3622 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3623 * grained flushing. 3624 */ 3625 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3626 } 3627 3628 3629 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3630 { 3631 ++vcpu->stat.tlb_flush; 3632 kvm_x86_call(flush_tlb_current)(vcpu); 3633 } 3634 3635 /* 3636 * Service "local" TLB flush requests, which are specific to the current MMU 3637 * context. In addition to the generic event handling in vcpu_enter_guest(), 3638 * TLB flushes that are targeted at an MMU context also need to be serviced 3639 * prior before nested VM-Enter/VM-Exit. 3640 */ 3641 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3642 { 3643 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3644 kvm_vcpu_flush_tlb_current(vcpu); 3645 3646 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3647 kvm_vcpu_flush_tlb_guest(vcpu); 3648 } 3649 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3650 3651 static void record_steal_time(struct kvm_vcpu *vcpu) 3652 { 3653 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3654 struct kvm_steal_time __user *st; 3655 struct kvm_memslots *slots; 3656 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3657 u64 steal; 3658 u32 version; 3659 3660 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3661 kvm_xen_runstate_set_running(vcpu); 3662 return; 3663 } 3664 3665 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3666 return; 3667 3668 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3669 return; 3670 3671 slots = kvm_memslots(vcpu->kvm); 3672 3673 if (unlikely(slots->generation != ghc->generation || 3674 gpa != ghc->gpa || 3675 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3676 /* We rely on the fact that it fits in a single page. */ 3677 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3678 3679 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3680 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3681 return; 3682 } 3683 3684 st = (struct kvm_steal_time __user *)ghc->hva; 3685 /* 3686 * Doing a TLB flush here, on the guest's behalf, can avoid 3687 * expensive IPIs. 3688 */ 3689 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3690 u8 st_preempted = 0; 3691 int err = -EFAULT; 3692 3693 if (!user_access_begin(st, sizeof(*st))) 3694 return; 3695 3696 asm volatile("1: xchgb %0, %2\n" 3697 "xor %1, %1\n" 3698 "2:\n" 3699 _ASM_EXTABLE_UA(1b, 2b) 3700 : "+q" (st_preempted), 3701 "+&r" (err), 3702 "+m" (st->preempted)); 3703 if (err) 3704 goto out; 3705 3706 user_access_end(); 3707 3708 vcpu->arch.st.preempted = 0; 3709 3710 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3711 st_preempted & KVM_VCPU_FLUSH_TLB); 3712 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3713 kvm_vcpu_flush_tlb_guest(vcpu); 3714 3715 if (!user_access_begin(st, sizeof(*st))) 3716 goto dirty; 3717 } else { 3718 if (!user_access_begin(st, sizeof(*st))) 3719 return; 3720 3721 unsafe_put_user(0, &st->preempted, out); 3722 vcpu->arch.st.preempted = 0; 3723 } 3724 3725 unsafe_get_user(version, &st->version, out); 3726 if (version & 1) 3727 version += 1; /* first time write, random junk */ 3728 3729 version += 1; 3730 unsafe_put_user(version, &st->version, out); 3731 3732 smp_wmb(); 3733 3734 unsafe_get_user(steal, &st->steal, out); 3735 steal += current->sched_info.run_delay - 3736 vcpu->arch.st.last_steal; 3737 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3738 unsafe_put_user(steal, &st->steal, out); 3739 3740 version += 1; 3741 unsafe_put_user(version, &st->version, out); 3742 3743 out: 3744 user_access_end(); 3745 dirty: 3746 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3747 } 3748 3749 static bool kvm_is_msr_to_save(u32 msr_index) 3750 { 3751 unsigned int i; 3752 3753 for (i = 0; i < num_msrs_to_save; i++) { 3754 if (msrs_to_save[i] == msr_index) 3755 return true; 3756 } 3757 3758 return false; 3759 } 3760 3761 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3762 { 3763 u32 msr = msr_info->index; 3764 u64 data = msr_info->data; 3765 3766 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3767 return kvm_xen_write_hypercall_page(vcpu, data); 3768 3769 switch (msr) { 3770 case MSR_AMD64_NB_CFG: 3771 case MSR_IA32_UCODE_WRITE: 3772 case MSR_VM_HSAVE_PA: 3773 case MSR_AMD64_PATCH_LOADER: 3774 case MSR_AMD64_BU_CFG2: 3775 case MSR_AMD64_DC_CFG: 3776 case MSR_AMD64_TW_CFG: 3777 case MSR_F15H_EX_CFG: 3778 break; 3779 3780 case MSR_IA32_UCODE_REV: 3781 if (msr_info->host_initiated) 3782 vcpu->arch.microcode_version = data; 3783 break; 3784 case MSR_IA32_ARCH_CAPABILITIES: 3785 if (!msr_info->host_initiated) 3786 return 1; 3787 vcpu->arch.arch_capabilities = data; 3788 break; 3789 case MSR_IA32_PERF_CAPABILITIES: 3790 if (!msr_info->host_initiated) 3791 return 1; 3792 if (data & ~kvm_caps.supported_perf_cap) 3793 return 1; 3794 3795 /* 3796 * Note, this is not just a performance optimization! KVM 3797 * disallows changing feature MSRs after the vCPU has run; PMU 3798 * refresh will bug the VM if called after the vCPU has run. 3799 */ 3800 if (vcpu->arch.perf_capabilities == data) 3801 break; 3802 3803 vcpu->arch.perf_capabilities = data; 3804 kvm_pmu_refresh(vcpu); 3805 break; 3806 case MSR_IA32_PRED_CMD: { 3807 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3808 3809 if (!msr_info->host_initiated) { 3810 if ((!guest_has_pred_cmd_msr(vcpu))) 3811 return 1; 3812 3813 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3814 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3815 reserved_bits |= PRED_CMD_IBPB; 3816 3817 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3818 reserved_bits |= PRED_CMD_SBPB; 3819 } 3820 3821 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3822 reserved_bits |= PRED_CMD_IBPB; 3823 3824 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3825 reserved_bits |= PRED_CMD_SBPB; 3826 3827 if (data & reserved_bits) 3828 return 1; 3829 3830 if (!data) 3831 break; 3832 3833 wrmsrl(MSR_IA32_PRED_CMD, data); 3834 break; 3835 } 3836 case MSR_IA32_FLUSH_CMD: 3837 if (!msr_info->host_initiated && 3838 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3839 return 1; 3840 3841 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3842 return 1; 3843 if (!data) 3844 break; 3845 3846 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3847 break; 3848 case MSR_EFER: 3849 return set_efer(vcpu, msr_info); 3850 case MSR_K7_HWCR: 3851 data &= ~(u64)0x40; /* ignore flush filter disable */ 3852 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3853 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3854 3855 /* 3856 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3857 * through at least v6.6 whine if TscFreqSel is clear, 3858 * depending on F/M/S. 3859 */ 3860 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3861 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3862 return 1; 3863 } 3864 vcpu->arch.msr_hwcr = data; 3865 break; 3866 case MSR_FAM10H_MMIO_CONF_BASE: 3867 if (data != 0) { 3868 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3869 return 1; 3870 } 3871 break; 3872 case MSR_IA32_CR_PAT: 3873 if (!kvm_pat_valid(data)) 3874 return 1; 3875 3876 vcpu->arch.pat = data; 3877 break; 3878 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3879 case MSR_MTRRdefType: 3880 return kvm_mtrr_set_msr(vcpu, msr, data); 3881 case MSR_IA32_APICBASE: 3882 return kvm_set_apic_base(vcpu, msr_info); 3883 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3884 return kvm_x2apic_msr_write(vcpu, msr, data); 3885 case MSR_IA32_TSC_DEADLINE: 3886 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3887 break; 3888 case MSR_IA32_TSC_ADJUST: 3889 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3890 if (!msr_info->host_initiated) { 3891 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3892 adjust_tsc_offset_guest(vcpu, adj); 3893 /* Before back to guest, tsc_timestamp must be adjusted 3894 * as well, otherwise guest's percpu pvclock time could jump. 3895 */ 3896 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3897 } 3898 vcpu->arch.ia32_tsc_adjust_msr = data; 3899 } 3900 break; 3901 case MSR_IA32_MISC_ENABLE: { 3902 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3903 3904 if (!msr_info->host_initiated) { 3905 /* RO bits */ 3906 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3907 return 1; 3908 3909 /* R bits, i.e. writes are ignored, but don't fault. */ 3910 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3911 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3912 } 3913 3914 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3915 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3916 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3917 return 1; 3918 vcpu->arch.ia32_misc_enable_msr = data; 3919 kvm_update_cpuid_runtime(vcpu); 3920 } else { 3921 vcpu->arch.ia32_misc_enable_msr = data; 3922 } 3923 break; 3924 } 3925 case MSR_IA32_SMBASE: 3926 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3927 return 1; 3928 vcpu->arch.smbase = data; 3929 break; 3930 case MSR_IA32_POWER_CTL: 3931 vcpu->arch.msr_ia32_power_ctl = data; 3932 break; 3933 case MSR_IA32_TSC: 3934 if (msr_info->host_initiated) { 3935 kvm_synchronize_tsc(vcpu, &data); 3936 } else { 3937 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3938 adjust_tsc_offset_guest(vcpu, adj); 3939 vcpu->arch.ia32_tsc_adjust_msr += adj; 3940 } 3941 break; 3942 case MSR_IA32_XSS: 3943 if (!msr_info->host_initiated && 3944 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3945 return 1; 3946 /* 3947 * KVM supports exposing PT to the guest, but does not support 3948 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3949 * XSAVES/XRSTORS to save/restore PT MSRs. 3950 */ 3951 if (data & ~kvm_caps.supported_xss) 3952 return 1; 3953 vcpu->arch.ia32_xss = data; 3954 kvm_update_cpuid_runtime(vcpu); 3955 break; 3956 case MSR_SMI_COUNT: 3957 if (!msr_info->host_initiated) 3958 return 1; 3959 vcpu->arch.smi_count = data; 3960 break; 3961 case MSR_KVM_WALL_CLOCK_NEW: 3962 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3963 return 1; 3964 3965 vcpu->kvm->arch.wall_clock = data; 3966 kvm_write_wall_clock(vcpu->kvm, data, 0); 3967 break; 3968 case MSR_KVM_WALL_CLOCK: 3969 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3970 return 1; 3971 3972 vcpu->kvm->arch.wall_clock = data; 3973 kvm_write_wall_clock(vcpu->kvm, data, 0); 3974 break; 3975 case MSR_KVM_SYSTEM_TIME_NEW: 3976 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3977 return 1; 3978 3979 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3980 break; 3981 case MSR_KVM_SYSTEM_TIME: 3982 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3983 return 1; 3984 3985 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3986 break; 3987 case MSR_KVM_ASYNC_PF_EN: 3988 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3989 return 1; 3990 3991 if (kvm_pv_enable_async_pf(vcpu, data)) 3992 return 1; 3993 break; 3994 case MSR_KVM_ASYNC_PF_INT: 3995 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3996 return 1; 3997 3998 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3999 return 1; 4000 break; 4001 case MSR_KVM_ASYNC_PF_ACK: 4002 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4003 return 1; 4004 if (data & 0x1) { 4005 vcpu->arch.apf.pageready_pending = false; 4006 kvm_check_async_pf_completion(vcpu); 4007 } 4008 break; 4009 case MSR_KVM_STEAL_TIME: 4010 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4011 return 1; 4012 4013 if (unlikely(!sched_info_on())) 4014 return 1; 4015 4016 if (data & KVM_STEAL_RESERVED_MASK) 4017 return 1; 4018 4019 vcpu->arch.st.msr_val = data; 4020 4021 if (!(data & KVM_MSR_ENABLED)) 4022 break; 4023 4024 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4025 4026 break; 4027 case MSR_KVM_PV_EOI_EN: 4028 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4029 return 1; 4030 4031 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4032 return 1; 4033 break; 4034 4035 case MSR_KVM_POLL_CONTROL: 4036 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4037 return 1; 4038 4039 /* only enable bit supported */ 4040 if (data & (-1ULL << 1)) 4041 return 1; 4042 4043 vcpu->arch.msr_kvm_poll_control = data; 4044 break; 4045 4046 case MSR_IA32_MCG_CTL: 4047 case MSR_IA32_MCG_STATUS: 4048 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4049 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4050 return set_msr_mce(vcpu, msr_info); 4051 4052 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4053 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4054 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4055 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4056 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4057 return kvm_pmu_set_msr(vcpu, msr_info); 4058 4059 if (data) 4060 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4061 break; 4062 case MSR_K7_CLK_CTL: 4063 /* 4064 * Ignore all writes to this no longer documented MSR. 4065 * Writes are only relevant for old K7 processors, 4066 * all pre-dating SVM, but a recommended workaround from 4067 * AMD for these chips. It is possible to specify the 4068 * affected processor models on the command line, hence 4069 * the need to ignore the workaround. 4070 */ 4071 break; 4072 #ifdef CONFIG_KVM_HYPERV 4073 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4074 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4075 case HV_X64_MSR_SYNDBG_OPTIONS: 4076 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4077 case HV_X64_MSR_CRASH_CTL: 4078 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4079 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4080 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4081 case HV_X64_MSR_TSC_EMULATION_STATUS: 4082 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4083 return kvm_hv_set_msr_common(vcpu, msr, data, 4084 msr_info->host_initiated); 4085 #endif 4086 case MSR_IA32_BBL_CR_CTL3: 4087 /* Drop writes to this legacy MSR -- see rdmsr 4088 * counterpart for further detail. 4089 */ 4090 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4091 break; 4092 case MSR_AMD64_OSVW_ID_LENGTH: 4093 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4094 return 1; 4095 vcpu->arch.osvw.length = data; 4096 break; 4097 case MSR_AMD64_OSVW_STATUS: 4098 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4099 return 1; 4100 vcpu->arch.osvw.status = data; 4101 break; 4102 case MSR_PLATFORM_INFO: 4103 if (!msr_info->host_initiated || 4104 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4105 cpuid_fault_enabled(vcpu))) 4106 return 1; 4107 vcpu->arch.msr_platform_info = data; 4108 break; 4109 case MSR_MISC_FEATURES_ENABLES: 4110 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4111 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4112 !supports_cpuid_fault(vcpu))) 4113 return 1; 4114 vcpu->arch.msr_misc_features_enables = data; 4115 break; 4116 #ifdef CONFIG_X86_64 4117 case MSR_IA32_XFD: 4118 if (!msr_info->host_initiated && 4119 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4120 return 1; 4121 4122 if (data & ~kvm_guest_supported_xfd(vcpu)) 4123 return 1; 4124 4125 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4126 break; 4127 case MSR_IA32_XFD_ERR: 4128 if (!msr_info->host_initiated && 4129 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4130 return 1; 4131 4132 if (data & ~kvm_guest_supported_xfd(vcpu)) 4133 return 1; 4134 4135 vcpu->arch.guest_fpu.xfd_err = data; 4136 break; 4137 #endif 4138 default: 4139 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4140 return kvm_pmu_set_msr(vcpu, msr_info); 4141 4142 /* 4143 * Userspace is allowed to write '' to MSRs that KVM reports 4144 * as to-be-saved, even if an MSRs isn't fully supported. 4145 */ 4146 if (msr_info->host_initiated && !data && 4147 kvm_is_msr_to_save(msr)) 4148 break; 4149 4150 return KVM_MSR_RET_INVALID; 4151 } 4152 return 0; 4153 } 4154 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4155 4156 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4157 { 4158 u64 data; 4159 u64 mcg_cap = vcpu->arch.mcg_cap; 4160 unsigned bank_num = mcg_cap & 0xff; 4161 u32 offset, last_msr; 4162 4163 switch (msr) { 4164 case MSR_IA32_P5_MC_ADDR: 4165 case MSR_IA32_P5_MC_TYPE: 4166 data = 0; 4167 break; 4168 case MSR_IA32_MCG_CAP: 4169 data = vcpu->arch.mcg_cap; 4170 break; 4171 case MSR_IA32_MCG_CTL: 4172 if (!(mcg_cap & MCG_CTL_P) && !host) 4173 return 1; 4174 data = vcpu->arch.mcg_ctl; 4175 break; 4176 case MSR_IA32_MCG_STATUS: 4177 data = vcpu->arch.mcg_status; 4178 break; 4179 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4180 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4181 if (msr > last_msr) 4182 return 1; 4183 4184 if (!(mcg_cap & MCG_CMCI_P) && !host) 4185 return 1; 4186 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4187 last_msr + 1 - MSR_IA32_MC0_CTL2); 4188 data = vcpu->arch.mci_ctl2_banks[offset]; 4189 break; 4190 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4191 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4192 if (msr > last_msr) 4193 return 1; 4194 4195 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4196 last_msr + 1 - MSR_IA32_MC0_CTL); 4197 data = vcpu->arch.mce_banks[offset]; 4198 break; 4199 default: 4200 return 1; 4201 } 4202 *pdata = data; 4203 return 0; 4204 } 4205 4206 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4207 { 4208 switch (msr_info->index) { 4209 case MSR_IA32_PLATFORM_ID: 4210 case MSR_IA32_EBL_CR_POWERON: 4211 case MSR_IA32_LASTBRANCHFROMIP: 4212 case MSR_IA32_LASTBRANCHTOIP: 4213 case MSR_IA32_LASTINTFROMIP: 4214 case MSR_IA32_LASTINTTOIP: 4215 case MSR_AMD64_SYSCFG: 4216 case MSR_K8_TSEG_ADDR: 4217 case MSR_K8_TSEG_MASK: 4218 case MSR_VM_HSAVE_PA: 4219 case MSR_K8_INT_PENDING_MSG: 4220 case MSR_AMD64_NB_CFG: 4221 case MSR_FAM10H_MMIO_CONF_BASE: 4222 case MSR_AMD64_BU_CFG2: 4223 case MSR_IA32_PERF_CTL: 4224 case MSR_AMD64_DC_CFG: 4225 case MSR_AMD64_TW_CFG: 4226 case MSR_F15H_EX_CFG: 4227 /* 4228 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4229 * limit) MSRs. Just return 0, as we do not want to expose the host 4230 * data here. Do not conditionalize this on CPUID, as KVM does not do 4231 * so for existing CPU-specific MSRs. 4232 */ 4233 case MSR_RAPL_POWER_UNIT: 4234 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4235 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4236 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4237 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4238 msr_info->data = 0; 4239 break; 4240 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4241 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4242 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4243 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4244 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4245 return kvm_pmu_get_msr(vcpu, msr_info); 4246 msr_info->data = 0; 4247 break; 4248 case MSR_IA32_UCODE_REV: 4249 msr_info->data = vcpu->arch.microcode_version; 4250 break; 4251 case MSR_IA32_ARCH_CAPABILITIES: 4252 if (!msr_info->host_initiated && 4253 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4254 return 1; 4255 msr_info->data = vcpu->arch.arch_capabilities; 4256 break; 4257 case MSR_IA32_PERF_CAPABILITIES: 4258 if (!msr_info->host_initiated && 4259 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4260 return 1; 4261 msr_info->data = vcpu->arch.perf_capabilities; 4262 break; 4263 case MSR_IA32_POWER_CTL: 4264 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4265 break; 4266 case MSR_IA32_TSC: { 4267 /* 4268 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4269 * even when not intercepted. AMD manual doesn't explicitly 4270 * state this but appears to behave the same. 4271 * 4272 * On userspace reads and writes, however, we unconditionally 4273 * return L1's TSC value to ensure backwards-compatible 4274 * behavior for migration. 4275 */ 4276 u64 offset, ratio; 4277 4278 if (msr_info->host_initiated) { 4279 offset = vcpu->arch.l1_tsc_offset; 4280 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4281 } else { 4282 offset = vcpu->arch.tsc_offset; 4283 ratio = vcpu->arch.tsc_scaling_ratio; 4284 } 4285 4286 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4287 break; 4288 } 4289 case MSR_IA32_CR_PAT: 4290 msr_info->data = vcpu->arch.pat; 4291 break; 4292 case MSR_MTRRcap: 4293 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4294 case MSR_MTRRdefType: 4295 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4296 case 0xcd: /* fsb frequency */ 4297 msr_info->data = 3; 4298 break; 4299 /* 4300 * MSR_EBC_FREQUENCY_ID 4301 * Conservative value valid for even the basic CPU models. 4302 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4303 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4304 * and 266MHz for model 3, or 4. Set Core Clock 4305 * Frequency to System Bus Frequency Ratio to 1 (bits 4306 * 31:24) even though these are only valid for CPU 4307 * models > 2, however guests may end up dividing or 4308 * multiplying by zero otherwise. 4309 */ 4310 case MSR_EBC_FREQUENCY_ID: 4311 msr_info->data = 1 << 24; 4312 break; 4313 case MSR_IA32_APICBASE: 4314 msr_info->data = kvm_get_apic_base(vcpu); 4315 break; 4316 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4317 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4318 case MSR_IA32_TSC_DEADLINE: 4319 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4320 break; 4321 case MSR_IA32_TSC_ADJUST: 4322 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4323 break; 4324 case MSR_IA32_MISC_ENABLE: 4325 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4326 break; 4327 case MSR_IA32_SMBASE: 4328 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4329 return 1; 4330 msr_info->data = vcpu->arch.smbase; 4331 break; 4332 case MSR_SMI_COUNT: 4333 msr_info->data = vcpu->arch.smi_count; 4334 break; 4335 case MSR_IA32_PERF_STATUS: 4336 /* TSC increment by tick */ 4337 msr_info->data = 1000ULL; 4338 /* CPU multiplier */ 4339 msr_info->data |= (((uint64_t)4ULL) << 40); 4340 break; 4341 case MSR_EFER: 4342 msr_info->data = vcpu->arch.efer; 4343 break; 4344 case MSR_KVM_WALL_CLOCK: 4345 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4346 return 1; 4347 4348 msr_info->data = vcpu->kvm->arch.wall_clock; 4349 break; 4350 case MSR_KVM_WALL_CLOCK_NEW: 4351 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4352 return 1; 4353 4354 msr_info->data = vcpu->kvm->arch.wall_clock; 4355 break; 4356 case MSR_KVM_SYSTEM_TIME: 4357 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4358 return 1; 4359 4360 msr_info->data = vcpu->arch.time; 4361 break; 4362 case MSR_KVM_SYSTEM_TIME_NEW: 4363 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4364 return 1; 4365 4366 msr_info->data = vcpu->arch.time; 4367 break; 4368 case MSR_KVM_ASYNC_PF_EN: 4369 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4370 return 1; 4371 4372 msr_info->data = vcpu->arch.apf.msr_en_val; 4373 break; 4374 case MSR_KVM_ASYNC_PF_INT: 4375 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4376 return 1; 4377 4378 msr_info->data = vcpu->arch.apf.msr_int_val; 4379 break; 4380 case MSR_KVM_ASYNC_PF_ACK: 4381 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4382 return 1; 4383 4384 msr_info->data = 0; 4385 break; 4386 case MSR_KVM_STEAL_TIME: 4387 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4388 return 1; 4389 4390 msr_info->data = vcpu->arch.st.msr_val; 4391 break; 4392 case MSR_KVM_PV_EOI_EN: 4393 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4394 return 1; 4395 4396 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4397 break; 4398 case MSR_KVM_POLL_CONTROL: 4399 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4400 return 1; 4401 4402 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4403 break; 4404 case MSR_IA32_P5_MC_ADDR: 4405 case MSR_IA32_P5_MC_TYPE: 4406 case MSR_IA32_MCG_CAP: 4407 case MSR_IA32_MCG_CTL: 4408 case MSR_IA32_MCG_STATUS: 4409 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4410 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4411 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4412 msr_info->host_initiated); 4413 case MSR_IA32_XSS: 4414 if (!msr_info->host_initiated && 4415 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4416 return 1; 4417 msr_info->data = vcpu->arch.ia32_xss; 4418 break; 4419 case MSR_K7_CLK_CTL: 4420 /* 4421 * Provide expected ramp-up count for K7. All other 4422 * are set to zero, indicating minimum divisors for 4423 * every field. 4424 * 4425 * This prevents guest kernels on AMD host with CPU 4426 * type 6, model 8 and higher from exploding due to 4427 * the rdmsr failing. 4428 */ 4429 msr_info->data = 0x20000000; 4430 break; 4431 #ifdef CONFIG_KVM_HYPERV 4432 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4433 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4434 case HV_X64_MSR_SYNDBG_OPTIONS: 4435 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4436 case HV_X64_MSR_CRASH_CTL: 4437 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4438 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4439 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4440 case HV_X64_MSR_TSC_EMULATION_STATUS: 4441 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4442 return kvm_hv_get_msr_common(vcpu, 4443 msr_info->index, &msr_info->data, 4444 msr_info->host_initiated); 4445 #endif 4446 case MSR_IA32_BBL_CR_CTL3: 4447 /* This legacy MSR exists but isn't fully documented in current 4448 * silicon. It is however accessed by winxp in very narrow 4449 * scenarios where it sets bit #19, itself documented as 4450 * a "reserved" bit. Best effort attempt to source coherent 4451 * read data here should the balance of the register be 4452 * interpreted by the guest: 4453 * 4454 * L2 cache control register 3: 64GB range, 256KB size, 4455 * enabled, latency 0x1, configured 4456 */ 4457 msr_info->data = 0xbe702111; 4458 break; 4459 case MSR_AMD64_OSVW_ID_LENGTH: 4460 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4461 return 1; 4462 msr_info->data = vcpu->arch.osvw.length; 4463 break; 4464 case MSR_AMD64_OSVW_STATUS: 4465 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4466 return 1; 4467 msr_info->data = vcpu->arch.osvw.status; 4468 break; 4469 case MSR_PLATFORM_INFO: 4470 if (!msr_info->host_initiated && 4471 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4472 return 1; 4473 msr_info->data = vcpu->arch.msr_platform_info; 4474 break; 4475 case MSR_MISC_FEATURES_ENABLES: 4476 msr_info->data = vcpu->arch.msr_misc_features_enables; 4477 break; 4478 case MSR_K7_HWCR: 4479 msr_info->data = vcpu->arch.msr_hwcr; 4480 break; 4481 #ifdef CONFIG_X86_64 4482 case MSR_IA32_XFD: 4483 if (!msr_info->host_initiated && 4484 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4485 return 1; 4486 4487 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4488 break; 4489 case MSR_IA32_XFD_ERR: 4490 if (!msr_info->host_initiated && 4491 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4492 return 1; 4493 4494 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4495 break; 4496 #endif 4497 default: 4498 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4499 return kvm_pmu_get_msr(vcpu, msr_info); 4500 4501 /* 4502 * Userspace is allowed to read MSRs that KVM reports as 4503 * to-be-saved, even if an MSR isn't fully supported. 4504 */ 4505 if (msr_info->host_initiated && 4506 kvm_is_msr_to_save(msr_info->index)) { 4507 msr_info->data = 0; 4508 break; 4509 } 4510 4511 return KVM_MSR_RET_INVALID; 4512 } 4513 return 0; 4514 } 4515 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4516 4517 /* 4518 * Read or write a bunch of msrs. All parameters are kernel addresses. 4519 * 4520 * @return number of msrs set successfully. 4521 */ 4522 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4523 struct kvm_msr_entry *entries, 4524 int (*do_msr)(struct kvm_vcpu *vcpu, 4525 unsigned index, u64 *data)) 4526 { 4527 int i; 4528 4529 for (i = 0; i < msrs->nmsrs; ++i) 4530 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4531 break; 4532 4533 return i; 4534 } 4535 4536 /* 4537 * Read or write a bunch of msrs. Parameters are user addresses. 4538 * 4539 * @return number of msrs set successfully. 4540 */ 4541 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4542 int (*do_msr)(struct kvm_vcpu *vcpu, 4543 unsigned index, u64 *data), 4544 int writeback) 4545 { 4546 struct kvm_msrs msrs; 4547 struct kvm_msr_entry *entries; 4548 unsigned size; 4549 int r; 4550 4551 r = -EFAULT; 4552 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4553 goto out; 4554 4555 r = -E2BIG; 4556 if (msrs.nmsrs >= MAX_IO_MSRS) 4557 goto out; 4558 4559 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4560 entries = memdup_user(user_msrs->entries, size); 4561 if (IS_ERR(entries)) { 4562 r = PTR_ERR(entries); 4563 goto out; 4564 } 4565 4566 r = __msr_io(vcpu, &msrs, entries, do_msr); 4567 4568 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4569 r = -EFAULT; 4570 4571 kfree(entries); 4572 out: 4573 return r; 4574 } 4575 4576 static inline bool kvm_can_mwait_in_guest(void) 4577 { 4578 return boot_cpu_has(X86_FEATURE_MWAIT) && 4579 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4580 boot_cpu_has(X86_FEATURE_ARAT); 4581 } 4582 4583 #ifdef CONFIG_KVM_HYPERV 4584 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4585 struct kvm_cpuid2 __user *cpuid_arg) 4586 { 4587 struct kvm_cpuid2 cpuid; 4588 int r; 4589 4590 r = -EFAULT; 4591 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4592 return r; 4593 4594 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4595 if (r) 4596 return r; 4597 4598 r = -EFAULT; 4599 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4600 return r; 4601 4602 return 0; 4603 } 4604 #endif 4605 4606 static bool kvm_is_vm_type_supported(unsigned long type) 4607 { 4608 return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); 4609 } 4610 4611 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4612 { 4613 int r = 0; 4614 4615 switch (ext) { 4616 case KVM_CAP_IRQCHIP: 4617 case KVM_CAP_HLT: 4618 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4619 case KVM_CAP_SET_TSS_ADDR: 4620 case KVM_CAP_EXT_CPUID: 4621 case KVM_CAP_EXT_EMUL_CPUID: 4622 case KVM_CAP_CLOCKSOURCE: 4623 case KVM_CAP_PIT: 4624 case KVM_CAP_NOP_IO_DELAY: 4625 case KVM_CAP_MP_STATE: 4626 case KVM_CAP_SYNC_MMU: 4627 case KVM_CAP_USER_NMI: 4628 case KVM_CAP_REINJECT_CONTROL: 4629 case KVM_CAP_IRQ_INJECT_STATUS: 4630 case KVM_CAP_IOEVENTFD: 4631 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4632 case KVM_CAP_PIT2: 4633 case KVM_CAP_PIT_STATE2: 4634 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4635 case KVM_CAP_VCPU_EVENTS: 4636 #ifdef CONFIG_KVM_HYPERV 4637 case KVM_CAP_HYPERV: 4638 case KVM_CAP_HYPERV_VAPIC: 4639 case KVM_CAP_HYPERV_SPIN: 4640 case KVM_CAP_HYPERV_TIME: 4641 case KVM_CAP_HYPERV_SYNIC: 4642 case KVM_CAP_HYPERV_SYNIC2: 4643 case KVM_CAP_HYPERV_VP_INDEX: 4644 case KVM_CAP_HYPERV_EVENTFD: 4645 case KVM_CAP_HYPERV_TLBFLUSH: 4646 case KVM_CAP_HYPERV_SEND_IPI: 4647 case KVM_CAP_HYPERV_CPUID: 4648 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4649 case KVM_CAP_SYS_HYPERV_CPUID: 4650 #endif 4651 case KVM_CAP_PCI_SEGMENT: 4652 case KVM_CAP_DEBUGREGS: 4653 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4654 case KVM_CAP_XSAVE: 4655 case KVM_CAP_ASYNC_PF: 4656 case KVM_CAP_ASYNC_PF_INT: 4657 case KVM_CAP_GET_TSC_KHZ: 4658 case KVM_CAP_KVMCLOCK_CTRL: 4659 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4660 case KVM_CAP_TSC_DEADLINE_TIMER: 4661 case KVM_CAP_DISABLE_QUIRKS: 4662 case KVM_CAP_SET_BOOT_CPU_ID: 4663 case KVM_CAP_SPLIT_IRQCHIP: 4664 case KVM_CAP_IMMEDIATE_EXIT: 4665 case KVM_CAP_PMU_EVENT_FILTER: 4666 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4667 case KVM_CAP_GET_MSR_FEATURES: 4668 case KVM_CAP_MSR_PLATFORM_INFO: 4669 case KVM_CAP_EXCEPTION_PAYLOAD: 4670 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4671 case KVM_CAP_SET_GUEST_DEBUG: 4672 case KVM_CAP_LAST_CPU: 4673 case KVM_CAP_X86_USER_SPACE_MSR: 4674 case KVM_CAP_X86_MSR_FILTER: 4675 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4676 #ifdef CONFIG_X86_SGX_KVM 4677 case KVM_CAP_SGX_ATTRIBUTE: 4678 #endif 4679 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4680 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4681 case KVM_CAP_SREGS2: 4682 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4683 case KVM_CAP_VCPU_ATTRIBUTES: 4684 case KVM_CAP_SYS_ATTRIBUTES: 4685 case KVM_CAP_VAPIC: 4686 case KVM_CAP_ENABLE_CAP: 4687 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4688 case KVM_CAP_IRQFD_RESAMPLE: 4689 case KVM_CAP_MEMORY_FAULT_INFO: 4690 case KVM_CAP_X86_GUEST_MODE: 4691 r = 1; 4692 break; 4693 case KVM_CAP_PRE_FAULT_MEMORY: 4694 r = tdp_enabled; 4695 break; 4696 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: 4697 r = APIC_BUS_CYCLE_NS_DEFAULT; 4698 break; 4699 case KVM_CAP_EXIT_HYPERCALL: 4700 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4701 break; 4702 case KVM_CAP_SET_GUEST_DEBUG2: 4703 return KVM_GUESTDBG_VALID_MASK; 4704 #ifdef CONFIG_KVM_XEN 4705 case KVM_CAP_XEN_HVM: 4706 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4707 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4708 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4709 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4710 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4711 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4712 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4713 if (sched_info_on()) 4714 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4715 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4716 break; 4717 #endif 4718 case KVM_CAP_SYNC_REGS: 4719 r = KVM_SYNC_X86_VALID_FIELDS; 4720 break; 4721 case KVM_CAP_ADJUST_CLOCK: 4722 r = KVM_CLOCK_VALID_FLAGS; 4723 break; 4724 case KVM_CAP_X86_DISABLE_EXITS: 4725 r = KVM_X86_DISABLE_EXITS_PAUSE; 4726 4727 if (!mitigate_smt_rsb) { 4728 r |= KVM_X86_DISABLE_EXITS_HLT | 4729 KVM_X86_DISABLE_EXITS_CSTATE; 4730 4731 if (kvm_can_mwait_in_guest()) 4732 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4733 } 4734 break; 4735 case KVM_CAP_X86_SMM: 4736 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4737 break; 4738 4739 /* SMBASE is usually relocated above 1M on modern chipsets, 4740 * and SMM handlers might indeed rely on 4G segment limits, 4741 * so do not report SMM to be available if real mode is 4742 * emulated via vm86 mode. Still, do not go to great lengths 4743 * to avoid userspace's usage of the feature, because it is a 4744 * fringe case that is not enabled except via specific settings 4745 * of the module parameters. 4746 */ 4747 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4748 break; 4749 case KVM_CAP_NR_VCPUS: 4750 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4751 break; 4752 case KVM_CAP_MAX_VCPUS: 4753 r = KVM_MAX_VCPUS; 4754 break; 4755 case KVM_CAP_MAX_VCPU_ID: 4756 r = KVM_MAX_VCPU_IDS; 4757 break; 4758 case KVM_CAP_PV_MMU: /* obsolete */ 4759 r = 0; 4760 break; 4761 case KVM_CAP_MCE: 4762 r = KVM_MAX_MCE_BANKS; 4763 break; 4764 case KVM_CAP_XCRS: 4765 r = boot_cpu_has(X86_FEATURE_XSAVE); 4766 break; 4767 case KVM_CAP_TSC_CONTROL: 4768 case KVM_CAP_VM_TSC_CONTROL: 4769 r = kvm_caps.has_tsc_control; 4770 break; 4771 case KVM_CAP_X2APIC_API: 4772 r = KVM_X2APIC_API_VALID_FLAGS; 4773 break; 4774 case KVM_CAP_NESTED_STATE: 4775 r = kvm_x86_ops.nested_ops->get_state ? 4776 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4777 break; 4778 #ifdef CONFIG_KVM_HYPERV 4779 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4780 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4781 break; 4782 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4783 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4784 break; 4785 #endif 4786 case KVM_CAP_SMALLER_MAXPHYADDR: 4787 r = (int) allow_smaller_maxphyaddr; 4788 break; 4789 case KVM_CAP_STEAL_TIME: 4790 r = sched_info_on(); 4791 break; 4792 case KVM_CAP_X86_BUS_LOCK_EXIT: 4793 if (kvm_caps.has_bus_lock_exit) 4794 r = KVM_BUS_LOCK_DETECTION_OFF | 4795 KVM_BUS_LOCK_DETECTION_EXIT; 4796 else 4797 r = 0; 4798 break; 4799 case KVM_CAP_XSAVE2: { 4800 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4801 if (r < sizeof(struct kvm_xsave)) 4802 r = sizeof(struct kvm_xsave); 4803 break; 4804 } 4805 case KVM_CAP_PMU_CAPABILITY: 4806 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4807 break; 4808 case KVM_CAP_DISABLE_QUIRKS2: 4809 r = KVM_X86_VALID_QUIRKS; 4810 break; 4811 case KVM_CAP_X86_NOTIFY_VMEXIT: 4812 r = kvm_caps.has_notify_vmexit; 4813 break; 4814 case KVM_CAP_VM_TYPES: 4815 r = kvm_caps.supported_vm_types; 4816 break; 4817 case KVM_CAP_READONLY_MEM: 4818 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1; 4819 break; 4820 default: 4821 break; 4822 } 4823 return r; 4824 } 4825 4826 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) 4827 { 4828 if (attr->group) { 4829 if (kvm_x86_ops.dev_get_attr) 4830 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val); 4831 return -ENXIO; 4832 } 4833 4834 switch (attr->attr) { 4835 case KVM_X86_XCOMP_GUEST_SUPP: 4836 *val = kvm_caps.supported_xcr0; 4837 return 0; 4838 default: 4839 return -ENXIO; 4840 } 4841 } 4842 4843 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4844 { 4845 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 4846 int r; 4847 u64 val; 4848 4849 r = __kvm_x86_dev_get_attr(attr, &val); 4850 if (r < 0) 4851 return r; 4852 4853 if (put_user(val, uaddr)) 4854 return -EFAULT; 4855 4856 return 0; 4857 } 4858 4859 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4860 { 4861 u64 val; 4862 4863 return __kvm_x86_dev_get_attr(attr, &val); 4864 } 4865 4866 long kvm_arch_dev_ioctl(struct file *filp, 4867 unsigned int ioctl, unsigned long arg) 4868 { 4869 void __user *argp = (void __user *)arg; 4870 long r; 4871 4872 switch (ioctl) { 4873 case KVM_GET_MSR_INDEX_LIST: { 4874 struct kvm_msr_list __user *user_msr_list = argp; 4875 struct kvm_msr_list msr_list; 4876 unsigned n; 4877 4878 r = -EFAULT; 4879 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4880 goto out; 4881 n = msr_list.nmsrs; 4882 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4883 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4884 goto out; 4885 r = -E2BIG; 4886 if (n < msr_list.nmsrs) 4887 goto out; 4888 r = -EFAULT; 4889 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4890 num_msrs_to_save * sizeof(u32))) 4891 goto out; 4892 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4893 &emulated_msrs, 4894 num_emulated_msrs * sizeof(u32))) 4895 goto out; 4896 r = 0; 4897 break; 4898 } 4899 case KVM_GET_SUPPORTED_CPUID: 4900 case KVM_GET_EMULATED_CPUID: { 4901 struct kvm_cpuid2 __user *cpuid_arg = argp; 4902 struct kvm_cpuid2 cpuid; 4903 4904 r = -EFAULT; 4905 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4906 goto out; 4907 4908 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4909 ioctl); 4910 if (r) 4911 goto out; 4912 4913 r = -EFAULT; 4914 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4915 goto out; 4916 r = 0; 4917 break; 4918 } 4919 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4920 r = -EFAULT; 4921 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4922 sizeof(kvm_caps.supported_mce_cap))) 4923 goto out; 4924 r = 0; 4925 break; 4926 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4927 struct kvm_msr_list __user *user_msr_list = argp; 4928 struct kvm_msr_list msr_list; 4929 unsigned int n; 4930 4931 r = -EFAULT; 4932 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4933 goto out; 4934 n = msr_list.nmsrs; 4935 msr_list.nmsrs = num_msr_based_features; 4936 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4937 goto out; 4938 r = -E2BIG; 4939 if (n < msr_list.nmsrs) 4940 goto out; 4941 r = -EFAULT; 4942 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4943 num_msr_based_features * sizeof(u32))) 4944 goto out; 4945 r = 0; 4946 break; 4947 } 4948 case KVM_GET_MSRS: 4949 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4950 break; 4951 #ifdef CONFIG_KVM_HYPERV 4952 case KVM_GET_SUPPORTED_HV_CPUID: 4953 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4954 break; 4955 #endif 4956 case KVM_GET_DEVICE_ATTR: { 4957 struct kvm_device_attr attr; 4958 r = -EFAULT; 4959 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4960 break; 4961 r = kvm_x86_dev_get_attr(&attr); 4962 break; 4963 } 4964 case KVM_HAS_DEVICE_ATTR: { 4965 struct kvm_device_attr attr; 4966 r = -EFAULT; 4967 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4968 break; 4969 r = kvm_x86_dev_has_attr(&attr); 4970 break; 4971 } 4972 default: 4973 r = -EINVAL; 4974 break; 4975 } 4976 out: 4977 return r; 4978 } 4979 4980 static void wbinvd_ipi(void *garbage) 4981 { 4982 wbinvd(); 4983 } 4984 4985 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4986 { 4987 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4988 } 4989 4990 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4991 { 4992 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 4993 4994 vcpu->arch.l1tf_flush_l1d = true; 4995 4996 if (vcpu->scheduled_out && pmu->version && pmu->event_count) { 4997 pmu->need_cleanup = true; 4998 kvm_make_request(KVM_REQ_PMU, vcpu); 4999 } 5000 5001 /* Address WBINVD may be executed by guest */ 5002 if (need_emulate_wbinvd(vcpu)) { 5003 if (kvm_x86_call(has_wbinvd_exit)()) 5004 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5005 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 5006 smp_call_function_single(vcpu->cpu, 5007 wbinvd_ipi, NULL, 1); 5008 } 5009 5010 kvm_x86_call(vcpu_load)(vcpu, cpu); 5011 5012 /* Save host pkru register if supported */ 5013 vcpu->arch.host_pkru = read_pkru(); 5014 5015 /* Apply any externally detected TSC adjustments (due to suspend) */ 5016 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 5017 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 5018 vcpu->arch.tsc_offset_adjustment = 0; 5019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5020 } 5021 5022 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 5023 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 5024 rdtsc() - vcpu->arch.last_host_tsc; 5025 if (tsc_delta < 0) 5026 mark_tsc_unstable("KVM discovered backwards TSC"); 5027 5028 if (kvm_check_tsc_unstable()) { 5029 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 5030 vcpu->arch.last_guest_tsc); 5031 kvm_vcpu_write_tsc_offset(vcpu, offset); 5032 vcpu->arch.tsc_catchup = 1; 5033 } 5034 5035 if (kvm_lapic_hv_timer_in_use(vcpu)) 5036 kvm_lapic_restart_hv_timer(vcpu); 5037 5038 /* 5039 * On a host with synchronized TSC, there is no need to update 5040 * kvmclock on vcpu->cpu migration 5041 */ 5042 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5043 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5044 if (vcpu->cpu != cpu) 5045 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5046 vcpu->cpu = cpu; 5047 } 5048 5049 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5050 } 5051 5052 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5053 { 5054 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5055 struct kvm_steal_time __user *st; 5056 struct kvm_memslots *slots; 5057 static const u8 preempted = KVM_VCPU_PREEMPTED; 5058 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5059 5060 /* 5061 * The vCPU can be marked preempted if and only if the VM-Exit was on 5062 * an instruction boundary and will not trigger guest emulation of any 5063 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5064 * when this is true, for example allowing the vCPU to be marked 5065 * preempted if and only if the VM-Exit was due to a host interrupt. 5066 */ 5067 if (!vcpu->arch.at_instruction_boundary) { 5068 vcpu->stat.preemption_other++; 5069 return; 5070 } 5071 5072 vcpu->stat.preemption_reported++; 5073 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5074 return; 5075 5076 if (vcpu->arch.st.preempted) 5077 return; 5078 5079 /* This happens on process exit */ 5080 if (unlikely(current->mm != vcpu->kvm->mm)) 5081 return; 5082 5083 slots = kvm_memslots(vcpu->kvm); 5084 5085 if (unlikely(slots->generation != ghc->generation || 5086 gpa != ghc->gpa || 5087 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5088 return; 5089 5090 st = (struct kvm_steal_time __user *)ghc->hva; 5091 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5092 5093 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5094 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5095 5096 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5097 } 5098 5099 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5100 { 5101 int idx; 5102 5103 if (vcpu->preempted) { 5104 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu); 5105 5106 /* 5107 * Take the srcu lock as memslots will be accessed to check the gfn 5108 * cache generation against the memslots generation. 5109 */ 5110 idx = srcu_read_lock(&vcpu->kvm->srcu); 5111 if (kvm_xen_msr_enabled(vcpu->kvm)) 5112 kvm_xen_runstate_set_preempted(vcpu); 5113 else 5114 kvm_steal_time_set_preempted(vcpu); 5115 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5116 } 5117 5118 kvm_x86_call(vcpu_put)(vcpu); 5119 vcpu->arch.last_host_tsc = rdtsc(); 5120 } 5121 5122 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5123 struct kvm_lapic_state *s) 5124 { 5125 kvm_x86_call(sync_pir_to_irr)(vcpu); 5126 5127 return kvm_apic_get_state(vcpu, s); 5128 } 5129 5130 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5131 struct kvm_lapic_state *s) 5132 { 5133 int r; 5134 5135 r = kvm_apic_set_state(vcpu, s); 5136 if (r) 5137 return r; 5138 update_cr8_intercept(vcpu); 5139 5140 return 0; 5141 } 5142 5143 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5144 { 5145 /* 5146 * We can accept userspace's request for interrupt injection 5147 * as long as we have a place to store the interrupt number. 5148 * The actual injection will happen when the CPU is able to 5149 * deliver the interrupt. 5150 */ 5151 if (kvm_cpu_has_extint(vcpu)) 5152 return false; 5153 5154 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5155 return (!lapic_in_kernel(vcpu) || 5156 kvm_apic_accept_pic_intr(vcpu)); 5157 } 5158 5159 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5160 { 5161 /* 5162 * Do not cause an interrupt window exit if an exception 5163 * is pending or an event needs reinjection; userspace 5164 * might want to inject the interrupt manually using KVM_SET_REGS 5165 * or KVM_SET_SREGS. For that to work, we must be at an 5166 * instruction boundary and with no events half-injected. 5167 */ 5168 return (kvm_arch_interrupt_allowed(vcpu) && 5169 kvm_cpu_accept_dm_intr(vcpu) && 5170 !kvm_event_needs_reinjection(vcpu) && 5171 !kvm_is_exception_pending(vcpu)); 5172 } 5173 5174 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5175 struct kvm_interrupt *irq) 5176 { 5177 if (irq->irq >= KVM_NR_INTERRUPTS) 5178 return -EINVAL; 5179 5180 if (!irqchip_in_kernel(vcpu->kvm)) { 5181 kvm_queue_interrupt(vcpu, irq->irq, false); 5182 kvm_make_request(KVM_REQ_EVENT, vcpu); 5183 return 0; 5184 } 5185 5186 /* 5187 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5188 * fail for in-kernel 8259. 5189 */ 5190 if (pic_in_kernel(vcpu->kvm)) 5191 return -ENXIO; 5192 5193 if (vcpu->arch.pending_external_vector != -1) 5194 return -EEXIST; 5195 5196 vcpu->arch.pending_external_vector = irq->irq; 5197 kvm_make_request(KVM_REQ_EVENT, vcpu); 5198 return 0; 5199 } 5200 5201 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5202 { 5203 kvm_inject_nmi(vcpu); 5204 5205 return 0; 5206 } 5207 5208 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5209 struct kvm_tpr_access_ctl *tac) 5210 { 5211 if (tac->flags) 5212 return -EINVAL; 5213 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5214 return 0; 5215 } 5216 5217 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5218 u64 mcg_cap) 5219 { 5220 int r; 5221 unsigned bank_num = mcg_cap & 0xff, bank; 5222 5223 r = -EINVAL; 5224 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5225 goto out; 5226 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5227 goto out; 5228 r = 0; 5229 vcpu->arch.mcg_cap = mcg_cap; 5230 /* Init IA32_MCG_CTL to all 1s */ 5231 if (mcg_cap & MCG_CTL_P) 5232 vcpu->arch.mcg_ctl = ~(u64)0; 5233 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5234 for (bank = 0; bank < bank_num; bank++) { 5235 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5236 if (mcg_cap & MCG_CMCI_P) 5237 vcpu->arch.mci_ctl2_banks[bank] = 0; 5238 } 5239 5240 kvm_apic_after_set_mcg_cap(vcpu); 5241 5242 kvm_x86_call(setup_mce)(vcpu); 5243 out: 5244 return r; 5245 } 5246 5247 /* 5248 * Validate this is an UCNA (uncorrectable no action) error by checking the 5249 * MCG_STATUS and MCi_STATUS registers: 5250 * - none of the bits for Machine Check Exceptions are set 5251 * - both the VAL (valid) and UC (uncorrectable) bits are set 5252 * MCI_STATUS_PCC - Processor Context Corrupted 5253 * MCI_STATUS_S - Signaled as a Machine Check Exception 5254 * MCI_STATUS_AR - Software recoverable Action Required 5255 */ 5256 static bool is_ucna(struct kvm_x86_mce *mce) 5257 { 5258 return !mce->mcg_status && 5259 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5260 (mce->status & MCI_STATUS_VAL) && 5261 (mce->status & MCI_STATUS_UC); 5262 } 5263 5264 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5265 { 5266 u64 mcg_cap = vcpu->arch.mcg_cap; 5267 5268 banks[1] = mce->status; 5269 banks[2] = mce->addr; 5270 banks[3] = mce->misc; 5271 vcpu->arch.mcg_status = mce->mcg_status; 5272 5273 if (!(mcg_cap & MCG_CMCI_P) || 5274 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5275 return 0; 5276 5277 if (lapic_in_kernel(vcpu)) 5278 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5279 5280 return 0; 5281 } 5282 5283 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5284 struct kvm_x86_mce *mce) 5285 { 5286 u64 mcg_cap = vcpu->arch.mcg_cap; 5287 unsigned bank_num = mcg_cap & 0xff; 5288 u64 *banks = vcpu->arch.mce_banks; 5289 5290 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5291 return -EINVAL; 5292 5293 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5294 5295 if (is_ucna(mce)) 5296 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5297 5298 /* 5299 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5300 * reporting is disabled 5301 */ 5302 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5303 vcpu->arch.mcg_ctl != ~(u64)0) 5304 return 0; 5305 /* 5306 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5307 * reporting is disabled for the bank 5308 */ 5309 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5310 return 0; 5311 if (mce->status & MCI_STATUS_UC) { 5312 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5313 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5314 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5315 return 0; 5316 } 5317 if (banks[1] & MCI_STATUS_VAL) 5318 mce->status |= MCI_STATUS_OVER; 5319 banks[2] = mce->addr; 5320 banks[3] = mce->misc; 5321 vcpu->arch.mcg_status = mce->mcg_status; 5322 banks[1] = mce->status; 5323 kvm_queue_exception(vcpu, MC_VECTOR); 5324 } else if (!(banks[1] & MCI_STATUS_VAL) 5325 || !(banks[1] & MCI_STATUS_UC)) { 5326 if (banks[1] & MCI_STATUS_VAL) 5327 mce->status |= MCI_STATUS_OVER; 5328 banks[2] = mce->addr; 5329 banks[3] = mce->misc; 5330 banks[1] = mce->status; 5331 } else 5332 banks[1] |= MCI_STATUS_OVER; 5333 return 0; 5334 } 5335 5336 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5337 struct kvm_vcpu_events *events) 5338 { 5339 struct kvm_queued_exception *ex; 5340 5341 process_nmi(vcpu); 5342 5343 #ifdef CONFIG_KVM_SMM 5344 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5345 process_smi(vcpu); 5346 #endif 5347 5348 /* 5349 * KVM's ABI only allows for one exception to be migrated. Luckily, 5350 * the only time there can be two queued exceptions is if there's a 5351 * non-exiting _injected_ exception, and a pending exiting exception. 5352 * In that case, ignore the VM-Exiting exception as it's an extension 5353 * of the injected exception. 5354 */ 5355 if (vcpu->arch.exception_vmexit.pending && 5356 !vcpu->arch.exception.pending && 5357 !vcpu->arch.exception.injected) 5358 ex = &vcpu->arch.exception_vmexit; 5359 else 5360 ex = &vcpu->arch.exception; 5361 5362 /* 5363 * In guest mode, payload delivery should be deferred if the exception 5364 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5365 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5366 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5367 * propagate the payload and so it cannot be safely deferred. Deliver 5368 * the payload if the capability hasn't been requested. 5369 */ 5370 if (!vcpu->kvm->arch.exception_payload_enabled && 5371 ex->pending && ex->has_payload) 5372 kvm_deliver_exception_payload(vcpu, ex); 5373 5374 memset(events, 0, sizeof(*events)); 5375 5376 /* 5377 * The API doesn't provide the instruction length for software 5378 * exceptions, so don't report them. As long as the guest RIP 5379 * isn't advanced, we should expect to encounter the exception 5380 * again. 5381 */ 5382 if (!kvm_exception_is_soft(ex->vector)) { 5383 events->exception.injected = ex->injected; 5384 events->exception.pending = ex->pending; 5385 /* 5386 * For ABI compatibility, deliberately conflate 5387 * pending and injected exceptions when 5388 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5389 */ 5390 if (!vcpu->kvm->arch.exception_payload_enabled) 5391 events->exception.injected |= ex->pending; 5392 } 5393 events->exception.nr = ex->vector; 5394 events->exception.has_error_code = ex->has_error_code; 5395 events->exception.error_code = ex->error_code; 5396 events->exception_has_payload = ex->has_payload; 5397 events->exception_payload = ex->payload; 5398 5399 events->interrupt.injected = 5400 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5401 events->interrupt.nr = vcpu->arch.interrupt.nr; 5402 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 5403 5404 events->nmi.injected = vcpu->arch.nmi_injected; 5405 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5406 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu); 5407 5408 /* events->sipi_vector is never valid when reporting to user space */ 5409 5410 #ifdef CONFIG_KVM_SMM 5411 events->smi.smm = is_smm(vcpu); 5412 events->smi.pending = vcpu->arch.smi_pending; 5413 events->smi.smm_inside_nmi = 5414 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5415 #endif 5416 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5417 5418 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5419 | KVM_VCPUEVENT_VALID_SHADOW 5420 | KVM_VCPUEVENT_VALID_SMM); 5421 if (vcpu->kvm->arch.exception_payload_enabled) 5422 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5423 if (vcpu->kvm->arch.triple_fault_event) { 5424 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5425 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5426 } 5427 } 5428 5429 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5430 struct kvm_vcpu_events *events) 5431 { 5432 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5433 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5434 | KVM_VCPUEVENT_VALID_SHADOW 5435 | KVM_VCPUEVENT_VALID_SMM 5436 | KVM_VCPUEVENT_VALID_PAYLOAD 5437 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5438 return -EINVAL; 5439 5440 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5441 if (!vcpu->kvm->arch.exception_payload_enabled) 5442 return -EINVAL; 5443 if (events->exception.pending) 5444 events->exception.injected = 0; 5445 else 5446 events->exception_has_payload = 0; 5447 } else { 5448 events->exception.pending = 0; 5449 events->exception_has_payload = 0; 5450 } 5451 5452 if ((events->exception.injected || events->exception.pending) && 5453 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5454 return -EINVAL; 5455 5456 /* INITs are latched while in SMM */ 5457 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5458 (events->smi.smm || events->smi.pending) && 5459 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5460 return -EINVAL; 5461 5462 process_nmi(vcpu); 5463 5464 /* 5465 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5466 * morph the exception to a VM-Exit if appropriate. Do this only for 5467 * pending exceptions, already-injected exceptions are not subject to 5468 * intercpetion. Note, userspace that conflates pending and injected 5469 * is hosed, and will incorrectly convert an injected exception into a 5470 * pending exception, which in turn may cause a spurious VM-Exit. 5471 */ 5472 vcpu->arch.exception_from_userspace = events->exception.pending; 5473 5474 vcpu->arch.exception_vmexit.pending = false; 5475 5476 vcpu->arch.exception.injected = events->exception.injected; 5477 vcpu->arch.exception.pending = events->exception.pending; 5478 vcpu->arch.exception.vector = events->exception.nr; 5479 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5480 vcpu->arch.exception.error_code = events->exception.error_code; 5481 vcpu->arch.exception.has_payload = events->exception_has_payload; 5482 vcpu->arch.exception.payload = events->exception_payload; 5483 5484 vcpu->arch.interrupt.injected = events->interrupt.injected; 5485 vcpu->arch.interrupt.nr = events->interrupt.nr; 5486 vcpu->arch.interrupt.soft = events->interrupt.soft; 5487 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5488 kvm_x86_call(set_interrupt_shadow)(vcpu, 5489 events->interrupt.shadow); 5490 5491 vcpu->arch.nmi_injected = events->nmi.injected; 5492 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5493 vcpu->arch.nmi_pending = 0; 5494 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5495 if (events->nmi.pending) 5496 kvm_make_request(KVM_REQ_NMI, vcpu); 5497 } 5498 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked); 5499 5500 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5501 lapic_in_kernel(vcpu)) 5502 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5503 5504 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5505 #ifdef CONFIG_KVM_SMM 5506 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5507 kvm_leave_nested(vcpu); 5508 kvm_smm_changed(vcpu, events->smi.smm); 5509 } 5510 5511 vcpu->arch.smi_pending = events->smi.pending; 5512 5513 if (events->smi.smm) { 5514 if (events->smi.smm_inside_nmi) 5515 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5516 else 5517 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5518 } 5519 5520 #else 5521 if (events->smi.smm || events->smi.pending || 5522 events->smi.smm_inside_nmi) 5523 return -EINVAL; 5524 #endif 5525 5526 if (lapic_in_kernel(vcpu)) { 5527 if (events->smi.latched_init) 5528 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5529 else 5530 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5531 } 5532 } 5533 5534 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5535 if (!vcpu->kvm->arch.triple_fault_event) 5536 return -EINVAL; 5537 if (events->triple_fault.pending) 5538 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5539 else 5540 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5541 } 5542 5543 kvm_make_request(KVM_REQ_EVENT, vcpu); 5544 5545 return 0; 5546 } 5547 5548 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5549 struct kvm_debugregs *dbgregs) 5550 { 5551 unsigned int i; 5552 5553 if (vcpu->kvm->arch.has_protected_state && 5554 vcpu->arch.guest_state_protected) 5555 return -EINVAL; 5556 5557 memset(dbgregs, 0, sizeof(*dbgregs)); 5558 5559 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5560 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5561 dbgregs->db[i] = vcpu->arch.db[i]; 5562 5563 dbgregs->dr6 = vcpu->arch.dr6; 5564 dbgregs->dr7 = vcpu->arch.dr7; 5565 return 0; 5566 } 5567 5568 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5569 struct kvm_debugregs *dbgregs) 5570 { 5571 unsigned int i; 5572 5573 if (vcpu->kvm->arch.has_protected_state && 5574 vcpu->arch.guest_state_protected) 5575 return -EINVAL; 5576 5577 if (dbgregs->flags) 5578 return -EINVAL; 5579 5580 if (!kvm_dr6_valid(dbgregs->dr6)) 5581 return -EINVAL; 5582 if (!kvm_dr7_valid(dbgregs->dr7)) 5583 return -EINVAL; 5584 5585 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5586 vcpu->arch.db[i] = dbgregs->db[i]; 5587 5588 kvm_update_dr0123(vcpu); 5589 vcpu->arch.dr6 = dbgregs->dr6; 5590 vcpu->arch.dr7 = dbgregs->dr7; 5591 kvm_update_dr7(vcpu); 5592 5593 return 0; 5594 } 5595 5596 5597 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5598 u8 *state, unsigned int size) 5599 { 5600 /* 5601 * Only copy state for features that are enabled for the guest. The 5602 * state itself isn't problematic, but setting bits in the header for 5603 * features that are supported in *this* host but not exposed to the 5604 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5605 * compatible host without the features that are NOT exposed to the 5606 * guest. 5607 * 5608 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5609 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5610 * supported by the host. 5611 */ 5612 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5613 XFEATURE_MASK_FPSSE; 5614 5615 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5616 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5617 5618 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5619 supported_xcr0, vcpu->arch.pkru); 5620 return 0; 5621 } 5622 5623 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5624 struct kvm_xsave *guest_xsave) 5625 { 5626 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5627 sizeof(guest_xsave->region)); 5628 } 5629 5630 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5631 struct kvm_xsave *guest_xsave) 5632 { 5633 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5634 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5635 5636 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5637 guest_xsave->region, 5638 kvm_caps.supported_xcr0, 5639 &vcpu->arch.pkru); 5640 } 5641 5642 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5643 struct kvm_xcrs *guest_xcrs) 5644 { 5645 if (vcpu->kvm->arch.has_protected_state && 5646 vcpu->arch.guest_state_protected) 5647 return -EINVAL; 5648 5649 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5650 guest_xcrs->nr_xcrs = 0; 5651 return 0; 5652 } 5653 5654 guest_xcrs->nr_xcrs = 1; 5655 guest_xcrs->flags = 0; 5656 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5657 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5658 return 0; 5659 } 5660 5661 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5662 struct kvm_xcrs *guest_xcrs) 5663 { 5664 int i, r = 0; 5665 5666 if (vcpu->kvm->arch.has_protected_state && 5667 vcpu->arch.guest_state_protected) 5668 return -EINVAL; 5669 5670 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5671 return -EINVAL; 5672 5673 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5674 return -EINVAL; 5675 5676 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5677 /* Only support XCR0 currently */ 5678 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5679 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5680 guest_xcrs->xcrs[i].value); 5681 break; 5682 } 5683 if (r) 5684 r = -EINVAL; 5685 return r; 5686 } 5687 5688 /* 5689 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5690 * stopped by the hypervisor. This function will be called from the host only. 5691 * EINVAL is returned when the host attempts to set the flag for a guest that 5692 * does not support pv clocks. 5693 */ 5694 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5695 { 5696 if (!vcpu->arch.pv_time.active) 5697 return -EINVAL; 5698 vcpu->arch.pvclock_set_guest_stopped_request = true; 5699 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5700 return 0; 5701 } 5702 5703 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5704 struct kvm_device_attr *attr) 5705 { 5706 int r; 5707 5708 switch (attr->attr) { 5709 case KVM_VCPU_TSC_OFFSET: 5710 r = 0; 5711 break; 5712 default: 5713 r = -ENXIO; 5714 } 5715 5716 return r; 5717 } 5718 5719 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5720 struct kvm_device_attr *attr) 5721 { 5722 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5723 int r; 5724 5725 switch (attr->attr) { 5726 case KVM_VCPU_TSC_OFFSET: 5727 r = -EFAULT; 5728 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5729 break; 5730 r = 0; 5731 break; 5732 default: 5733 r = -ENXIO; 5734 } 5735 5736 return r; 5737 } 5738 5739 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5740 struct kvm_device_attr *attr) 5741 { 5742 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5743 struct kvm *kvm = vcpu->kvm; 5744 int r; 5745 5746 switch (attr->attr) { 5747 case KVM_VCPU_TSC_OFFSET: { 5748 u64 offset, tsc, ns; 5749 unsigned long flags; 5750 bool matched; 5751 5752 r = -EFAULT; 5753 if (get_user(offset, uaddr)) 5754 break; 5755 5756 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5757 5758 matched = (vcpu->arch.virtual_tsc_khz && 5759 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5760 kvm->arch.last_tsc_offset == offset); 5761 5762 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5763 ns = get_kvmclock_base_ns(); 5764 5765 kvm->arch.user_set_tsc = true; 5766 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5767 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5768 5769 r = 0; 5770 break; 5771 } 5772 default: 5773 r = -ENXIO; 5774 } 5775 5776 return r; 5777 } 5778 5779 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5780 unsigned int ioctl, 5781 void __user *argp) 5782 { 5783 struct kvm_device_attr attr; 5784 int r; 5785 5786 if (copy_from_user(&attr, argp, sizeof(attr))) 5787 return -EFAULT; 5788 5789 if (attr.group != KVM_VCPU_TSC_CTRL) 5790 return -ENXIO; 5791 5792 switch (ioctl) { 5793 case KVM_HAS_DEVICE_ATTR: 5794 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5795 break; 5796 case KVM_GET_DEVICE_ATTR: 5797 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5798 break; 5799 case KVM_SET_DEVICE_ATTR: 5800 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5801 break; 5802 } 5803 5804 return r; 5805 } 5806 5807 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5808 struct kvm_enable_cap *cap) 5809 { 5810 if (cap->flags) 5811 return -EINVAL; 5812 5813 switch (cap->cap) { 5814 #ifdef CONFIG_KVM_HYPERV 5815 case KVM_CAP_HYPERV_SYNIC2: 5816 if (cap->args[0]) 5817 return -EINVAL; 5818 fallthrough; 5819 5820 case KVM_CAP_HYPERV_SYNIC: 5821 if (!irqchip_in_kernel(vcpu->kvm)) 5822 return -EINVAL; 5823 return kvm_hv_activate_synic(vcpu, cap->cap == 5824 KVM_CAP_HYPERV_SYNIC2); 5825 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5826 { 5827 int r; 5828 uint16_t vmcs_version; 5829 void __user *user_ptr; 5830 5831 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5832 return -ENOTTY; 5833 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5834 if (!r) { 5835 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5836 if (copy_to_user(user_ptr, &vmcs_version, 5837 sizeof(vmcs_version))) 5838 r = -EFAULT; 5839 } 5840 return r; 5841 } 5842 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5843 if (!kvm_x86_ops.enable_l2_tlb_flush) 5844 return -ENOTTY; 5845 5846 return kvm_x86_call(enable_l2_tlb_flush)(vcpu); 5847 5848 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5849 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5850 #endif 5851 5852 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5853 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5854 if (vcpu->arch.pv_cpuid.enforce) 5855 kvm_update_pv_runtime(vcpu); 5856 5857 return 0; 5858 default: 5859 return -EINVAL; 5860 } 5861 } 5862 5863 long kvm_arch_vcpu_ioctl(struct file *filp, 5864 unsigned int ioctl, unsigned long arg) 5865 { 5866 struct kvm_vcpu *vcpu = filp->private_data; 5867 void __user *argp = (void __user *)arg; 5868 int r; 5869 union { 5870 struct kvm_sregs2 *sregs2; 5871 struct kvm_lapic_state *lapic; 5872 struct kvm_xsave *xsave; 5873 struct kvm_xcrs *xcrs; 5874 void *buffer; 5875 } u; 5876 5877 vcpu_load(vcpu); 5878 5879 u.buffer = NULL; 5880 switch (ioctl) { 5881 case KVM_GET_LAPIC: { 5882 r = -EINVAL; 5883 if (!lapic_in_kernel(vcpu)) 5884 goto out; 5885 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 5886 5887 r = -ENOMEM; 5888 if (!u.lapic) 5889 goto out; 5890 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5891 if (r) 5892 goto out; 5893 r = -EFAULT; 5894 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5895 goto out; 5896 r = 0; 5897 break; 5898 } 5899 case KVM_SET_LAPIC: { 5900 r = -EINVAL; 5901 if (!lapic_in_kernel(vcpu)) 5902 goto out; 5903 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5904 if (IS_ERR(u.lapic)) { 5905 r = PTR_ERR(u.lapic); 5906 goto out_nofree; 5907 } 5908 5909 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5910 break; 5911 } 5912 case KVM_INTERRUPT: { 5913 struct kvm_interrupt irq; 5914 5915 r = -EFAULT; 5916 if (copy_from_user(&irq, argp, sizeof(irq))) 5917 goto out; 5918 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5919 break; 5920 } 5921 case KVM_NMI: { 5922 r = kvm_vcpu_ioctl_nmi(vcpu); 5923 break; 5924 } 5925 case KVM_SMI: { 5926 r = kvm_inject_smi(vcpu); 5927 break; 5928 } 5929 case KVM_SET_CPUID: { 5930 struct kvm_cpuid __user *cpuid_arg = argp; 5931 struct kvm_cpuid cpuid; 5932 5933 r = -EFAULT; 5934 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5935 goto out; 5936 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5937 break; 5938 } 5939 case KVM_SET_CPUID2: { 5940 struct kvm_cpuid2 __user *cpuid_arg = argp; 5941 struct kvm_cpuid2 cpuid; 5942 5943 r = -EFAULT; 5944 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5945 goto out; 5946 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5947 cpuid_arg->entries); 5948 break; 5949 } 5950 case KVM_GET_CPUID2: { 5951 struct kvm_cpuid2 __user *cpuid_arg = argp; 5952 struct kvm_cpuid2 cpuid; 5953 5954 r = -EFAULT; 5955 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5956 goto out; 5957 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5958 cpuid_arg->entries); 5959 if (r) 5960 goto out; 5961 r = -EFAULT; 5962 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5963 goto out; 5964 r = 0; 5965 break; 5966 } 5967 case KVM_GET_MSRS: { 5968 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5969 r = msr_io(vcpu, argp, do_get_msr, 1); 5970 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5971 break; 5972 } 5973 case KVM_SET_MSRS: { 5974 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5975 r = msr_io(vcpu, argp, do_set_msr, 0); 5976 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5977 break; 5978 } 5979 case KVM_TPR_ACCESS_REPORTING: { 5980 struct kvm_tpr_access_ctl tac; 5981 5982 r = -EFAULT; 5983 if (copy_from_user(&tac, argp, sizeof(tac))) 5984 goto out; 5985 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5986 if (r) 5987 goto out; 5988 r = -EFAULT; 5989 if (copy_to_user(argp, &tac, sizeof(tac))) 5990 goto out; 5991 r = 0; 5992 break; 5993 }; 5994 case KVM_SET_VAPIC_ADDR: { 5995 struct kvm_vapic_addr va; 5996 int idx; 5997 5998 r = -EINVAL; 5999 if (!lapic_in_kernel(vcpu)) 6000 goto out; 6001 r = -EFAULT; 6002 if (copy_from_user(&va, argp, sizeof(va))) 6003 goto out; 6004 idx = srcu_read_lock(&vcpu->kvm->srcu); 6005 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 6006 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6007 break; 6008 } 6009 case KVM_X86_SETUP_MCE: { 6010 u64 mcg_cap; 6011 6012 r = -EFAULT; 6013 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 6014 goto out; 6015 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 6016 break; 6017 } 6018 case KVM_X86_SET_MCE: { 6019 struct kvm_x86_mce mce; 6020 6021 r = -EFAULT; 6022 if (copy_from_user(&mce, argp, sizeof(mce))) 6023 goto out; 6024 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 6025 break; 6026 } 6027 case KVM_GET_VCPU_EVENTS: { 6028 struct kvm_vcpu_events events; 6029 6030 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6031 6032 r = -EFAULT; 6033 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6034 break; 6035 r = 0; 6036 break; 6037 } 6038 case KVM_SET_VCPU_EVENTS: { 6039 struct kvm_vcpu_events events; 6040 6041 r = -EFAULT; 6042 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6043 break; 6044 6045 kvm_vcpu_srcu_read_lock(vcpu); 6046 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6047 kvm_vcpu_srcu_read_unlock(vcpu); 6048 break; 6049 } 6050 case KVM_GET_DEBUGREGS: { 6051 struct kvm_debugregs dbgregs; 6052 6053 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6054 if (r < 0) 6055 break; 6056 6057 r = -EFAULT; 6058 if (copy_to_user(argp, &dbgregs, 6059 sizeof(struct kvm_debugregs))) 6060 break; 6061 r = 0; 6062 break; 6063 } 6064 case KVM_SET_DEBUGREGS: { 6065 struct kvm_debugregs dbgregs; 6066 6067 r = -EFAULT; 6068 if (copy_from_user(&dbgregs, argp, 6069 sizeof(struct kvm_debugregs))) 6070 break; 6071 6072 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6073 break; 6074 } 6075 case KVM_GET_XSAVE: { 6076 r = -EINVAL; 6077 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6078 break; 6079 6080 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 6081 r = -ENOMEM; 6082 if (!u.xsave) 6083 break; 6084 6085 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6086 if (r < 0) 6087 break; 6088 6089 r = -EFAULT; 6090 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6091 break; 6092 r = 0; 6093 break; 6094 } 6095 case KVM_SET_XSAVE: { 6096 int size = vcpu->arch.guest_fpu.uabi_size; 6097 6098 u.xsave = memdup_user(argp, size); 6099 if (IS_ERR(u.xsave)) { 6100 r = PTR_ERR(u.xsave); 6101 goto out_nofree; 6102 } 6103 6104 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6105 break; 6106 } 6107 6108 case KVM_GET_XSAVE2: { 6109 int size = vcpu->arch.guest_fpu.uabi_size; 6110 6111 u.xsave = kzalloc(size, GFP_KERNEL); 6112 r = -ENOMEM; 6113 if (!u.xsave) 6114 break; 6115 6116 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6117 if (r < 0) 6118 break; 6119 6120 r = -EFAULT; 6121 if (copy_to_user(argp, u.xsave, size)) 6122 break; 6123 6124 r = 0; 6125 break; 6126 } 6127 6128 case KVM_GET_XCRS: { 6129 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 6130 r = -ENOMEM; 6131 if (!u.xcrs) 6132 break; 6133 6134 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6135 if (r < 0) 6136 break; 6137 6138 r = -EFAULT; 6139 if (copy_to_user(argp, u.xcrs, 6140 sizeof(struct kvm_xcrs))) 6141 break; 6142 r = 0; 6143 break; 6144 } 6145 case KVM_SET_XCRS: { 6146 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6147 if (IS_ERR(u.xcrs)) { 6148 r = PTR_ERR(u.xcrs); 6149 goto out_nofree; 6150 } 6151 6152 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6153 break; 6154 } 6155 case KVM_SET_TSC_KHZ: { 6156 u32 user_tsc_khz; 6157 6158 r = -EINVAL; 6159 user_tsc_khz = (u32)arg; 6160 6161 if (kvm_caps.has_tsc_control && 6162 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6163 goto out; 6164 6165 if (user_tsc_khz == 0) 6166 user_tsc_khz = tsc_khz; 6167 6168 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6169 r = 0; 6170 6171 goto out; 6172 } 6173 case KVM_GET_TSC_KHZ: { 6174 r = vcpu->arch.virtual_tsc_khz; 6175 goto out; 6176 } 6177 case KVM_KVMCLOCK_CTRL: { 6178 r = kvm_set_guest_paused(vcpu); 6179 goto out; 6180 } 6181 case KVM_ENABLE_CAP: { 6182 struct kvm_enable_cap cap; 6183 6184 r = -EFAULT; 6185 if (copy_from_user(&cap, argp, sizeof(cap))) 6186 goto out; 6187 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6188 break; 6189 } 6190 case KVM_GET_NESTED_STATE: { 6191 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6192 u32 user_data_size; 6193 6194 r = -EINVAL; 6195 if (!kvm_x86_ops.nested_ops->get_state) 6196 break; 6197 6198 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6199 r = -EFAULT; 6200 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6201 break; 6202 6203 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6204 user_data_size); 6205 if (r < 0) 6206 break; 6207 6208 if (r > user_data_size) { 6209 if (put_user(r, &user_kvm_nested_state->size)) 6210 r = -EFAULT; 6211 else 6212 r = -E2BIG; 6213 break; 6214 } 6215 6216 r = 0; 6217 break; 6218 } 6219 case KVM_SET_NESTED_STATE: { 6220 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6221 struct kvm_nested_state kvm_state; 6222 int idx; 6223 6224 r = -EINVAL; 6225 if (!kvm_x86_ops.nested_ops->set_state) 6226 break; 6227 6228 r = -EFAULT; 6229 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6230 break; 6231 6232 r = -EINVAL; 6233 if (kvm_state.size < sizeof(kvm_state)) 6234 break; 6235 6236 if (kvm_state.flags & 6237 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6238 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6239 | KVM_STATE_NESTED_GIF_SET)) 6240 break; 6241 6242 /* nested_run_pending implies guest_mode. */ 6243 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6244 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6245 break; 6246 6247 idx = srcu_read_lock(&vcpu->kvm->srcu); 6248 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6249 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6250 break; 6251 } 6252 #ifdef CONFIG_KVM_HYPERV 6253 case KVM_GET_SUPPORTED_HV_CPUID: 6254 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6255 break; 6256 #endif 6257 #ifdef CONFIG_KVM_XEN 6258 case KVM_XEN_VCPU_GET_ATTR: { 6259 struct kvm_xen_vcpu_attr xva; 6260 6261 r = -EFAULT; 6262 if (copy_from_user(&xva, argp, sizeof(xva))) 6263 goto out; 6264 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6265 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6266 r = -EFAULT; 6267 break; 6268 } 6269 case KVM_XEN_VCPU_SET_ATTR: { 6270 struct kvm_xen_vcpu_attr xva; 6271 6272 r = -EFAULT; 6273 if (copy_from_user(&xva, argp, sizeof(xva))) 6274 goto out; 6275 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6276 break; 6277 } 6278 #endif 6279 case KVM_GET_SREGS2: { 6280 r = -EINVAL; 6281 if (vcpu->kvm->arch.has_protected_state && 6282 vcpu->arch.guest_state_protected) 6283 goto out; 6284 6285 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6286 r = -ENOMEM; 6287 if (!u.sregs2) 6288 goto out; 6289 __get_sregs2(vcpu, u.sregs2); 6290 r = -EFAULT; 6291 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6292 goto out; 6293 r = 0; 6294 break; 6295 } 6296 case KVM_SET_SREGS2: { 6297 r = -EINVAL; 6298 if (vcpu->kvm->arch.has_protected_state && 6299 vcpu->arch.guest_state_protected) 6300 goto out; 6301 6302 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6303 if (IS_ERR(u.sregs2)) { 6304 r = PTR_ERR(u.sregs2); 6305 u.sregs2 = NULL; 6306 goto out; 6307 } 6308 r = __set_sregs2(vcpu, u.sregs2); 6309 break; 6310 } 6311 case KVM_HAS_DEVICE_ATTR: 6312 case KVM_GET_DEVICE_ATTR: 6313 case KVM_SET_DEVICE_ATTR: 6314 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6315 break; 6316 default: 6317 r = -EINVAL; 6318 } 6319 out: 6320 kfree(u.buffer); 6321 out_nofree: 6322 vcpu_put(vcpu); 6323 return r; 6324 } 6325 6326 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6327 { 6328 return VM_FAULT_SIGBUS; 6329 } 6330 6331 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6332 { 6333 int ret; 6334 6335 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6336 return -EINVAL; 6337 ret = kvm_x86_call(set_tss_addr)(kvm, addr); 6338 return ret; 6339 } 6340 6341 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6342 u64 ident_addr) 6343 { 6344 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr); 6345 } 6346 6347 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6348 unsigned long kvm_nr_mmu_pages) 6349 { 6350 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6351 return -EINVAL; 6352 6353 mutex_lock(&kvm->slots_lock); 6354 6355 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6356 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6357 6358 mutex_unlock(&kvm->slots_lock); 6359 return 0; 6360 } 6361 6362 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6363 { 6364 struct kvm_pic *pic = kvm->arch.vpic; 6365 int r; 6366 6367 r = 0; 6368 switch (chip->chip_id) { 6369 case KVM_IRQCHIP_PIC_MASTER: 6370 memcpy(&chip->chip.pic, &pic->pics[0], 6371 sizeof(struct kvm_pic_state)); 6372 break; 6373 case KVM_IRQCHIP_PIC_SLAVE: 6374 memcpy(&chip->chip.pic, &pic->pics[1], 6375 sizeof(struct kvm_pic_state)); 6376 break; 6377 case KVM_IRQCHIP_IOAPIC: 6378 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6379 break; 6380 default: 6381 r = -EINVAL; 6382 break; 6383 } 6384 return r; 6385 } 6386 6387 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6388 { 6389 struct kvm_pic *pic = kvm->arch.vpic; 6390 int r; 6391 6392 r = 0; 6393 switch (chip->chip_id) { 6394 case KVM_IRQCHIP_PIC_MASTER: 6395 spin_lock(&pic->lock); 6396 memcpy(&pic->pics[0], &chip->chip.pic, 6397 sizeof(struct kvm_pic_state)); 6398 spin_unlock(&pic->lock); 6399 break; 6400 case KVM_IRQCHIP_PIC_SLAVE: 6401 spin_lock(&pic->lock); 6402 memcpy(&pic->pics[1], &chip->chip.pic, 6403 sizeof(struct kvm_pic_state)); 6404 spin_unlock(&pic->lock); 6405 break; 6406 case KVM_IRQCHIP_IOAPIC: 6407 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6408 break; 6409 default: 6410 r = -EINVAL; 6411 break; 6412 } 6413 kvm_pic_update_irq(pic); 6414 return r; 6415 } 6416 6417 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6418 { 6419 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6420 6421 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6422 6423 mutex_lock(&kps->lock); 6424 memcpy(ps, &kps->channels, sizeof(*ps)); 6425 mutex_unlock(&kps->lock); 6426 return 0; 6427 } 6428 6429 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6430 { 6431 int i; 6432 struct kvm_pit *pit = kvm->arch.vpit; 6433 6434 mutex_lock(&pit->pit_state.lock); 6435 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6436 for (i = 0; i < 3; i++) 6437 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6438 mutex_unlock(&pit->pit_state.lock); 6439 return 0; 6440 } 6441 6442 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6443 { 6444 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6445 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6446 sizeof(ps->channels)); 6447 ps->flags = kvm->arch.vpit->pit_state.flags; 6448 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6449 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6450 return 0; 6451 } 6452 6453 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6454 { 6455 int start = 0; 6456 int i; 6457 u32 prev_legacy, cur_legacy; 6458 struct kvm_pit *pit = kvm->arch.vpit; 6459 6460 mutex_lock(&pit->pit_state.lock); 6461 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6462 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6463 if (!prev_legacy && cur_legacy) 6464 start = 1; 6465 memcpy(&pit->pit_state.channels, &ps->channels, 6466 sizeof(pit->pit_state.channels)); 6467 pit->pit_state.flags = ps->flags; 6468 for (i = 0; i < 3; i++) 6469 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6470 start && i == 0); 6471 mutex_unlock(&pit->pit_state.lock); 6472 return 0; 6473 } 6474 6475 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6476 struct kvm_reinject_control *control) 6477 { 6478 struct kvm_pit *pit = kvm->arch.vpit; 6479 6480 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6481 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6482 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6483 */ 6484 mutex_lock(&pit->pit_state.lock); 6485 kvm_pit_set_reinject(pit, control->pit_reinject); 6486 mutex_unlock(&pit->pit_state.lock); 6487 6488 return 0; 6489 } 6490 6491 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6492 { 6493 6494 /* 6495 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6496 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6497 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6498 * VM-Exit. 6499 */ 6500 struct kvm_vcpu *vcpu; 6501 unsigned long i; 6502 6503 if (!kvm_x86_ops.cpu_dirty_log_size) 6504 return; 6505 6506 kvm_for_each_vcpu(i, vcpu, kvm) 6507 kvm_vcpu_kick(vcpu); 6508 } 6509 6510 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6511 bool line_status) 6512 { 6513 if (!irqchip_in_kernel(kvm)) 6514 return -ENXIO; 6515 6516 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6517 irq_event->irq, irq_event->level, 6518 line_status); 6519 return 0; 6520 } 6521 6522 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6523 struct kvm_enable_cap *cap) 6524 { 6525 int r; 6526 6527 if (cap->flags) 6528 return -EINVAL; 6529 6530 switch (cap->cap) { 6531 case KVM_CAP_DISABLE_QUIRKS2: 6532 r = -EINVAL; 6533 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6534 break; 6535 fallthrough; 6536 case KVM_CAP_DISABLE_QUIRKS: 6537 kvm->arch.disabled_quirks = cap->args[0]; 6538 r = 0; 6539 break; 6540 case KVM_CAP_SPLIT_IRQCHIP: { 6541 mutex_lock(&kvm->lock); 6542 r = -EINVAL; 6543 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6544 goto split_irqchip_unlock; 6545 r = -EEXIST; 6546 if (irqchip_in_kernel(kvm)) 6547 goto split_irqchip_unlock; 6548 if (kvm->created_vcpus) 6549 goto split_irqchip_unlock; 6550 /* Pairs with irqchip_in_kernel. */ 6551 smp_wmb(); 6552 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6553 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6554 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6555 r = 0; 6556 split_irqchip_unlock: 6557 mutex_unlock(&kvm->lock); 6558 break; 6559 } 6560 case KVM_CAP_X2APIC_API: 6561 r = -EINVAL; 6562 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6563 break; 6564 6565 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6566 kvm->arch.x2apic_format = true; 6567 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6568 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6569 6570 r = 0; 6571 break; 6572 case KVM_CAP_X86_DISABLE_EXITS: 6573 r = -EINVAL; 6574 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6575 break; 6576 6577 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6578 kvm->arch.pause_in_guest = true; 6579 6580 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6581 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6582 6583 if (!mitigate_smt_rsb) { 6584 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6585 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6586 pr_warn_once(SMT_RSB_MSG); 6587 6588 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6589 kvm_can_mwait_in_guest()) 6590 kvm->arch.mwait_in_guest = true; 6591 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6592 kvm->arch.hlt_in_guest = true; 6593 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6594 kvm->arch.cstate_in_guest = true; 6595 } 6596 6597 r = 0; 6598 break; 6599 case KVM_CAP_MSR_PLATFORM_INFO: 6600 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6601 r = 0; 6602 break; 6603 case KVM_CAP_EXCEPTION_PAYLOAD: 6604 kvm->arch.exception_payload_enabled = cap->args[0]; 6605 r = 0; 6606 break; 6607 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6608 kvm->arch.triple_fault_event = cap->args[0]; 6609 r = 0; 6610 break; 6611 case KVM_CAP_X86_USER_SPACE_MSR: 6612 r = -EINVAL; 6613 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6614 break; 6615 kvm->arch.user_space_msr_mask = cap->args[0]; 6616 r = 0; 6617 break; 6618 case KVM_CAP_X86_BUS_LOCK_EXIT: 6619 r = -EINVAL; 6620 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6621 break; 6622 6623 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6624 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6625 break; 6626 6627 if (kvm_caps.has_bus_lock_exit && 6628 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6629 kvm->arch.bus_lock_detection_enabled = true; 6630 r = 0; 6631 break; 6632 #ifdef CONFIG_X86_SGX_KVM 6633 case KVM_CAP_SGX_ATTRIBUTE: { 6634 unsigned long allowed_attributes = 0; 6635 6636 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6637 if (r) 6638 break; 6639 6640 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6641 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6642 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6643 kvm->arch.sgx_provisioning_allowed = true; 6644 else 6645 r = -EINVAL; 6646 break; 6647 } 6648 #endif 6649 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6650 r = -EINVAL; 6651 if (!kvm_x86_ops.vm_copy_enc_context_from) 6652 break; 6653 6654 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]); 6655 break; 6656 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6657 r = -EINVAL; 6658 if (!kvm_x86_ops.vm_move_enc_context_from) 6659 break; 6660 6661 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]); 6662 break; 6663 case KVM_CAP_EXIT_HYPERCALL: 6664 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6665 r = -EINVAL; 6666 break; 6667 } 6668 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6669 r = 0; 6670 break; 6671 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6672 r = -EINVAL; 6673 if (cap->args[0] & ~1) 6674 break; 6675 kvm->arch.exit_on_emulation_error = cap->args[0]; 6676 r = 0; 6677 break; 6678 case KVM_CAP_PMU_CAPABILITY: 6679 r = -EINVAL; 6680 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6681 break; 6682 6683 mutex_lock(&kvm->lock); 6684 if (!kvm->created_vcpus) { 6685 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6686 r = 0; 6687 } 6688 mutex_unlock(&kvm->lock); 6689 break; 6690 case KVM_CAP_MAX_VCPU_ID: 6691 r = -EINVAL; 6692 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6693 break; 6694 6695 mutex_lock(&kvm->lock); 6696 if (kvm->arch.bsp_vcpu_id > cap->args[0]) { 6697 ; 6698 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6699 r = 0; 6700 } else if (!kvm->arch.max_vcpu_ids) { 6701 kvm->arch.max_vcpu_ids = cap->args[0]; 6702 r = 0; 6703 } 6704 mutex_unlock(&kvm->lock); 6705 break; 6706 case KVM_CAP_X86_NOTIFY_VMEXIT: 6707 r = -EINVAL; 6708 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6709 break; 6710 if (!kvm_caps.has_notify_vmexit) 6711 break; 6712 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6713 break; 6714 mutex_lock(&kvm->lock); 6715 if (!kvm->created_vcpus) { 6716 kvm->arch.notify_window = cap->args[0] >> 32; 6717 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6718 r = 0; 6719 } 6720 mutex_unlock(&kvm->lock); 6721 break; 6722 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6723 r = -EINVAL; 6724 6725 /* 6726 * Since the risk of disabling NX hugepages is a guest crashing 6727 * the system, ensure the userspace process has permission to 6728 * reboot the system. 6729 * 6730 * Note that unlike the reboot() syscall, the process must have 6731 * this capability in the root namespace because exposing 6732 * /dev/kvm into a container does not limit the scope of the 6733 * iTLB multihit bug to that container. In other words, 6734 * this must use capable(), not ns_capable(). 6735 */ 6736 if (!capable(CAP_SYS_BOOT)) { 6737 r = -EPERM; 6738 break; 6739 } 6740 6741 if (cap->args[0]) 6742 break; 6743 6744 mutex_lock(&kvm->lock); 6745 if (!kvm->created_vcpus) { 6746 kvm->arch.disable_nx_huge_pages = true; 6747 r = 0; 6748 } 6749 mutex_unlock(&kvm->lock); 6750 break; 6751 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: { 6752 u64 bus_cycle_ns = cap->args[0]; 6753 u64 unused; 6754 6755 /* 6756 * Guard against overflow in tmict_to_ns(). 128 is the highest 6757 * divide value that can be programmed in APIC_TDCR. 6758 */ 6759 r = -EINVAL; 6760 if (!bus_cycle_ns || 6761 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused)) 6762 break; 6763 6764 r = 0; 6765 mutex_lock(&kvm->lock); 6766 if (!irqchip_in_kernel(kvm)) 6767 r = -ENXIO; 6768 else if (kvm->created_vcpus) 6769 r = -EINVAL; 6770 else 6771 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns; 6772 mutex_unlock(&kvm->lock); 6773 break; 6774 } 6775 default: 6776 r = -EINVAL; 6777 break; 6778 } 6779 return r; 6780 } 6781 6782 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6783 { 6784 struct kvm_x86_msr_filter *msr_filter; 6785 6786 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6787 if (!msr_filter) 6788 return NULL; 6789 6790 msr_filter->default_allow = default_allow; 6791 return msr_filter; 6792 } 6793 6794 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6795 { 6796 u32 i; 6797 6798 if (!msr_filter) 6799 return; 6800 6801 for (i = 0; i < msr_filter->count; i++) 6802 kfree(msr_filter->ranges[i].bitmap); 6803 6804 kfree(msr_filter); 6805 } 6806 6807 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6808 struct kvm_msr_filter_range *user_range) 6809 { 6810 unsigned long *bitmap; 6811 size_t bitmap_size; 6812 6813 if (!user_range->nmsrs) 6814 return 0; 6815 6816 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6817 return -EINVAL; 6818 6819 if (!user_range->flags) 6820 return -EINVAL; 6821 6822 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6823 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6824 return -EINVAL; 6825 6826 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6827 if (IS_ERR(bitmap)) 6828 return PTR_ERR(bitmap); 6829 6830 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6831 .flags = user_range->flags, 6832 .base = user_range->base, 6833 .nmsrs = user_range->nmsrs, 6834 .bitmap = bitmap, 6835 }; 6836 6837 msr_filter->count++; 6838 return 0; 6839 } 6840 6841 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6842 struct kvm_msr_filter *filter) 6843 { 6844 struct kvm_x86_msr_filter *new_filter, *old_filter; 6845 bool default_allow; 6846 bool empty = true; 6847 int r; 6848 u32 i; 6849 6850 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6851 return -EINVAL; 6852 6853 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6854 empty &= !filter->ranges[i].nmsrs; 6855 6856 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6857 if (empty && !default_allow) 6858 return -EINVAL; 6859 6860 new_filter = kvm_alloc_msr_filter(default_allow); 6861 if (!new_filter) 6862 return -ENOMEM; 6863 6864 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6865 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6866 if (r) { 6867 kvm_free_msr_filter(new_filter); 6868 return r; 6869 } 6870 } 6871 6872 mutex_lock(&kvm->lock); 6873 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6874 mutex_is_locked(&kvm->lock)); 6875 mutex_unlock(&kvm->lock); 6876 synchronize_srcu(&kvm->srcu); 6877 6878 kvm_free_msr_filter(old_filter); 6879 6880 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6881 6882 return 0; 6883 } 6884 6885 #ifdef CONFIG_KVM_COMPAT 6886 /* for KVM_X86_SET_MSR_FILTER */ 6887 struct kvm_msr_filter_range_compat { 6888 __u32 flags; 6889 __u32 nmsrs; 6890 __u32 base; 6891 __u32 bitmap; 6892 }; 6893 6894 struct kvm_msr_filter_compat { 6895 __u32 flags; 6896 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6897 }; 6898 6899 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6900 6901 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6902 unsigned long arg) 6903 { 6904 void __user *argp = (void __user *)arg; 6905 struct kvm *kvm = filp->private_data; 6906 long r = -ENOTTY; 6907 6908 switch (ioctl) { 6909 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6910 struct kvm_msr_filter __user *user_msr_filter = argp; 6911 struct kvm_msr_filter_compat filter_compat; 6912 struct kvm_msr_filter filter; 6913 int i; 6914 6915 if (copy_from_user(&filter_compat, user_msr_filter, 6916 sizeof(filter_compat))) 6917 return -EFAULT; 6918 6919 filter.flags = filter_compat.flags; 6920 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6921 struct kvm_msr_filter_range_compat *cr; 6922 6923 cr = &filter_compat.ranges[i]; 6924 filter.ranges[i] = (struct kvm_msr_filter_range) { 6925 .flags = cr->flags, 6926 .nmsrs = cr->nmsrs, 6927 .base = cr->base, 6928 .bitmap = (__u8 *)(ulong)cr->bitmap, 6929 }; 6930 } 6931 6932 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6933 break; 6934 } 6935 } 6936 6937 return r; 6938 } 6939 #endif 6940 6941 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6942 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6943 { 6944 struct kvm_vcpu *vcpu; 6945 unsigned long i; 6946 int ret = 0; 6947 6948 mutex_lock(&kvm->lock); 6949 kvm_for_each_vcpu(i, vcpu, kvm) { 6950 if (!vcpu->arch.pv_time.active) 6951 continue; 6952 6953 ret = kvm_set_guest_paused(vcpu); 6954 if (ret) { 6955 kvm_err("Failed to pause guest VCPU%d: %d\n", 6956 vcpu->vcpu_id, ret); 6957 break; 6958 } 6959 } 6960 mutex_unlock(&kvm->lock); 6961 6962 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6963 } 6964 6965 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6966 { 6967 switch (state) { 6968 case PM_HIBERNATION_PREPARE: 6969 case PM_SUSPEND_PREPARE: 6970 return kvm_arch_suspend_notifier(kvm); 6971 } 6972 6973 return NOTIFY_DONE; 6974 } 6975 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6976 6977 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6978 { 6979 struct kvm_clock_data data = { 0 }; 6980 6981 get_kvmclock(kvm, &data); 6982 if (copy_to_user(argp, &data, sizeof(data))) 6983 return -EFAULT; 6984 6985 return 0; 6986 } 6987 6988 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6989 { 6990 struct kvm_arch *ka = &kvm->arch; 6991 struct kvm_clock_data data; 6992 u64 now_raw_ns; 6993 6994 if (copy_from_user(&data, argp, sizeof(data))) 6995 return -EFAULT; 6996 6997 /* 6998 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6999 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 7000 */ 7001 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 7002 return -EINVAL; 7003 7004 kvm_hv_request_tsc_page_update(kvm); 7005 kvm_start_pvclock_update(kvm); 7006 pvclock_update_vm_gtod_copy(kvm); 7007 7008 /* 7009 * This pairs with kvm_guest_time_update(): when masterclock is 7010 * in use, we use master_kernel_ns + kvmclock_offset to set 7011 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 7012 * is slightly ahead) here we risk going negative on unsigned 7013 * 'system_time' when 'data.clock' is very small. 7014 */ 7015 if (data.flags & KVM_CLOCK_REALTIME) { 7016 u64 now_real_ns = ktime_get_real_ns(); 7017 7018 /* 7019 * Avoid stepping the kvmclock backwards. 7020 */ 7021 if (now_real_ns > data.realtime) 7022 data.clock += now_real_ns - data.realtime; 7023 } 7024 7025 if (ka->use_master_clock) 7026 now_raw_ns = ka->master_kernel_ns; 7027 else 7028 now_raw_ns = get_kvmclock_base_ns(); 7029 ka->kvmclock_offset = data.clock - now_raw_ns; 7030 kvm_end_pvclock_update(kvm); 7031 return 0; 7032 } 7033 7034 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 7035 { 7036 struct kvm *kvm = filp->private_data; 7037 void __user *argp = (void __user *)arg; 7038 int r = -ENOTTY; 7039 /* 7040 * This union makes it completely explicit to gcc-3.x 7041 * that these two variables' stack usage should be 7042 * combined, not added together. 7043 */ 7044 union { 7045 struct kvm_pit_state ps; 7046 struct kvm_pit_state2 ps2; 7047 struct kvm_pit_config pit_config; 7048 } u; 7049 7050 switch (ioctl) { 7051 case KVM_SET_TSS_ADDR: 7052 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 7053 break; 7054 case KVM_SET_IDENTITY_MAP_ADDR: { 7055 u64 ident_addr; 7056 7057 mutex_lock(&kvm->lock); 7058 r = -EINVAL; 7059 if (kvm->created_vcpus) 7060 goto set_identity_unlock; 7061 r = -EFAULT; 7062 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 7063 goto set_identity_unlock; 7064 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 7065 set_identity_unlock: 7066 mutex_unlock(&kvm->lock); 7067 break; 7068 } 7069 case KVM_SET_NR_MMU_PAGES: 7070 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 7071 break; 7072 case KVM_CREATE_IRQCHIP: { 7073 mutex_lock(&kvm->lock); 7074 7075 r = -EEXIST; 7076 if (irqchip_in_kernel(kvm)) 7077 goto create_irqchip_unlock; 7078 7079 r = -EINVAL; 7080 if (kvm->created_vcpus) 7081 goto create_irqchip_unlock; 7082 7083 r = kvm_pic_init(kvm); 7084 if (r) 7085 goto create_irqchip_unlock; 7086 7087 r = kvm_ioapic_init(kvm); 7088 if (r) { 7089 kvm_pic_destroy(kvm); 7090 goto create_irqchip_unlock; 7091 } 7092 7093 r = kvm_setup_default_irq_routing(kvm); 7094 if (r) { 7095 kvm_ioapic_destroy(kvm); 7096 kvm_pic_destroy(kvm); 7097 goto create_irqchip_unlock; 7098 } 7099 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7100 smp_wmb(); 7101 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7102 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7103 create_irqchip_unlock: 7104 mutex_unlock(&kvm->lock); 7105 break; 7106 } 7107 case KVM_CREATE_PIT: 7108 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7109 goto create_pit; 7110 case KVM_CREATE_PIT2: 7111 r = -EFAULT; 7112 if (copy_from_user(&u.pit_config, argp, 7113 sizeof(struct kvm_pit_config))) 7114 goto out; 7115 create_pit: 7116 mutex_lock(&kvm->lock); 7117 r = -EEXIST; 7118 if (kvm->arch.vpit) 7119 goto create_pit_unlock; 7120 r = -ENOENT; 7121 if (!pic_in_kernel(kvm)) 7122 goto create_pit_unlock; 7123 r = -ENOMEM; 7124 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7125 if (kvm->arch.vpit) 7126 r = 0; 7127 create_pit_unlock: 7128 mutex_unlock(&kvm->lock); 7129 break; 7130 case KVM_GET_IRQCHIP: { 7131 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7132 struct kvm_irqchip *chip; 7133 7134 chip = memdup_user(argp, sizeof(*chip)); 7135 if (IS_ERR(chip)) { 7136 r = PTR_ERR(chip); 7137 goto out; 7138 } 7139 7140 r = -ENXIO; 7141 if (!irqchip_kernel(kvm)) 7142 goto get_irqchip_out; 7143 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7144 if (r) 7145 goto get_irqchip_out; 7146 r = -EFAULT; 7147 if (copy_to_user(argp, chip, sizeof(*chip))) 7148 goto get_irqchip_out; 7149 r = 0; 7150 get_irqchip_out: 7151 kfree(chip); 7152 break; 7153 } 7154 case KVM_SET_IRQCHIP: { 7155 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7156 struct kvm_irqchip *chip; 7157 7158 chip = memdup_user(argp, sizeof(*chip)); 7159 if (IS_ERR(chip)) { 7160 r = PTR_ERR(chip); 7161 goto out; 7162 } 7163 7164 r = -ENXIO; 7165 if (!irqchip_kernel(kvm)) 7166 goto set_irqchip_out; 7167 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7168 set_irqchip_out: 7169 kfree(chip); 7170 break; 7171 } 7172 case KVM_GET_PIT: { 7173 r = -EFAULT; 7174 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7175 goto out; 7176 r = -ENXIO; 7177 if (!kvm->arch.vpit) 7178 goto out; 7179 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7180 if (r) 7181 goto out; 7182 r = -EFAULT; 7183 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7184 goto out; 7185 r = 0; 7186 break; 7187 } 7188 case KVM_SET_PIT: { 7189 r = -EFAULT; 7190 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7191 goto out; 7192 mutex_lock(&kvm->lock); 7193 r = -ENXIO; 7194 if (!kvm->arch.vpit) 7195 goto set_pit_out; 7196 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7197 set_pit_out: 7198 mutex_unlock(&kvm->lock); 7199 break; 7200 } 7201 case KVM_GET_PIT2: { 7202 r = -ENXIO; 7203 if (!kvm->arch.vpit) 7204 goto out; 7205 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7206 if (r) 7207 goto out; 7208 r = -EFAULT; 7209 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7210 goto out; 7211 r = 0; 7212 break; 7213 } 7214 case KVM_SET_PIT2: { 7215 r = -EFAULT; 7216 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7217 goto out; 7218 mutex_lock(&kvm->lock); 7219 r = -ENXIO; 7220 if (!kvm->arch.vpit) 7221 goto set_pit2_out; 7222 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7223 set_pit2_out: 7224 mutex_unlock(&kvm->lock); 7225 break; 7226 } 7227 case KVM_REINJECT_CONTROL: { 7228 struct kvm_reinject_control control; 7229 r = -EFAULT; 7230 if (copy_from_user(&control, argp, sizeof(control))) 7231 goto out; 7232 r = -ENXIO; 7233 if (!kvm->arch.vpit) 7234 goto out; 7235 r = kvm_vm_ioctl_reinject(kvm, &control); 7236 break; 7237 } 7238 case KVM_SET_BOOT_CPU_ID: 7239 r = 0; 7240 mutex_lock(&kvm->lock); 7241 if (kvm->created_vcpus) 7242 r = -EBUSY; 7243 else if (arg > KVM_MAX_VCPU_IDS || 7244 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids)) 7245 r = -EINVAL; 7246 else 7247 kvm->arch.bsp_vcpu_id = arg; 7248 mutex_unlock(&kvm->lock); 7249 break; 7250 #ifdef CONFIG_KVM_XEN 7251 case KVM_XEN_HVM_CONFIG: { 7252 struct kvm_xen_hvm_config xhc; 7253 r = -EFAULT; 7254 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7255 goto out; 7256 r = kvm_xen_hvm_config(kvm, &xhc); 7257 break; 7258 } 7259 case KVM_XEN_HVM_GET_ATTR: { 7260 struct kvm_xen_hvm_attr xha; 7261 7262 r = -EFAULT; 7263 if (copy_from_user(&xha, argp, sizeof(xha))) 7264 goto out; 7265 r = kvm_xen_hvm_get_attr(kvm, &xha); 7266 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7267 r = -EFAULT; 7268 break; 7269 } 7270 case KVM_XEN_HVM_SET_ATTR: { 7271 struct kvm_xen_hvm_attr xha; 7272 7273 r = -EFAULT; 7274 if (copy_from_user(&xha, argp, sizeof(xha))) 7275 goto out; 7276 r = kvm_xen_hvm_set_attr(kvm, &xha); 7277 break; 7278 } 7279 case KVM_XEN_HVM_EVTCHN_SEND: { 7280 struct kvm_irq_routing_xen_evtchn uxe; 7281 7282 r = -EFAULT; 7283 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7284 goto out; 7285 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7286 break; 7287 } 7288 #endif 7289 case KVM_SET_CLOCK: 7290 r = kvm_vm_ioctl_set_clock(kvm, argp); 7291 break; 7292 case KVM_GET_CLOCK: 7293 r = kvm_vm_ioctl_get_clock(kvm, argp); 7294 break; 7295 case KVM_SET_TSC_KHZ: { 7296 u32 user_tsc_khz; 7297 7298 r = -EINVAL; 7299 user_tsc_khz = (u32)arg; 7300 7301 if (kvm_caps.has_tsc_control && 7302 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7303 goto out; 7304 7305 if (user_tsc_khz == 0) 7306 user_tsc_khz = tsc_khz; 7307 7308 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7309 r = 0; 7310 7311 goto out; 7312 } 7313 case KVM_GET_TSC_KHZ: { 7314 r = READ_ONCE(kvm->arch.default_tsc_khz); 7315 goto out; 7316 } 7317 case KVM_MEMORY_ENCRYPT_OP: { 7318 r = -ENOTTY; 7319 if (!kvm_x86_ops.mem_enc_ioctl) 7320 goto out; 7321 7322 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp); 7323 break; 7324 } 7325 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7326 struct kvm_enc_region region; 7327 7328 r = -EFAULT; 7329 if (copy_from_user(®ion, argp, sizeof(region))) 7330 goto out; 7331 7332 r = -ENOTTY; 7333 if (!kvm_x86_ops.mem_enc_register_region) 7334 goto out; 7335 7336 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion); 7337 break; 7338 } 7339 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7340 struct kvm_enc_region region; 7341 7342 r = -EFAULT; 7343 if (copy_from_user(®ion, argp, sizeof(region))) 7344 goto out; 7345 7346 r = -ENOTTY; 7347 if (!kvm_x86_ops.mem_enc_unregister_region) 7348 goto out; 7349 7350 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion); 7351 break; 7352 } 7353 #ifdef CONFIG_KVM_HYPERV 7354 case KVM_HYPERV_EVENTFD: { 7355 struct kvm_hyperv_eventfd hvevfd; 7356 7357 r = -EFAULT; 7358 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7359 goto out; 7360 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7361 break; 7362 } 7363 #endif 7364 case KVM_SET_PMU_EVENT_FILTER: 7365 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7366 break; 7367 case KVM_X86_SET_MSR_FILTER: { 7368 struct kvm_msr_filter __user *user_msr_filter = argp; 7369 struct kvm_msr_filter filter; 7370 7371 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7372 return -EFAULT; 7373 7374 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7375 break; 7376 } 7377 default: 7378 r = -ENOTTY; 7379 } 7380 out: 7381 return r; 7382 } 7383 7384 static void kvm_probe_feature_msr(u32 msr_index) 7385 { 7386 struct kvm_msr_entry msr = { 7387 .index = msr_index, 7388 }; 7389 7390 if (kvm_get_msr_feature(&msr)) 7391 return; 7392 7393 msr_based_features[num_msr_based_features++] = msr_index; 7394 } 7395 7396 static void kvm_probe_msr_to_save(u32 msr_index) 7397 { 7398 u32 dummy[2]; 7399 7400 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7401 return; 7402 7403 /* 7404 * Even MSRs that are valid in the host may not be exposed to guests in 7405 * some cases. 7406 */ 7407 switch (msr_index) { 7408 case MSR_IA32_BNDCFGS: 7409 if (!kvm_mpx_supported()) 7410 return; 7411 break; 7412 case MSR_TSC_AUX: 7413 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7414 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7415 return; 7416 break; 7417 case MSR_IA32_UMWAIT_CONTROL: 7418 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7419 return; 7420 break; 7421 case MSR_IA32_RTIT_CTL: 7422 case MSR_IA32_RTIT_STATUS: 7423 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7424 return; 7425 break; 7426 case MSR_IA32_RTIT_CR3_MATCH: 7427 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7428 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7429 return; 7430 break; 7431 case MSR_IA32_RTIT_OUTPUT_BASE: 7432 case MSR_IA32_RTIT_OUTPUT_MASK: 7433 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7434 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7435 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7436 return; 7437 break; 7438 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7439 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7440 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7441 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7442 return; 7443 break; 7444 case MSR_ARCH_PERFMON_PERFCTR0 ... 7445 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1: 7446 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7447 kvm_pmu_cap.num_counters_gp) 7448 return; 7449 break; 7450 case MSR_ARCH_PERFMON_EVENTSEL0 ... 7451 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1: 7452 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7453 kvm_pmu_cap.num_counters_gp) 7454 return; 7455 break; 7456 case MSR_ARCH_PERFMON_FIXED_CTR0 ... 7457 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1: 7458 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7459 kvm_pmu_cap.num_counters_fixed) 7460 return; 7461 break; 7462 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7463 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7464 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7465 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7466 return; 7467 break; 7468 case MSR_IA32_XFD: 7469 case MSR_IA32_XFD_ERR: 7470 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7471 return; 7472 break; 7473 case MSR_IA32_TSX_CTRL: 7474 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7475 return; 7476 break; 7477 default: 7478 break; 7479 } 7480 7481 msrs_to_save[num_msrs_to_save++] = msr_index; 7482 } 7483 7484 static void kvm_init_msr_lists(void) 7485 { 7486 unsigned i; 7487 7488 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3, 7489 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7490 7491 num_msrs_to_save = 0; 7492 num_emulated_msrs = 0; 7493 num_msr_based_features = 0; 7494 7495 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7496 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7497 7498 if (enable_pmu) { 7499 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7500 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7501 } 7502 7503 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7504 if (!kvm_x86_call(has_emulated_msr)(NULL, 7505 emulated_msrs_all[i])) 7506 continue; 7507 7508 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7509 } 7510 7511 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7512 kvm_probe_feature_msr(i); 7513 7514 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7515 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7516 } 7517 7518 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7519 const void *v) 7520 { 7521 int handled = 0; 7522 int n; 7523 7524 do { 7525 n = min(len, 8); 7526 if (!(lapic_in_kernel(vcpu) && 7527 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7528 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7529 break; 7530 handled += n; 7531 addr += n; 7532 len -= n; 7533 v += n; 7534 } while (len); 7535 7536 return handled; 7537 } 7538 7539 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7540 { 7541 int handled = 0; 7542 int n; 7543 7544 do { 7545 n = min(len, 8); 7546 if (!(lapic_in_kernel(vcpu) && 7547 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7548 addr, n, v)) 7549 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7550 break; 7551 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7552 handled += n; 7553 addr += n; 7554 len -= n; 7555 v += n; 7556 } while (len); 7557 7558 return handled; 7559 } 7560 7561 void kvm_set_segment(struct kvm_vcpu *vcpu, 7562 struct kvm_segment *var, int seg) 7563 { 7564 kvm_x86_call(set_segment)(vcpu, var, seg); 7565 } 7566 7567 void kvm_get_segment(struct kvm_vcpu *vcpu, 7568 struct kvm_segment *var, int seg) 7569 { 7570 kvm_x86_call(get_segment)(vcpu, var, seg); 7571 } 7572 7573 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7574 struct x86_exception *exception) 7575 { 7576 struct kvm_mmu *mmu = vcpu->arch.mmu; 7577 gpa_t t_gpa; 7578 7579 BUG_ON(!mmu_is_nested(vcpu)); 7580 7581 /* NPT walks are always user-walks */ 7582 access |= PFERR_USER_MASK; 7583 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7584 7585 return t_gpa; 7586 } 7587 7588 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7589 struct x86_exception *exception) 7590 { 7591 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7592 7593 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7594 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7595 } 7596 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7597 7598 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7599 struct x86_exception *exception) 7600 { 7601 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7602 7603 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7604 access |= PFERR_WRITE_MASK; 7605 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7606 } 7607 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7608 7609 /* uses this to access any guest's mapped memory without checking CPL */ 7610 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7611 struct x86_exception *exception) 7612 { 7613 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7614 7615 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7616 } 7617 7618 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7619 struct kvm_vcpu *vcpu, u64 access, 7620 struct x86_exception *exception) 7621 { 7622 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7623 void *data = val; 7624 int r = X86EMUL_CONTINUE; 7625 7626 while (bytes) { 7627 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7628 unsigned offset = addr & (PAGE_SIZE-1); 7629 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7630 int ret; 7631 7632 if (gpa == INVALID_GPA) 7633 return X86EMUL_PROPAGATE_FAULT; 7634 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7635 offset, toread); 7636 if (ret < 0) { 7637 r = X86EMUL_IO_NEEDED; 7638 goto out; 7639 } 7640 7641 bytes -= toread; 7642 data += toread; 7643 addr += toread; 7644 } 7645 out: 7646 return r; 7647 } 7648 7649 /* used for instruction fetching */ 7650 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7651 gva_t addr, void *val, unsigned int bytes, 7652 struct x86_exception *exception) 7653 { 7654 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7655 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7656 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7657 unsigned offset; 7658 int ret; 7659 7660 /* Inline kvm_read_guest_virt_helper for speed. */ 7661 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7662 exception); 7663 if (unlikely(gpa == INVALID_GPA)) 7664 return X86EMUL_PROPAGATE_FAULT; 7665 7666 offset = addr & (PAGE_SIZE-1); 7667 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7668 bytes = (unsigned)PAGE_SIZE - offset; 7669 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7670 offset, bytes); 7671 if (unlikely(ret < 0)) 7672 return X86EMUL_IO_NEEDED; 7673 7674 return X86EMUL_CONTINUE; 7675 } 7676 7677 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7678 gva_t addr, void *val, unsigned int bytes, 7679 struct x86_exception *exception) 7680 { 7681 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7682 7683 /* 7684 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7685 * is returned, but our callers are not ready for that and they blindly 7686 * call kvm_inject_page_fault. Ensure that they at least do not leak 7687 * uninitialized kernel stack memory into cr2 and error code. 7688 */ 7689 memset(exception, 0, sizeof(*exception)); 7690 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7691 exception); 7692 } 7693 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7694 7695 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7696 gva_t addr, void *val, unsigned int bytes, 7697 struct x86_exception *exception, bool system) 7698 { 7699 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7700 u64 access = 0; 7701 7702 if (system) 7703 access |= PFERR_IMPLICIT_ACCESS; 7704 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7705 access |= PFERR_USER_MASK; 7706 7707 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7708 } 7709 7710 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7711 struct kvm_vcpu *vcpu, u64 access, 7712 struct x86_exception *exception) 7713 { 7714 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7715 void *data = val; 7716 int r = X86EMUL_CONTINUE; 7717 7718 while (bytes) { 7719 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7720 unsigned offset = addr & (PAGE_SIZE-1); 7721 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7722 int ret; 7723 7724 if (gpa == INVALID_GPA) 7725 return X86EMUL_PROPAGATE_FAULT; 7726 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7727 if (ret < 0) { 7728 r = X86EMUL_IO_NEEDED; 7729 goto out; 7730 } 7731 7732 bytes -= towrite; 7733 data += towrite; 7734 addr += towrite; 7735 } 7736 out: 7737 return r; 7738 } 7739 7740 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7741 unsigned int bytes, struct x86_exception *exception, 7742 bool system) 7743 { 7744 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7745 u64 access = PFERR_WRITE_MASK; 7746 7747 if (system) 7748 access |= PFERR_IMPLICIT_ACCESS; 7749 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7750 access |= PFERR_USER_MASK; 7751 7752 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7753 access, exception); 7754 } 7755 7756 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7757 unsigned int bytes, struct x86_exception *exception) 7758 { 7759 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7760 vcpu->arch.l1tf_flush_l1d = true; 7761 7762 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7763 PFERR_WRITE_MASK, exception); 7764 } 7765 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7766 7767 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7768 void *insn, int insn_len) 7769 { 7770 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type, 7771 insn, insn_len); 7772 } 7773 7774 int handle_ud(struct kvm_vcpu *vcpu) 7775 { 7776 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7777 int fep_flags = READ_ONCE(force_emulation_prefix); 7778 int emul_type = EMULTYPE_TRAP_UD; 7779 char sig[5]; /* ud2; .ascii "kvm" */ 7780 struct x86_exception e; 7781 int r; 7782 7783 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7784 if (r != X86EMUL_CONTINUE) 7785 return 1; 7786 7787 if (fep_flags && 7788 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7789 sig, sizeof(sig), &e) == 0 && 7790 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7791 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7792 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7793 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7794 emul_type = EMULTYPE_TRAP_UD_FORCED; 7795 } 7796 7797 return kvm_emulate_instruction(vcpu, emul_type); 7798 } 7799 EXPORT_SYMBOL_GPL(handle_ud); 7800 7801 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7802 gpa_t gpa, bool write) 7803 { 7804 /* For APIC access vmexit */ 7805 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7806 return 1; 7807 7808 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7809 trace_vcpu_match_mmio(gva, gpa, write, true); 7810 return 1; 7811 } 7812 7813 return 0; 7814 } 7815 7816 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7817 gpa_t *gpa, struct x86_exception *exception, 7818 bool write) 7819 { 7820 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7821 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7822 | (write ? PFERR_WRITE_MASK : 0); 7823 7824 /* 7825 * currently PKRU is only applied to ept enabled guest so 7826 * there is no pkey in EPT page table for L1 guest or EPT 7827 * shadow page table for L2 guest. 7828 */ 7829 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7830 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7831 vcpu->arch.mmio_access, 0, access))) { 7832 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7833 (gva & (PAGE_SIZE - 1)); 7834 trace_vcpu_match_mmio(gva, *gpa, write, false); 7835 return 1; 7836 } 7837 7838 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7839 7840 if (*gpa == INVALID_GPA) 7841 return -1; 7842 7843 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7844 } 7845 7846 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7847 const void *val, int bytes) 7848 { 7849 int ret; 7850 7851 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7852 if (ret < 0) 7853 return 0; 7854 kvm_page_track_write(vcpu, gpa, val, bytes); 7855 return 1; 7856 } 7857 7858 struct read_write_emulator_ops { 7859 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7860 int bytes); 7861 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7862 void *val, int bytes); 7863 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7864 int bytes, void *val); 7865 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7866 void *val, int bytes); 7867 bool write; 7868 }; 7869 7870 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7871 { 7872 if (vcpu->mmio_read_completed) { 7873 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7874 vcpu->mmio_fragments[0].gpa, val); 7875 vcpu->mmio_read_completed = 0; 7876 return 1; 7877 } 7878 7879 return 0; 7880 } 7881 7882 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7883 void *val, int bytes) 7884 { 7885 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7886 } 7887 7888 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7889 void *val, int bytes) 7890 { 7891 return emulator_write_phys(vcpu, gpa, val, bytes); 7892 } 7893 7894 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7895 { 7896 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7897 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7898 } 7899 7900 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7901 void *val, int bytes) 7902 { 7903 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7904 return X86EMUL_IO_NEEDED; 7905 } 7906 7907 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7908 void *val, int bytes) 7909 { 7910 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7911 7912 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7913 return X86EMUL_CONTINUE; 7914 } 7915 7916 static const struct read_write_emulator_ops read_emultor = { 7917 .read_write_prepare = read_prepare, 7918 .read_write_emulate = read_emulate, 7919 .read_write_mmio = vcpu_mmio_read, 7920 .read_write_exit_mmio = read_exit_mmio, 7921 }; 7922 7923 static const struct read_write_emulator_ops write_emultor = { 7924 .read_write_emulate = write_emulate, 7925 .read_write_mmio = write_mmio, 7926 .read_write_exit_mmio = write_exit_mmio, 7927 .write = true, 7928 }; 7929 7930 static int emulator_read_write_onepage(unsigned long addr, void *val, 7931 unsigned int bytes, 7932 struct x86_exception *exception, 7933 struct kvm_vcpu *vcpu, 7934 const struct read_write_emulator_ops *ops) 7935 { 7936 gpa_t gpa; 7937 int handled, ret; 7938 bool write = ops->write; 7939 struct kvm_mmio_fragment *frag; 7940 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7941 7942 /* 7943 * If the exit was due to a NPF we may already have a GPA. 7944 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7945 * Note, this cannot be used on string operations since string 7946 * operation using rep will only have the initial GPA from the NPF 7947 * occurred. 7948 */ 7949 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7950 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7951 gpa = ctxt->gpa_val; 7952 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7953 } else { 7954 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7955 if (ret < 0) 7956 return X86EMUL_PROPAGATE_FAULT; 7957 } 7958 7959 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7960 return X86EMUL_CONTINUE; 7961 7962 /* 7963 * Is this MMIO handled locally? 7964 */ 7965 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7966 if (handled == bytes) 7967 return X86EMUL_CONTINUE; 7968 7969 gpa += handled; 7970 bytes -= handled; 7971 val += handled; 7972 7973 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7974 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7975 frag->gpa = gpa; 7976 frag->data = val; 7977 frag->len = bytes; 7978 return X86EMUL_CONTINUE; 7979 } 7980 7981 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7982 unsigned long addr, 7983 void *val, unsigned int bytes, 7984 struct x86_exception *exception, 7985 const struct read_write_emulator_ops *ops) 7986 { 7987 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7988 gpa_t gpa; 7989 int rc; 7990 7991 if (ops->read_write_prepare && 7992 ops->read_write_prepare(vcpu, val, bytes)) 7993 return X86EMUL_CONTINUE; 7994 7995 vcpu->mmio_nr_fragments = 0; 7996 7997 /* Crossing a page boundary? */ 7998 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7999 int now; 8000 8001 now = -addr & ~PAGE_MASK; 8002 rc = emulator_read_write_onepage(addr, val, now, exception, 8003 vcpu, ops); 8004 8005 if (rc != X86EMUL_CONTINUE) 8006 return rc; 8007 addr += now; 8008 if (ctxt->mode != X86EMUL_MODE_PROT64) 8009 addr = (u32)addr; 8010 val += now; 8011 bytes -= now; 8012 } 8013 8014 rc = emulator_read_write_onepage(addr, val, bytes, exception, 8015 vcpu, ops); 8016 if (rc != X86EMUL_CONTINUE) 8017 return rc; 8018 8019 if (!vcpu->mmio_nr_fragments) 8020 return rc; 8021 8022 gpa = vcpu->mmio_fragments[0].gpa; 8023 8024 vcpu->mmio_needed = 1; 8025 vcpu->mmio_cur_fragment = 0; 8026 8027 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 8028 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 8029 vcpu->run->exit_reason = KVM_EXIT_MMIO; 8030 vcpu->run->mmio.phys_addr = gpa; 8031 8032 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 8033 } 8034 8035 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 8036 unsigned long addr, 8037 void *val, 8038 unsigned int bytes, 8039 struct x86_exception *exception) 8040 { 8041 return emulator_read_write(ctxt, addr, val, bytes, 8042 exception, &read_emultor); 8043 } 8044 8045 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 8046 unsigned long addr, 8047 const void *val, 8048 unsigned int bytes, 8049 struct x86_exception *exception) 8050 { 8051 return emulator_read_write(ctxt, addr, (void *)val, bytes, 8052 exception, &write_emultor); 8053 } 8054 8055 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 8056 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 8057 8058 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 8059 unsigned long addr, 8060 const void *old, 8061 const void *new, 8062 unsigned int bytes, 8063 struct x86_exception *exception) 8064 { 8065 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8066 u64 page_line_mask; 8067 unsigned long hva; 8068 gpa_t gpa; 8069 int r; 8070 8071 /* guests cmpxchg8b have to be emulated atomically */ 8072 if (bytes > 8 || (bytes & (bytes - 1))) 8073 goto emul_write; 8074 8075 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 8076 8077 if (gpa == INVALID_GPA || 8078 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 8079 goto emul_write; 8080 8081 /* 8082 * Emulate the atomic as a straight write to avoid #AC if SLD is 8083 * enabled in the host and the access splits a cache line. 8084 */ 8085 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 8086 page_line_mask = ~(cache_line_size() - 1); 8087 else 8088 page_line_mask = PAGE_MASK; 8089 8090 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 8091 goto emul_write; 8092 8093 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 8094 if (kvm_is_error_hva(hva)) 8095 goto emul_write; 8096 8097 hva += offset_in_page(gpa); 8098 8099 switch (bytes) { 8100 case 1: 8101 r = emulator_try_cmpxchg_user(u8, hva, old, new); 8102 break; 8103 case 2: 8104 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8105 break; 8106 case 4: 8107 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8108 break; 8109 case 8: 8110 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8111 break; 8112 default: 8113 BUG(); 8114 } 8115 8116 if (r < 0) 8117 return X86EMUL_UNHANDLEABLE; 8118 8119 /* 8120 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8121 * successful, as the old value is written back on failure. Note, for 8122 * live migration, this is unnecessarily conservative as CMPXCHG writes 8123 * back the original value and the access is atomic, but KVM's ABI is 8124 * that all writes are dirty logged, regardless of the value written. 8125 */ 8126 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8127 8128 if (r) 8129 return X86EMUL_CMPXCHG_FAILED; 8130 8131 kvm_page_track_write(vcpu, gpa, new, bytes); 8132 8133 return X86EMUL_CONTINUE; 8134 8135 emul_write: 8136 pr_warn_once("emulating exchange as write\n"); 8137 8138 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8139 } 8140 8141 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8142 unsigned short port, void *data, 8143 unsigned int count, bool in) 8144 { 8145 unsigned i; 8146 int r; 8147 8148 WARN_ON_ONCE(vcpu->arch.pio.count); 8149 for (i = 0; i < count; i++) { 8150 if (in) 8151 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8152 else 8153 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8154 8155 if (r) { 8156 if (i == 0) 8157 goto userspace_io; 8158 8159 /* 8160 * Userspace must have unregistered the device while PIO 8161 * was running. Drop writes / read as 0. 8162 */ 8163 if (in) 8164 memset(data, 0, size * (count - i)); 8165 break; 8166 } 8167 8168 data += size; 8169 } 8170 return 1; 8171 8172 userspace_io: 8173 vcpu->arch.pio.port = port; 8174 vcpu->arch.pio.in = in; 8175 vcpu->arch.pio.count = count; 8176 vcpu->arch.pio.size = size; 8177 8178 if (in) 8179 memset(vcpu->arch.pio_data, 0, size * count); 8180 else 8181 memcpy(vcpu->arch.pio_data, data, size * count); 8182 8183 vcpu->run->exit_reason = KVM_EXIT_IO; 8184 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8185 vcpu->run->io.size = size; 8186 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8187 vcpu->run->io.count = count; 8188 vcpu->run->io.port = port; 8189 return 0; 8190 } 8191 8192 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8193 unsigned short port, void *val, unsigned int count) 8194 { 8195 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8196 if (r) 8197 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8198 8199 return r; 8200 } 8201 8202 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8203 { 8204 int size = vcpu->arch.pio.size; 8205 unsigned int count = vcpu->arch.pio.count; 8206 memcpy(val, vcpu->arch.pio_data, size * count); 8207 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8208 vcpu->arch.pio.count = 0; 8209 } 8210 8211 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8212 int size, unsigned short port, void *val, 8213 unsigned int count) 8214 { 8215 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8216 if (vcpu->arch.pio.count) { 8217 /* 8218 * Complete a previous iteration that required userspace I/O. 8219 * Note, @count isn't guaranteed to match pio.count as userspace 8220 * can modify ECX before rerunning the vCPU. Ignore any such 8221 * shenanigans as KVM doesn't support modifying the rep count, 8222 * and the emulator ensures @count doesn't overflow the buffer. 8223 */ 8224 complete_emulator_pio_in(vcpu, val); 8225 return 1; 8226 } 8227 8228 return emulator_pio_in(vcpu, size, port, val, count); 8229 } 8230 8231 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8232 unsigned short port, const void *val, 8233 unsigned int count) 8234 { 8235 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8236 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8237 } 8238 8239 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8240 int size, unsigned short port, 8241 const void *val, unsigned int count) 8242 { 8243 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8244 } 8245 8246 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8247 { 8248 return kvm_x86_call(get_segment_base)(vcpu, seg); 8249 } 8250 8251 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8252 { 8253 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8254 } 8255 8256 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8257 { 8258 if (!need_emulate_wbinvd(vcpu)) 8259 return X86EMUL_CONTINUE; 8260 8261 if (kvm_x86_call(has_wbinvd_exit)()) { 8262 int cpu = get_cpu(); 8263 8264 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8265 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8266 wbinvd_ipi, NULL, 1); 8267 put_cpu(); 8268 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8269 } else 8270 wbinvd(); 8271 return X86EMUL_CONTINUE; 8272 } 8273 8274 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8275 { 8276 kvm_emulate_wbinvd_noskip(vcpu); 8277 return kvm_skip_emulated_instruction(vcpu); 8278 } 8279 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8280 8281 8282 8283 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8284 { 8285 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8286 } 8287 8288 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8289 { 8290 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8291 } 8292 8293 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8294 unsigned long value) 8295 { 8296 8297 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8298 } 8299 8300 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8301 { 8302 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8303 } 8304 8305 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8306 { 8307 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8308 unsigned long value; 8309 8310 switch (cr) { 8311 case 0: 8312 value = kvm_read_cr0(vcpu); 8313 break; 8314 case 2: 8315 value = vcpu->arch.cr2; 8316 break; 8317 case 3: 8318 value = kvm_read_cr3(vcpu); 8319 break; 8320 case 4: 8321 value = kvm_read_cr4(vcpu); 8322 break; 8323 case 8: 8324 value = kvm_get_cr8(vcpu); 8325 break; 8326 default: 8327 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8328 return 0; 8329 } 8330 8331 return value; 8332 } 8333 8334 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8335 { 8336 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8337 int res = 0; 8338 8339 switch (cr) { 8340 case 0: 8341 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8342 break; 8343 case 2: 8344 vcpu->arch.cr2 = val; 8345 break; 8346 case 3: 8347 res = kvm_set_cr3(vcpu, val); 8348 break; 8349 case 4: 8350 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8351 break; 8352 case 8: 8353 res = kvm_set_cr8(vcpu, val); 8354 break; 8355 default: 8356 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8357 res = -1; 8358 } 8359 8360 return res; 8361 } 8362 8363 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8364 { 8365 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt)); 8366 } 8367 8368 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8369 { 8370 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt); 8371 } 8372 8373 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8374 { 8375 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt); 8376 } 8377 8378 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8379 { 8380 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt); 8381 } 8382 8383 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8384 { 8385 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt); 8386 } 8387 8388 static unsigned long emulator_get_cached_segment_base( 8389 struct x86_emulate_ctxt *ctxt, int seg) 8390 { 8391 return get_segment_base(emul_to_vcpu(ctxt), seg); 8392 } 8393 8394 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8395 struct desc_struct *desc, u32 *base3, 8396 int seg) 8397 { 8398 struct kvm_segment var; 8399 8400 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8401 *selector = var.selector; 8402 8403 if (var.unusable) { 8404 memset(desc, 0, sizeof(*desc)); 8405 if (base3) 8406 *base3 = 0; 8407 return false; 8408 } 8409 8410 if (var.g) 8411 var.limit >>= 12; 8412 set_desc_limit(desc, var.limit); 8413 set_desc_base(desc, (unsigned long)var.base); 8414 #ifdef CONFIG_X86_64 8415 if (base3) 8416 *base3 = var.base >> 32; 8417 #endif 8418 desc->type = var.type; 8419 desc->s = var.s; 8420 desc->dpl = var.dpl; 8421 desc->p = var.present; 8422 desc->avl = var.avl; 8423 desc->l = var.l; 8424 desc->d = var.db; 8425 desc->g = var.g; 8426 8427 return true; 8428 } 8429 8430 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8431 struct desc_struct *desc, u32 base3, 8432 int seg) 8433 { 8434 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8435 struct kvm_segment var; 8436 8437 var.selector = selector; 8438 var.base = get_desc_base(desc); 8439 #ifdef CONFIG_X86_64 8440 var.base |= ((u64)base3) << 32; 8441 #endif 8442 var.limit = get_desc_limit(desc); 8443 if (desc->g) 8444 var.limit = (var.limit << 12) | 0xfff; 8445 var.type = desc->type; 8446 var.dpl = desc->dpl; 8447 var.db = desc->d; 8448 var.s = desc->s; 8449 var.l = desc->l; 8450 var.g = desc->g; 8451 var.avl = desc->avl; 8452 var.present = desc->p; 8453 var.unusable = !var.present; 8454 var.padding = 0; 8455 8456 kvm_set_segment(vcpu, &var, seg); 8457 return; 8458 } 8459 8460 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8461 u32 msr_index, u64 *pdata) 8462 { 8463 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8464 int r; 8465 8466 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8467 if (r < 0) 8468 return X86EMUL_UNHANDLEABLE; 8469 8470 if (r) { 8471 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8472 complete_emulated_rdmsr, r)) 8473 return X86EMUL_IO_NEEDED; 8474 8475 trace_kvm_msr_read_ex(msr_index); 8476 return X86EMUL_PROPAGATE_FAULT; 8477 } 8478 8479 trace_kvm_msr_read(msr_index, *pdata); 8480 return X86EMUL_CONTINUE; 8481 } 8482 8483 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8484 u32 msr_index, u64 data) 8485 { 8486 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8487 int r; 8488 8489 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8490 if (r < 0) 8491 return X86EMUL_UNHANDLEABLE; 8492 8493 if (r) { 8494 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8495 complete_emulated_msr_access, r)) 8496 return X86EMUL_IO_NEEDED; 8497 8498 trace_kvm_msr_write_ex(msr_index, data); 8499 return X86EMUL_PROPAGATE_FAULT; 8500 } 8501 8502 trace_kvm_msr_write(msr_index, data); 8503 return X86EMUL_CONTINUE; 8504 } 8505 8506 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8507 u32 msr_index, u64 *pdata) 8508 { 8509 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8510 } 8511 8512 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8513 { 8514 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8515 } 8516 8517 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8518 u32 pmc, u64 *pdata) 8519 { 8520 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8521 } 8522 8523 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8524 { 8525 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8526 } 8527 8528 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8529 struct x86_instruction_info *info, 8530 enum x86_intercept_stage stage) 8531 { 8532 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage, 8533 &ctxt->exception); 8534 } 8535 8536 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8537 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8538 bool exact_only) 8539 { 8540 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8541 } 8542 8543 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8544 { 8545 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8546 } 8547 8548 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8549 { 8550 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8551 } 8552 8553 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8554 { 8555 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8556 } 8557 8558 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt) 8559 { 8560 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt)); 8561 } 8562 8563 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8564 { 8565 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8566 } 8567 8568 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8569 { 8570 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8571 } 8572 8573 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8574 { 8575 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8576 } 8577 8578 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8579 { 8580 return is_smm(emul_to_vcpu(ctxt)); 8581 } 8582 8583 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8584 { 8585 return is_guest_mode(emul_to_vcpu(ctxt)); 8586 } 8587 8588 #ifndef CONFIG_KVM_SMM 8589 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8590 { 8591 WARN_ON_ONCE(1); 8592 return X86EMUL_UNHANDLEABLE; 8593 } 8594 #endif 8595 8596 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8597 { 8598 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8599 } 8600 8601 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8602 { 8603 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8604 } 8605 8606 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8607 { 8608 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8609 8610 if (!kvm->vm_bugged) 8611 kvm_vm_bugged(kvm); 8612 } 8613 8614 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8615 gva_t addr, unsigned int flags) 8616 { 8617 if (!kvm_x86_ops.get_untagged_addr) 8618 return addr; 8619 8620 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt), 8621 addr, flags); 8622 } 8623 8624 static const struct x86_emulate_ops emulate_ops = { 8625 .vm_bugged = emulator_vm_bugged, 8626 .read_gpr = emulator_read_gpr, 8627 .write_gpr = emulator_write_gpr, 8628 .read_std = emulator_read_std, 8629 .write_std = emulator_write_std, 8630 .fetch = kvm_fetch_guest_virt, 8631 .read_emulated = emulator_read_emulated, 8632 .write_emulated = emulator_write_emulated, 8633 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8634 .invlpg = emulator_invlpg, 8635 .pio_in_emulated = emulator_pio_in_emulated, 8636 .pio_out_emulated = emulator_pio_out_emulated, 8637 .get_segment = emulator_get_segment, 8638 .set_segment = emulator_set_segment, 8639 .get_cached_segment_base = emulator_get_cached_segment_base, 8640 .get_gdt = emulator_get_gdt, 8641 .get_idt = emulator_get_idt, 8642 .set_gdt = emulator_set_gdt, 8643 .set_idt = emulator_set_idt, 8644 .get_cr = emulator_get_cr, 8645 .set_cr = emulator_set_cr, 8646 .cpl = emulator_get_cpl, 8647 .get_dr = emulator_get_dr, 8648 .set_dr = emulator_set_dr, 8649 .set_msr_with_filter = emulator_set_msr_with_filter, 8650 .get_msr_with_filter = emulator_get_msr_with_filter, 8651 .get_msr = emulator_get_msr, 8652 .check_rdpmc_early = emulator_check_rdpmc_early, 8653 .read_pmc = emulator_read_pmc, 8654 .halt = emulator_halt, 8655 .wbinvd = emulator_wbinvd, 8656 .fix_hypercall = emulator_fix_hypercall, 8657 .intercept = emulator_intercept, 8658 .get_cpuid = emulator_get_cpuid, 8659 .guest_has_movbe = emulator_guest_has_movbe, 8660 .guest_has_fxsr = emulator_guest_has_fxsr, 8661 .guest_has_rdpid = emulator_guest_has_rdpid, 8662 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible, 8663 .set_nmi_mask = emulator_set_nmi_mask, 8664 .is_smm = emulator_is_smm, 8665 .is_guest_mode = emulator_is_guest_mode, 8666 .leave_smm = emulator_leave_smm, 8667 .triple_fault = emulator_triple_fault, 8668 .set_xcr = emulator_set_xcr, 8669 .get_untagged_addr = emulator_get_untagged_addr, 8670 }; 8671 8672 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8673 { 8674 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 8675 /* 8676 * an sti; sti; sequence only disable interrupts for the first 8677 * instruction. So, if the last instruction, be it emulated or 8678 * not, left the system with the INT_STI flag enabled, it 8679 * means that the last instruction is an sti. We should not 8680 * leave the flag on in this case. The same goes for mov ss 8681 */ 8682 if (int_shadow & mask) 8683 mask = 0; 8684 if (unlikely(int_shadow || mask)) { 8685 kvm_x86_call(set_interrupt_shadow)(vcpu, mask); 8686 if (!mask) 8687 kvm_make_request(KVM_REQ_EVENT, vcpu); 8688 } 8689 } 8690 8691 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8692 { 8693 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8694 8695 if (ctxt->exception.vector == PF_VECTOR) 8696 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8697 else if (ctxt->exception.error_code_valid) 8698 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8699 ctxt->exception.error_code); 8700 else 8701 kvm_queue_exception(vcpu, ctxt->exception.vector); 8702 } 8703 8704 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8705 { 8706 struct x86_emulate_ctxt *ctxt; 8707 8708 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8709 if (!ctxt) { 8710 pr_err("failed to allocate vcpu's emulator\n"); 8711 return NULL; 8712 } 8713 8714 ctxt->vcpu = vcpu; 8715 ctxt->ops = &emulate_ops; 8716 vcpu->arch.emulate_ctxt = ctxt; 8717 8718 return ctxt; 8719 } 8720 8721 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8722 { 8723 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8724 int cs_db, cs_l; 8725 8726 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8727 8728 ctxt->gpa_available = false; 8729 ctxt->eflags = kvm_get_rflags(vcpu); 8730 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8731 8732 ctxt->eip = kvm_rip_read(vcpu); 8733 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8734 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8735 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8736 cs_db ? X86EMUL_MODE_PROT32 : 8737 X86EMUL_MODE_PROT16; 8738 ctxt->interruptibility = 0; 8739 ctxt->have_exception = false; 8740 ctxt->exception.vector = -1; 8741 ctxt->perm_ok = false; 8742 8743 init_decode_cache(ctxt); 8744 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8745 } 8746 8747 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8748 { 8749 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8750 int ret; 8751 8752 init_emulate_ctxt(vcpu); 8753 8754 ctxt->op_bytes = 2; 8755 ctxt->ad_bytes = 2; 8756 ctxt->_eip = ctxt->eip + inc_eip; 8757 ret = emulate_int_real(ctxt, irq); 8758 8759 if (ret != X86EMUL_CONTINUE) { 8760 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8761 } else { 8762 ctxt->eip = ctxt->_eip; 8763 kvm_rip_write(vcpu, ctxt->eip); 8764 kvm_set_rflags(vcpu, ctxt->eflags); 8765 } 8766 } 8767 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8768 8769 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8770 u8 ndata, u8 *insn_bytes, u8 insn_size) 8771 { 8772 struct kvm_run *run = vcpu->run; 8773 u64 info[5]; 8774 u8 info_start; 8775 8776 /* 8777 * Zero the whole array used to retrieve the exit info, as casting to 8778 * u32 for select entries will leave some chunks uninitialized. 8779 */ 8780 memset(&info, 0, sizeof(info)); 8781 8782 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2], 8783 (u32 *)&info[3], (u32 *)&info[4]); 8784 8785 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8786 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8787 8788 /* 8789 * There's currently space for 13 entries, but 5 are used for the exit 8790 * reason and info. Restrict to 4 to reduce the maintenance burden 8791 * when expanding kvm_run.emulation_failure in the future. 8792 */ 8793 if (WARN_ON_ONCE(ndata > 4)) 8794 ndata = 4; 8795 8796 /* Always include the flags as a 'data' entry. */ 8797 info_start = 1; 8798 run->emulation_failure.flags = 0; 8799 8800 if (insn_size) { 8801 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8802 sizeof(run->emulation_failure.insn_bytes) != 16)); 8803 info_start += 2; 8804 run->emulation_failure.flags |= 8805 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8806 run->emulation_failure.insn_size = insn_size; 8807 memset(run->emulation_failure.insn_bytes, 0x90, 8808 sizeof(run->emulation_failure.insn_bytes)); 8809 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8810 } 8811 8812 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8813 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8814 ndata * sizeof(data[0])); 8815 8816 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8817 } 8818 8819 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8820 { 8821 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8822 8823 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8824 ctxt->fetch.end - ctxt->fetch.data); 8825 } 8826 8827 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8828 u8 ndata) 8829 { 8830 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8831 } 8832 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8833 8834 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8835 { 8836 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8837 } 8838 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8839 8840 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8841 { 8842 struct kvm *kvm = vcpu->kvm; 8843 8844 ++vcpu->stat.insn_emulation_fail; 8845 trace_kvm_emulate_insn_failed(vcpu); 8846 8847 if (emulation_type & EMULTYPE_VMWARE_GP) { 8848 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8849 return 1; 8850 } 8851 8852 if (kvm->arch.exit_on_emulation_error || 8853 (emulation_type & EMULTYPE_SKIP)) { 8854 prepare_emulation_ctxt_failure_exit(vcpu); 8855 return 0; 8856 } 8857 8858 kvm_queue_exception(vcpu, UD_VECTOR); 8859 8860 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) { 8861 prepare_emulation_ctxt_failure_exit(vcpu); 8862 return 0; 8863 } 8864 8865 return 1; 8866 } 8867 8868 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8869 int emulation_type) 8870 { 8871 gpa_t gpa = cr2_or_gpa; 8872 kvm_pfn_t pfn; 8873 8874 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8875 return false; 8876 8877 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8878 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8879 return false; 8880 8881 if (!vcpu->arch.mmu->root_role.direct) { 8882 /* 8883 * Write permission should be allowed since only 8884 * write access need to be emulated. 8885 */ 8886 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8887 8888 /* 8889 * If the mapping is invalid in guest, let cpu retry 8890 * it to generate fault. 8891 */ 8892 if (gpa == INVALID_GPA) 8893 return true; 8894 } 8895 8896 /* 8897 * Do not retry the unhandleable instruction if it faults on the 8898 * readonly host memory, otherwise it will goto a infinite loop: 8899 * retry instruction -> write #PF -> emulation fail -> retry 8900 * instruction -> ... 8901 */ 8902 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8903 8904 /* 8905 * If the instruction failed on the error pfn, it can not be fixed, 8906 * report the error to userspace. 8907 */ 8908 if (is_error_noslot_pfn(pfn)) 8909 return false; 8910 8911 kvm_release_pfn_clean(pfn); 8912 8913 /* 8914 * If emulation may have been triggered by a write to a shadowed page 8915 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 8916 * guest to let the CPU re-execute the instruction in the hope that the 8917 * CPU can cleanly execute the instruction that KVM failed to emulate. 8918 */ 8919 if (vcpu->kvm->arch.indirect_shadow_pages) 8920 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8921 8922 /* 8923 * If the failed instruction faulted on an access to page tables that 8924 * are used to translate any part of the instruction, KVM can't resolve 8925 * the issue by unprotecting the gfn, as zapping the shadow page will 8926 * result in the instruction taking a !PRESENT page fault and thus put 8927 * the vCPU into an infinite loop of page faults. E.g. KVM will create 8928 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 8929 * then zap the SPTE to unprotect the gfn, and then do it all over 8930 * again. Report the error to userspace. 8931 */ 8932 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8933 } 8934 8935 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8936 gpa_t cr2_or_gpa, int emulation_type) 8937 { 8938 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8939 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8940 8941 last_retry_eip = vcpu->arch.last_retry_eip; 8942 last_retry_addr = vcpu->arch.last_retry_addr; 8943 8944 /* 8945 * If the emulation is caused by #PF and it is non-page_table 8946 * writing instruction, it means the VM-EXIT is caused by shadow 8947 * page protected, we can zap the shadow page and retry this 8948 * instruction directly. 8949 * 8950 * Note: if the guest uses a non-page-table modifying instruction 8951 * on the PDE that points to the instruction, then we will unmap 8952 * the instruction and go to an infinite loop. So, we cache the 8953 * last retried eip and the last fault address, if we meet the eip 8954 * and the address again, we can break out of the potential infinite 8955 * loop. 8956 */ 8957 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8958 8959 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8960 return false; 8961 8962 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8963 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8964 return false; 8965 8966 if (x86_page_table_writing_insn(ctxt)) 8967 return false; 8968 8969 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8970 return false; 8971 8972 vcpu->arch.last_retry_eip = ctxt->eip; 8973 vcpu->arch.last_retry_addr = cr2_or_gpa; 8974 8975 if (!vcpu->arch.mmu->root_role.direct) 8976 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8977 8978 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8979 8980 return true; 8981 } 8982 8983 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8984 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8985 8986 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8987 unsigned long *db) 8988 { 8989 u32 dr6 = 0; 8990 int i; 8991 u32 enable, rwlen; 8992 8993 enable = dr7; 8994 rwlen = dr7 >> 16; 8995 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8996 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8997 dr6 |= (1 << i); 8998 return dr6; 8999 } 9000 9001 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 9002 { 9003 struct kvm_run *kvm_run = vcpu->run; 9004 9005 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 9006 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 9007 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 9008 kvm_run->debug.arch.exception = DB_VECTOR; 9009 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9010 return 0; 9011 } 9012 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 9013 return 1; 9014 } 9015 9016 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 9017 { 9018 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9019 int r; 9020 9021 r = kvm_x86_call(skip_emulated_instruction)(vcpu); 9022 if (unlikely(!r)) 9023 return 0; 9024 9025 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9026 9027 /* 9028 * rflags is the old, "raw" value of the flags. The new value has 9029 * not been saved yet. 9030 * 9031 * This is correct even for TF set by the guest, because "the 9032 * processor will not generate this exception after the instruction 9033 * that sets the TF flag". 9034 */ 9035 if (unlikely(rflags & X86_EFLAGS_TF)) 9036 r = kvm_vcpu_do_singlestep(vcpu); 9037 return r; 9038 } 9039 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 9040 9041 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 9042 { 9043 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 9044 return true; 9045 9046 /* 9047 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is 9048 * active, but AMD compatible CPUs do not. 9049 */ 9050 if (!guest_cpuid_is_intel_compatible(vcpu)) 9051 return false; 9052 9053 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS; 9054 } 9055 9056 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 9057 int emulation_type, int *r) 9058 { 9059 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 9060 9061 /* 9062 * Do not check for code breakpoints if hardware has already done the 9063 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 9064 * the instruction has passed all exception checks, and all intercepted 9065 * exceptions that trigger emulation have lower priority than code 9066 * breakpoints, i.e. the fact that the intercepted exception occurred 9067 * means any code breakpoints have already been serviced. 9068 * 9069 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 9070 * hardware has checked the RIP of the magic prefix, but not the RIP of 9071 * the instruction being emulated. The intent of forced emulation is 9072 * to behave as if KVM intercepted the instruction without an exception 9073 * and without a prefix. 9074 */ 9075 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 9076 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 9077 return false; 9078 9079 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 9080 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 9081 struct kvm_run *kvm_run = vcpu->run; 9082 unsigned long eip = kvm_get_linear_rip(vcpu); 9083 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9084 vcpu->arch.guest_debug_dr7, 9085 vcpu->arch.eff_db); 9086 9087 if (dr6 != 0) { 9088 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 9089 kvm_run->debug.arch.pc = eip; 9090 kvm_run->debug.arch.exception = DB_VECTOR; 9091 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9092 *r = 0; 9093 return true; 9094 } 9095 } 9096 9097 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 9098 !kvm_is_code_breakpoint_inhibited(vcpu)) { 9099 unsigned long eip = kvm_get_linear_rip(vcpu); 9100 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9101 vcpu->arch.dr7, 9102 vcpu->arch.db); 9103 9104 if (dr6 != 0) { 9105 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9106 *r = 1; 9107 return true; 9108 } 9109 } 9110 9111 return false; 9112 } 9113 9114 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9115 { 9116 switch (ctxt->opcode_len) { 9117 case 1: 9118 switch (ctxt->b) { 9119 case 0xe4: /* IN */ 9120 case 0xe5: 9121 case 0xec: 9122 case 0xed: 9123 case 0xe6: /* OUT */ 9124 case 0xe7: 9125 case 0xee: 9126 case 0xef: 9127 case 0x6c: /* INS */ 9128 case 0x6d: 9129 case 0x6e: /* OUTS */ 9130 case 0x6f: 9131 return true; 9132 } 9133 break; 9134 case 2: 9135 switch (ctxt->b) { 9136 case 0x33: /* RDPMC */ 9137 return true; 9138 } 9139 break; 9140 } 9141 9142 return false; 9143 } 9144 9145 /* 9146 * Decode an instruction for emulation. The caller is responsible for handling 9147 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9148 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9149 * code breakpoints have higher priority and thus have already been done by 9150 * hardware. 9151 * 9152 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9153 * response to a machine check. 9154 */ 9155 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9156 void *insn, int insn_len) 9157 { 9158 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9159 int r; 9160 9161 init_emulate_ctxt(vcpu); 9162 9163 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9164 9165 trace_kvm_emulate_insn_start(vcpu); 9166 ++vcpu->stat.insn_emulation; 9167 9168 return r; 9169 } 9170 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9171 9172 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9173 int emulation_type, void *insn, int insn_len) 9174 { 9175 int r; 9176 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9177 bool writeback = true; 9178 9179 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9180 if (r != X86EMUL_CONTINUE) { 9181 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9182 return 1; 9183 9184 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9185 return handle_emulation_failure(vcpu, emulation_type); 9186 } 9187 9188 vcpu->arch.l1tf_flush_l1d = true; 9189 9190 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9191 kvm_clear_exception_queue(vcpu); 9192 9193 /* 9194 * Return immediately if RIP hits a code breakpoint, such #DBs 9195 * are fault-like and are higher priority than any faults on 9196 * the code fetch itself. 9197 */ 9198 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9199 return r; 9200 9201 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9202 insn, insn_len); 9203 if (r != EMULATION_OK) { 9204 if ((emulation_type & EMULTYPE_TRAP_UD) || 9205 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9206 kvm_queue_exception(vcpu, UD_VECTOR); 9207 return 1; 9208 } 9209 if (reexecute_instruction(vcpu, cr2_or_gpa, 9210 emulation_type)) 9211 return 1; 9212 9213 if (ctxt->have_exception && 9214 !(emulation_type & EMULTYPE_SKIP)) { 9215 /* 9216 * #UD should result in just EMULATION_FAILED, and trap-like 9217 * exception should not be encountered during decode. 9218 */ 9219 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9220 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9221 inject_emulated_exception(vcpu); 9222 return 1; 9223 } 9224 return handle_emulation_failure(vcpu, emulation_type); 9225 } 9226 } 9227 9228 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9229 !is_vmware_backdoor_opcode(ctxt)) { 9230 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9231 return 1; 9232 } 9233 9234 /* 9235 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9236 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9237 * The caller is responsible for updating interruptibility state and 9238 * injecting single-step #DBs. 9239 */ 9240 if (emulation_type & EMULTYPE_SKIP) { 9241 if (ctxt->mode != X86EMUL_MODE_PROT64) 9242 ctxt->eip = (u32)ctxt->_eip; 9243 else 9244 ctxt->eip = ctxt->_eip; 9245 9246 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9247 r = 1; 9248 goto writeback; 9249 } 9250 9251 kvm_rip_write(vcpu, ctxt->eip); 9252 if (ctxt->eflags & X86_EFLAGS_RF) 9253 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9254 return 1; 9255 } 9256 9257 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 9258 return 1; 9259 9260 /* this is needed for vmware backdoor interface to work since it 9261 changes registers values during IO operation */ 9262 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9263 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9264 emulator_invalidate_register_cache(ctxt); 9265 } 9266 9267 restart: 9268 if (emulation_type & EMULTYPE_PF) { 9269 /* Save the faulting GPA (cr2) in the address field */ 9270 ctxt->exception.address = cr2_or_gpa; 9271 9272 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9273 if (vcpu->arch.mmu->root_role.direct) { 9274 ctxt->gpa_available = true; 9275 ctxt->gpa_val = cr2_or_gpa; 9276 } 9277 } else { 9278 /* Sanitize the address out of an abundance of paranoia. */ 9279 ctxt->exception.address = 0; 9280 } 9281 9282 r = x86_emulate_insn(ctxt); 9283 9284 if (r == EMULATION_INTERCEPTED) 9285 return 1; 9286 9287 if (r == EMULATION_FAILED) { 9288 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9289 return 1; 9290 9291 return handle_emulation_failure(vcpu, emulation_type); 9292 } 9293 9294 if (ctxt->have_exception) { 9295 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9296 vcpu->mmio_needed = false; 9297 r = 1; 9298 inject_emulated_exception(vcpu); 9299 } else if (vcpu->arch.pio.count) { 9300 if (!vcpu->arch.pio.in) { 9301 /* FIXME: return into emulator if single-stepping. */ 9302 vcpu->arch.pio.count = 0; 9303 } else { 9304 writeback = false; 9305 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9306 } 9307 r = 0; 9308 } else if (vcpu->mmio_needed) { 9309 ++vcpu->stat.mmio_exits; 9310 9311 if (!vcpu->mmio_is_write) 9312 writeback = false; 9313 r = 0; 9314 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9315 } else if (vcpu->arch.complete_userspace_io) { 9316 writeback = false; 9317 r = 0; 9318 } else if (r == EMULATION_RESTART) 9319 goto restart; 9320 else 9321 r = 1; 9322 9323 writeback: 9324 if (writeback) { 9325 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9326 toggle_interruptibility(vcpu, ctxt->interruptibility); 9327 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9328 9329 /* 9330 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9331 * only supports code breakpoints and general detect #DB, both 9332 * of which are fault-like. 9333 */ 9334 if (!ctxt->have_exception || 9335 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9336 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9337 if (ctxt->is_branch) 9338 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 9339 kvm_rip_write(vcpu, ctxt->eip); 9340 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9341 r = kvm_vcpu_do_singlestep(vcpu); 9342 kvm_x86_call(update_emulated_instruction)(vcpu); 9343 __kvm_set_rflags(vcpu, ctxt->eflags); 9344 } 9345 9346 /* 9347 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9348 * do nothing, and it will be requested again as soon as 9349 * the shadow expires. But we still need to check here, 9350 * because POPF has no interrupt shadow. 9351 */ 9352 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9353 kvm_make_request(KVM_REQ_EVENT, vcpu); 9354 } else 9355 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9356 9357 return r; 9358 } 9359 9360 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9361 { 9362 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9363 } 9364 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9365 9366 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9367 void *insn, int insn_len) 9368 { 9369 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9370 } 9371 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9372 9373 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9374 { 9375 vcpu->arch.pio.count = 0; 9376 return 1; 9377 } 9378 9379 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9380 { 9381 vcpu->arch.pio.count = 0; 9382 9383 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9384 return 1; 9385 9386 return kvm_skip_emulated_instruction(vcpu); 9387 } 9388 9389 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9390 unsigned short port) 9391 { 9392 unsigned long val = kvm_rax_read(vcpu); 9393 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9394 9395 if (ret) 9396 return ret; 9397 9398 /* 9399 * Workaround userspace that relies on old KVM behavior of %rip being 9400 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9401 */ 9402 if (port == 0x7e && 9403 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9404 vcpu->arch.complete_userspace_io = 9405 complete_fast_pio_out_port_0x7e; 9406 kvm_skip_emulated_instruction(vcpu); 9407 } else { 9408 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9409 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9410 } 9411 return 0; 9412 } 9413 9414 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9415 { 9416 unsigned long val; 9417 9418 /* We should only ever be called with arch.pio.count equal to 1 */ 9419 BUG_ON(vcpu->arch.pio.count != 1); 9420 9421 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9422 vcpu->arch.pio.count = 0; 9423 return 1; 9424 } 9425 9426 /* For size less than 4 we merge, else we zero extend */ 9427 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9428 9429 complete_emulator_pio_in(vcpu, &val); 9430 kvm_rax_write(vcpu, val); 9431 9432 return kvm_skip_emulated_instruction(vcpu); 9433 } 9434 9435 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9436 unsigned short port) 9437 { 9438 unsigned long val; 9439 int ret; 9440 9441 /* For size less than 4 we merge, else we zero extend */ 9442 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9443 9444 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9445 if (ret) { 9446 kvm_rax_write(vcpu, val); 9447 return ret; 9448 } 9449 9450 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9451 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9452 9453 return 0; 9454 } 9455 9456 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9457 { 9458 int ret; 9459 9460 if (in) 9461 ret = kvm_fast_pio_in(vcpu, size, port); 9462 else 9463 ret = kvm_fast_pio_out(vcpu, size, port); 9464 return ret && kvm_skip_emulated_instruction(vcpu); 9465 } 9466 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9467 9468 static int kvmclock_cpu_down_prep(unsigned int cpu) 9469 { 9470 __this_cpu_write(cpu_tsc_khz, 0); 9471 return 0; 9472 } 9473 9474 static void tsc_khz_changed(void *data) 9475 { 9476 struct cpufreq_freqs *freq = data; 9477 unsigned long khz; 9478 9479 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9480 9481 if (data) 9482 khz = freq->new; 9483 else 9484 khz = cpufreq_quick_get(raw_smp_processor_id()); 9485 if (!khz) 9486 khz = tsc_khz; 9487 __this_cpu_write(cpu_tsc_khz, khz); 9488 } 9489 9490 #ifdef CONFIG_X86_64 9491 static void kvm_hyperv_tsc_notifier(void) 9492 { 9493 struct kvm *kvm; 9494 int cpu; 9495 9496 mutex_lock(&kvm_lock); 9497 list_for_each_entry(kvm, &vm_list, vm_list) 9498 kvm_make_mclock_inprogress_request(kvm); 9499 9500 /* no guest entries from this point */ 9501 hyperv_stop_tsc_emulation(); 9502 9503 /* TSC frequency always matches when on Hyper-V */ 9504 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9505 for_each_present_cpu(cpu) 9506 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9507 } 9508 kvm_caps.max_guest_tsc_khz = tsc_khz; 9509 9510 list_for_each_entry(kvm, &vm_list, vm_list) { 9511 __kvm_start_pvclock_update(kvm); 9512 pvclock_update_vm_gtod_copy(kvm); 9513 kvm_end_pvclock_update(kvm); 9514 } 9515 9516 mutex_unlock(&kvm_lock); 9517 } 9518 #endif 9519 9520 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9521 { 9522 struct kvm *kvm; 9523 struct kvm_vcpu *vcpu; 9524 int send_ipi = 0; 9525 unsigned long i; 9526 9527 /* 9528 * We allow guests to temporarily run on slowing clocks, 9529 * provided we notify them after, or to run on accelerating 9530 * clocks, provided we notify them before. Thus time never 9531 * goes backwards. 9532 * 9533 * However, we have a problem. We can't atomically update 9534 * the frequency of a given CPU from this function; it is 9535 * merely a notifier, which can be called from any CPU. 9536 * Changing the TSC frequency at arbitrary points in time 9537 * requires a recomputation of local variables related to 9538 * the TSC for each VCPU. We must flag these local variables 9539 * to be updated and be sure the update takes place with the 9540 * new frequency before any guests proceed. 9541 * 9542 * Unfortunately, the combination of hotplug CPU and frequency 9543 * change creates an intractable locking scenario; the order 9544 * of when these callouts happen is undefined with respect to 9545 * CPU hotplug, and they can race with each other. As such, 9546 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9547 * undefined; you can actually have a CPU frequency change take 9548 * place in between the computation of X and the setting of the 9549 * variable. To protect against this problem, all updates of 9550 * the per_cpu tsc_khz variable are done in an interrupt 9551 * protected IPI, and all callers wishing to update the value 9552 * must wait for a synchronous IPI to complete (which is trivial 9553 * if the caller is on the CPU already). This establishes the 9554 * necessary total order on variable updates. 9555 * 9556 * Note that because a guest time update may take place 9557 * anytime after the setting of the VCPU's request bit, the 9558 * correct TSC value must be set before the request. However, 9559 * to ensure the update actually makes it to any guest which 9560 * starts running in hardware virtualization between the set 9561 * and the acquisition of the spinlock, we must also ping the 9562 * CPU after setting the request bit. 9563 * 9564 */ 9565 9566 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9567 9568 mutex_lock(&kvm_lock); 9569 list_for_each_entry(kvm, &vm_list, vm_list) { 9570 kvm_for_each_vcpu(i, vcpu, kvm) { 9571 if (vcpu->cpu != cpu) 9572 continue; 9573 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9574 if (vcpu->cpu != raw_smp_processor_id()) 9575 send_ipi = 1; 9576 } 9577 } 9578 mutex_unlock(&kvm_lock); 9579 9580 if (freq->old < freq->new && send_ipi) { 9581 /* 9582 * We upscale the frequency. Must make the guest 9583 * doesn't see old kvmclock values while running with 9584 * the new frequency, otherwise we risk the guest sees 9585 * time go backwards. 9586 * 9587 * In case we update the frequency for another cpu 9588 * (which might be in guest context) send an interrupt 9589 * to kick the cpu out of guest context. Next time 9590 * guest context is entered kvmclock will be updated, 9591 * so the guest will not see stale values. 9592 */ 9593 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9594 } 9595 } 9596 9597 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9598 void *data) 9599 { 9600 struct cpufreq_freqs *freq = data; 9601 int cpu; 9602 9603 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9604 return 0; 9605 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9606 return 0; 9607 9608 for_each_cpu(cpu, freq->policy->cpus) 9609 __kvmclock_cpufreq_notifier(freq, cpu); 9610 9611 return 0; 9612 } 9613 9614 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9615 .notifier_call = kvmclock_cpufreq_notifier 9616 }; 9617 9618 static int kvmclock_cpu_online(unsigned int cpu) 9619 { 9620 tsc_khz_changed(NULL); 9621 return 0; 9622 } 9623 9624 static void kvm_timer_init(void) 9625 { 9626 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9627 max_tsc_khz = tsc_khz; 9628 9629 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9630 struct cpufreq_policy *policy; 9631 int cpu; 9632 9633 cpu = get_cpu(); 9634 policy = cpufreq_cpu_get(cpu); 9635 if (policy) { 9636 if (policy->cpuinfo.max_freq) 9637 max_tsc_khz = policy->cpuinfo.max_freq; 9638 cpufreq_cpu_put(policy); 9639 } 9640 put_cpu(); 9641 } 9642 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9643 CPUFREQ_TRANSITION_NOTIFIER); 9644 9645 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9646 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9647 } 9648 } 9649 9650 #ifdef CONFIG_X86_64 9651 static void pvclock_gtod_update_fn(struct work_struct *work) 9652 { 9653 struct kvm *kvm; 9654 struct kvm_vcpu *vcpu; 9655 unsigned long i; 9656 9657 mutex_lock(&kvm_lock); 9658 list_for_each_entry(kvm, &vm_list, vm_list) 9659 kvm_for_each_vcpu(i, vcpu, kvm) 9660 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9661 atomic_set(&kvm_guest_has_master_clock, 0); 9662 mutex_unlock(&kvm_lock); 9663 } 9664 9665 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9666 9667 /* 9668 * Indirection to move queue_work() out of the tk_core.seq write held 9669 * region to prevent possible deadlocks against time accessors which 9670 * are invoked with work related locks held. 9671 */ 9672 static void pvclock_irq_work_fn(struct irq_work *w) 9673 { 9674 queue_work(system_long_wq, &pvclock_gtod_work); 9675 } 9676 9677 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9678 9679 /* 9680 * Notification about pvclock gtod data update. 9681 */ 9682 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9683 void *priv) 9684 { 9685 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9686 struct timekeeper *tk = priv; 9687 9688 update_pvclock_gtod(tk); 9689 9690 /* 9691 * Disable master clock if host does not trust, or does not use, 9692 * TSC based clocksource. Delegate queue_work() to irq_work as 9693 * this is invoked with tk_core.seq write held. 9694 */ 9695 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9696 atomic_read(&kvm_guest_has_master_clock) != 0) 9697 irq_work_queue(&pvclock_irq_work); 9698 return 0; 9699 } 9700 9701 static struct notifier_block pvclock_gtod_notifier = { 9702 .notifier_call = pvclock_gtod_notify, 9703 }; 9704 #endif 9705 9706 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9707 { 9708 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9709 9710 #define __KVM_X86_OP(func) \ 9711 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9712 #define KVM_X86_OP(func) \ 9713 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9714 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9715 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9716 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9717 (void *)__static_call_return0); 9718 #include <asm/kvm-x86-ops.h> 9719 #undef __KVM_X86_OP 9720 9721 kvm_pmu_ops_update(ops->pmu_ops); 9722 } 9723 9724 static int kvm_x86_check_processor_compatibility(void) 9725 { 9726 int cpu = smp_processor_id(); 9727 struct cpuinfo_x86 *c = &cpu_data(cpu); 9728 9729 /* 9730 * Compatibility checks are done when loading KVM and when enabling 9731 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9732 * compatible, i.e. KVM should never perform a compatibility check on 9733 * an offline CPU. 9734 */ 9735 WARN_ON(!cpu_online(cpu)); 9736 9737 if (__cr4_reserved_bits(cpu_has, c) != 9738 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9739 return -EIO; 9740 9741 return kvm_x86_call(check_processor_compatibility)(); 9742 } 9743 9744 static void kvm_x86_check_cpu_compat(void *ret) 9745 { 9746 *(int *)ret = kvm_x86_check_processor_compatibility(); 9747 } 9748 9749 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9750 { 9751 u64 host_pat; 9752 int r, cpu; 9753 9754 guard(mutex)(&vendor_module_lock); 9755 9756 if (kvm_x86_ops.hardware_enable) { 9757 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9758 return -EEXIST; 9759 } 9760 9761 /* 9762 * KVM explicitly assumes that the guest has an FPU and 9763 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9764 * vCPU's FPU state as a fxregs_state struct. 9765 */ 9766 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9767 pr_err("inadequate fpu\n"); 9768 return -EOPNOTSUPP; 9769 } 9770 9771 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9772 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9773 return -EOPNOTSUPP; 9774 } 9775 9776 /* 9777 * KVM assumes that PAT entry '' encodes WB memtype and simply zeroes 9778 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9779 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9780 * with an exception. PAT[0] is set to WB on RESET and also by the 9781 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9782 */ 9783 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9784 (host_pat & GENMASK(2, 0)) != 6) { 9785 pr_err("host PAT[0] is not WB\n"); 9786 return -EIO; 9787 } 9788 9789 memset(&kvm_caps, 0, sizeof(kvm_caps)); 9790 9791 x86_emulator_cache = kvm_alloc_emulator_cache(); 9792 if (!x86_emulator_cache) { 9793 pr_err("failed to allocate cache for x86 emulator\n"); 9794 return -ENOMEM; 9795 } 9796 9797 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9798 if (!user_return_msrs) { 9799 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9800 r = -ENOMEM; 9801 goto out_free_x86_emulator_cache; 9802 } 9803 kvm_nr_uret_msrs = 0; 9804 9805 r = kvm_mmu_vendor_module_init(); 9806 if (r) 9807 goto out_free_percpu; 9808 9809 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); 9810 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; 9811 9812 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9813 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9814 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0; 9815 } 9816 9817 rdmsrl_safe(MSR_EFER, &kvm_host.efer); 9818 9819 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9820 rdmsrl(MSR_IA32_XSS, kvm_host.xss); 9821 9822 kvm_init_pmu_capability(ops->pmu_ops); 9823 9824 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9825 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities); 9826 9827 r = ops->hardware_setup(); 9828 if (r != 0) 9829 goto out_mmu_exit; 9830 9831 kvm_ops_update(ops); 9832 9833 for_each_online_cpu(cpu) { 9834 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9835 if (r < 0) 9836 goto out_unwind_ops; 9837 } 9838 9839 /* 9840 * Point of no return! DO NOT add error paths below this point unless 9841 * absolutely necessary, as most operations from this point forward 9842 * require unwinding. 9843 */ 9844 kvm_timer_init(); 9845 9846 if (pi_inject_timer == -1) 9847 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9848 #ifdef CONFIG_X86_64 9849 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9850 9851 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9852 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9853 #endif 9854 9855 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9856 9857 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) 9858 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); 9859 9860 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9861 kvm_caps.supported_xss = 0; 9862 9863 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9864 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9865 #undef __kvm_cpu_cap_has 9866 9867 if (kvm_caps.has_tsc_control) { 9868 /* 9869 * Make sure the user can only configure tsc_khz values that 9870 * fit into a signed integer. 9871 * A min value is not calculated because it will always 9872 * be 1 on all machines. 9873 */ 9874 u64 max = min(0x7fffffffULL, 9875 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9876 kvm_caps.max_guest_tsc_khz = max; 9877 } 9878 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9879 kvm_init_msr_lists(); 9880 return 0; 9881 9882 out_unwind_ops: 9883 kvm_x86_ops.hardware_enable = NULL; 9884 kvm_x86_call(hardware_unsetup)(); 9885 out_mmu_exit: 9886 kvm_mmu_vendor_module_exit(); 9887 out_free_percpu: 9888 free_percpu(user_return_msrs); 9889 out_free_x86_emulator_cache: 9890 kmem_cache_destroy(x86_emulator_cache); 9891 return r; 9892 } 9893 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9894 9895 void kvm_x86_vendor_exit(void) 9896 { 9897 kvm_unregister_perf_callbacks(); 9898 9899 #ifdef CONFIG_X86_64 9900 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9901 clear_hv_tscchange_cb(); 9902 #endif 9903 kvm_lapic_exit(); 9904 9905 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9906 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9907 CPUFREQ_TRANSITION_NOTIFIER); 9908 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9909 } 9910 #ifdef CONFIG_X86_64 9911 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9912 irq_work_sync(&pvclock_irq_work); 9913 cancel_work_sync(&pvclock_gtod_work); 9914 #endif 9915 kvm_x86_call(hardware_unsetup)(); 9916 kvm_mmu_vendor_module_exit(); 9917 free_percpu(user_return_msrs); 9918 kmem_cache_destroy(x86_emulator_cache); 9919 #ifdef CONFIG_KVM_XEN 9920 static_key_deferred_flush(&kvm_xen_enabled); 9921 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9922 #endif 9923 mutex_lock(&vendor_module_lock); 9924 kvm_x86_ops.hardware_enable = NULL; 9925 mutex_unlock(&vendor_module_lock); 9926 } 9927 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9928 9929 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9930 { 9931 /* 9932 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9933 * local APIC is in-kernel, the run loop will detect the non-runnable 9934 * state and halt the vCPU. Exit to userspace if the local APIC is 9935 * managed by userspace, in which case userspace is responsible for 9936 * handling wake events. 9937 */ 9938 ++vcpu->stat.halt_exits; 9939 if (lapic_in_kernel(vcpu)) { 9940 vcpu->arch.mp_state = state; 9941 return 1; 9942 } else { 9943 vcpu->run->exit_reason = reason; 9944 return 0; 9945 } 9946 } 9947 9948 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9949 { 9950 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9951 } 9952 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9953 9954 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9955 { 9956 int ret = kvm_skip_emulated_instruction(vcpu); 9957 /* 9958 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9959 * KVM_EXIT_DEBUG here. 9960 */ 9961 return kvm_emulate_halt_noskip(vcpu) && ret; 9962 } 9963 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9964 9965 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9966 { 9967 int ret = kvm_skip_emulated_instruction(vcpu); 9968 9969 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9970 KVM_EXIT_AP_RESET_HOLD) && ret; 9971 } 9972 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9973 9974 #ifdef CONFIG_X86_64 9975 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9976 unsigned long clock_type) 9977 { 9978 struct kvm_clock_pairing clock_pairing; 9979 struct timespec64 ts; 9980 u64 cycle; 9981 int ret; 9982 9983 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9984 return -KVM_EOPNOTSUPP; 9985 9986 /* 9987 * When tsc is in permanent catchup mode guests won't be able to use 9988 * pvclock_read_retry loop to get consistent view of pvclock 9989 */ 9990 if (vcpu->arch.tsc_always_catchup) 9991 return -KVM_EOPNOTSUPP; 9992 9993 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9994 return -KVM_EOPNOTSUPP; 9995 9996 clock_pairing.sec = ts.tv_sec; 9997 clock_pairing.nsec = ts.tv_nsec; 9998 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9999 clock_pairing.flags = 0; 10000 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 10001 10002 ret = 0; 10003 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 10004 sizeof(struct kvm_clock_pairing))) 10005 ret = -KVM_EFAULT; 10006 10007 return ret; 10008 } 10009 #endif 10010 10011 /* 10012 * kvm_pv_kick_cpu_op: Kick a vcpu. 10013 * 10014 * @apicid - apicid of vcpu to be kicked. 10015 */ 10016 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 10017 { 10018 /* 10019 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 10020 * common code, e.g. for tracing. Defer initialization to the compiler. 10021 */ 10022 struct kvm_lapic_irq lapic_irq = { 10023 .delivery_mode = APIC_DM_REMRD, 10024 .dest_mode = APIC_DEST_PHYSICAL, 10025 .shorthand = APIC_DEST_NOSHORT, 10026 .dest_id = apicid, 10027 }; 10028 10029 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 10030 } 10031 10032 bool kvm_apicv_activated(struct kvm *kvm) 10033 { 10034 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 10035 } 10036 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 10037 10038 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 10039 { 10040 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 10041 ulong vcpu_reasons = 10042 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu); 10043 10044 return (vm_reasons | vcpu_reasons) == 0; 10045 } 10046 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 10047 10048 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 10049 enum kvm_apicv_inhibit reason, bool set) 10050 { 10051 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS }; 10052 10053 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS); 10054 10055 if (set) 10056 __set_bit(reason, inhibits); 10057 else 10058 __clear_bit(reason, inhibits); 10059 10060 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 10061 } 10062 10063 static void kvm_apicv_init(struct kvm *kvm) 10064 { 10065 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : 10066 APICV_INHIBIT_REASON_DISABLED; 10067 10068 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); 10069 10070 init_rwsem(&kvm->arch.apicv_update_lock); 10071 } 10072 10073 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 10074 { 10075 struct kvm_vcpu *target = NULL; 10076 struct kvm_apic_map *map; 10077 10078 vcpu->stat.directed_yield_attempted++; 10079 10080 if (single_task_running()) 10081 goto no_yield; 10082 10083 rcu_read_lock(); 10084 map = rcu_dereference(vcpu->kvm->arch.apic_map); 10085 10086 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 10087 target = map->phys_map[dest_id]->vcpu; 10088 10089 rcu_read_unlock(); 10090 10091 if (!target || !READ_ONCE(target->ready)) 10092 goto no_yield; 10093 10094 /* Ignore requests to yield to self */ 10095 if (vcpu == target) 10096 goto no_yield; 10097 10098 if (kvm_vcpu_yield_to(target) <= 0) 10099 goto no_yield; 10100 10101 vcpu->stat.directed_yield_successful++; 10102 10103 no_yield: 10104 return; 10105 } 10106 10107 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 10108 { 10109 u64 ret = vcpu->run->hypercall.ret; 10110 10111 if (!is_64_bit_mode(vcpu)) 10112 ret = (u32)ret; 10113 kvm_rax_write(vcpu, ret); 10114 ++vcpu->stat.hypercalls; 10115 return kvm_skip_emulated_instruction(vcpu); 10116 } 10117 10118 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 10119 unsigned long a0, unsigned long a1, 10120 unsigned long a2, unsigned long a3, 10121 int op_64_bit, int cpl) 10122 { 10123 unsigned long ret; 10124 10125 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10126 10127 if (!op_64_bit) { 10128 nr &= 0xFFFFFFFF; 10129 a0 &= 0xFFFFFFFF; 10130 a1 &= 0xFFFFFFFF; 10131 a2 &= 0xFFFFFFFF; 10132 a3 &= 0xFFFFFFFF; 10133 } 10134 10135 if (cpl) { 10136 ret = -KVM_EPERM; 10137 goto out; 10138 } 10139 10140 ret = -KVM_ENOSYS; 10141 10142 switch (nr) { 10143 case KVM_HC_VAPIC_POLL_IRQ: 10144 ret = 0; 10145 break; 10146 case KVM_HC_KICK_CPU: 10147 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10148 break; 10149 10150 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10151 kvm_sched_yield(vcpu, a1); 10152 ret = 0; 10153 break; 10154 #ifdef CONFIG_X86_64 10155 case KVM_HC_CLOCK_PAIRING: 10156 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10157 break; 10158 #endif 10159 case KVM_HC_SEND_IPI: 10160 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10161 break; 10162 10163 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10164 break; 10165 case KVM_HC_SCHED_YIELD: 10166 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10167 break; 10168 10169 kvm_sched_yield(vcpu, a0); 10170 ret = 0; 10171 break; 10172 case KVM_HC_MAP_GPA_RANGE: { 10173 u64 gpa = a0, npages = a1, attrs = a2; 10174 10175 ret = -KVM_ENOSYS; 10176 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10177 break; 10178 10179 if (!PAGE_ALIGNED(gpa) || !npages || 10180 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10181 ret = -KVM_EINVAL; 10182 break; 10183 } 10184 10185 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10186 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10187 vcpu->run->hypercall.args[0] = gpa; 10188 vcpu->run->hypercall.args[1] = npages; 10189 vcpu->run->hypercall.args[2] = attrs; 10190 vcpu->run->hypercall.flags = 0; 10191 if (op_64_bit) 10192 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10193 10194 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10195 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10196 /* stat is incremented on completion. */ 10197 return 0; 10198 } 10199 default: 10200 ret = -KVM_ENOSYS; 10201 break; 10202 } 10203 10204 out: 10205 ++vcpu->stat.hypercalls; 10206 return ret; 10207 } 10208 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall); 10209 10210 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10211 { 10212 unsigned long nr, a0, a1, a2, a3, ret; 10213 int op_64_bit; 10214 int cpl; 10215 10216 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10217 return kvm_xen_hypercall(vcpu); 10218 10219 if (kvm_hv_hypercall_enabled(vcpu)) 10220 return kvm_hv_hypercall(vcpu); 10221 10222 nr = kvm_rax_read(vcpu); 10223 a0 = kvm_rbx_read(vcpu); 10224 a1 = kvm_rcx_read(vcpu); 10225 a2 = kvm_rdx_read(vcpu); 10226 a3 = kvm_rsi_read(vcpu); 10227 op_64_bit = is_64_bit_hypercall(vcpu); 10228 cpl = kvm_x86_call(get_cpl)(vcpu); 10229 10230 ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl); 10231 if (nr == KVM_HC_MAP_GPA_RANGE && !ret) 10232 /* MAP_GPA tosses the request to the user space. */ 10233 return 0; 10234 10235 if (!op_64_bit) 10236 ret = (u32)ret; 10237 kvm_rax_write(vcpu, ret); 10238 10239 return kvm_skip_emulated_instruction(vcpu); 10240 } 10241 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10242 10243 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10244 { 10245 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10246 char instruction[3]; 10247 unsigned long rip = kvm_rip_read(vcpu); 10248 10249 /* 10250 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10251 * the pieces. 10252 */ 10253 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10254 ctxt->exception.error_code_valid = false; 10255 ctxt->exception.vector = UD_VECTOR; 10256 ctxt->have_exception = true; 10257 return X86EMUL_PROPAGATE_FAULT; 10258 } 10259 10260 kvm_x86_call(patch_hypercall)(vcpu, instruction); 10261 10262 return emulator_write_emulated(ctxt, rip, instruction, 3, 10263 &ctxt->exception); 10264 } 10265 10266 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10267 { 10268 return vcpu->run->request_interrupt_window && 10269 likely(!pic_in_kernel(vcpu->kvm)); 10270 } 10271 10272 /* Called within kvm->srcu read side. */ 10273 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10274 { 10275 struct kvm_run *kvm_run = vcpu->run; 10276 10277 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu); 10278 kvm_run->cr8 = kvm_get_cr8(vcpu); 10279 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10280 10281 kvm_run->ready_for_interrupt_injection = 10282 pic_in_kernel(vcpu->kvm) || 10283 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10284 10285 if (is_smm(vcpu)) 10286 kvm_run->flags |= KVM_RUN_X86_SMM; 10287 if (is_guest_mode(vcpu)) 10288 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE; 10289 } 10290 10291 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10292 { 10293 int max_irr, tpr; 10294 10295 if (!kvm_x86_ops.update_cr8_intercept) 10296 return; 10297 10298 if (!lapic_in_kernel(vcpu)) 10299 return; 10300 10301 if (vcpu->arch.apic->apicv_active) 10302 return; 10303 10304 if (!vcpu->arch.apic->vapic_addr) 10305 max_irr = kvm_lapic_find_highest_irr(vcpu); 10306 else 10307 max_irr = -1; 10308 10309 if (max_irr != -1) 10310 max_irr >>= 4; 10311 10312 tpr = kvm_lapic_get_cr8(vcpu); 10313 10314 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr); 10315 } 10316 10317 10318 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10319 { 10320 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10321 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10322 return 1; 10323 } 10324 10325 return kvm_x86_ops.nested_ops->check_events(vcpu); 10326 } 10327 10328 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10329 { 10330 /* 10331 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10332 * exceptions don't report error codes. The presence of an error code 10333 * is carried with the exception and only stripped when the exception 10334 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10335 * report an error code despite the CPU being in Real Mode. 10336 */ 10337 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10338 10339 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10340 vcpu->arch.exception.has_error_code, 10341 vcpu->arch.exception.error_code, 10342 vcpu->arch.exception.injected); 10343 10344 kvm_x86_call(inject_exception)(vcpu); 10345 } 10346 10347 /* 10348 * Check for any event (interrupt or exception) that is ready to be injected, 10349 * and if there is at least one event, inject the event with the highest 10350 * priority. This handles both "pending" events, i.e. events that have never 10351 * been injected into the guest, and "injected" events, i.e. events that were 10352 * injected as part of a previous VM-Enter, but weren't successfully delivered 10353 * and need to be re-injected. 10354 * 10355 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10356 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10357 * be able to inject exceptions in the "middle" of an instruction, and so must 10358 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10359 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10360 * boundaries is necessary and correct. 10361 * 10362 * For simplicity, KVM uses a single path to inject all events (except events 10363 * that are injected directly from L1 to L2) and doesn't explicitly track 10364 * instruction boundaries for asynchronous events. However, because VM-Exits 10365 * that can occur during instruction execution typically result in KVM skipping 10366 * the instruction or injecting an exception, e.g. instruction and exception 10367 * intercepts, and because pending exceptions have higher priority than pending 10368 * interrupts, KVM still honors instruction boundaries in most scenarios. 10369 * 10370 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10371 * the instruction or inject an exception, then KVM can incorrecty inject a new 10372 * asynchronous event if the event became pending after the CPU fetched the 10373 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10374 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10375 * injected on the restarted instruction instead of being deferred until the 10376 * instruction completes. 10377 * 10378 * In practice, this virtualization hole is unlikely to be observed by the 10379 * guest, and even less likely to cause functional problems. To detect the 10380 * hole, the guest would have to trigger an event on a side effect of an early 10381 * phase of instruction execution, e.g. on the instruction fetch from memory. 10382 * And for it to be a functional problem, the guest would need to depend on the 10383 * ordering between that side effect, the instruction completing, _and_ the 10384 * delivery of the asynchronous event. 10385 */ 10386 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10387 bool *req_immediate_exit) 10388 { 10389 bool can_inject; 10390 int r; 10391 10392 /* 10393 * Process nested events first, as nested VM-Exit supersedes event 10394 * re-injection. If there's an event queued for re-injection, it will 10395 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10396 */ 10397 if (is_guest_mode(vcpu)) 10398 r = kvm_check_nested_events(vcpu); 10399 else 10400 r = 0; 10401 10402 /* 10403 * Re-inject exceptions and events *especially* if immediate entry+exit 10404 * to/from L2 is needed, as any event that has already been injected 10405 * into L2 needs to complete its lifecycle before injecting a new event. 10406 * 10407 * Don't re-inject an NMI or interrupt if there is a pending exception. 10408 * This collision arises if an exception occurred while vectoring the 10409 * injected event, KVM intercepted said exception, and KVM ultimately 10410 * determined the fault belongs to the guest and queues the exception 10411 * for injection back into the guest. 10412 * 10413 * "Injected" interrupts can also collide with pending exceptions if 10414 * userspace ignores the "ready for injection" flag and blindly queues 10415 * an interrupt. In that case, prioritizing the exception is correct, 10416 * as the exception "occurred" before the exit to userspace. Trap-like 10417 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10418 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10419 * priority, they're only generated (pended) during instruction 10420 * execution, and interrupts are recognized at instruction boundaries. 10421 * Thus a pending fault-like exception means the fault occurred on the 10422 * *previous* instruction and must be serviced prior to recognizing any 10423 * new events in order to fully complete the previous instruction. 10424 */ 10425 if (vcpu->arch.exception.injected) 10426 kvm_inject_exception(vcpu); 10427 else if (kvm_is_exception_pending(vcpu)) 10428 ; /* see above */ 10429 else if (vcpu->arch.nmi_injected) 10430 kvm_x86_call(inject_nmi)(vcpu); 10431 else if (vcpu->arch.interrupt.injected) 10432 kvm_x86_call(inject_irq)(vcpu, true); 10433 10434 /* 10435 * Exceptions that morph to VM-Exits are handled above, and pending 10436 * exceptions on top of injected exceptions that do not VM-Exit should 10437 * either morph to #DF or, sadly, override the injected exception. 10438 */ 10439 WARN_ON_ONCE(vcpu->arch.exception.injected && 10440 vcpu->arch.exception.pending); 10441 10442 /* 10443 * Bail if immediate entry+exit to/from the guest is needed to complete 10444 * nested VM-Enter or event re-injection so that a different pending 10445 * event can be serviced (or if KVM needs to exit to userspace). 10446 * 10447 * Otherwise, continue processing events even if VM-Exit occurred. The 10448 * VM-Exit will have cleared exceptions that were meant for L2, but 10449 * there may now be events that can be injected into L1. 10450 */ 10451 if (r < 0) 10452 goto out; 10453 10454 /* 10455 * A pending exception VM-Exit should either result in nested VM-Exit 10456 * or force an immediate re-entry and exit to/from L2, and exception 10457 * VM-Exits cannot be injected (flag should _never_ be set). 10458 */ 10459 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10460 vcpu->arch.exception_vmexit.pending); 10461 10462 /* 10463 * New events, other than exceptions, cannot be injected if KVM needs 10464 * to re-inject a previous event. See above comments on re-injecting 10465 * for why pending exceptions get priority. 10466 */ 10467 can_inject = !kvm_event_needs_reinjection(vcpu); 10468 10469 if (vcpu->arch.exception.pending) { 10470 /* 10471 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10472 * value pushed on the stack. Trap-like exception and all #DBs 10473 * leave RF as-is (KVM follows Intel's behavior in this regard; 10474 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10475 * 10476 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10477 * describe the behavior of General Detect #DBs, which are 10478 * fault-like. They do _not_ set RF, a la code breakpoints. 10479 */ 10480 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10481 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10482 X86_EFLAGS_RF); 10483 10484 if (vcpu->arch.exception.vector == DB_VECTOR) { 10485 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10486 if (vcpu->arch.dr7 & DR7_GD) { 10487 vcpu->arch.dr7 &= ~DR7_GD; 10488 kvm_update_dr7(vcpu); 10489 } 10490 } 10491 10492 kvm_inject_exception(vcpu); 10493 10494 vcpu->arch.exception.pending = false; 10495 vcpu->arch.exception.injected = true; 10496 10497 can_inject = false; 10498 } 10499 10500 /* Don't inject interrupts if the user asked to avoid doing so */ 10501 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10502 return 0; 10503 10504 /* 10505 * Finally, inject interrupt events. If an event cannot be injected 10506 * due to architectural conditions (e.g. IF=0) a window-open exit 10507 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10508 * and can architecturally be injected, but we cannot do it right now: 10509 * an interrupt could have arrived just now and we have to inject it 10510 * as a vmexit, or there could already an event in the queue, which is 10511 * indicated by can_inject. In that case we request an immediate exit 10512 * in order to make progress and get back here for another iteration. 10513 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10514 */ 10515 #ifdef CONFIG_KVM_SMM 10516 if (vcpu->arch.smi_pending) { 10517 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) : 10518 -EBUSY; 10519 if (r < 0) 10520 goto out; 10521 if (r) { 10522 vcpu->arch.smi_pending = false; 10523 ++vcpu->arch.smi_count; 10524 enter_smm(vcpu); 10525 can_inject = false; 10526 } else 10527 kvm_x86_call(enable_smi_window)(vcpu); 10528 } 10529 #endif 10530 10531 if (vcpu->arch.nmi_pending) { 10532 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) : 10533 -EBUSY; 10534 if (r < 0) 10535 goto out; 10536 if (r) { 10537 --vcpu->arch.nmi_pending; 10538 vcpu->arch.nmi_injected = true; 10539 kvm_x86_call(inject_nmi)(vcpu); 10540 can_inject = false; 10541 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0); 10542 } 10543 if (vcpu->arch.nmi_pending) 10544 kvm_x86_call(enable_nmi_window)(vcpu); 10545 } 10546 10547 if (kvm_cpu_has_injectable_intr(vcpu)) { 10548 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) : 10549 -EBUSY; 10550 if (r < 0) 10551 goto out; 10552 if (r) { 10553 int irq = kvm_cpu_get_interrupt(vcpu); 10554 10555 if (!WARN_ON_ONCE(irq == -1)) { 10556 kvm_queue_interrupt(vcpu, irq, false); 10557 kvm_x86_call(inject_irq)(vcpu, false); 10558 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0); 10559 } 10560 } 10561 if (kvm_cpu_has_injectable_intr(vcpu)) 10562 kvm_x86_call(enable_irq_window)(vcpu); 10563 } 10564 10565 if (is_guest_mode(vcpu) && 10566 kvm_x86_ops.nested_ops->has_events && 10567 kvm_x86_ops.nested_ops->has_events(vcpu, true)) 10568 *req_immediate_exit = true; 10569 10570 /* 10571 * KVM must never queue a new exception while injecting an event; KVM 10572 * is done emulating and should only propagate the to-be-injected event 10573 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10574 * infinite loop as KVM will bail from VM-Enter to inject the pending 10575 * exception and start the cycle all over. 10576 * 10577 * Exempt triple faults as they have special handling and won't put the 10578 * vCPU into an infinite loop. Triple fault can be queued when running 10579 * VMX without unrestricted guest, as that requires KVM to emulate Real 10580 * Mode events (see kvm_inject_realmode_interrupt()). 10581 */ 10582 WARN_ON_ONCE(vcpu->arch.exception.pending || 10583 vcpu->arch.exception_vmexit.pending); 10584 return 0; 10585 10586 out: 10587 if (r == -EBUSY) { 10588 *req_immediate_exit = true; 10589 r = 0; 10590 } 10591 return r; 10592 } 10593 10594 static void process_nmi(struct kvm_vcpu *vcpu) 10595 { 10596 unsigned int limit; 10597 10598 /* 10599 * x86 is limited to one NMI pending, but because KVM can't react to 10600 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10601 * scheduled out, KVM needs to play nice with two queued NMIs showing 10602 * up at the same time. To handle this scenario, allow two NMIs to be 10603 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10604 * waiting for a previous NMI injection to complete (which effectively 10605 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10606 * will request an NMI window to handle the second NMI. 10607 */ 10608 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10609 limit = 1; 10610 else 10611 limit = 2; 10612 10613 /* 10614 * Adjust the limit to account for pending virtual NMIs, which aren't 10615 * tracked in vcpu->arch.nmi_pending. 10616 */ 10617 if (kvm_x86_call(is_vnmi_pending)(vcpu)) 10618 limit--; 10619 10620 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10621 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10622 10623 if (vcpu->arch.nmi_pending && 10624 (kvm_x86_call(set_vnmi_pending)(vcpu))) 10625 vcpu->arch.nmi_pending--; 10626 10627 if (vcpu->arch.nmi_pending) 10628 kvm_make_request(KVM_REQ_EVENT, vcpu); 10629 } 10630 10631 /* Return total number of NMIs pending injection to the VM */ 10632 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10633 { 10634 return vcpu->arch.nmi_pending + 10635 kvm_x86_call(is_vnmi_pending)(vcpu); 10636 } 10637 10638 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10639 unsigned long *vcpu_bitmap) 10640 { 10641 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10642 } 10643 10644 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10645 { 10646 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10647 } 10648 10649 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10650 { 10651 struct kvm_lapic *apic = vcpu->arch.apic; 10652 bool activate; 10653 10654 if (!lapic_in_kernel(vcpu)) 10655 return; 10656 10657 down_read(&vcpu->kvm->arch.apicv_update_lock); 10658 preempt_disable(); 10659 10660 /* Do not activate APICV when APIC is disabled */ 10661 activate = kvm_vcpu_apicv_activated(vcpu) && 10662 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10663 10664 if (apic->apicv_active == activate) 10665 goto out; 10666 10667 apic->apicv_active = activate; 10668 kvm_apic_update_apicv(vcpu); 10669 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu); 10670 10671 /* 10672 * When APICv gets disabled, we may still have injected interrupts 10673 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10674 * still active when the interrupt got accepted. Make sure 10675 * kvm_check_and_inject_events() is called to check for that. 10676 */ 10677 if (!apic->apicv_active) 10678 kvm_make_request(KVM_REQ_EVENT, vcpu); 10679 10680 out: 10681 preempt_enable(); 10682 up_read(&vcpu->kvm->arch.apicv_update_lock); 10683 } 10684 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10685 10686 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10687 { 10688 if (!lapic_in_kernel(vcpu)) 10689 return; 10690 10691 /* 10692 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10693 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10694 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10695 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10696 * this case so that KVM can the AVIC doorbell to inject interrupts to 10697 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10698 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10699 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10700 * access page is sticky. 10701 */ 10702 if (apic_x2apic_mode(vcpu->arch.apic) && 10703 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10704 kvm_inhibit_apic_access_page(vcpu); 10705 10706 __kvm_vcpu_update_apicv(vcpu); 10707 } 10708 10709 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10710 enum kvm_apicv_inhibit reason, bool set) 10711 { 10712 unsigned long old, new; 10713 10714 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10715 10716 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10717 return; 10718 10719 old = new = kvm->arch.apicv_inhibit_reasons; 10720 10721 set_or_clear_apicv_inhibit(&new, reason, set); 10722 10723 if (!!old != !!new) { 10724 /* 10725 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10726 * false positives in the sanity check WARN in svm_vcpu_run(). 10727 * This task will wait for all vCPUs to ack the kick IRQ before 10728 * updating apicv_inhibit_reasons, and all other vCPUs will 10729 * block on acquiring apicv_update_lock so that vCPUs can't 10730 * redo svm_vcpu_run() without seeing the new inhibit state. 10731 * 10732 * Note, holding apicv_update_lock and taking it in the read 10733 * side (handling the request) also prevents other vCPUs from 10734 * servicing the request with a stale apicv_inhibit_reasons. 10735 */ 10736 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10737 kvm->arch.apicv_inhibit_reasons = new; 10738 if (new) { 10739 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10740 int idx = srcu_read_lock(&kvm->srcu); 10741 10742 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10743 srcu_read_unlock(&kvm->srcu, idx); 10744 } 10745 } else { 10746 kvm->arch.apicv_inhibit_reasons = new; 10747 } 10748 } 10749 10750 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10751 enum kvm_apicv_inhibit reason, bool set) 10752 { 10753 if (!enable_apicv) 10754 return; 10755 10756 down_write(&kvm->arch.apicv_update_lock); 10757 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10758 up_write(&kvm->arch.apicv_update_lock); 10759 } 10760 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10761 10762 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10763 { 10764 if (!kvm_apic_present(vcpu)) 10765 return; 10766 10767 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10768 10769 kvm_x86_call(sync_pir_to_irr)(vcpu); 10770 10771 if (irqchip_split(vcpu->kvm)) 10772 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10773 else if (ioapic_in_kernel(vcpu->kvm)) 10774 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10775 10776 if (is_guest_mode(vcpu)) 10777 vcpu->arch.load_eoi_exitmap_pending = true; 10778 else 10779 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10780 } 10781 10782 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10783 { 10784 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10785 return; 10786 10787 #ifdef CONFIG_KVM_HYPERV 10788 if (to_hv_vcpu(vcpu)) { 10789 u64 eoi_exit_bitmap[4]; 10790 10791 bitmap_or((ulong *)eoi_exit_bitmap, 10792 vcpu->arch.ioapic_handled_vectors, 10793 to_hv_synic(vcpu)->vec_bitmap, 256); 10794 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10795 return; 10796 } 10797 #endif 10798 kvm_x86_call(load_eoi_exitmap)( 10799 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10800 } 10801 10802 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10803 { 10804 kvm_x86_call(guest_memory_reclaimed)(kvm); 10805 } 10806 10807 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10808 { 10809 if (!lapic_in_kernel(vcpu)) 10810 return; 10811 10812 kvm_x86_call(set_apic_access_page_addr)(vcpu); 10813 } 10814 10815 /* 10816 * Called within kvm->srcu read side. 10817 * Returns 1 to let vcpu_run() continue the guest execution loop without 10818 * exiting to the userspace. Otherwise, the value will be returned to the 10819 * userspace. 10820 */ 10821 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10822 { 10823 int r; 10824 bool req_int_win = 10825 dm_request_for_irq_injection(vcpu) && 10826 kvm_cpu_accept_dm_intr(vcpu); 10827 fastpath_t exit_fastpath; 10828 10829 bool req_immediate_exit = false; 10830 10831 if (kvm_request_pending(vcpu)) { 10832 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10833 r = -EIO; 10834 goto out; 10835 } 10836 10837 if (kvm_dirty_ring_check_request(vcpu)) { 10838 r = 0; 10839 goto out; 10840 } 10841 10842 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10843 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10844 r = 0; 10845 goto out; 10846 } 10847 } 10848 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10849 kvm_mmu_free_obsolete_roots(vcpu); 10850 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10851 __kvm_migrate_timers(vcpu); 10852 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10853 kvm_update_masterclock(vcpu->kvm); 10854 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10855 kvm_gen_kvmclock_update(vcpu); 10856 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10857 r = kvm_guest_time_update(vcpu); 10858 if (unlikely(r)) 10859 goto out; 10860 } 10861 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10862 kvm_mmu_sync_roots(vcpu); 10863 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10864 kvm_mmu_load_pgd(vcpu); 10865 10866 /* 10867 * Note, the order matters here, as flushing "all" TLB entries 10868 * also flushes the "current" TLB entries, i.e. servicing the 10869 * flush "all" will clear any request to flush "current". 10870 */ 10871 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10872 kvm_vcpu_flush_tlb_all(vcpu); 10873 10874 kvm_service_local_tlb_flush_requests(vcpu); 10875 10876 /* 10877 * Fall back to a "full" guest flush if Hyper-V's precise 10878 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10879 * the flushes are considered "remote" and not "local" because 10880 * the requests can be initiated from other vCPUs. 10881 */ 10882 #ifdef CONFIG_KVM_HYPERV 10883 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10884 kvm_hv_vcpu_flush_tlb(vcpu)) 10885 kvm_vcpu_flush_tlb_guest(vcpu); 10886 #endif 10887 10888 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10889 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10890 r = 0; 10891 goto out; 10892 } 10893 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10894 if (is_guest_mode(vcpu)) 10895 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10896 10897 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10898 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10899 vcpu->mmio_needed = 0; 10900 r = 0; 10901 goto out; 10902 } 10903 } 10904 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10905 /* Page is swapped out. Do synthetic halt */ 10906 vcpu->arch.apf.halted = true; 10907 r = 1; 10908 goto out; 10909 } 10910 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10911 record_steal_time(vcpu); 10912 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10913 kvm_pmu_handle_event(vcpu); 10914 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10915 kvm_pmu_deliver_pmi(vcpu); 10916 #ifdef CONFIG_KVM_SMM 10917 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10918 process_smi(vcpu); 10919 #endif 10920 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10921 process_nmi(vcpu); 10922 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10923 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10924 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10925 vcpu->arch.ioapic_handled_vectors)) { 10926 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10927 vcpu->run->eoi.vector = 10928 vcpu->arch.pending_ioapic_eoi; 10929 r = 0; 10930 goto out; 10931 } 10932 } 10933 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10934 vcpu_scan_ioapic(vcpu); 10935 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10936 vcpu_load_eoi_exitmap(vcpu); 10937 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10938 kvm_vcpu_reload_apic_access_page(vcpu); 10939 #ifdef CONFIG_KVM_HYPERV 10940 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10941 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10942 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10943 vcpu->run->system_event.ndata = 0; 10944 r = 0; 10945 goto out; 10946 } 10947 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10948 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10949 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10950 vcpu->run->system_event.ndata = 0; 10951 r = 0; 10952 goto out; 10953 } 10954 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10955 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10956 10957 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10958 vcpu->run->hyperv = hv_vcpu->exit; 10959 r = 0; 10960 goto out; 10961 } 10962 10963 /* 10964 * KVM_REQ_HV_STIMER has to be processed after 10965 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10966 * depend on the guest clock being up-to-date 10967 */ 10968 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10969 kvm_hv_process_stimers(vcpu); 10970 #endif 10971 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10972 kvm_vcpu_update_apicv(vcpu); 10973 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10974 kvm_check_async_pf_completion(vcpu); 10975 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10976 kvm_x86_call(msr_filter_changed)(vcpu); 10977 10978 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10979 kvm_x86_call(update_cpu_dirty_logging)(vcpu); 10980 10981 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { 10982 kvm_vcpu_reset(vcpu, true); 10983 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) { 10984 r = 1; 10985 goto out; 10986 } 10987 } 10988 } 10989 10990 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10991 kvm_xen_has_interrupt(vcpu)) { 10992 ++vcpu->stat.req_event; 10993 r = kvm_apic_accept_events(vcpu); 10994 if (r < 0) { 10995 r = 0; 10996 goto out; 10997 } 10998 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10999 r = 1; 11000 goto out; 11001 } 11002 11003 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 11004 if (r < 0) { 11005 r = 0; 11006 goto out; 11007 } 11008 if (req_int_win) 11009 kvm_x86_call(enable_irq_window)(vcpu); 11010 11011 if (kvm_lapic_enabled(vcpu)) { 11012 update_cr8_intercept(vcpu); 11013 kvm_lapic_sync_to_vapic(vcpu); 11014 } 11015 } 11016 11017 r = kvm_mmu_reload(vcpu); 11018 if (unlikely(r)) { 11019 goto cancel_injection; 11020 } 11021 11022 preempt_disable(); 11023 11024 kvm_x86_call(prepare_switch_to_guest)(vcpu); 11025 11026 /* 11027 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 11028 * IPI are then delayed after guest entry, which ensures that they 11029 * result in virtual interrupt delivery. 11030 */ 11031 local_irq_disable(); 11032 11033 /* Store vcpu->apicv_active before vcpu->mode. */ 11034 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 11035 11036 kvm_vcpu_srcu_read_unlock(vcpu); 11037 11038 /* 11039 * 1) We should set ->mode before checking ->requests. Please see 11040 * the comment in kvm_vcpu_exiting_guest_mode(). 11041 * 11042 * 2) For APICv, we should set ->mode before checking PID.ON. This 11043 * pairs with the memory barrier implicit in pi_test_and_set_on 11044 * (see vmx_deliver_posted_interrupt). 11045 * 11046 * 3) This also orders the write to mode from any reads to the page 11047 * tables done while the VCPU is running. Please see the comment 11048 * in kvm_flush_remote_tlbs. 11049 */ 11050 smp_mb__after_srcu_read_unlock(); 11051 11052 /* 11053 * Process pending posted interrupts to handle the case where the 11054 * notification IRQ arrived in the host, or was never sent (because the 11055 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 11056 * status, KVM doesn't update assigned devices when APICv is inhibited, 11057 * i.e. they can post interrupts even if APICv is temporarily disabled. 11058 */ 11059 if (kvm_lapic_enabled(vcpu)) 11060 kvm_x86_call(sync_pir_to_irr)(vcpu); 11061 11062 if (kvm_vcpu_exit_request(vcpu)) { 11063 vcpu->mode = OUTSIDE_GUEST_MODE; 11064 smp_wmb(); 11065 local_irq_enable(); 11066 preempt_enable(); 11067 kvm_vcpu_srcu_read_lock(vcpu); 11068 r = 1; 11069 goto cancel_injection; 11070 } 11071 11072 if (req_immediate_exit) 11073 kvm_make_request(KVM_REQ_EVENT, vcpu); 11074 11075 fpregs_assert_state_consistent(); 11076 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 11077 switch_fpu_return(); 11078 11079 if (vcpu->arch.guest_fpu.xfd_err) 11080 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 11081 11082 if (unlikely(vcpu->arch.switch_db_regs)) { 11083 set_debugreg(0, 7); 11084 set_debugreg(vcpu->arch.eff_db[0], 0); 11085 set_debugreg(vcpu->arch.eff_db[1], 1); 11086 set_debugreg(vcpu->arch.eff_db[2], 2); 11087 set_debugreg(vcpu->arch.eff_db[3], 3); 11088 } else if (unlikely(hw_breakpoint_active())) { 11089 set_debugreg(0, 7); 11090 } 11091 11092 guest_timing_enter_irqoff(); 11093 11094 for (;;) { 11095 /* 11096 * Assert that vCPU vs. VM APICv state is consistent. An APICv 11097 * update must kick and wait for all vCPUs before toggling the 11098 * per-VM state, and responding vCPUs must wait for the update 11099 * to complete before servicing KVM_REQ_APICV_UPDATE. 11100 */ 11101 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 11102 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 11103 11104 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, 11105 req_immediate_exit); 11106 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 11107 break; 11108 11109 if (kvm_lapic_enabled(vcpu)) 11110 kvm_x86_call(sync_pir_to_irr)(vcpu); 11111 11112 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 11113 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 11114 break; 11115 } 11116 11117 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 11118 ++vcpu->stat.exits; 11119 } 11120 11121 /* 11122 * Do this here before restoring debug registers on the host. And 11123 * since we do this before handling the vmexit, a DR access vmexit 11124 * can (a) read the correct value of the debug registers, (b) set 11125 * KVM_DEBUGREG_WONT_EXIT again. 11126 */ 11127 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 11128 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 11129 kvm_x86_call(sync_dirty_debug_regs)(vcpu); 11130 kvm_update_dr0123(vcpu); 11131 kvm_update_dr7(vcpu); 11132 } 11133 11134 /* 11135 * If the guest has used debug registers, at least dr7 11136 * will be disabled while returning to the host. 11137 * If we don't have active breakpoints in the host, we don't 11138 * care about the messed up debug address registers. But if 11139 * we have some of them active, restore the old state. 11140 */ 11141 if (hw_breakpoint_active()) 11142 hw_breakpoint_restore(); 11143 11144 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11145 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11146 11147 vcpu->mode = OUTSIDE_GUEST_MODE; 11148 smp_wmb(); 11149 11150 /* 11151 * Sync xfd before calling handle_exit_irqoff() which may 11152 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11153 * in #NM irqoff handler). 11154 */ 11155 if (vcpu->arch.xfd_no_write_intercept) 11156 fpu_sync_guest_vmexit_xfd_state(); 11157 11158 kvm_x86_call(handle_exit_irqoff)(vcpu); 11159 11160 if (vcpu->arch.guest_fpu.xfd_err) 11161 wrmsrl(MSR_IA32_XFD_ERR, 0); 11162 11163 /* 11164 * Consume any pending interrupts, including the possible source of 11165 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11166 * An instruction is required after local_irq_enable() to fully unblock 11167 * interrupts on processors that implement an interrupt shadow, the 11168 * stat.exits increment will do nicely. 11169 */ 11170 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11171 local_irq_enable(); 11172 ++vcpu->stat.exits; 11173 local_irq_disable(); 11174 kvm_after_interrupt(vcpu); 11175 11176 /* 11177 * Wait until after servicing IRQs to account guest time so that any 11178 * ticks that occurred while running the guest are properly accounted 11179 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11180 * of accounting via context tracking, but the loss of accuracy is 11181 * acceptable for all known use cases. 11182 */ 11183 guest_timing_exit_irqoff(); 11184 11185 local_irq_enable(); 11186 preempt_enable(); 11187 11188 kvm_vcpu_srcu_read_lock(vcpu); 11189 11190 /* 11191 * Call this to ensure WC buffers in guest are evicted after each VM 11192 * Exit, so that the evicted WC writes can be snooped across all cpus 11193 */ 11194 smp_mb__after_srcu_read_lock(); 11195 11196 /* 11197 * Profile KVM exit RIPs: 11198 */ 11199 if (unlikely(prof_on == KVM_PROFILING)) { 11200 unsigned long rip = kvm_rip_read(vcpu); 11201 profile_hit(KVM_PROFILING, (void *)rip); 11202 } 11203 11204 if (unlikely(vcpu->arch.tsc_always_catchup)) 11205 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11206 11207 if (vcpu->arch.apic_attention) 11208 kvm_lapic_sync_from_vapic(vcpu); 11209 11210 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath); 11211 return r; 11212 11213 cancel_injection: 11214 if (req_immediate_exit) 11215 kvm_make_request(KVM_REQ_EVENT, vcpu); 11216 kvm_x86_call(cancel_injection)(vcpu); 11217 if (unlikely(vcpu->arch.apic_attention)) 11218 kvm_lapic_sync_from_vapic(vcpu); 11219 out: 11220 return r; 11221 } 11222 11223 /* Called within kvm->srcu read side. */ 11224 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11225 { 11226 bool hv_timer; 11227 11228 if (!kvm_arch_vcpu_runnable(vcpu)) { 11229 /* 11230 * Switch to the software timer before halt-polling/blocking as 11231 * the guest's timer may be a break event for the vCPU, and the 11232 * hypervisor timer runs only when the CPU is in guest mode. 11233 * Switch before halt-polling so that KVM recognizes an expired 11234 * timer before blocking. 11235 */ 11236 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11237 if (hv_timer) 11238 kvm_lapic_switch_to_sw_timer(vcpu); 11239 11240 kvm_vcpu_srcu_read_unlock(vcpu); 11241 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11242 kvm_vcpu_halt(vcpu); 11243 else 11244 kvm_vcpu_block(vcpu); 11245 kvm_vcpu_srcu_read_lock(vcpu); 11246 11247 if (hv_timer) 11248 kvm_lapic_switch_to_hv_timer(vcpu); 11249 11250 /* 11251 * If the vCPU is not runnable, a signal or another host event 11252 * of some kind is pending; service it without changing the 11253 * vCPU's activity state. 11254 */ 11255 if (!kvm_arch_vcpu_runnable(vcpu)) 11256 return 1; 11257 } 11258 11259 /* 11260 * Evaluate nested events before exiting the halted state. This allows 11261 * the halt state to be recorded properly in the VMCS12's activity 11262 * state field (AMD does not have a similar field and a VM-Exit always 11263 * causes a spurious wakeup from HLT). 11264 */ 11265 if (is_guest_mode(vcpu)) { 11266 int r = kvm_check_nested_events(vcpu); 11267 11268 WARN_ON_ONCE(r == -EBUSY); 11269 if (r < 0) 11270 return 0; 11271 } 11272 11273 if (kvm_apic_accept_events(vcpu) < 0) 11274 return 0; 11275 switch(vcpu->arch.mp_state) { 11276 case KVM_MP_STATE_HALTED: 11277 case KVM_MP_STATE_AP_RESET_HOLD: 11278 vcpu->arch.pv.pv_unhalted = false; 11279 vcpu->arch.mp_state = 11280 KVM_MP_STATE_RUNNABLE; 11281 fallthrough; 11282 case KVM_MP_STATE_RUNNABLE: 11283 vcpu->arch.apf.halted = false; 11284 break; 11285 case KVM_MP_STATE_INIT_RECEIVED: 11286 break; 11287 default: 11288 WARN_ON_ONCE(1); 11289 break; 11290 } 11291 return 1; 11292 } 11293 11294 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11295 { 11296 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11297 !vcpu->arch.apf.halted); 11298 } 11299 11300 /* Called within kvm->srcu read side. */ 11301 static int vcpu_run(struct kvm_vcpu *vcpu) 11302 { 11303 int r; 11304 11305 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11306 11307 for (;;) { 11308 /* 11309 * If another guest vCPU requests a PV TLB flush in the middle 11310 * of instruction emulation, the rest of the emulation could 11311 * use a stale page translation. Assume that any code after 11312 * this point can start executing an instruction. 11313 */ 11314 vcpu->arch.at_instruction_boundary = false; 11315 if (kvm_vcpu_running(vcpu)) { 11316 r = vcpu_enter_guest(vcpu); 11317 } else { 11318 r = vcpu_block(vcpu); 11319 } 11320 11321 if (r <= 0) 11322 break; 11323 11324 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11325 if (kvm_xen_has_pending_events(vcpu)) 11326 kvm_xen_inject_pending_events(vcpu); 11327 11328 if (kvm_cpu_has_pending_timer(vcpu)) 11329 kvm_inject_pending_timer_irqs(vcpu); 11330 11331 if (dm_request_for_irq_injection(vcpu) && 11332 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11333 r = 0; 11334 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11335 ++vcpu->stat.request_irq_exits; 11336 break; 11337 } 11338 11339 if (__xfer_to_guest_mode_work_pending()) { 11340 kvm_vcpu_srcu_read_unlock(vcpu); 11341 r = xfer_to_guest_mode_handle_work(vcpu); 11342 kvm_vcpu_srcu_read_lock(vcpu); 11343 if (r) 11344 return r; 11345 } 11346 } 11347 11348 return r; 11349 } 11350 11351 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11352 { 11353 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11354 } 11355 11356 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11357 { 11358 BUG_ON(!vcpu->arch.pio.count); 11359 11360 return complete_emulated_io(vcpu); 11361 } 11362 11363 /* 11364 * Implements the following, as a state machine: 11365 * 11366 * read: 11367 * for each fragment 11368 * for each mmio piece in the fragment 11369 * write gpa, len 11370 * exit 11371 * copy data 11372 * execute insn 11373 * 11374 * write: 11375 * for each fragment 11376 * for each mmio piece in the fragment 11377 * write gpa, len 11378 * copy data 11379 * exit 11380 */ 11381 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11382 { 11383 struct kvm_run *run = vcpu->run; 11384 struct kvm_mmio_fragment *frag; 11385 unsigned len; 11386 11387 BUG_ON(!vcpu->mmio_needed); 11388 11389 /* Complete previous fragment */ 11390 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11391 len = min(8u, frag->len); 11392 if (!vcpu->mmio_is_write) 11393 memcpy(frag->data, run->mmio.data, len); 11394 11395 if (frag->len <= 8) { 11396 /* Switch to the next fragment. */ 11397 frag++; 11398 vcpu->mmio_cur_fragment++; 11399 } else { 11400 /* Go forward to the next mmio piece. */ 11401 frag->data += len; 11402 frag->gpa += len; 11403 frag->len -= len; 11404 } 11405 11406 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11407 vcpu->mmio_needed = 0; 11408 11409 /* FIXME: return into emulator if single-stepping. */ 11410 if (vcpu->mmio_is_write) 11411 return 1; 11412 vcpu->mmio_read_completed = 1; 11413 return complete_emulated_io(vcpu); 11414 } 11415 11416 run->exit_reason = KVM_EXIT_MMIO; 11417 run->mmio.phys_addr = frag->gpa; 11418 if (vcpu->mmio_is_write) 11419 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11420 run->mmio.len = min(8u, frag->len); 11421 run->mmio.is_write = vcpu->mmio_is_write; 11422 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11423 return 0; 11424 } 11425 11426 /* Swap (qemu) user FPU context for the guest FPU context. */ 11427 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11428 { 11429 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11430 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11431 trace_kvm_fpu(1); 11432 } 11433 11434 /* When vcpu_run ends, restore user space FPU context. */ 11435 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11436 { 11437 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11438 ++vcpu->stat.fpu_reload; 11439 trace_kvm_fpu(0); 11440 } 11441 11442 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11443 { 11444 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11445 struct kvm_run *kvm_run = vcpu->run; 11446 int r; 11447 11448 vcpu_load(vcpu); 11449 kvm_sigset_activate(vcpu); 11450 kvm_run->flags = 0; 11451 kvm_load_guest_fpu(vcpu); 11452 11453 kvm_vcpu_srcu_read_lock(vcpu); 11454 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11455 if (!vcpu->wants_to_run) { 11456 r = -EINTR; 11457 goto out; 11458 } 11459 11460 /* 11461 * Don't bother switching APIC timer emulation from the 11462 * hypervisor timer to the software timer, the only way for the 11463 * APIC timer to be active is if userspace stuffed vCPU state, 11464 * i.e. put the vCPU into a nonsensical state. Only an INIT 11465 * will transition the vCPU out of UNINITIALIZED (without more 11466 * state stuffing from userspace), which will reset the local 11467 * APIC and thus cancel the timer or drop the IRQ (if the timer 11468 * already expired). 11469 */ 11470 kvm_vcpu_srcu_read_unlock(vcpu); 11471 kvm_vcpu_block(vcpu); 11472 kvm_vcpu_srcu_read_lock(vcpu); 11473 11474 if (kvm_apic_accept_events(vcpu) < 0) { 11475 r = 0; 11476 goto out; 11477 } 11478 r = -EAGAIN; 11479 if (signal_pending(current)) { 11480 r = -EINTR; 11481 kvm_run->exit_reason = KVM_EXIT_INTR; 11482 ++vcpu->stat.signal_exits; 11483 } 11484 goto out; 11485 } 11486 11487 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11488 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11489 r = -EINVAL; 11490 goto out; 11491 } 11492 11493 if (kvm_run->kvm_dirty_regs) { 11494 r = sync_regs(vcpu); 11495 if (r != 0) 11496 goto out; 11497 } 11498 11499 /* re-sync apic's tpr */ 11500 if (!lapic_in_kernel(vcpu)) { 11501 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11502 r = -EINVAL; 11503 goto out; 11504 } 11505 } 11506 11507 /* 11508 * If userspace set a pending exception and L2 is active, convert it to 11509 * a pending VM-Exit if L1 wants to intercept the exception. 11510 */ 11511 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11512 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11513 ex->error_code)) { 11514 kvm_queue_exception_vmexit(vcpu, ex->vector, 11515 ex->has_error_code, ex->error_code, 11516 ex->has_payload, ex->payload); 11517 ex->injected = false; 11518 ex->pending = false; 11519 } 11520 vcpu->arch.exception_from_userspace = false; 11521 11522 if (unlikely(vcpu->arch.complete_userspace_io)) { 11523 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11524 vcpu->arch.complete_userspace_io = NULL; 11525 r = cui(vcpu); 11526 if (r <= 0) 11527 goto out; 11528 } else { 11529 WARN_ON_ONCE(vcpu->arch.pio.count); 11530 WARN_ON_ONCE(vcpu->mmio_needed); 11531 } 11532 11533 if (!vcpu->wants_to_run) { 11534 r = -EINTR; 11535 goto out; 11536 } 11537 11538 r = kvm_x86_call(vcpu_pre_run)(vcpu); 11539 if (r <= 0) 11540 goto out; 11541 11542 r = vcpu_run(vcpu); 11543 11544 out: 11545 kvm_put_guest_fpu(vcpu); 11546 if (kvm_run->kvm_valid_regs) 11547 store_regs(vcpu); 11548 post_kvm_run_save(vcpu); 11549 kvm_vcpu_srcu_read_unlock(vcpu); 11550 11551 kvm_sigset_deactivate(vcpu); 11552 vcpu_put(vcpu); 11553 return r; 11554 } 11555 11556 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11557 { 11558 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11559 /* 11560 * We are here if userspace calls get_regs() in the middle of 11561 * instruction emulation. Registers state needs to be copied 11562 * back from emulation context to vcpu. Userspace shouldn't do 11563 * that usually, but some bad designed PV devices (vmware 11564 * backdoor interface) need this to work 11565 */ 11566 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11567 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11568 } 11569 regs->rax = kvm_rax_read(vcpu); 11570 regs->rbx = kvm_rbx_read(vcpu); 11571 regs->rcx = kvm_rcx_read(vcpu); 11572 regs->rdx = kvm_rdx_read(vcpu); 11573 regs->rsi = kvm_rsi_read(vcpu); 11574 regs->rdi = kvm_rdi_read(vcpu); 11575 regs->rsp = kvm_rsp_read(vcpu); 11576 regs->rbp = kvm_rbp_read(vcpu); 11577 #ifdef CONFIG_X86_64 11578 regs->r8 = kvm_r8_read(vcpu); 11579 regs->r9 = kvm_r9_read(vcpu); 11580 regs->r10 = kvm_r10_read(vcpu); 11581 regs->r11 = kvm_r11_read(vcpu); 11582 regs->r12 = kvm_r12_read(vcpu); 11583 regs->r13 = kvm_r13_read(vcpu); 11584 regs->r14 = kvm_r14_read(vcpu); 11585 regs->r15 = kvm_r15_read(vcpu); 11586 #endif 11587 11588 regs->rip = kvm_rip_read(vcpu); 11589 regs->rflags = kvm_get_rflags(vcpu); 11590 } 11591 11592 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11593 { 11594 if (vcpu->kvm->arch.has_protected_state && 11595 vcpu->arch.guest_state_protected) 11596 return -EINVAL; 11597 11598 vcpu_load(vcpu); 11599 __get_regs(vcpu, regs); 11600 vcpu_put(vcpu); 11601 return 0; 11602 } 11603 11604 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11605 { 11606 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11607 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11608 11609 kvm_rax_write(vcpu, regs->rax); 11610 kvm_rbx_write(vcpu, regs->rbx); 11611 kvm_rcx_write(vcpu, regs->rcx); 11612 kvm_rdx_write(vcpu, regs->rdx); 11613 kvm_rsi_write(vcpu, regs->rsi); 11614 kvm_rdi_write(vcpu, regs->rdi); 11615 kvm_rsp_write(vcpu, regs->rsp); 11616 kvm_rbp_write(vcpu, regs->rbp); 11617 #ifdef CONFIG_X86_64 11618 kvm_r8_write(vcpu, regs->r8); 11619 kvm_r9_write(vcpu, regs->r9); 11620 kvm_r10_write(vcpu, regs->r10); 11621 kvm_r11_write(vcpu, regs->r11); 11622 kvm_r12_write(vcpu, regs->r12); 11623 kvm_r13_write(vcpu, regs->r13); 11624 kvm_r14_write(vcpu, regs->r14); 11625 kvm_r15_write(vcpu, regs->r15); 11626 #endif 11627 11628 kvm_rip_write(vcpu, regs->rip); 11629 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11630 11631 vcpu->arch.exception.pending = false; 11632 vcpu->arch.exception_vmexit.pending = false; 11633 11634 kvm_make_request(KVM_REQ_EVENT, vcpu); 11635 } 11636 11637 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11638 { 11639 if (vcpu->kvm->arch.has_protected_state && 11640 vcpu->arch.guest_state_protected) 11641 return -EINVAL; 11642 11643 vcpu_load(vcpu); 11644 __set_regs(vcpu, regs); 11645 vcpu_put(vcpu); 11646 return 0; 11647 } 11648 11649 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11650 { 11651 struct desc_ptr dt; 11652 11653 if (vcpu->arch.guest_state_protected) 11654 goto skip_protected_regs; 11655 11656 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11657 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11658 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11659 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11660 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11661 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11662 11663 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11664 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11665 11666 kvm_x86_call(get_idt)(vcpu, &dt); 11667 sregs->idt.limit = dt.size; 11668 sregs->idt.base = dt.address; 11669 kvm_x86_call(get_gdt)(vcpu, &dt); 11670 sregs->gdt.limit = dt.size; 11671 sregs->gdt.base = dt.address; 11672 11673 sregs->cr2 = vcpu->arch.cr2; 11674 sregs->cr3 = kvm_read_cr3(vcpu); 11675 11676 skip_protected_regs: 11677 sregs->cr0 = kvm_read_cr0(vcpu); 11678 sregs->cr4 = kvm_read_cr4(vcpu); 11679 sregs->cr8 = kvm_get_cr8(vcpu); 11680 sregs->efer = vcpu->arch.efer; 11681 sregs->apic_base = kvm_get_apic_base(vcpu); 11682 } 11683 11684 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11685 { 11686 __get_sregs_common(vcpu, sregs); 11687 11688 if (vcpu->arch.guest_state_protected) 11689 return; 11690 11691 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11692 set_bit(vcpu->arch.interrupt.nr, 11693 (unsigned long *)sregs->interrupt_bitmap); 11694 } 11695 11696 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11697 { 11698 int i; 11699 11700 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11701 11702 if (vcpu->arch.guest_state_protected) 11703 return; 11704 11705 if (is_pae_paging(vcpu)) { 11706 for (i = 0 ; i < 4 ; i++) 11707 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11708 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11709 } 11710 } 11711 11712 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11713 struct kvm_sregs *sregs) 11714 { 11715 if (vcpu->kvm->arch.has_protected_state && 11716 vcpu->arch.guest_state_protected) 11717 return -EINVAL; 11718 11719 vcpu_load(vcpu); 11720 __get_sregs(vcpu, sregs); 11721 vcpu_put(vcpu); 11722 return 0; 11723 } 11724 11725 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11726 struct kvm_mp_state *mp_state) 11727 { 11728 int r; 11729 11730 vcpu_load(vcpu); 11731 if (kvm_mpx_supported()) 11732 kvm_load_guest_fpu(vcpu); 11733 11734 r = kvm_apic_accept_events(vcpu); 11735 if (r < 0) 11736 goto out; 11737 r = 0; 11738 11739 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11740 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11741 vcpu->arch.pv.pv_unhalted) 11742 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11743 else 11744 mp_state->mp_state = vcpu->arch.mp_state; 11745 11746 out: 11747 if (kvm_mpx_supported()) 11748 kvm_put_guest_fpu(vcpu); 11749 vcpu_put(vcpu); 11750 return r; 11751 } 11752 11753 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11754 struct kvm_mp_state *mp_state) 11755 { 11756 int ret = -EINVAL; 11757 11758 vcpu_load(vcpu); 11759 11760 switch (mp_state->mp_state) { 11761 case KVM_MP_STATE_UNINITIALIZED: 11762 case KVM_MP_STATE_HALTED: 11763 case KVM_MP_STATE_AP_RESET_HOLD: 11764 case KVM_MP_STATE_INIT_RECEIVED: 11765 case KVM_MP_STATE_SIPI_RECEIVED: 11766 if (!lapic_in_kernel(vcpu)) 11767 goto out; 11768 break; 11769 11770 case KVM_MP_STATE_RUNNABLE: 11771 break; 11772 11773 default: 11774 goto out; 11775 } 11776 11777 /* 11778 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11779 * forcing the guest into INIT/SIPI if those events are supposed to be 11780 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11781 * if an SMI is pending as well. 11782 */ 11783 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11784 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11785 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11786 goto out; 11787 11788 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11789 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11790 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11791 } else 11792 vcpu->arch.mp_state = mp_state->mp_state; 11793 kvm_make_request(KVM_REQ_EVENT, vcpu); 11794 11795 ret = 0; 11796 out: 11797 vcpu_put(vcpu); 11798 return ret; 11799 } 11800 11801 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11802 int reason, bool has_error_code, u32 error_code) 11803 { 11804 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11805 int ret; 11806 11807 init_emulate_ctxt(vcpu); 11808 11809 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11810 has_error_code, error_code); 11811 11812 /* 11813 * Report an error userspace if MMIO is needed, as KVM doesn't support 11814 * MMIO during a task switch (or any other complex operation). 11815 */ 11816 if (ret || vcpu->mmio_needed) { 11817 vcpu->mmio_needed = false; 11818 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11819 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11820 vcpu->run->internal.ndata = 0; 11821 return 0; 11822 } 11823 11824 kvm_rip_write(vcpu, ctxt->eip); 11825 kvm_set_rflags(vcpu, ctxt->eflags); 11826 return 1; 11827 } 11828 EXPORT_SYMBOL_GPL(kvm_task_switch); 11829 11830 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11831 { 11832 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11833 /* 11834 * When EFER.LME and CR0.PG are set, the processor is in 11835 * 64-bit mode (though maybe in a 32-bit code segment). 11836 * CR4.PAE and EFER.LMA must be set. 11837 */ 11838 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11839 return false; 11840 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11841 return false; 11842 } else { 11843 /* 11844 * Not in 64-bit mode: EFER.LMA is clear and the code 11845 * segment cannot be 64-bit. 11846 */ 11847 if (sregs->efer & EFER_LMA || sregs->cs.l) 11848 return false; 11849 } 11850 11851 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11852 kvm_is_valid_cr0(vcpu, sregs->cr0); 11853 } 11854 11855 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11856 int *mmu_reset_needed, bool update_pdptrs) 11857 { 11858 struct msr_data apic_base_msr; 11859 int idx; 11860 struct desc_ptr dt; 11861 11862 if (!kvm_is_valid_sregs(vcpu, sregs)) 11863 return -EINVAL; 11864 11865 apic_base_msr.data = sregs->apic_base; 11866 apic_base_msr.host_initiated = true; 11867 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11868 return -EINVAL; 11869 11870 if (vcpu->arch.guest_state_protected) 11871 return 0; 11872 11873 dt.size = sregs->idt.limit; 11874 dt.address = sregs->idt.base; 11875 kvm_x86_call(set_idt)(vcpu, &dt); 11876 dt.size = sregs->gdt.limit; 11877 dt.address = sregs->gdt.base; 11878 kvm_x86_call(set_gdt)(vcpu, &dt); 11879 11880 vcpu->arch.cr2 = sregs->cr2; 11881 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11882 vcpu->arch.cr3 = sregs->cr3; 11883 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11884 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3); 11885 11886 kvm_set_cr8(vcpu, sregs->cr8); 11887 11888 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11889 kvm_x86_call(set_efer)(vcpu, sregs->efer); 11890 11891 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11892 kvm_x86_call(set_cr0)(vcpu, sregs->cr0); 11893 11894 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11895 kvm_x86_call(set_cr4)(vcpu, sregs->cr4); 11896 11897 if (update_pdptrs) { 11898 idx = srcu_read_lock(&vcpu->kvm->srcu); 11899 if (is_pae_paging(vcpu)) { 11900 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11901 *mmu_reset_needed = 1; 11902 } 11903 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11904 } 11905 11906 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11907 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11908 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11909 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11910 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11911 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11912 11913 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11914 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11915 11916 update_cr8_intercept(vcpu); 11917 11918 /* Older userspace won't unhalt the vcpu on reset. */ 11919 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11920 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11921 !is_protmode(vcpu)) 11922 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11923 11924 return 0; 11925 } 11926 11927 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11928 { 11929 int pending_vec, max_bits; 11930 int mmu_reset_needed = 0; 11931 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11932 11933 if (ret) 11934 return ret; 11935 11936 if (mmu_reset_needed) { 11937 kvm_mmu_reset_context(vcpu); 11938 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11939 } 11940 11941 max_bits = KVM_NR_INTERRUPTS; 11942 pending_vec = find_first_bit( 11943 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11944 11945 if (pending_vec < max_bits) { 11946 kvm_queue_interrupt(vcpu, pending_vec, false); 11947 pr_debug("Set back pending irq %d\n", pending_vec); 11948 kvm_make_request(KVM_REQ_EVENT, vcpu); 11949 } 11950 return 0; 11951 } 11952 11953 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11954 { 11955 int mmu_reset_needed = 0; 11956 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11957 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11958 !(sregs2->efer & EFER_LMA); 11959 int i, ret; 11960 11961 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11962 return -EINVAL; 11963 11964 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11965 return -EINVAL; 11966 11967 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11968 &mmu_reset_needed, !valid_pdptrs); 11969 if (ret) 11970 return ret; 11971 11972 if (valid_pdptrs) { 11973 for (i = 0; i < 4 ; i++) 11974 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11975 11976 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11977 mmu_reset_needed = 1; 11978 vcpu->arch.pdptrs_from_userspace = true; 11979 } 11980 if (mmu_reset_needed) { 11981 kvm_mmu_reset_context(vcpu); 11982 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11983 } 11984 return 0; 11985 } 11986 11987 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11988 struct kvm_sregs *sregs) 11989 { 11990 int ret; 11991 11992 if (vcpu->kvm->arch.has_protected_state && 11993 vcpu->arch.guest_state_protected) 11994 return -EINVAL; 11995 11996 vcpu_load(vcpu); 11997 ret = __set_sregs(vcpu, sregs); 11998 vcpu_put(vcpu); 11999 return ret; 12000 } 12001 12002 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 12003 { 12004 bool set = false; 12005 struct kvm_vcpu *vcpu; 12006 unsigned long i; 12007 12008 if (!enable_apicv) 12009 return; 12010 12011 down_write(&kvm->arch.apicv_update_lock); 12012 12013 kvm_for_each_vcpu(i, vcpu, kvm) { 12014 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 12015 set = true; 12016 break; 12017 } 12018 } 12019 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 12020 up_write(&kvm->arch.apicv_update_lock); 12021 } 12022 12023 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 12024 struct kvm_guest_debug *dbg) 12025 { 12026 unsigned long rflags; 12027 int i, r; 12028 12029 if (vcpu->arch.guest_state_protected) 12030 return -EINVAL; 12031 12032 vcpu_load(vcpu); 12033 12034 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 12035 r = -EBUSY; 12036 if (kvm_is_exception_pending(vcpu)) 12037 goto out; 12038 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 12039 kvm_queue_exception(vcpu, DB_VECTOR); 12040 else 12041 kvm_queue_exception(vcpu, BP_VECTOR); 12042 } 12043 12044 /* 12045 * Read rflags as long as potentially injected trace flags are still 12046 * filtered out. 12047 */ 12048 rflags = kvm_get_rflags(vcpu); 12049 12050 vcpu->guest_debug = dbg->control; 12051 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 12052 vcpu->guest_debug = 0; 12053 12054 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 12055 for (i = 0; i < KVM_NR_DB_REGS; ++i) 12056 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 12057 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 12058 } else { 12059 for (i = 0; i < KVM_NR_DB_REGS; i++) 12060 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 12061 } 12062 kvm_update_dr7(vcpu); 12063 12064 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12065 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 12066 12067 /* 12068 * Trigger an rflags update that will inject or remove the trace 12069 * flags. 12070 */ 12071 kvm_set_rflags(vcpu, rflags); 12072 12073 kvm_x86_call(update_exception_bitmap)(vcpu); 12074 12075 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 12076 12077 r = 0; 12078 12079 out: 12080 vcpu_put(vcpu); 12081 return r; 12082 } 12083 12084 /* 12085 * Translate a guest virtual address to a guest physical address. 12086 */ 12087 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 12088 struct kvm_translation *tr) 12089 { 12090 unsigned long vaddr = tr->linear_address; 12091 gpa_t gpa; 12092 int idx; 12093 12094 vcpu_load(vcpu); 12095 12096 idx = srcu_read_lock(&vcpu->kvm->srcu); 12097 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 12098 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12099 tr->physical_address = gpa; 12100 tr->valid = gpa != INVALID_GPA; 12101 tr->writeable = 1; 12102 tr->usermode = 0; 12103 12104 vcpu_put(vcpu); 12105 return 0; 12106 } 12107 12108 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12109 { 12110 struct fxregs_state *fxsave; 12111 12112 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12113 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12114 12115 vcpu_load(vcpu); 12116 12117 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12118 memcpy(fpu->fpr, fxsave->st_space, 128); 12119 fpu->fcw = fxsave->cwd; 12120 fpu->fsw = fxsave->swd; 12121 fpu->ftwx = fxsave->twd; 12122 fpu->last_opcode = fxsave->fop; 12123 fpu->last_ip = fxsave->rip; 12124 fpu->last_dp = fxsave->rdp; 12125 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 12126 12127 vcpu_put(vcpu); 12128 return 0; 12129 } 12130 12131 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12132 { 12133 struct fxregs_state *fxsave; 12134 12135 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12136 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12137 12138 vcpu_load(vcpu); 12139 12140 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12141 12142 memcpy(fxsave->st_space, fpu->fpr, 128); 12143 fxsave->cwd = fpu->fcw; 12144 fxsave->swd = fpu->fsw; 12145 fxsave->twd = fpu->ftwx; 12146 fxsave->fop = fpu->last_opcode; 12147 fxsave->rip = fpu->last_ip; 12148 fxsave->rdp = fpu->last_dp; 12149 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12150 12151 vcpu_put(vcpu); 12152 return 0; 12153 } 12154 12155 static void store_regs(struct kvm_vcpu *vcpu) 12156 { 12157 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12158 12159 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12160 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12161 12162 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12163 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12164 12165 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12166 kvm_vcpu_ioctl_x86_get_vcpu_events( 12167 vcpu, &vcpu->run->s.regs.events); 12168 } 12169 12170 static int sync_regs(struct kvm_vcpu *vcpu) 12171 { 12172 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12173 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12174 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12175 } 12176 12177 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12178 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12179 12180 if (__set_sregs(vcpu, &sregs)) 12181 return -EINVAL; 12182 12183 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12184 } 12185 12186 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12187 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12188 12189 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12190 return -EINVAL; 12191 12192 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12193 } 12194 12195 return 0; 12196 } 12197 12198 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12199 { 12200 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12201 pr_warn_once("SMP vm created on host with unstable TSC; " 12202 "guest TSC will not be reliable\n"); 12203 12204 if (!kvm->arch.max_vcpu_ids) 12205 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12206 12207 if (id >= kvm->arch.max_vcpu_ids) 12208 return -EINVAL; 12209 12210 return kvm_x86_call(vcpu_precreate)(kvm); 12211 } 12212 12213 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12214 { 12215 struct page *page; 12216 int r; 12217 12218 vcpu->arch.last_vmentry_cpu = -1; 12219 vcpu->arch.regs_avail = ~0; 12220 vcpu->arch.regs_dirty = ~0; 12221 12222 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12223 12224 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12225 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12226 else 12227 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12228 12229 r = kvm_mmu_create(vcpu); 12230 if (r < 0) 12231 return r; 12232 12233 r = kvm_create_lapic(vcpu); 12234 if (r < 0) 12235 goto fail_mmu_destroy; 12236 12237 r = -ENOMEM; 12238 12239 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12240 if (!page) 12241 goto fail_free_lapic; 12242 vcpu->arch.pio_data = page_address(page); 12243 12244 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12245 GFP_KERNEL_ACCOUNT); 12246 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12247 GFP_KERNEL_ACCOUNT); 12248 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12249 goto fail_free_mce_banks; 12250 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12251 12252 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12253 GFP_KERNEL_ACCOUNT)) 12254 goto fail_free_mce_banks; 12255 12256 if (!alloc_emulate_ctxt(vcpu)) 12257 goto free_wbinvd_dirty_mask; 12258 12259 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12260 pr_err("failed to allocate vcpu's fpu\n"); 12261 goto free_emulate_ctxt; 12262 } 12263 12264 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12265 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12266 12267 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12268 12269 kvm_async_pf_hash_reset(vcpu); 12270 12271 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12272 kvm_pmu_init(vcpu); 12273 12274 vcpu->arch.pending_external_vector = -1; 12275 vcpu->arch.preempted_in_kernel = false; 12276 12277 #if IS_ENABLED(CONFIG_HYPERV) 12278 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12279 #endif 12280 12281 r = kvm_x86_call(vcpu_create)(vcpu); 12282 if (r) 12283 goto free_guest_fpu; 12284 12285 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12286 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12287 kvm_xen_init_vcpu(vcpu); 12288 vcpu_load(vcpu); 12289 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12290 kvm_vcpu_reset(vcpu, false); 12291 kvm_init_mmu(vcpu); 12292 vcpu_put(vcpu); 12293 return 0; 12294 12295 free_guest_fpu: 12296 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12297 free_emulate_ctxt: 12298 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12299 free_wbinvd_dirty_mask: 12300 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12301 fail_free_mce_banks: 12302 kfree(vcpu->arch.mce_banks); 12303 kfree(vcpu->arch.mci_ctl2_banks); 12304 free_page((unsigned long)vcpu->arch.pio_data); 12305 fail_free_lapic: 12306 kvm_free_lapic(vcpu); 12307 fail_mmu_destroy: 12308 kvm_mmu_destroy(vcpu); 12309 return r; 12310 } 12311 12312 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12313 { 12314 struct kvm *kvm = vcpu->kvm; 12315 12316 if (mutex_lock_killable(&vcpu->mutex)) 12317 return; 12318 vcpu_load(vcpu); 12319 kvm_synchronize_tsc(vcpu, NULL); 12320 vcpu_put(vcpu); 12321 12322 /* poll control enabled by default */ 12323 vcpu->arch.msr_kvm_poll_control = 1; 12324 12325 mutex_unlock(&vcpu->mutex); 12326 12327 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12328 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12329 KVMCLOCK_SYNC_PERIOD); 12330 } 12331 12332 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12333 { 12334 int idx; 12335 12336 kvmclock_reset(vcpu); 12337 12338 kvm_x86_call(vcpu_free)(vcpu); 12339 12340 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12341 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12342 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12343 12344 kvm_xen_destroy_vcpu(vcpu); 12345 kvm_hv_vcpu_uninit(vcpu); 12346 kvm_pmu_destroy(vcpu); 12347 kfree(vcpu->arch.mce_banks); 12348 kfree(vcpu->arch.mci_ctl2_banks); 12349 kvm_free_lapic(vcpu); 12350 idx = srcu_read_lock(&vcpu->kvm->srcu); 12351 kvm_mmu_destroy(vcpu); 12352 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12353 free_page((unsigned long)vcpu->arch.pio_data); 12354 kvfree(vcpu->arch.cpuid_entries); 12355 } 12356 12357 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12358 { 12359 struct kvm_cpuid_entry2 *cpuid_0x1; 12360 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12361 unsigned long new_cr0; 12362 12363 /* 12364 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12365 * to handle side effects. RESET emulation hits those flows and relies 12366 * on emulated/virtualized registers, including those that are loaded 12367 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12368 * to detect improper or missing initialization. 12369 */ 12370 WARN_ON_ONCE(!init_event && 12371 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12372 12373 /* 12374 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12375 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12376 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12377 * bits), i.e. virtualization is disabled. 12378 */ 12379 if (is_guest_mode(vcpu)) 12380 kvm_leave_nested(vcpu); 12381 12382 kvm_lapic_reset(vcpu, init_event); 12383 12384 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12385 vcpu->arch.hflags = 0; 12386 12387 vcpu->arch.smi_pending = 0; 12388 vcpu->arch.smi_count = 0; 12389 atomic_set(&vcpu->arch.nmi_queued, 0); 12390 vcpu->arch.nmi_pending = 0; 12391 vcpu->arch.nmi_injected = false; 12392 kvm_clear_interrupt_queue(vcpu); 12393 kvm_clear_exception_queue(vcpu); 12394 12395 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12396 kvm_update_dr0123(vcpu); 12397 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12398 vcpu->arch.dr7 = DR7_FIXED_1; 12399 kvm_update_dr7(vcpu); 12400 12401 vcpu->arch.cr2 = 0; 12402 12403 kvm_make_request(KVM_REQ_EVENT, vcpu); 12404 vcpu->arch.apf.msr_en_val = 0; 12405 vcpu->arch.apf.msr_int_val = 0; 12406 vcpu->arch.st.msr_val = 0; 12407 12408 kvmclock_reset(vcpu); 12409 12410 kvm_clear_async_pf_completion_queue(vcpu); 12411 kvm_async_pf_hash_reset(vcpu); 12412 vcpu->arch.apf.halted = false; 12413 12414 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12415 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12416 12417 /* 12418 * All paths that lead to INIT are required to load the guest's 12419 * FPU state (because most paths are buried in KVM_RUN). 12420 */ 12421 if (init_event) 12422 kvm_put_guest_fpu(vcpu); 12423 12424 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12425 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12426 12427 if (init_event) 12428 kvm_load_guest_fpu(vcpu); 12429 } 12430 12431 if (!init_event) { 12432 vcpu->arch.smbase = 0x30000; 12433 12434 vcpu->arch.msr_misc_features_enables = 0; 12435 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12436 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12437 12438 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12439 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12440 } 12441 12442 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12443 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12444 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12445 12446 /* 12447 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12448 * if no CPUID match is found. Note, it's impossible to get a match at 12449 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12450 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12451 * on RESET. But, go through the motions in case that's ever remedied. 12452 */ 12453 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12454 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12455 12456 kvm_x86_call(vcpu_reset)(vcpu, init_event); 12457 12458 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12459 kvm_rip_write(vcpu, 0xfff0); 12460 12461 vcpu->arch.cr3 = 0; 12462 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12463 12464 /* 12465 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12466 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12467 * (or qualify) that with a footnote stating that CD/NW are preserved. 12468 */ 12469 new_cr0 = X86_CR0_ET; 12470 if (init_event) 12471 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12472 else 12473 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12474 12475 kvm_x86_call(set_cr0)(vcpu, new_cr0); 12476 kvm_x86_call(set_cr4)(vcpu, 0); 12477 kvm_x86_call(set_efer)(vcpu, 0); 12478 kvm_x86_call(update_exception_bitmap)(vcpu); 12479 12480 /* 12481 * On the standard CR0/CR4/EFER modification paths, there are several 12482 * complex conditions determining whether the MMU has to be reset and/or 12483 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12484 * bits in CR4 and EFER are irrelevant if CR0.PG was ''; and a reset+flush 12485 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12486 * CR0 will be '' prior to RESET). So we only need to check CR0.PG here. 12487 */ 12488 if (old_cr0 & X86_CR0_PG) { 12489 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12490 kvm_mmu_reset_context(vcpu); 12491 } 12492 12493 /* 12494 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12495 * APM states the TLBs are untouched by INIT, but it also states that 12496 * the TLBs are flushed on "External initialization of the processor." 12497 * Flush the guest TLB regardless of vendor, there is no meaningful 12498 * benefit in relying on the guest to flush the TLB immediately after 12499 * INIT. A spurious TLB flush is benign and likely negligible from a 12500 * performance perspective. 12501 */ 12502 if (init_event) 12503 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12504 } 12505 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12506 12507 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12508 { 12509 struct kvm_segment cs; 12510 12511 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12512 cs.selector = vector << 8; 12513 cs.base = vector << 12; 12514 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12515 kvm_rip_write(vcpu, 0); 12516 } 12517 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12518 12519 int kvm_arch_hardware_enable(void) 12520 { 12521 struct kvm *kvm; 12522 struct kvm_vcpu *vcpu; 12523 unsigned long i; 12524 int ret; 12525 u64 local_tsc; 12526 u64 max_tsc = 0; 12527 bool stable, backwards_tsc = false; 12528 12529 kvm_user_return_msr_cpu_online(); 12530 12531 ret = kvm_x86_check_processor_compatibility(); 12532 if (ret) 12533 return ret; 12534 12535 ret = kvm_x86_call(hardware_enable)(); 12536 if (ret != 0) 12537 return ret; 12538 12539 local_tsc = rdtsc(); 12540 stable = !kvm_check_tsc_unstable(); 12541 list_for_each_entry(kvm, &vm_list, vm_list) { 12542 kvm_for_each_vcpu(i, vcpu, kvm) { 12543 if (!stable && vcpu->cpu == smp_processor_id()) 12544 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12545 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12546 backwards_tsc = true; 12547 if (vcpu->arch.last_host_tsc > max_tsc) 12548 max_tsc = vcpu->arch.last_host_tsc; 12549 } 12550 } 12551 } 12552 12553 /* 12554 * Sometimes, even reliable TSCs go backwards. This happens on 12555 * platforms that reset TSC during suspend or hibernate actions, but 12556 * maintain synchronization. We must compensate. Fortunately, we can 12557 * detect that condition here, which happens early in CPU bringup, 12558 * before any KVM threads can be running. Unfortunately, we can't 12559 * bring the TSCs fully up to date with real time, as we aren't yet far 12560 * enough into CPU bringup that we know how much real time has actually 12561 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12562 * variables that haven't been updated yet. 12563 * 12564 * So we simply find the maximum observed TSC above, then record the 12565 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12566 * the adjustment will be applied. Note that we accumulate 12567 * adjustments, in case multiple suspend cycles happen before some VCPU 12568 * gets a chance to run again. In the event that no KVM threads get a 12569 * chance to run, we will miss the entire elapsed period, as we'll have 12570 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12571 * loose cycle time. This isn't too big a deal, since the loss will be 12572 * uniform across all VCPUs (not to mention the scenario is extremely 12573 * unlikely). It is possible that a second hibernate recovery happens 12574 * much faster than a first, causing the observed TSC here to be 12575 * smaller; this would require additional padding adjustment, which is 12576 * why we set last_host_tsc to the local tsc observed here. 12577 * 12578 * N.B. - this code below runs only on platforms with reliable TSC, 12579 * as that is the only way backwards_tsc is set above. Also note 12580 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12581 * have the same delta_cyc adjustment applied if backwards_tsc 12582 * is detected. Note further, this adjustment is only done once, 12583 * as we reset last_host_tsc on all VCPUs to stop this from being 12584 * called multiple times (one for each physical CPU bringup). 12585 * 12586 * Platforms with unreliable TSCs don't have to deal with this, they 12587 * will be compensated by the logic in vcpu_load, which sets the TSC to 12588 * catchup mode. This will catchup all VCPUs to real time, but cannot 12589 * guarantee that they stay in perfect synchronization. 12590 */ 12591 if (backwards_tsc) { 12592 u64 delta_cyc = max_tsc - local_tsc; 12593 list_for_each_entry(kvm, &vm_list, vm_list) { 12594 kvm->arch.backwards_tsc_observed = true; 12595 kvm_for_each_vcpu(i, vcpu, kvm) { 12596 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12597 vcpu->arch.last_host_tsc = local_tsc; 12598 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12599 } 12600 12601 /* 12602 * We have to disable TSC offset matching.. if you were 12603 * booting a VM while issuing an S4 host suspend.... 12604 * you may have some problem. Solving this issue is 12605 * left as an exercise to the reader. 12606 */ 12607 kvm->arch.last_tsc_nsec = 0; 12608 kvm->arch.last_tsc_write = 0; 12609 } 12610 12611 } 12612 return 0; 12613 } 12614 12615 void kvm_arch_hardware_disable(void) 12616 { 12617 kvm_x86_call(hardware_disable)(); 12618 drop_user_return_notifiers(); 12619 } 12620 12621 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12622 { 12623 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12624 } 12625 12626 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12627 { 12628 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12629 } 12630 12631 void kvm_arch_free_vm(struct kvm *kvm) 12632 { 12633 #if IS_ENABLED(CONFIG_HYPERV) 12634 kfree(kvm->arch.hv_pa_pg); 12635 #endif 12636 __kvm_arch_free_vm(kvm); 12637 } 12638 12639 12640 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12641 { 12642 int ret; 12643 unsigned long flags; 12644 12645 if (!kvm_is_vm_type_supported(type)) 12646 return -EINVAL; 12647 12648 kvm->arch.vm_type = type; 12649 kvm->arch.has_private_mem = 12650 (type == KVM_X86_SW_PROTECTED_VM); 12651 /* Decided by the vendor code for other VM types. */ 12652 kvm->arch.pre_fault_allowed = 12653 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM; 12654 12655 ret = kvm_page_track_init(kvm); 12656 if (ret) 12657 goto out; 12658 12659 kvm_mmu_init_vm(kvm); 12660 12661 ret = kvm_x86_call(vm_init)(kvm); 12662 if (ret) 12663 goto out_uninit_mmu; 12664 12665 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12666 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12667 12668 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12669 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12670 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12671 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12672 &kvm->arch.irq_sources_bitmap); 12673 12674 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12675 mutex_init(&kvm->arch.apic_map_lock); 12676 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12677 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12678 12679 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12680 pvclock_update_vm_gtod_copy(kvm); 12681 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12682 12683 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12684 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT; 12685 kvm->arch.guest_can_read_msr_platform_info = true; 12686 kvm->arch.enable_pmu = enable_pmu; 12687 12688 #if IS_ENABLED(CONFIG_HYPERV) 12689 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12690 kvm->arch.hv_root_tdp = INVALID_PAGE; 12691 #endif 12692 12693 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12694 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12695 12696 kvm_apicv_init(kvm); 12697 kvm_hv_init_vm(kvm); 12698 kvm_xen_init_vm(kvm); 12699 12700 return 0; 12701 12702 out_uninit_mmu: 12703 kvm_mmu_uninit_vm(kvm); 12704 kvm_page_track_cleanup(kvm); 12705 out: 12706 return ret; 12707 } 12708 12709 int kvm_arch_post_init_vm(struct kvm *kvm) 12710 { 12711 return kvm_mmu_post_init_vm(kvm); 12712 } 12713 12714 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12715 { 12716 vcpu_load(vcpu); 12717 kvm_mmu_unload(vcpu); 12718 vcpu_put(vcpu); 12719 } 12720 12721 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12722 { 12723 unsigned long i; 12724 struct kvm_vcpu *vcpu; 12725 12726 kvm_for_each_vcpu(i, vcpu, kvm) { 12727 kvm_clear_async_pf_completion_queue(vcpu); 12728 kvm_unload_vcpu_mmu(vcpu); 12729 } 12730 } 12731 12732 void kvm_arch_sync_events(struct kvm *kvm) 12733 { 12734 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12735 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12736 kvm_free_pit(kvm); 12737 } 12738 12739 /** 12740 * __x86_set_memory_region: Setup KVM internal memory slot 12741 * 12742 * @kvm: the kvm pointer to the VM. 12743 * @id: the slot ID to setup. 12744 * @gpa: the GPA to install the slot (unused when @size == 0). 12745 * @size: the size of the slot. Set to zero to uninstall a slot. 12746 * 12747 * This function helps to setup a KVM internal memory slot. Specify 12748 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12749 * slot. The return code can be one of the following: 12750 * 12751 * HVA: on success (uninstall will return a bogus HVA) 12752 * -errno: on error 12753 * 12754 * The caller should always use IS_ERR() to check the return value 12755 * before use. Note, the KVM internal memory slots are guaranteed to 12756 * remain valid and unchanged until the VM is destroyed, i.e., the 12757 * GPA->HVA translation will not change. However, the HVA is a user 12758 * address, i.e. its accessibility is not guaranteed, and must be 12759 * accessed via __copy_{to,from}_user(). 12760 */ 12761 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12762 u32 size) 12763 { 12764 int i, r; 12765 unsigned long hva, old_npages; 12766 struct kvm_memslots *slots = kvm_memslots(kvm); 12767 struct kvm_memory_slot *slot; 12768 12769 /* Called with kvm->slots_lock held. */ 12770 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12771 return ERR_PTR_USR(-EINVAL); 12772 12773 slot = id_to_memslot(slots, id); 12774 if (size) { 12775 if (slot && slot->npages) 12776 return ERR_PTR_USR(-EEXIST); 12777 12778 /* 12779 * MAP_SHARED to prevent internal slot pages from being moved 12780 * by fork()/COW. 12781 */ 12782 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12783 MAP_SHARED | MAP_ANONYMOUS, 0); 12784 if (IS_ERR_VALUE(hva)) 12785 return (void __user *)hva; 12786 } else { 12787 if (!slot || !slot->npages) 12788 return NULL; 12789 12790 old_npages = slot->npages; 12791 hva = slot->userspace_addr; 12792 } 12793 12794 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12795 struct kvm_userspace_memory_region2 m; 12796 12797 m.slot = id | (i << 16); 12798 m.flags = 0; 12799 m.guest_phys_addr = gpa; 12800 m.userspace_addr = hva; 12801 m.memory_size = size; 12802 r = __kvm_set_memory_region(kvm, &m); 12803 if (r < 0) 12804 return ERR_PTR_USR(r); 12805 } 12806 12807 if (!size) 12808 vm_munmap(hva, old_npages * PAGE_SIZE); 12809 12810 return (void __user *)hva; 12811 } 12812 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12813 12814 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12815 { 12816 kvm_mmu_pre_destroy_vm(kvm); 12817 } 12818 12819 void kvm_arch_destroy_vm(struct kvm *kvm) 12820 { 12821 if (current->mm == kvm->mm) { 12822 /* 12823 * Free memory regions allocated on behalf of userspace, 12824 * unless the memory map has changed due to process exit 12825 * or fd copying. 12826 */ 12827 mutex_lock(&kvm->slots_lock); 12828 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12829 0, 0); 12830 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12831 0, 0); 12832 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12833 mutex_unlock(&kvm->slots_lock); 12834 } 12835 kvm_unload_vcpu_mmus(kvm); 12836 kvm_x86_call(vm_destroy)(kvm); 12837 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12838 kvm_pic_destroy(kvm); 12839 kvm_ioapic_destroy(kvm); 12840 kvm_destroy_vcpus(kvm); 12841 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12842 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12843 kvm_mmu_uninit_vm(kvm); 12844 kvm_page_track_cleanup(kvm); 12845 kvm_xen_destroy_vm(kvm); 12846 kvm_hv_destroy_vm(kvm); 12847 } 12848 12849 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12850 { 12851 int i; 12852 12853 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12854 vfree(slot->arch.rmap[i]); 12855 slot->arch.rmap[i] = NULL; 12856 } 12857 } 12858 12859 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12860 { 12861 int i; 12862 12863 memslot_rmap_free(slot); 12864 12865 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12866 vfree(slot->arch.lpage_info[i - 1]); 12867 slot->arch.lpage_info[i - 1] = NULL; 12868 } 12869 12870 kvm_page_track_free_memslot(slot); 12871 } 12872 12873 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12874 { 12875 const int sz = sizeof(*slot->arch.rmap[0]); 12876 int i; 12877 12878 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12879 int level = i + 1; 12880 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12881 12882 if (slot->arch.rmap[i]) 12883 continue; 12884 12885 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12886 if (!slot->arch.rmap[i]) { 12887 memslot_rmap_free(slot); 12888 return -ENOMEM; 12889 } 12890 } 12891 12892 return 0; 12893 } 12894 12895 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12896 struct kvm_memory_slot *slot) 12897 { 12898 unsigned long npages = slot->npages; 12899 int i, r; 12900 12901 /* 12902 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12903 * old arrays will be freed by __kvm_set_memory_region() if installing 12904 * the new memslot is successful. 12905 */ 12906 memset(&slot->arch, 0, sizeof(slot->arch)); 12907 12908 if (kvm_memslots_have_rmaps(kvm)) { 12909 r = memslot_rmap_alloc(slot, npages); 12910 if (r) 12911 return r; 12912 } 12913 12914 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12915 struct kvm_lpage_info *linfo; 12916 unsigned long ugfn; 12917 int lpages; 12918 int level = i + 1; 12919 12920 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12921 12922 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12923 if (!linfo) 12924 goto out_free; 12925 12926 slot->arch.lpage_info[i - 1] = linfo; 12927 12928 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12929 linfo[0].disallow_lpage = 1; 12930 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12931 linfo[lpages - 1].disallow_lpage = 1; 12932 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12933 /* 12934 * If the gfn and userspace address are not aligned wrt each 12935 * other, disable large page support for this slot. 12936 */ 12937 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12938 unsigned long j; 12939 12940 for (j = 0; j < lpages; ++j) 12941 linfo[j].disallow_lpage = 1; 12942 } 12943 } 12944 12945 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12946 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12947 #endif 12948 12949 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12950 goto out_free; 12951 12952 return 0; 12953 12954 out_free: 12955 memslot_rmap_free(slot); 12956 12957 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12958 vfree(slot->arch.lpage_info[i - 1]); 12959 slot->arch.lpage_info[i - 1] = NULL; 12960 } 12961 return -ENOMEM; 12962 } 12963 12964 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12965 { 12966 struct kvm_vcpu *vcpu; 12967 unsigned long i; 12968 12969 /* 12970 * memslots->generation has been incremented. 12971 * mmio generation may have reached its maximum value. 12972 */ 12973 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12974 12975 /* Force re-initialization of steal_time cache */ 12976 kvm_for_each_vcpu(i, vcpu, kvm) 12977 kvm_vcpu_kick(vcpu); 12978 } 12979 12980 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12981 const struct kvm_memory_slot *old, 12982 struct kvm_memory_slot *new, 12983 enum kvm_mr_change change) 12984 { 12985 /* 12986 * KVM doesn't support moving memslots when there are external page 12987 * trackers attached to the VM, i.e. if KVMGT is in use. 12988 */ 12989 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12990 return -EINVAL; 12991 12992 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12993 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12994 return -EINVAL; 12995 12996 return kvm_alloc_memslot_metadata(kvm, new); 12997 } 12998 12999 if (change == KVM_MR_FLAGS_ONLY) 13000 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 13001 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 13002 return -EIO; 13003 13004 return 0; 13005 } 13006 13007 13008 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 13009 { 13010 int nr_slots; 13011 13012 if (!kvm_x86_ops.cpu_dirty_log_size) 13013 return; 13014 13015 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 13016 if ((enable && nr_slots == 1) || !nr_slots) 13017 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 13018 } 13019 13020 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 13021 struct kvm_memory_slot *old, 13022 const struct kvm_memory_slot *new, 13023 enum kvm_mr_change change) 13024 { 13025 u32 old_flags = old ? old->flags : 0; 13026 u32 new_flags = new ? new->flags : 0; 13027 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 13028 13029 /* 13030 * Update CPU dirty logging if dirty logging is being toggled. This 13031 * applies to all operations. 13032 */ 13033 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 13034 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 13035 13036 /* 13037 * Nothing more to do for RO slots (which can't be dirtied and can't be 13038 * made writable) or CREATE/MOVE/DELETE of a slot. 13039 * 13040 * For a memslot with dirty logging disabled: 13041 * CREATE: No dirty mappings will already exist. 13042 * MOVE/DELETE: The old mappings will already have been cleaned up by 13043 * kvm_arch_flush_shadow_memslot() 13044 * 13045 * For a memslot with dirty logging enabled: 13046 * CREATE: No shadow pages exist, thus nothing to write-protect 13047 * and no dirty bits to clear. 13048 * MOVE/DELETE: The old mappings will already have been cleaned up by 13049 * kvm_arch_flush_shadow_memslot(). 13050 */ 13051 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 13052 return; 13053 13054 /* 13055 * READONLY and non-flags changes were filtered out above, and the only 13056 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 13057 * logging isn't being toggled on or off. 13058 */ 13059 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 13060 return; 13061 13062 if (!log_dirty_pages) { 13063 /* 13064 * Dirty logging tracks sptes in 4k granularity, meaning that 13065 * large sptes have to be split. If live migration succeeds, 13066 * the guest in the source machine will be destroyed and large 13067 * sptes will be created in the destination. However, if the 13068 * guest continues to run in the source machine (for example if 13069 * live migration fails), small sptes will remain around and 13070 * cause bad performance. 13071 * 13072 * Scan sptes if dirty logging has been stopped, dropping those 13073 * which can be collapsed into a single large-page spte. Later 13074 * page faults will create the large-page sptes. 13075 */ 13076 kvm_mmu_zap_collapsible_sptes(kvm, new); 13077 } else { 13078 /* 13079 * Initially-all-set does not require write protecting any page, 13080 * because they're all assumed to be dirty. 13081 */ 13082 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 13083 return; 13084 13085 if (READ_ONCE(eager_page_split)) 13086 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 13087 13088 if (kvm_x86_ops.cpu_dirty_log_size) { 13089 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 13090 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 13091 } else { 13092 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 13093 } 13094 13095 /* 13096 * Unconditionally flush the TLBs after enabling dirty logging. 13097 * A flush is almost always going to be necessary (see below), 13098 * and unconditionally flushing allows the helpers to omit 13099 * the subtly complex checks when removing write access. 13100 * 13101 * Do the flush outside of mmu_lock to reduce the amount of 13102 * time mmu_lock is held. Flushing after dropping mmu_lock is 13103 * safe as KVM only needs to guarantee the slot is fully 13104 * write-protected before returning to userspace, i.e. before 13105 * userspace can consume the dirty status. 13106 * 13107 * Flushing outside of mmu_lock requires KVM to be careful when 13108 * making decisions based on writable status of an SPTE, e.g. a 13109 * !writable SPTE doesn't guarantee a CPU can't perform writes. 13110 * 13111 * Specifically, KVM also write-protects guest page tables to 13112 * monitor changes when using shadow paging, and must guarantee 13113 * no CPUs can write to those page before mmu_lock is dropped. 13114 * Because CPUs may have stale TLB entries at this point, a 13115 * !writable SPTE doesn't guarantee CPUs can't perform writes. 13116 * 13117 * KVM also allows making SPTES writable outside of mmu_lock, 13118 * e.g. to allow dirty logging without taking mmu_lock. 13119 * 13120 * To handle these scenarios, KVM uses a separate software-only 13121 * bit (MMU-writable) to track if a SPTE is !writable due to 13122 * a guest page table being write-protected (KVM clears the 13123 * MMU-writable flag when write-protecting for shadow paging). 13124 * 13125 * The use of MMU-writable is also the primary motivation for 13126 * the unconditional flush. Because KVM must guarantee that a 13127 * CPU doesn't contain stale, writable TLB entries for a 13128 * !MMU-writable SPTE, KVM must flush if it encounters any 13129 * MMU-writable SPTE regardless of whether the actual hardware 13130 * writable bit was set. I.e. KVM is almost guaranteed to need 13131 * to flush, while unconditionally flushing allows the "remove 13132 * write access" helpers to ignore MMU-writable entirely. 13133 * 13134 * See is_writable_pte() for more details (the case involving 13135 * access-tracked SPTEs is particularly relevant). 13136 */ 13137 kvm_flush_remote_tlbs_memslot(kvm, new); 13138 } 13139 } 13140 13141 void kvm_arch_commit_memory_region(struct kvm *kvm, 13142 struct kvm_memory_slot *old, 13143 const struct kvm_memory_slot *new, 13144 enum kvm_mr_change change) 13145 { 13146 if (change == KVM_MR_DELETE) 13147 kvm_page_track_delete_slot(kvm, old); 13148 13149 if (!kvm->arch.n_requested_mmu_pages && 13150 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13151 unsigned long nr_mmu_pages; 13152 13153 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13154 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13155 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13156 } 13157 13158 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13159 13160 /* Free the arrays associated with the old memslot. */ 13161 if (change == KVM_MR_MOVE) 13162 kvm_arch_free_memslot(kvm, old); 13163 } 13164 13165 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 13166 { 13167 if (!list_empty_careful(&vcpu->async_pf.done)) 13168 return true; 13169 13170 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 13171 kvm_apic_init_sipi_allowed(vcpu)) 13172 return true; 13173 13174 if (vcpu->arch.pv.pv_unhalted) 13175 return true; 13176 13177 if (kvm_is_exception_pending(vcpu)) 13178 return true; 13179 13180 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13181 (vcpu->arch.nmi_pending && 13182 kvm_x86_call(nmi_allowed)(vcpu, false))) 13183 return true; 13184 13185 #ifdef CONFIG_KVM_SMM 13186 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 13187 (vcpu->arch.smi_pending && 13188 kvm_x86_call(smi_allowed)(vcpu, false))) 13189 return true; 13190 #endif 13191 13192 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 13193 return true; 13194 13195 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) 13196 return true; 13197 13198 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)) 13199 return true; 13200 13201 if (kvm_hv_has_stimer_pending(vcpu)) 13202 return true; 13203 13204 if (is_guest_mode(vcpu) && 13205 kvm_x86_ops.nested_ops->has_events && 13206 kvm_x86_ops.nested_ops->has_events(vcpu, false)) 13207 return true; 13208 13209 if (kvm_xen_has_pending_events(vcpu)) 13210 return true; 13211 13212 return false; 13213 } 13214 13215 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 13216 { 13217 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 13218 } 13219 13220 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 13221 { 13222 return kvm_vcpu_apicv_active(vcpu) && 13223 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu); 13224 } 13225 13226 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 13227 { 13228 return vcpu->arch.preempted_in_kernel; 13229 } 13230 13231 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 13232 { 13233 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 13234 return true; 13235 13236 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 13237 #ifdef CONFIG_KVM_SMM 13238 kvm_test_request(KVM_REQ_SMI, vcpu) || 13239 #endif 13240 kvm_test_request(KVM_REQ_EVENT, vcpu)) 13241 return true; 13242 13243 return kvm_arch_dy_has_pending_interrupt(vcpu); 13244 } 13245 13246 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13247 { 13248 if (vcpu->arch.guest_state_protected) 13249 return true; 13250 13251 return kvm_x86_call(get_cpl)(vcpu) == 0; 13252 } 13253 13254 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13255 { 13256 return kvm_rip_read(vcpu); 13257 } 13258 13259 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13260 { 13261 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13262 } 13263 13264 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13265 { 13266 return kvm_x86_call(interrupt_allowed)(vcpu, false); 13267 } 13268 13269 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13270 { 13271 /* Can't read the RIP when guest state is protected, just return 0 */ 13272 if (vcpu->arch.guest_state_protected) 13273 return 0; 13274 13275 if (is_64_bit_mode(vcpu)) 13276 return kvm_rip_read(vcpu); 13277 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13278 kvm_rip_read(vcpu)); 13279 } 13280 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13281 13282 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13283 { 13284 return kvm_get_linear_rip(vcpu) == linear_rip; 13285 } 13286 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13287 13288 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13289 { 13290 unsigned long rflags; 13291 13292 rflags = kvm_x86_call(get_rflags)(vcpu); 13293 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13294 rflags &= ~X86_EFLAGS_TF; 13295 return rflags; 13296 } 13297 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13298 13299 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13300 { 13301 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13302 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13303 rflags |= X86_EFLAGS_TF; 13304 kvm_x86_call(set_rflags)(vcpu, rflags); 13305 } 13306 13307 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13308 { 13309 __kvm_set_rflags(vcpu, rflags); 13310 kvm_make_request(KVM_REQ_EVENT, vcpu); 13311 } 13312 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13313 13314 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13315 { 13316 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13317 13318 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13319 } 13320 13321 static inline u32 kvm_async_pf_next_probe(u32 key) 13322 { 13323 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13324 } 13325 13326 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13327 { 13328 u32 key = kvm_async_pf_hash_fn(gfn); 13329 13330 while (vcpu->arch.apf.gfns[key] != ~0) 13331 key = kvm_async_pf_next_probe(key); 13332 13333 vcpu->arch.apf.gfns[key] = gfn; 13334 } 13335 13336 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13337 { 13338 int i; 13339 u32 key = kvm_async_pf_hash_fn(gfn); 13340 13341 for (i = 0; i < ASYNC_PF_PER_VCPU && 13342 (vcpu->arch.apf.gfns[key] != gfn && 13343 vcpu->arch.apf.gfns[key] != ~0); i++) 13344 key = kvm_async_pf_next_probe(key); 13345 13346 return key; 13347 } 13348 13349 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13350 { 13351 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13352 } 13353 13354 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13355 { 13356 u32 i, j, k; 13357 13358 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13359 13360 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13361 return; 13362 13363 while (true) { 13364 vcpu->arch.apf.gfns[i] = ~0; 13365 do { 13366 j = kvm_async_pf_next_probe(j); 13367 if (vcpu->arch.apf.gfns[j] == ~0) 13368 return; 13369 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13370 /* 13371 * k lies cyclically in ]i,j] 13372 * | i.k.j | 13373 * |....j i.k.| or |.k..j i...| 13374 */ 13375 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13376 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13377 i = j; 13378 } 13379 } 13380 13381 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13382 { 13383 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13384 13385 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13386 sizeof(reason)); 13387 } 13388 13389 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13390 { 13391 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13392 13393 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13394 &token, offset, sizeof(token)); 13395 } 13396 13397 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13398 { 13399 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13400 u32 val; 13401 13402 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13403 &val, offset, sizeof(val))) 13404 return false; 13405 13406 return !val; 13407 } 13408 13409 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13410 { 13411 13412 if (!kvm_pv_async_pf_enabled(vcpu)) 13413 return false; 13414 13415 if (vcpu->arch.apf.send_user_only && 13416 kvm_x86_call(get_cpl)(vcpu) == 0) 13417 return false; 13418 13419 if (is_guest_mode(vcpu)) { 13420 /* 13421 * L1 needs to opt into the special #PF vmexits that are 13422 * used to deliver async page faults. 13423 */ 13424 return vcpu->arch.apf.delivery_as_pf_vmexit; 13425 } else { 13426 /* 13427 * Play it safe in case the guest temporarily disables paging. 13428 * The real mode IDT in particular is unlikely to have a #PF 13429 * exception setup. 13430 */ 13431 return is_paging(vcpu); 13432 } 13433 } 13434 13435 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13436 { 13437 if (unlikely(!lapic_in_kernel(vcpu) || 13438 kvm_event_needs_reinjection(vcpu) || 13439 kvm_is_exception_pending(vcpu))) 13440 return false; 13441 13442 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13443 return false; 13444 13445 /* 13446 * If interrupts are off we cannot even use an artificial 13447 * halt state. 13448 */ 13449 return kvm_arch_interrupt_allowed(vcpu); 13450 } 13451 13452 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13453 struct kvm_async_pf *work) 13454 { 13455 struct x86_exception fault; 13456 13457 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13458 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13459 13460 if (kvm_can_deliver_async_pf(vcpu) && 13461 !apf_put_user_notpresent(vcpu)) { 13462 fault.vector = PF_VECTOR; 13463 fault.error_code_valid = true; 13464 fault.error_code = 0; 13465 fault.nested_page_fault = false; 13466 fault.address = work->arch.token; 13467 fault.async_page_fault = true; 13468 kvm_inject_page_fault(vcpu, &fault); 13469 return true; 13470 } else { 13471 /* 13472 * It is not possible to deliver a paravirtualized asynchronous 13473 * page fault, but putting the guest in an artificial halt state 13474 * can be beneficial nevertheless: if an interrupt arrives, we 13475 * can deliver it timely and perhaps the guest will schedule 13476 * another process. When the instruction that triggered a page 13477 * fault is retried, hopefully the page will be ready in the host. 13478 */ 13479 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13480 return false; 13481 } 13482 } 13483 13484 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13485 struct kvm_async_pf *work) 13486 { 13487 struct kvm_lapic_irq irq = { 13488 .delivery_mode = APIC_DM_FIXED, 13489 .vector = vcpu->arch.apf.vec 13490 }; 13491 13492 if (work->wakeup_all) 13493 work->arch.token = ~0; /* broadcast wakeup */ 13494 else 13495 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13496 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13497 13498 if ((work->wakeup_all || work->notpresent_injected) && 13499 kvm_pv_async_pf_enabled(vcpu) && 13500 !apf_put_user_ready(vcpu, work->arch.token)) { 13501 vcpu->arch.apf.pageready_pending = true; 13502 kvm_apic_set_irq(vcpu, &irq, NULL); 13503 } 13504 13505 vcpu->arch.apf.halted = false; 13506 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13507 } 13508 13509 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13510 { 13511 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13512 if (!vcpu->arch.apf.pageready_pending) 13513 kvm_vcpu_kick(vcpu); 13514 } 13515 13516 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13517 { 13518 if (!kvm_pv_async_pf_enabled(vcpu)) 13519 return true; 13520 else 13521 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13522 } 13523 13524 void kvm_arch_start_assignment(struct kvm *kvm) 13525 { 13526 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13527 kvm_x86_call(pi_start_assignment)(kvm); 13528 } 13529 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13530 13531 void kvm_arch_end_assignment(struct kvm *kvm) 13532 { 13533 atomic_dec(&kvm->arch.assigned_device_count); 13534 } 13535 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13536 13537 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13538 { 13539 return raw_atomic_read(&kvm->arch.assigned_device_count); 13540 } 13541 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13542 13543 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13544 { 13545 /* 13546 * Non-coherent DMA assignment and de-assignment may affect whether or 13547 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs 13548 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first 13549 * (or last) non-coherent device is (un)registered to so that new SPTEs 13550 * with the correct "ignore guest PAT" setting are created. 13551 */ 13552 if (kvm_mmu_may_ignore_guest_pat()) 13553 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13554 } 13555 13556 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13557 { 13558 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13559 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13560 } 13561 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13562 13563 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13564 { 13565 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13566 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13567 } 13568 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13569 13570 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13571 { 13572 return atomic_read(&kvm->arch.noncoherent_dma_count); 13573 } 13574 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13575 13576 bool kvm_arch_has_irq_bypass(void) 13577 { 13578 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13579 } 13580 13581 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13582 struct irq_bypass_producer *prod) 13583 { 13584 struct kvm_kernel_irqfd *irqfd = 13585 container_of(cons, struct kvm_kernel_irqfd, consumer); 13586 int ret; 13587 13588 irqfd->producer = prod; 13589 kvm_arch_start_assignment(irqfd->kvm); 13590 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13591 prod->irq, irqfd->gsi, 1); 13592 if (ret) 13593 kvm_arch_end_assignment(irqfd->kvm); 13594 13595 return ret; 13596 } 13597 13598 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13599 struct irq_bypass_producer *prod) 13600 { 13601 int ret; 13602 struct kvm_kernel_irqfd *irqfd = 13603 container_of(cons, struct kvm_kernel_irqfd, consumer); 13604 13605 WARN_ON(irqfd->producer != prod); 13606 irqfd->producer = NULL; 13607 13608 /* 13609 * When producer of consumer is unregistered, we change back to 13610 * remapped mode, so we can re-use the current implementation 13611 * when the irq is masked/disabled or the consumer side (KVM 13612 * int this case doesn't want to receive the interrupts. 13613 */ 13614 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13615 prod->irq, irqfd->gsi, 0); 13616 if (ret) 13617 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13618 " fails: %d\n", irqfd->consumer.token, ret); 13619 13620 kvm_arch_end_assignment(irqfd->kvm); 13621 } 13622 13623 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13624 uint32_t guest_irq, bool set) 13625 { 13626 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set); 13627 } 13628 13629 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13630 struct kvm_kernel_irq_routing_entry *new) 13631 { 13632 if (new->type != KVM_IRQ_ROUTING_MSI) 13633 return true; 13634 13635 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13636 } 13637 13638 bool kvm_vector_hashing_enabled(void) 13639 { 13640 return vector_hashing; 13641 } 13642 13643 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13644 { 13645 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13646 } 13647 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13648 13649 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 13650 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order) 13651 { 13652 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order); 13653 } 13654 #endif 13655 13656 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 13657 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 13658 { 13659 kvm_x86_call(gmem_invalidate)(start, end); 13660 } 13661 #endif 13662 13663 int kvm_spec_ctrl_test_value(u64 value) 13664 { 13665 /* 13666 * test that setting IA32_SPEC_CTRL to given value 13667 * is allowed by the host processor 13668 */ 13669 13670 u64 saved_value; 13671 unsigned long flags; 13672 int ret = 0; 13673 13674 local_irq_save(flags); 13675 13676 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13677 ret = 1; 13678 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13679 ret = 1; 13680 else 13681 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13682 13683 local_irq_restore(flags); 13684 13685 return ret; 13686 } 13687 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13688 13689 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13690 { 13691 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13692 struct x86_exception fault; 13693 u64 access = error_code & 13694 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13695 13696 if (!(error_code & PFERR_PRESENT_MASK) || 13697 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13698 /* 13699 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13700 * tables probably do not match the TLB. Just proceed 13701 * with the error code that the processor gave. 13702 */ 13703 fault.vector = PF_VECTOR; 13704 fault.error_code_valid = true; 13705 fault.error_code = error_code; 13706 fault.nested_page_fault = false; 13707 fault.address = gva; 13708 fault.async_page_fault = false; 13709 } 13710 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13711 } 13712 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13713 13714 /* 13715 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13716 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13717 * indicates whether exit to userspace is needed. 13718 */ 13719 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13720 struct x86_exception *e) 13721 { 13722 if (r == X86EMUL_PROPAGATE_FAULT) { 13723 if (KVM_BUG_ON(!e, vcpu->kvm)) 13724 return -EIO; 13725 13726 kvm_inject_emulated_page_fault(vcpu, e); 13727 return 1; 13728 } 13729 13730 /* 13731 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13732 * while handling a VMX instruction KVM could've handled the request 13733 * correctly by exiting to userspace and performing I/O but there 13734 * doesn't seem to be a real use-case behind such requests, just return 13735 * KVM_EXIT_INTERNAL_ERROR for now. 13736 */ 13737 kvm_prepare_emulation_failure_exit(vcpu); 13738 13739 return 0; 13740 } 13741 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13742 13743 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13744 { 13745 bool pcid_enabled; 13746 struct x86_exception e; 13747 struct { 13748 u64 pcid; 13749 u64 gla; 13750 } operand; 13751 int r; 13752 13753 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13754 if (r != X86EMUL_CONTINUE) 13755 return kvm_handle_memory_failure(vcpu, r, &e); 13756 13757 if (operand.pcid >> 12 != 0) { 13758 kvm_inject_gp(vcpu, 0); 13759 return 1; 13760 } 13761 13762 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13763 13764 switch (type) { 13765 case INVPCID_TYPE_INDIV_ADDR: 13766 /* 13767 * LAM doesn't apply to addresses that are inputs to TLB 13768 * invalidation. 13769 */ 13770 if ((!pcid_enabled && (operand.pcid != 0)) || 13771 is_noncanonical_address(operand.gla, vcpu)) { 13772 kvm_inject_gp(vcpu, 0); 13773 return 1; 13774 } 13775 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13776 return kvm_skip_emulated_instruction(vcpu); 13777 13778 case INVPCID_TYPE_SINGLE_CTXT: 13779 if (!pcid_enabled && (operand.pcid != 0)) { 13780 kvm_inject_gp(vcpu, 0); 13781 return 1; 13782 } 13783 13784 kvm_invalidate_pcid(vcpu, operand.pcid); 13785 return kvm_skip_emulated_instruction(vcpu); 13786 13787 case INVPCID_TYPE_ALL_NON_GLOBAL: 13788 /* 13789 * Currently, KVM doesn't mark global entries in the shadow 13790 * page tables, so a non-global flush just degenerates to a 13791 * global flush. If needed, we could optimize this later by 13792 * keeping track of global entries in shadow page tables. 13793 */ 13794 13795 fallthrough; 13796 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13797 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13798 return kvm_skip_emulated_instruction(vcpu); 13799 13800 default: 13801 kvm_inject_gp(vcpu, 0); 13802 return 1; 13803 } 13804 } 13805 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13806 13807 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13808 { 13809 struct kvm_run *run = vcpu->run; 13810 struct kvm_mmio_fragment *frag; 13811 unsigned int len; 13812 13813 BUG_ON(!vcpu->mmio_needed); 13814 13815 /* Complete previous fragment */ 13816 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13817 len = min(8u, frag->len); 13818 if (!vcpu->mmio_is_write) 13819 memcpy(frag->data, run->mmio.data, len); 13820 13821 if (frag->len <= 8) { 13822 /* Switch to the next fragment. */ 13823 frag++; 13824 vcpu->mmio_cur_fragment++; 13825 } else { 13826 /* Go forward to the next mmio piece. */ 13827 frag->data += len; 13828 frag->gpa += len; 13829 frag->len -= len; 13830 } 13831 13832 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13833 vcpu->mmio_needed = 0; 13834 13835 // VMG change, at this point, we're always done 13836 // RIP has already been advanced 13837 return 1; 13838 } 13839 13840 // More MMIO is needed 13841 run->mmio.phys_addr = frag->gpa; 13842 run->mmio.len = min(8u, frag->len); 13843 run->mmio.is_write = vcpu->mmio_is_write; 13844 if (run->mmio.is_write) 13845 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13846 run->exit_reason = KVM_EXIT_MMIO; 13847 13848 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13849 13850 return 0; 13851 } 13852 13853 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13854 void *data) 13855 { 13856 int handled; 13857 struct kvm_mmio_fragment *frag; 13858 13859 if (!data) 13860 return -EINVAL; 13861 13862 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13863 if (handled == bytes) 13864 return 1; 13865 13866 bytes -= handled; 13867 gpa += handled; 13868 data += handled; 13869 13870 /*TODO: Check if need to increment number of frags */ 13871 frag = vcpu->mmio_fragments; 13872 vcpu->mmio_nr_fragments = 1; 13873 frag->len = bytes; 13874 frag->gpa = gpa; 13875 frag->data = data; 13876 13877 vcpu->mmio_needed = 1; 13878 vcpu->mmio_cur_fragment = 0; 13879 13880 vcpu->run->mmio.phys_addr = gpa; 13881 vcpu->run->mmio.len = min(8u, frag->len); 13882 vcpu->run->mmio.is_write = 1; 13883 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13884 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13885 13886 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13887 13888 return 0; 13889 } 13890 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13891 13892 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13893 void *data) 13894 { 13895 int handled; 13896 struct kvm_mmio_fragment *frag; 13897 13898 if (!data) 13899 return -EINVAL; 13900 13901 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13902 if (handled == bytes) 13903 return 1; 13904 13905 bytes -= handled; 13906 gpa += handled; 13907 data += handled; 13908 13909 /*TODO: Check if need to increment number of frags */ 13910 frag = vcpu->mmio_fragments; 13911 vcpu->mmio_nr_fragments = 1; 13912 frag->len = bytes; 13913 frag->gpa = gpa; 13914 frag->data = data; 13915 13916 vcpu->mmio_needed = 1; 13917 vcpu->mmio_cur_fragment = 0; 13918 13919 vcpu->run->mmio.phys_addr = gpa; 13920 vcpu->run->mmio.len = min(8u, frag->len); 13921 vcpu->run->mmio.is_write = 0; 13922 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13923 13924 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13925 13926 return 0; 13927 } 13928 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13929 13930 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13931 { 13932 vcpu->arch.sev_pio_count -= count; 13933 vcpu->arch.sev_pio_data += count * size; 13934 } 13935 13936 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13937 unsigned int port); 13938 13939 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13940 { 13941 int size = vcpu->arch.pio.size; 13942 int port = vcpu->arch.pio.port; 13943 13944 vcpu->arch.pio.count = 0; 13945 if (vcpu->arch.sev_pio_count) 13946 return kvm_sev_es_outs(vcpu, size, port); 13947 return 1; 13948 } 13949 13950 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13951 unsigned int port) 13952 { 13953 for (;;) { 13954 unsigned int count = 13955 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13956 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13957 13958 /* memcpy done already by emulator_pio_out. */ 13959 advance_sev_es_emulated_pio(vcpu, count, size); 13960 if (!ret) 13961 break; 13962 13963 /* Emulation done by the kernel. */ 13964 if (!vcpu->arch.sev_pio_count) 13965 return 1; 13966 } 13967 13968 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13969 return 0; 13970 } 13971 13972 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13973 unsigned int port); 13974 13975 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13976 { 13977 unsigned count = vcpu->arch.pio.count; 13978 int size = vcpu->arch.pio.size; 13979 int port = vcpu->arch.pio.port; 13980 13981 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13982 advance_sev_es_emulated_pio(vcpu, count, size); 13983 if (vcpu->arch.sev_pio_count) 13984 return kvm_sev_es_ins(vcpu, size, port); 13985 return 1; 13986 } 13987 13988 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13989 unsigned int port) 13990 { 13991 for (;;) { 13992 unsigned int count = 13993 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13994 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13995 break; 13996 13997 /* Emulation done by the kernel. */ 13998 advance_sev_es_emulated_pio(vcpu, count, size); 13999 if (!vcpu->arch.sev_pio_count) 14000 return 1; 14001 } 14002 14003 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 14004 return 0; 14005 } 14006 14007 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 14008 unsigned int port, void *data, unsigned int count, 14009 int in) 14010 { 14011 vcpu->arch.sev_pio_data = data; 14012 vcpu->arch.sev_pio_count = count; 14013 return in ? kvm_sev_es_ins(vcpu, size, port) 14014 : kvm_sev_es_outs(vcpu, size, port); 14015 } 14016 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 14017 14018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 14019 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 14020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 14021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 14022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 14023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 14024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 14025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 14026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 14027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 14028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 14029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 14030 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 14031 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 14032 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 14033 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 14034 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 14035 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 14036 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 14037 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 14038 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 14039 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 14040 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 14041 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 14042 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 14043 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 14044 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 14045 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 14046 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 14047 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault); 14048 14049 static int __init kvm_x86_init(void) 14050 { 14051 kvm_mmu_x86_module_init(); 14052 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 14053 return 0; 14054 } 14055 module_init(kvm_x86_init); 14056 14057 static void __exit kvm_x86_exit(void) 14058 { 14059 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 14060 } 14061 module_exit(kvm_x86_exit); 14062
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.