~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kvm/x86.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Kernel-based Virtual Machine driver for Linux
  4  *
  5  * derived from drivers/kvm/kvm_main.c
  6  *
  7  * Copyright (C) 2006 Qumranet, Inc.
  8  * Copyright (C) 2008 Qumranet, Inc.
  9  * Copyright IBM Corporation, 2008
 10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 11  *
 12  * Authors:
 13  *   Avi Kivity   <avi@qumranet.com>
 14  *   Yaniv Kamay  <yaniv@qumranet.com>
 15  *   Amit Shah    <amit.shah@qumranet.com>
 16  *   Ben-Ami Yassour <benami@il.ibm.com>
 17  */
 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 19 
 20 #include <linux/kvm_host.h>
 21 #include "irq.h"
 22 #include "ioapic.h"
 23 #include "mmu.h"
 24 #include "i8254.h"
 25 #include "tss.h"
 26 #include "kvm_cache_regs.h"
 27 #include "kvm_emulate.h"
 28 #include "mmu/page_track.h"
 29 #include "x86.h"
 30 #include "cpuid.h"
 31 #include "pmu.h"
 32 #include "hyperv.h"
 33 #include "lapic.h"
 34 #include "xen.h"
 35 #include "smm.h"
 36 
 37 #include <linux/clocksource.h>
 38 #include <linux/interrupt.h>
 39 #include <linux/kvm.h>
 40 #include <linux/fs.h>
 41 #include <linux/vmalloc.h>
 42 #include <linux/export.h>
 43 #include <linux/moduleparam.h>
 44 #include <linux/mman.h>
 45 #include <linux/highmem.h>
 46 #include <linux/iommu.h>
 47 #include <linux/cpufreq.h>
 48 #include <linux/user-return-notifier.h>
 49 #include <linux/srcu.h>
 50 #include <linux/slab.h>
 51 #include <linux/perf_event.h>
 52 #include <linux/uaccess.h>
 53 #include <linux/hash.h>
 54 #include <linux/pci.h>
 55 #include <linux/timekeeper_internal.h>
 56 #include <linux/pvclock_gtod.h>
 57 #include <linux/kvm_irqfd.h>
 58 #include <linux/irqbypass.h>
 59 #include <linux/sched/stat.h>
 60 #include <linux/sched/isolation.h>
 61 #include <linux/mem_encrypt.h>
 62 #include <linux/entry-kvm.h>
 63 #include <linux/suspend.h>
 64 #include <linux/smp.h>
 65 
 66 #include <trace/events/ipi.h>
 67 #include <trace/events/kvm.h>
 68 
 69 #include <asm/debugreg.h>
 70 #include <asm/msr.h>
 71 #include <asm/desc.h>
 72 #include <asm/mce.h>
 73 #include <asm/pkru.h>
 74 #include <linux/kernel_stat.h>
 75 #include <asm/fpu/api.h>
 76 #include <asm/fpu/xcr.h>
 77 #include <asm/fpu/xstate.h>
 78 #include <asm/pvclock.h>
 79 #include <asm/div64.h>
 80 #include <asm/irq_remapping.h>
 81 #include <asm/mshyperv.h>
 82 #include <asm/hypervisor.h>
 83 #include <asm/tlbflush.h>
 84 #include <asm/intel_pt.h>
 85 #include <asm/emulate_prefix.h>
 86 #include <asm/sgx.h>
 87 #include <clocksource/hyperv_timer.h>
 88 
 89 #define CREATE_TRACE_POINTS
 90 #include "trace.h"
 91 
 92 #define MAX_IO_MSRS 256
 93 #define KVM_MAX_MCE_BANKS 32
 94 
 95 /*
 96  * Note, kvm_caps fields should *never* have default values, all fields must be
 97  * recomputed from scratch during vendor module load, e.g. to account for a
 98  * vendor module being reloaded with different module parameters.
 99  */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102 
103 struct kvm_host_values kvm_host __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_host);
105 
106 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
107 
108 #define emul_to_vcpu(ctxt) \
109         ((struct kvm_vcpu *)(ctxt)->vcpu)
110 
111 /* EFER defaults:
112  * - enable syscall per default because its emulated by KVM
113  * - enable LME and LMA per default on 64 bit KVM
114  */
115 #ifdef CONFIG_X86_64
116 static
117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118 #else
119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120 #endif
121 
122 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
123 
124 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
125 
126 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
127 
128 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
129                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
130 
131 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
132 static void process_nmi(struct kvm_vcpu *vcpu);
133 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
134 static void store_regs(struct kvm_vcpu *vcpu);
135 static int sync_regs(struct kvm_vcpu *vcpu);
136 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
137 
138 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
139 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
140 
141 static DEFINE_MUTEX(vendor_module_lock);
142 struct kvm_x86_ops kvm_x86_ops __read_mostly;
143 
144 #define KVM_X86_OP(func)                                             \
145         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
146                                 *(((struct kvm_x86_ops *)0)->func));
147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
149 #include <asm/kvm-x86-ops.h>
150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
152 
153 static bool __read_mostly ignore_msrs = 0;
154 module_param(ignore_msrs, bool, 0644);
155 
156 bool __read_mostly report_ignored_msrs = true;
157 module_param(report_ignored_msrs, bool, 0644);
158 EXPORT_SYMBOL_GPL(report_ignored_msrs);
159 
160 unsigned int min_timer_period_us = 200;
161 module_param(min_timer_period_us, uint, 0644);
162 
163 static bool __read_mostly kvmclock_periodic_sync = true;
164 module_param(kvmclock_periodic_sync, bool, 0444);
165 
166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167 static u32 __read_mostly tsc_tolerance_ppm = 250;
168 module_param(tsc_tolerance_ppm, uint, 0644);
169 
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, 0444);
172 
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, 0444);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176 
177 /*
178  * Flags to manipulate forced emulation behavior (any non-zero value will
179  * enable forced emulation).
180  */
181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
182 static int __read_mostly force_emulation_prefix;
183 module_param(force_emulation_prefix, int, 0644);
184 
185 int __read_mostly pi_inject_timer = -1;
186 module_param(pi_inject_timer, bint, 0644);
187 
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu = true;
190 EXPORT_SYMBOL_GPL(enable_pmu);
191 module_param(enable_pmu, bool, 0444);
192 
193 bool __read_mostly eager_page_split = true;
194 module_param(eager_page_split, bool, 0644);
195 
196 /* Enable/disable SMT_RSB bug mitigation */
197 static bool __read_mostly mitigate_smt_rsb;
198 module_param(mitigate_smt_rsb, bool, 0444);
199 
200 /*
201  * Restoring the host value for MSRs that are only consumed when running in
202  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
203  * returns to userspace, i.e. the kernel can run with the guest's value.
204  */
205 #define KVM_MAX_NR_USER_RETURN_MSRS 16
206 
207 struct kvm_user_return_msrs {
208         struct user_return_notifier urn;
209         bool registered;
210         struct kvm_user_return_msr_values {
211                 u64 host;
212                 u64 curr;
213         } values[KVM_MAX_NR_USER_RETURN_MSRS];
214 };
215 
216 u32 __read_mostly kvm_nr_uret_msrs;
217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
219 static struct kvm_user_return_msrs __percpu *user_return_msrs;
220 
221 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
222                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
223                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
224                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
225 
226 bool __read_mostly allow_smaller_maxphyaddr = 0;
227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
228 
229 bool __read_mostly enable_apicv = true;
230 EXPORT_SYMBOL_GPL(enable_apicv);
231 
232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
233         KVM_GENERIC_VM_STATS(),
234         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
235         STATS_DESC_COUNTER(VM, mmu_pte_write),
236         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
237         STATS_DESC_COUNTER(VM, mmu_flooded),
238         STATS_DESC_COUNTER(VM, mmu_recycled),
239         STATS_DESC_COUNTER(VM, mmu_cache_miss),
240         STATS_DESC_ICOUNTER(VM, mmu_unsync),
241         STATS_DESC_ICOUNTER(VM, pages_4k),
242         STATS_DESC_ICOUNTER(VM, pages_2m),
243         STATS_DESC_ICOUNTER(VM, pages_1g),
244         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
245         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
246         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
247 };
248 
249 const struct kvm_stats_header kvm_vm_stats_header = {
250         .name_size = KVM_STATS_NAME_SIZE,
251         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
252         .id_offset = sizeof(struct kvm_stats_header),
253         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
254         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
255                        sizeof(kvm_vm_stats_desc),
256 };
257 
258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
259         KVM_GENERIC_VCPU_STATS(),
260         STATS_DESC_COUNTER(VCPU, pf_taken),
261         STATS_DESC_COUNTER(VCPU, pf_fixed),
262         STATS_DESC_COUNTER(VCPU, pf_emulate),
263         STATS_DESC_COUNTER(VCPU, pf_spurious),
264         STATS_DESC_COUNTER(VCPU, pf_fast),
265         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
266         STATS_DESC_COUNTER(VCPU, pf_guest),
267         STATS_DESC_COUNTER(VCPU, tlb_flush),
268         STATS_DESC_COUNTER(VCPU, invlpg),
269         STATS_DESC_COUNTER(VCPU, exits),
270         STATS_DESC_COUNTER(VCPU, io_exits),
271         STATS_DESC_COUNTER(VCPU, mmio_exits),
272         STATS_DESC_COUNTER(VCPU, signal_exits),
273         STATS_DESC_COUNTER(VCPU, irq_window_exits),
274         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275         STATS_DESC_COUNTER(VCPU, l1d_flush),
276         STATS_DESC_COUNTER(VCPU, halt_exits),
277         STATS_DESC_COUNTER(VCPU, request_irq_exits),
278         STATS_DESC_COUNTER(VCPU, irq_exits),
279         STATS_DESC_COUNTER(VCPU, host_state_reload),
280         STATS_DESC_COUNTER(VCPU, fpu_reload),
281         STATS_DESC_COUNTER(VCPU, insn_emulation),
282         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283         STATS_DESC_COUNTER(VCPU, hypercalls),
284         STATS_DESC_COUNTER(VCPU, irq_injections),
285         STATS_DESC_COUNTER(VCPU, nmi_injections),
286         STATS_DESC_COUNTER(VCPU, req_event),
287         STATS_DESC_COUNTER(VCPU, nested_run),
288         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290         STATS_DESC_COUNTER(VCPU, preemption_reported),
291         STATS_DESC_COUNTER(VCPU, preemption_other),
292         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
293         STATS_DESC_COUNTER(VCPU, notify_window_exits),
294 };
295 
296 const struct kvm_stats_header kvm_vcpu_stats_header = {
297         .name_size = KVM_STATS_NAME_SIZE,
298         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
299         .id_offset = sizeof(struct kvm_stats_header),
300         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
301         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
302                        sizeof(kvm_vcpu_stats_desc),
303 };
304 
305 static struct kmem_cache *x86_emulator_cache;
306 
307 /*
308  * When called, it means the previous get/set msr reached an invalid msr.
309  * Return true if we want to ignore/silent this failed msr access.
310  */
311 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
312 {
313         const char *op = write ? "wrmsr" : "rdmsr";
314 
315         if (ignore_msrs) {
316                 if (report_ignored_msrs)
317                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
318                                       op, msr, data);
319                 /* Mask the error */
320                 return true;
321         } else {
322                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
323                                       op, msr, data);
324                 return false;
325         }
326 }
327 
328 static struct kmem_cache *kvm_alloc_emulator_cache(void)
329 {
330         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
331         unsigned int size = sizeof(struct x86_emulate_ctxt);
332 
333         return kmem_cache_create_usercopy("x86_emulator", size,
334                                           __alignof__(struct x86_emulate_ctxt),
335                                           SLAB_ACCOUNT, useroffset,
336                                           size - useroffset, NULL);
337 }
338 
339 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
340 
341 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
342 {
343         int i;
344         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
345                 vcpu->arch.apf.gfns[i] = ~0;
346 }
347 
348 static void kvm_on_user_return(struct user_return_notifier *urn)
349 {
350         unsigned slot;
351         struct kvm_user_return_msrs *msrs
352                 = container_of(urn, struct kvm_user_return_msrs, urn);
353         struct kvm_user_return_msr_values *values;
354         unsigned long flags;
355 
356         /*
357          * Disabling irqs at this point since the following code could be
358          * interrupted and executed through kvm_arch_hardware_disable()
359          */
360         local_irq_save(flags);
361         if (msrs->registered) {
362                 msrs->registered = false;
363                 user_return_notifier_unregister(urn);
364         }
365         local_irq_restore(flags);
366         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
367                 values = &msrs->values[slot];
368                 if (values->host != values->curr) {
369                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
370                         values->curr = values->host;
371                 }
372         }
373 }
374 
375 static int kvm_probe_user_return_msr(u32 msr)
376 {
377         u64 val;
378         int ret;
379 
380         preempt_disable();
381         ret = rdmsrl_safe(msr, &val);
382         if (ret)
383                 goto out;
384         ret = wrmsrl_safe(msr, val);
385 out:
386         preempt_enable();
387         return ret;
388 }
389 
390 int kvm_add_user_return_msr(u32 msr)
391 {
392         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
393 
394         if (kvm_probe_user_return_msr(msr))
395                 return -1;
396 
397         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
398         return kvm_nr_uret_msrs++;
399 }
400 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
401 
402 int kvm_find_user_return_msr(u32 msr)
403 {
404         int i;
405 
406         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
407                 if (kvm_uret_msrs_list[i] == msr)
408                         return i;
409         }
410         return -1;
411 }
412 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
413 
414 static void kvm_user_return_msr_cpu_online(void)
415 {
416         unsigned int cpu = smp_processor_id();
417         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
418         u64 value;
419         int i;
420 
421         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
422                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
423                 msrs->values[i].host = value;
424                 msrs->values[i].curr = value;
425         }
426 }
427 
428 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
429 {
430         struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
431         int err;
432 
433         value = (value & mask) | (msrs->values[slot].host & ~mask);
434         if (value == msrs->values[slot].curr)
435                 return 0;
436         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
437         if (err)
438                 return 1;
439 
440         msrs->values[slot].curr = value;
441         if (!msrs->registered) {
442                 msrs->urn.on_user_return = kvm_on_user_return;
443                 user_return_notifier_register(&msrs->urn);
444                 msrs->registered = true;
445         }
446         return 0;
447 }
448 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
449 
450 static void drop_user_return_notifiers(void)
451 {
452         struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
453 
454         if (msrs->registered)
455                 kvm_on_user_return(&msrs->urn);
456 }
457 
458 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
459 {
460         return vcpu->arch.apic_base;
461 }
462 
463 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
464 {
465         return kvm_apic_mode(kvm_get_apic_base(vcpu));
466 }
467 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
468 
469 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
470 {
471         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
472         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
473         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
474                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
475 
476         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
477                 return 1;
478         if (!msr_info->host_initiated) {
479                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
480                         return 1;
481                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
482                         return 1;
483         }
484 
485         kvm_lapic_set_base(vcpu, msr_info->data);
486         kvm_recalculate_apic_map(vcpu->kvm);
487         return 0;
488 }
489 
490 /*
491  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
492  *
493  * Hardware virtualization extension instructions may fault if a reboot turns
494  * off virtualization while processes are running.  Usually after catching the
495  * fault we just panic; during reboot instead the instruction is ignored.
496  */
497 noinstr void kvm_spurious_fault(void)
498 {
499         /* Fault while not rebooting.  We want the trace. */
500         BUG_ON(!kvm_rebooting);
501 }
502 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
503 
504 #define EXCPT_BENIGN            0
505 #define EXCPT_CONTRIBUTORY      1
506 #define EXCPT_PF                2
507 
508 static int exception_class(int vector)
509 {
510         switch (vector) {
511         case PF_VECTOR:
512                 return EXCPT_PF;
513         case DE_VECTOR:
514         case TS_VECTOR:
515         case NP_VECTOR:
516         case SS_VECTOR:
517         case GP_VECTOR:
518                 return EXCPT_CONTRIBUTORY;
519         default:
520                 break;
521         }
522         return EXCPT_BENIGN;
523 }
524 
525 #define EXCPT_FAULT             0
526 #define EXCPT_TRAP              1
527 #define EXCPT_ABORT             2
528 #define EXCPT_INTERRUPT         3
529 #define EXCPT_DB                4
530 
531 static int exception_type(int vector)
532 {
533         unsigned int mask;
534 
535         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
536                 return EXCPT_INTERRUPT;
537 
538         mask = 1 << vector;
539 
540         /*
541          * #DBs can be trap-like or fault-like, the caller must check other CPU
542          * state, e.g. DR6, to determine whether a #DB is a trap or fault.
543          */
544         if (mask & (1 << DB_VECTOR))
545                 return EXCPT_DB;
546 
547         if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
548                 return EXCPT_TRAP;
549 
550         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
551                 return EXCPT_ABORT;
552 
553         /* Reserved exceptions will result in fault */
554         return EXCPT_FAULT;
555 }
556 
557 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
558                                    struct kvm_queued_exception *ex)
559 {
560         if (!ex->has_payload)
561                 return;
562 
563         switch (ex->vector) {
564         case DB_VECTOR:
565                 /*
566                  * "Certain debug exceptions may clear bit 0-3.  The
567                  * remaining contents of the DR6 register are never
568                  * cleared by the processor".
569                  */
570                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
571                 /*
572                  * In order to reflect the #DB exception payload in guest
573                  * dr6, three components need to be considered: active low
574                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
575                  * DR6_BS and DR6_BT)
576                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
577                  * In the target guest dr6:
578                  * FIXED_1 bits should always be set.
579                  * Active low bits should be cleared if 1-setting in payload.
580                  * Active high bits should be set if 1-setting in payload.
581                  *
582                  * Note, the payload is compatible with the pending debug
583                  * exceptions/exit qualification under VMX, that active_low bits
584                  * are active high in payload.
585                  * So they need to be flipped for DR6.
586                  */
587                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
588                 vcpu->arch.dr6 |= ex->payload;
589                 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
590 
591                 /*
592                  * The #DB payload is defined as compatible with the 'pending
593                  * debug exceptions' field under VMX, not DR6. While bit 12 is
594                  * defined in the 'pending debug exceptions' field (enabled
595                  * breakpoint), it is reserved and must be zero in DR6.
596                  */
597                 vcpu->arch.dr6 &= ~BIT(12);
598                 break;
599         case PF_VECTOR:
600                 vcpu->arch.cr2 = ex->payload;
601                 break;
602         }
603 
604         ex->has_payload = false;
605         ex->payload = 0;
606 }
607 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
608 
609 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
610                                        bool has_error_code, u32 error_code,
611                                        bool has_payload, unsigned long payload)
612 {
613         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
614 
615         ex->vector = vector;
616         ex->injected = false;
617         ex->pending = true;
618         ex->has_error_code = has_error_code;
619         ex->error_code = error_code;
620         ex->has_payload = has_payload;
621         ex->payload = payload;
622 }
623 
624 /* Forcibly leave the nested mode in cases like a vCPU reset */
625 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
626 {
627         kvm_x86_ops.nested_ops->leave_nested(vcpu);
628 }
629 
630 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
631                 unsigned nr, bool has_error, u32 error_code,
632                 bool has_payload, unsigned long payload, bool reinject)
633 {
634         u32 prev_nr;
635         int class1, class2;
636 
637         kvm_make_request(KVM_REQ_EVENT, vcpu);
638 
639         /*
640          * If the exception is destined for L2 and isn't being reinjected,
641          * morph it to a VM-Exit if L1 wants to intercept the exception.  A
642          * previously injected exception is not checked because it was checked
643          * when it was original queued, and re-checking is incorrect if _L1_
644          * injected the exception, in which case it's exempt from interception.
645          */
646         if (!reinject && is_guest_mode(vcpu) &&
647             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
648                 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
649                                            has_payload, payload);
650                 return;
651         }
652 
653         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
654         queue:
655                 if (reinject) {
656                         /*
657                          * On VM-Entry, an exception can be pending if and only
658                          * if event injection was blocked by nested_run_pending.
659                          * In that case, however, vcpu_enter_guest() requests an
660                          * immediate exit, and the guest shouldn't proceed far
661                          * enough to need reinjection.
662                          */
663                         WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
664                         vcpu->arch.exception.injected = true;
665                         if (WARN_ON_ONCE(has_payload)) {
666                                 /*
667                                  * A reinjected event has already
668                                  * delivered its payload.
669                                  */
670                                 has_payload = false;
671                                 payload = 0;
672                         }
673                 } else {
674                         vcpu->arch.exception.pending = true;
675                         vcpu->arch.exception.injected = false;
676                 }
677                 vcpu->arch.exception.has_error_code = has_error;
678                 vcpu->arch.exception.vector = nr;
679                 vcpu->arch.exception.error_code = error_code;
680                 vcpu->arch.exception.has_payload = has_payload;
681                 vcpu->arch.exception.payload = payload;
682                 if (!is_guest_mode(vcpu))
683                         kvm_deliver_exception_payload(vcpu,
684                                                       &vcpu->arch.exception);
685                 return;
686         }
687 
688         /* to check exception */
689         prev_nr = vcpu->arch.exception.vector;
690         if (prev_nr == DF_VECTOR) {
691                 /* triple fault -> shutdown */
692                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
693                 return;
694         }
695         class1 = exception_class(prev_nr);
696         class2 = exception_class(nr);
697         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
698             (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
699                 /*
700                  * Synthesize #DF.  Clear the previously injected or pending
701                  * exception so as not to incorrectly trigger shutdown.
702                  */
703                 vcpu->arch.exception.injected = false;
704                 vcpu->arch.exception.pending = false;
705 
706                 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
707         } else {
708                 /* replace previous exception with a new one in a hope
709                    that instruction re-execution will regenerate lost
710                    exception */
711                 goto queue;
712         }
713 }
714 
715 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
716 {
717         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
718 }
719 EXPORT_SYMBOL_GPL(kvm_queue_exception);
720 
721 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
722 {
723         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
724 }
725 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
726 
727 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
728                            unsigned long payload)
729 {
730         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
731 }
732 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
733 
734 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
735                                     u32 error_code, unsigned long payload)
736 {
737         kvm_multiple_exception(vcpu, nr, true, error_code,
738                                true, payload, false);
739 }
740 
741 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
742 {
743         if (err)
744                 kvm_inject_gp(vcpu, 0);
745         else
746                 return kvm_skip_emulated_instruction(vcpu);
747 
748         return 1;
749 }
750 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
751 
752 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
753 {
754         if (err) {
755                 kvm_inject_gp(vcpu, 0);
756                 return 1;
757         }
758 
759         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
760                                        EMULTYPE_COMPLETE_USER_EXIT);
761 }
762 
763 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
764 {
765         ++vcpu->stat.pf_guest;
766 
767         /*
768          * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
769          * whether or not L1 wants to intercept "regular" #PF.
770          */
771         if (is_guest_mode(vcpu) && fault->async_page_fault)
772                 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
773                                            true, fault->error_code,
774                                            true, fault->address);
775         else
776                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
777                                         fault->address);
778 }
779 
780 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
781                                     struct x86_exception *fault)
782 {
783         struct kvm_mmu *fault_mmu;
784         WARN_ON_ONCE(fault->vector != PF_VECTOR);
785 
786         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
787                                                vcpu->arch.walk_mmu;
788 
789         /*
790          * Invalidate the TLB entry for the faulting address, if it exists,
791          * else the access will fault indefinitely (and to emulate hardware).
792          */
793         if ((fault->error_code & PFERR_PRESENT_MASK) &&
794             !(fault->error_code & PFERR_RSVD_MASK))
795                 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
796                                         KVM_MMU_ROOT_CURRENT);
797 
798         fault_mmu->inject_page_fault(vcpu, fault);
799 }
800 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
801 
802 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
803 {
804         atomic_inc(&vcpu->arch.nmi_queued);
805         kvm_make_request(KVM_REQ_NMI, vcpu);
806 }
807 
808 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
809 {
810         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
811 }
812 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
813 
814 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
815 {
816         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
817 }
818 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
819 
820 /*
821  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
822  * a #GP and return false.
823  */
824 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
825 {
826         if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
827                 return true;
828         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
829         return false;
830 }
831 
832 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
833 {
834         if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
835                 return true;
836 
837         kvm_queue_exception(vcpu, UD_VECTOR);
838         return false;
839 }
840 EXPORT_SYMBOL_GPL(kvm_require_dr);
841 
842 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
843 {
844         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
845 }
846 
847 /*
848  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
849  */
850 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
851 {
852         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
853         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
854         gpa_t real_gpa;
855         int i;
856         int ret;
857         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
858 
859         /*
860          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
861          * to an L1 GPA.
862          */
863         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
864                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
865         if (real_gpa == INVALID_GPA)
866                 return 0;
867 
868         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
869         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
870                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
871         if (ret < 0)
872                 return 0;
873 
874         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
875                 if ((pdpte[i] & PT_PRESENT_MASK) &&
876                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
877                         return 0;
878                 }
879         }
880 
881         /*
882          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
883          * Shadow page roots need to be reconstructed instead.
884          */
885         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
886                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
887 
888         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
889         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
890         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
891         vcpu->arch.pdptrs_from_userspace = false;
892 
893         return 1;
894 }
895 EXPORT_SYMBOL_GPL(load_pdptrs);
896 
897 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
898 {
899 #ifdef CONFIG_X86_64
900         if (cr0 & 0xffffffff00000000UL)
901                 return false;
902 #endif
903 
904         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
905                 return false;
906 
907         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
908                 return false;
909 
910         return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
911 }
912 
913 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
914 {
915         /*
916          * CR0.WP is incorporated into the MMU role, but only for non-nested,
917          * indirect shadow MMUs.  If paging is disabled, no updates are needed
918          * as there are no permission bits to emulate.  If TDP is enabled, the
919          * MMU's metadata needs to be updated, e.g. so that emulating guest
920          * translations does the right thing, but there's no need to unload the
921          * root as CR0.WP doesn't affect SPTEs.
922          */
923         if ((cr0 ^ old_cr0) == X86_CR0_WP) {
924                 if (!(cr0 & X86_CR0_PG))
925                         return;
926 
927                 if (tdp_enabled) {
928                         kvm_init_mmu(vcpu);
929                         return;
930                 }
931         }
932 
933         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
934                 kvm_clear_async_pf_completion_queue(vcpu);
935                 kvm_async_pf_hash_reset(vcpu);
936 
937                 /*
938                  * Clearing CR0.PG is defined to flush the TLB from the guest's
939                  * perspective.
940                  */
941                 if (!(cr0 & X86_CR0_PG))
942                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
943         }
944 
945         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
946                 kvm_mmu_reset_context(vcpu);
947 }
948 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
949 
950 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
951 {
952         unsigned long old_cr0 = kvm_read_cr0(vcpu);
953 
954         if (!kvm_is_valid_cr0(vcpu, cr0))
955                 return 1;
956 
957         cr0 |= X86_CR0_ET;
958 
959         /* Write to CR0 reserved bits are ignored, even on Intel. */
960         cr0 &= ~CR0_RESERVED_BITS;
961 
962 #ifdef CONFIG_X86_64
963         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
964             (cr0 & X86_CR0_PG)) {
965                 int cs_db, cs_l;
966 
967                 if (!is_pae(vcpu))
968                         return 1;
969                 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
970                 if (cs_l)
971                         return 1;
972         }
973 #endif
974         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
975             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
976             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
977                 return 1;
978 
979         if (!(cr0 & X86_CR0_PG) &&
980             (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
981                 return 1;
982 
983         kvm_x86_call(set_cr0)(vcpu, cr0);
984 
985         kvm_post_set_cr0(vcpu, old_cr0, cr0);
986 
987         return 0;
988 }
989 EXPORT_SYMBOL_GPL(kvm_set_cr0);
990 
991 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
992 {
993         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
994 }
995 EXPORT_SYMBOL_GPL(kvm_lmsw);
996 
997 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
998 {
999         if (vcpu->arch.guest_state_protected)
1000                 return;
1001 
1002         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1003 
1004                 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1005                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1006 
1007                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1008                     vcpu->arch.ia32_xss != kvm_host.xss)
1009                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1010         }
1011 
1012         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1013             vcpu->arch.pkru != vcpu->arch.host_pkru &&
1014             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1015              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1016                 write_pkru(vcpu->arch.pkru);
1017 }
1018 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1019 
1020 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1021 {
1022         if (vcpu->arch.guest_state_protected)
1023                 return;
1024 
1025         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1026             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1027              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1028                 vcpu->arch.pkru = rdpkru();
1029                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1030                         write_pkru(vcpu->arch.host_pkru);
1031         }
1032 
1033         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1034 
1035                 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1036                         xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1037 
1038                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1039                     vcpu->arch.ia32_xss != kvm_host.xss)
1040                         wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1041         }
1042 
1043 }
1044 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1045 
1046 #ifdef CONFIG_X86_64
1047 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1048 {
1049         return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1050 }
1051 #endif
1052 
1053 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1054 {
1055         u64 xcr0 = xcr;
1056         u64 old_xcr0 = vcpu->arch.xcr0;
1057         u64 valid_bits;
1058 
1059         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1060         if (index != XCR_XFEATURE_ENABLED_MASK)
1061                 return 1;
1062         if (!(xcr0 & XFEATURE_MASK_FP))
1063                 return 1;
1064         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1065                 return 1;
1066 
1067         /*
1068          * Do not allow the guest to set bits that we do not support
1069          * saving.  However, xcr0 bit 0 is always set, even if the
1070          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1071          */
1072         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1073         if (xcr0 & ~valid_bits)
1074                 return 1;
1075 
1076         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1077             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1078                 return 1;
1079 
1080         if (xcr0 & XFEATURE_MASK_AVX512) {
1081                 if (!(xcr0 & XFEATURE_MASK_YMM))
1082                         return 1;
1083                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1084                         return 1;
1085         }
1086 
1087         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1088             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1089                 return 1;
1090 
1091         vcpu->arch.xcr0 = xcr0;
1092 
1093         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1094                 kvm_update_cpuid_runtime(vcpu);
1095         return 0;
1096 }
1097 
1098 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1099 {
1100         /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1101         if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1102             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1103                 kvm_inject_gp(vcpu, 0);
1104                 return 1;
1105         }
1106 
1107         return kvm_skip_emulated_instruction(vcpu);
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1110 
1111 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1112 {
1113         if (cr4 & cr4_reserved_bits)
1114                 return false;
1115 
1116         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1117                 return false;
1118 
1119         return true;
1120 }
1121 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1122 
1123 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1124 {
1125         return __kvm_is_valid_cr4(vcpu, cr4) &&
1126                kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1127 }
1128 
1129 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1130 {
1131         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1132                 kvm_mmu_reset_context(vcpu);
1133 
1134         /*
1135          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1136          * according to the SDM; however, stale prev_roots could be reused
1137          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1138          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1139          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1140          * so fall through.
1141          */
1142         if (!tdp_enabled &&
1143             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1144                 kvm_mmu_unload(vcpu);
1145 
1146         /*
1147          * The TLB has to be flushed for all PCIDs if any of the following
1148          * (architecturally required) changes happen:
1149          * - CR4.PCIDE is changed from 1 to 0
1150          * - CR4.PGE is toggled
1151          *
1152          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1153          */
1154         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1155             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1156                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1157 
1158         /*
1159          * The TLB has to be flushed for the current PCID if any of the
1160          * following (architecturally required) changes happen:
1161          * - CR4.SMEP is changed from 0 to 1
1162          * - CR4.PAE is toggled
1163          */
1164         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1165                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1166                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1167 
1168 }
1169 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1170 
1171 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1172 {
1173         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1174 
1175         if (!kvm_is_valid_cr4(vcpu, cr4))
1176                 return 1;
1177 
1178         if (is_long_mode(vcpu)) {
1179                 if (!(cr4 & X86_CR4_PAE))
1180                         return 1;
1181                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1182                         return 1;
1183         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1184                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1185                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1186                 return 1;
1187 
1188         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1189                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1190                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1191                         return 1;
1192         }
1193 
1194         kvm_x86_call(set_cr4)(vcpu, cr4);
1195 
1196         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1197 
1198         return 0;
1199 }
1200 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1201 
1202 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1203 {
1204         struct kvm_mmu *mmu = vcpu->arch.mmu;
1205         unsigned long roots_to_free = 0;
1206         int i;
1207 
1208         /*
1209          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1210          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1211          * also via the emulator.  KVM's TDP page tables are not in the scope of
1212          * the invalidation, but the guest's TLB entries need to be flushed as
1213          * the CPU may have cached entries in its TLB for the target PCID.
1214          */
1215         if (unlikely(tdp_enabled)) {
1216                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1217                 return;
1218         }
1219 
1220         /*
1221          * If neither the current CR3 nor any of the prev_roots use the given
1222          * PCID, then nothing needs to be done here because a resync will
1223          * happen anyway before switching to any other CR3.
1224          */
1225         if (kvm_get_active_pcid(vcpu) == pcid) {
1226                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1227                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1228         }
1229 
1230         /*
1231          * If PCID is disabled, there is no need to free prev_roots even if the
1232          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1233          * with PCIDE=0.
1234          */
1235         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1236                 return;
1237 
1238         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1239                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1240                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1241 
1242         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1243 }
1244 
1245 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1246 {
1247         bool skip_tlb_flush = false;
1248         unsigned long pcid = 0;
1249 #ifdef CONFIG_X86_64
1250         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1251                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1252                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1253                 pcid = cr3 & X86_CR3_PCID_MASK;
1254         }
1255 #endif
1256 
1257         /* PDPTRs are always reloaded for PAE paging. */
1258         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1259                 goto handle_tlb_flush;
1260 
1261         /*
1262          * Do not condition the GPA check on long mode, this helper is used to
1263          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1264          * the current vCPU mode is accurate.
1265          */
1266         if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1267                 return 1;
1268 
1269         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1270                 return 1;
1271 
1272         if (cr3 != kvm_read_cr3(vcpu))
1273                 kvm_mmu_new_pgd(vcpu, cr3);
1274 
1275         vcpu->arch.cr3 = cr3;
1276         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1277         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1278 
1279 handle_tlb_flush:
1280         /*
1281          * A load of CR3 that flushes the TLB flushes only the current PCID,
1282          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1283          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1284          * and it's impossible to use a non-zero PCID when PCID is disabled,
1285          * i.e. only PCID=0 can be relevant.
1286          */
1287         if (!skip_tlb_flush)
1288                 kvm_invalidate_pcid(vcpu, pcid);
1289 
1290         return 0;
1291 }
1292 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1293 
1294 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1295 {
1296         if (cr8 & CR8_RESERVED_BITS)
1297                 return 1;
1298         if (lapic_in_kernel(vcpu))
1299                 kvm_lapic_set_tpr(vcpu, cr8);
1300         else
1301                 vcpu->arch.cr8 = cr8;
1302         return 0;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1305 
1306 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1307 {
1308         if (lapic_in_kernel(vcpu))
1309                 return kvm_lapic_get_cr8(vcpu);
1310         else
1311                 return vcpu->arch.cr8;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1314 
1315 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1316 {
1317         int i;
1318 
1319         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1320                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1321                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1322         }
1323 }
1324 
1325 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1326 {
1327         unsigned long dr7;
1328 
1329         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1330                 dr7 = vcpu->arch.guest_debug_dr7;
1331         else
1332                 dr7 = vcpu->arch.dr7;
1333         kvm_x86_call(set_dr7)(vcpu, dr7);
1334         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1335         if (dr7 & DR7_BP_EN_MASK)
1336                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1337 }
1338 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1339 
1340 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1341 {
1342         u64 fixed = DR6_FIXED_1;
1343 
1344         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1345                 fixed |= DR6_RTM;
1346 
1347         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1348                 fixed |= DR6_BUS_LOCK;
1349         return fixed;
1350 }
1351 
1352 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1353 {
1354         size_t size = ARRAY_SIZE(vcpu->arch.db);
1355 
1356         switch (dr) {
1357         case 0 ... 3:
1358                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1359                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1360                         vcpu->arch.eff_db[dr] = val;
1361                 break;
1362         case 4:
1363         case 6:
1364                 if (!kvm_dr6_valid(val))
1365                         return 1; /* #GP */
1366                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1367                 break;
1368         case 5:
1369         default: /* 7 */
1370                 if (!kvm_dr7_valid(val))
1371                         return 1; /* #GP */
1372                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1373                 kvm_update_dr7(vcpu);
1374                 break;
1375         }
1376 
1377         return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_set_dr);
1380 
1381 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1382 {
1383         size_t size = ARRAY_SIZE(vcpu->arch.db);
1384 
1385         switch (dr) {
1386         case 0 ... 3:
1387                 return vcpu->arch.db[array_index_nospec(dr, size)];
1388         case 4:
1389         case 6:
1390                 return vcpu->arch.dr6;
1391         case 5:
1392         default: /* 7 */
1393                 return vcpu->arch.dr7;
1394         }
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_get_dr);
1397 
1398 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1399 {
1400         u32 ecx = kvm_rcx_read(vcpu);
1401         u64 data;
1402 
1403         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1404                 kvm_inject_gp(vcpu, 0);
1405                 return 1;
1406         }
1407 
1408         kvm_rax_write(vcpu, (u32)data);
1409         kvm_rdx_write(vcpu, data >> 32);
1410         return kvm_skip_emulated_instruction(vcpu);
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1413 
1414 /*
1415  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1416  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1417  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1418  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1419  * MSRs that KVM emulates without strictly requiring host support.
1420  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1421  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1422  * msrs_to_save and emulated_msrs.
1423  */
1424 
1425 static const u32 msrs_to_save_base[] = {
1426         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1427         MSR_STAR,
1428 #ifdef CONFIG_X86_64
1429         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1430 #endif
1431         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1432         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1433         MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1434         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1435         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1436         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1437         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1438         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1439         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1440         MSR_IA32_UMWAIT_CONTROL,
1441 
1442         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1443 };
1444 
1445 static const u32 msrs_to_save_pmu[] = {
1446         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1447         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1448         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1449         MSR_CORE_PERF_GLOBAL_CTRL,
1450         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1451 
1452         /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
1453         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1454         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1455         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1456         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1457         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1458         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1459         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1460         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1461 
1462         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1463         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1464 
1465         /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
1466         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1467         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1468         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1469         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1470 
1471         MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1472         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1473         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1474 };
1475 
1476 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1477                         ARRAY_SIZE(msrs_to_save_pmu)];
1478 static unsigned num_msrs_to_save;
1479 
1480 static const u32 emulated_msrs_all[] = {
1481         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1482         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1483 
1484 #ifdef CONFIG_KVM_HYPERV
1485         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1486         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1487         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1488         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1489         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1490         HV_X64_MSR_RESET,
1491         HV_X64_MSR_VP_INDEX,
1492         HV_X64_MSR_VP_RUNTIME,
1493         HV_X64_MSR_SCONTROL,
1494         HV_X64_MSR_STIMER0_CONFIG,
1495         HV_X64_MSR_VP_ASSIST_PAGE,
1496         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1497         HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1498         HV_X64_MSR_SYNDBG_OPTIONS,
1499         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1500         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1501         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1502 #endif
1503 
1504         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1505         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1506 
1507         MSR_IA32_TSC_ADJUST,
1508         MSR_IA32_TSC_DEADLINE,
1509         MSR_IA32_ARCH_CAPABILITIES,
1510         MSR_IA32_PERF_CAPABILITIES,
1511         MSR_IA32_MISC_ENABLE,
1512         MSR_IA32_MCG_STATUS,
1513         MSR_IA32_MCG_CTL,
1514         MSR_IA32_MCG_EXT_CTL,
1515         MSR_IA32_SMBASE,
1516         MSR_SMI_COUNT,
1517         MSR_PLATFORM_INFO,
1518         MSR_MISC_FEATURES_ENABLES,
1519         MSR_AMD64_VIRT_SPEC_CTRL,
1520         MSR_AMD64_TSC_RATIO,
1521         MSR_IA32_POWER_CTL,
1522         MSR_IA32_UCODE_REV,
1523 
1524         /*
1525          * KVM always supports the "true" VMX control MSRs, even if the host
1526          * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1527          * doesn't strictly require them to exist in the host (ignoring that
1528          * KVM would refuse to load in the first place if the core set of MSRs
1529          * aren't supported).
1530          */
1531         MSR_IA32_VMX_BASIC,
1532         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1533         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1534         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1535         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1536         MSR_IA32_VMX_MISC,
1537         MSR_IA32_VMX_CR0_FIXED0,
1538         MSR_IA32_VMX_CR4_FIXED0,
1539         MSR_IA32_VMX_VMCS_ENUM,
1540         MSR_IA32_VMX_PROCBASED_CTLS2,
1541         MSR_IA32_VMX_EPT_VPID_CAP,
1542         MSR_IA32_VMX_VMFUNC,
1543 
1544         MSR_K7_HWCR,
1545         MSR_KVM_POLL_CONTROL,
1546 };
1547 
1548 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1549 static unsigned num_emulated_msrs;
1550 
1551 /*
1552  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1553  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1554  * feature MSRs, but are handled separately to allow expedited lookups.
1555  */
1556 static const u32 msr_based_features_all_except_vmx[] = {
1557         MSR_AMD64_DE_CFG,
1558         MSR_IA32_UCODE_REV,
1559         MSR_IA32_ARCH_CAPABILITIES,
1560         MSR_IA32_PERF_CAPABILITIES,
1561 };
1562 
1563 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1564                               (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1565 static unsigned int num_msr_based_features;
1566 
1567 /*
1568  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1569  * patch, are immutable once the vCPU model is defined.
1570  */
1571 static bool kvm_is_immutable_feature_msr(u32 msr)
1572 {
1573         int i;
1574 
1575         if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1576                 return true;
1577 
1578         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1579                 if (msr == msr_based_features_all_except_vmx[i])
1580                         return msr != MSR_IA32_UCODE_REV;
1581         }
1582 
1583         return false;
1584 }
1585 
1586 /*
1587  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1588  * does not yet virtualize. These include:
1589  *   10 - MISC_PACKAGE_CTRLS
1590  *   11 - ENERGY_FILTERING_CTL
1591  *   12 - DOITM
1592  *   18 - FB_CLEAR_CTRL
1593  *   21 - XAPIC_DISABLE_STATUS
1594  *   23 - OVERCLOCKING_STATUS
1595  */
1596 
1597 #define KVM_SUPPORTED_ARCH_CAP \
1598         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1599          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1600          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1601          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1602          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1603          ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1604 
1605 static u64 kvm_get_arch_capabilities(void)
1606 {
1607         u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1608 
1609         /*
1610          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1611          * the nested hypervisor runs with NX huge pages.  If it is not,
1612          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1613          * L1 guests, so it need not worry about its own (L2) guests.
1614          */
1615         data |= ARCH_CAP_PSCHANGE_MC_NO;
1616 
1617         /*
1618          * If we're doing cache flushes (either "always" or "cond")
1619          * we will do one whenever the guest does a vmlaunch/vmresume.
1620          * If an outer hypervisor is doing the cache flush for us
1621          * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1622          * capability to the guest too, and if EPT is disabled we're not
1623          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1624          * require a nested hypervisor to do a flush of its own.
1625          */
1626         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1627                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1628 
1629         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1630                 data |= ARCH_CAP_RDCL_NO;
1631         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1632                 data |= ARCH_CAP_SSB_NO;
1633         if (!boot_cpu_has_bug(X86_BUG_MDS))
1634                 data |= ARCH_CAP_MDS_NO;
1635         if (!boot_cpu_has_bug(X86_BUG_RFDS))
1636                 data |= ARCH_CAP_RFDS_NO;
1637 
1638         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1639                 /*
1640                  * If RTM=0 because the kernel has disabled TSX, the host might
1641                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1642                  * and therefore knows that there cannot be TAA) but keep
1643                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1644                  * and we want to allow migrating those guests to tsx=off hosts.
1645                  */
1646                 data &= ~ARCH_CAP_TAA_NO;
1647         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1648                 data |= ARCH_CAP_TAA_NO;
1649         } else {
1650                 /*
1651                  * Nothing to do here; we emulate TSX_CTRL if present on the
1652                  * host so the guest can choose between disabling TSX or
1653                  * using VERW to clear CPU buffers.
1654                  */
1655         }
1656 
1657         if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1658                 data |= ARCH_CAP_GDS_NO;
1659 
1660         return data;
1661 }
1662 
1663 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1664 {
1665         switch (msr->index) {
1666         case MSR_IA32_ARCH_CAPABILITIES:
1667                 msr->data = kvm_get_arch_capabilities();
1668                 break;
1669         case MSR_IA32_PERF_CAPABILITIES:
1670                 msr->data = kvm_caps.supported_perf_cap;
1671                 break;
1672         case MSR_IA32_UCODE_REV:
1673                 rdmsrl_safe(msr->index, &msr->data);
1674                 break;
1675         default:
1676                 return kvm_x86_call(get_msr_feature)(msr);
1677         }
1678         return 0;
1679 }
1680 
1681 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1682 {
1683         struct kvm_msr_entry msr;
1684         int r;
1685 
1686         /* Unconditionally clear the output for simplicity */
1687         msr.data = 0;
1688         msr.index = index;
1689         r = kvm_get_msr_feature(&msr);
1690 
1691         if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false))
1692                 r = 0;
1693 
1694         *data = msr.data;
1695 
1696         return r;
1697 }
1698 
1699 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1700 {
1701         if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1702                 return false;
1703 
1704         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1705                 return false;
1706 
1707         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1708                 return false;
1709 
1710         if (efer & (EFER_LME | EFER_LMA) &&
1711             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1712                 return false;
1713 
1714         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1715                 return false;
1716 
1717         return true;
1718 
1719 }
1720 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1721 {
1722         if (efer & efer_reserved_bits)
1723                 return false;
1724 
1725         return __kvm_valid_efer(vcpu, efer);
1726 }
1727 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1728 
1729 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1730 {
1731         u64 old_efer = vcpu->arch.efer;
1732         u64 efer = msr_info->data;
1733         int r;
1734 
1735         if (efer & efer_reserved_bits)
1736                 return 1;
1737 
1738         if (!msr_info->host_initiated) {
1739                 if (!__kvm_valid_efer(vcpu, efer))
1740                         return 1;
1741 
1742                 if (is_paging(vcpu) &&
1743                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1744                         return 1;
1745         }
1746 
1747         efer &= ~EFER_LMA;
1748         efer |= vcpu->arch.efer & EFER_LMA;
1749 
1750         r = kvm_x86_call(set_efer)(vcpu, efer);
1751         if (r) {
1752                 WARN_ON(r > 0);
1753                 return r;
1754         }
1755 
1756         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1757                 kvm_mmu_reset_context(vcpu);
1758 
1759         if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1760             (efer & EFER_SVME))
1761                 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1762 
1763         return 0;
1764 }
1765 
1766 void kvm_enable_efer_bits(u64 mask)
1767 {
1768        efer_reserved_bits &= ~mask;
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1771 
1772 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1773 {
1774         struct kvm_x86_msr_filter *msr_filter;
1775         struct msr_bitmap_range *ranges;
1776         struct kvm *kvm = vcpu->kvm;
1777         bool allowed;
1778         int idx;
1779         u32 i;
1780 
1781         /* x2APIC MSRs do not support filtering. */
1782         if (index >= 0x800 && index <= 0x8ff)
1783                 return true;
1784 
1785         idx = srcu_read_lock(&kvm->srcu);
1786 
1787         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1788         if (!msr_filter) {
1789                 allowed = true;
1790                 goto out;
1791         }
1792 
1793         allowed = msr_filter->default_allow;
1794         ranges = msr_filter->ranges;
1795 
1796         for (i = 0; i < msr_filter->count; i++) {
1797                 u32 start = ranges[i].base;
1798                 u32 end = start + ranges[i].nmsrs;
1799                 u32 flags = ranges[i].flags;
1800                 unsigned long *bitmap = ranges[i].bitmap;
1801 
1802                 if ((index >= start) && (index < end) && (flags & type)) {
1803                         allowed = test_bit(index - start, bitmap);
1804                         break;
1805                 }
1806         }
1807 
1808 out:
1809         srcu_read_unlock(&kvm->srcu, idx);
1810 
1811         return allowed;
1812 }
1813 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1814 
1815 /*
1816  * Write @data into the MSR specified by @index.  Select MSR specific fault
1817  * checks are bypassed if @host_initiated is %true.
1818  * Returns 0 on success, non-0 otherwise.
1819  * Assumes vcpu_load() was already called.
1820  */
1821 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1822                          bool host_initiated)
1823 {
1824         struct msr_data msr;
1825 
1826         switch (index) {
1827         case MSR_FS_BASE:
1828         case MSR_GS_BASE:
1829         case MSR_KERNEL_GS_BASE:
1830         case MSR_CSTAR:
1831         case MSR_LSTAR:
1832                 if (is_noncanonical_address(data, vcpu))
1833                         return 1;
1834                 break;
1835         case MSR_IA32_SYSENTER_EIP:
1836         case MSR_IA32_SYSENTER_ESP:
1837                 /*
1838                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1839                  * non-canonical address is written on Intel but not on
1840                  * AMD (which ignores the top 32-bits, because it does
1841                  * not implement 64-bit SYSENTER).
1842                  *
1843                  * 64-bit code should hence be able to write a non-canonical
1844                  * value on AMD.  Making the address canonical ensures that
1845                  * vmentry does not fail on Intel after writing a non-canonical
1846                  * value, and that something deterministic happens if the guest
1847                  * invokes 64-bit SYSENTER.
1848                  */
1849                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1850                 break;
1851         case MSR_TSC_AUX:
1852                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1853                         return 1;
1854 
1855                 if (!host_initiated &&
1856                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1857                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1858                         return 1;
1859 
1860                 /*
1861                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1862                  * incomplete and conflicting architectural behavior.  Current
1863                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1864                  * reserved and always read as zeros.  Enforce Intel's reserved
1865                  * bits check if the guest CPU is Intel compatible, otherwise
1866                  * clear the bits.  This ensures cross-vendor migration will
1867                  * provide consistent behavior for the guest.
1868                  */
1869                 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1870                         return 1;
1871 
1872                 data = (u32)data;
1873                 break;
1874         }
1875 
1876         msr.data = data;
1877         msr.index = index;
1878         msr.host_initiated = host_initiated;
1879 
1880         return kvm_x86_call(set_msr)(vcpu, &msr);
1881 }
1882 
1883 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1884                                      u32 index, u64 data, bool host_initiated)
1885 {
1886         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1887 
1888         if (ret == KVM_MSR_RET_INVALID)
1889                 if (kvm_msr_ignored_check(index, data, true))
1890                         ret = 0;
1891 
1892         return ret;
1893 }
1894 
1895 /*
1896  * Read the MSR specified by @index into @data.  Select MSR specific fault
1897  * checks are bypassed if @host_initiated is %true.
1898  * Returns 0 on success, non-0 otherwise.
1899  * Assumes vcpu_load() was already called.
1900  */
1901 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1902                   bool host_initiated)
1903 {
1904         struct msr_data msr;
1905         int ret;
1906 
1907         switch (index) {
1908         case MSR_TSC_AUX:
1909                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1910                         return 1;
1911 
1912                 if (!host_initiated &&
1913                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1914                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1915                         return 1;
1916                 break;
1917         }
1918 
1919         msr.index = index;
1920         msr.host_initiated = host_initiated;
1921 
1922         ret = kvm_x86_call(get_msr)(vcpu, &msr);
1923         if (!ret)
1924                 *data = msr.data;
1925         return ret;
1926 }
1927 
1928 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1929                                      u32 index, u64 *data, bool host_initiated)
1930 {
1931         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1932 
1933         if (ret == KVM_MSR_RET_INVALID) {
1934                 /* Unconditionally clear *data for simplicity */
1935                 *data = 0;
1936                 if (kvm_msr_ignored_check(index, 0, false))
1937                         ret = 0;
1938         }
1939 
1940         return ret;
1941 }
1942 
1943 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1944 {
1945         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1946                 return KVM_MSR_RET_FILTERED;
1947         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1948 }
1949 
1950 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1951 {
1952         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1953                 return KVM_MSR_RET_FILTERED;
1954         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1955 }
1956 
1957 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1958 {
1959         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1960 }
1961 EXPORT_SYMBOL_GPL(kvm_get_msr);
1962 
1963 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1964 {
1965         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1966 }
1967 EXPORT_SYMBOL_GPL(kvm_set_msr);
1968 
1969 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1970 {
1971         if (!vcpu->run->msr.error) {
1972                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1973                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1974         }
1975 }
1976 
1977 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1978 {
1979         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1980 }
1981 
1982 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1983 {
1984         complete_userspace_rdmsr(vcpu);
1985         return complete_emulated_msr_access(vcpu);
1986 }
1987 
1988 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1989 {
1990         return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1991 }
1992 
1993 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1994 {
1995         complete_userspace_rdmsr(vcpu);
1996         return complete_fast_msr_access(vcpu);
1997 }
1998 
1999 static u64 kvm_msr_reason(int r)
2000 {
2001         switch (r) {
2002         case KVM_MSR_RET_INVALID:
2003                 return KVM_MSR_EXIT_REASON_UNKNOWN;
2004         case KVM_MSR_RET_FILTERED:
2005                 return KVM_MSR_EXIT_REASON_FILTER;
2006         default:
2007                 return KVM_MSR_EXIT_REASON_INVAL;
2008         }
2009 }
2010 
2011 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2012                               u32 exit_reason, u64 data,
2013                               int (*completion)(struct kvm_vcpu *vcpu),
2014                               int r)
2015 {
2016         u64 msr_reason = kvm_msr_reason(r);
2017 
2018         /* Check if the user wanted to know about this MSR fault */
2019         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2020                 return 0;
2021 
2022         vcpu->run->exit_reason = exit_reason;
2023         vcpu->run->msr.error = 0;
2024         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2025         vcpu->run->msr.reason = msr_reason;
2026         vcpu->run->msr.index = index;
2027         vcpu->run->msr.data = data;
2028         vcpu->arch.complete_userspace_io = completion;
2029 
2030         return 1;
2031 }
2032 
2033 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2034 {
2035         u32 ecx = kvm_rcx_read(vcpu);
2036         u64 data;
2037         int r;
2038 
2039         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2040 
2041         if (!r) {
2042                 trace_kvm_msr_read(ecx, data);
2043 
2044                 kvm_rax_write(vcpu, data & -1u);
2045                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2046         } else {
2047                 /* MSR read failed? See if we should ask user space */
2048                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2049                                        complete_fast_rdmsr, r))
2050                         return 0;
2051                 trace_kvm_msr_read_ex(ecx);
2052         }
2053 
2054         return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2057 
2058 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2059 {
2060         u32 ecx = kvm_rcx_read(vcpu);
2061         u64 data = kvm_read_edx_eax(vcpu);
2062         int r;
2063 
2064         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2065 
2066         if (!r) {
2067                 trace_kvm_msr_write(ecx, data);
2068         } else {
2069                 /* MSR write failed? See if we should ask user space */
2070                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2071                                        complete_fast_msr_access, r))
2072                         return 0;
2073                 /* Signal all other negative errors to userspace */
2074                 if (r < 0)
2075                         return r;
2076                 trace_kvm_msr_write_ex(ecx, data);
2077         }
2078 
2079         return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2082 
2083 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2084 {
2085         return kvm_skip_emulated_instruction(vcpu);
2086 }
2087 
2088 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2089 {
2090         /* Treat an INVD instruction as a NOP and just skip it. */
2091         return kvm_emulate_as_nop(vcpu);
2092 }
2093 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2094 
2095 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2096 {
2097         kvm_queue_exception(vcpu, UD_VECTOR);
2098         return 1;
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2101 
2102 
2103 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2104 {
2105         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2106             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2107                 return kvm_handle_invalid_op(vcpu);
2108 
2109         pr_warn_once("%s instruction emulated as NOP!\n", insn);
2110         return kvm_emulate_as_nop(vcpu);
2111 }
2112 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2113 {
2114         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2115 }
2116 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2117 
2118 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2119 {
2120         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2123 
2124 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2125 {
2126         xfer_to_guest_mode_prepare();
2127         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2128                 xfer_to_guest_mode_work_pending();
2129 }
2130 
2131 /*
2132  * The fast path for frequent and performance sensitive wrmsr emulation,
2133  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2134  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2135  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2136  * other cases which must be called after interrupts are enabled on the host.
2137  */
2138 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2139 {
2140         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2141                 return 1;
2142 
2143         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2144             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2145             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2146             ((u32)(data >> 32) != X2APIC_BROADCAST))
2147                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2148 
2149         return 1;
2150 }
2151 
2152 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2153 {
2154         if (!kvm_can_use_hv_timer(vcpu))
2155                 return 1;
2156 
2157         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2158         return 0;
2159 }
2160 
2161 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2162 {
2163         u32 msr = kvm_rcx_read(vcpu);
2164         u64 data;
2165         fastpath_t ret = EXIT_FASTPATH_NONE;
2166 
2167         kvm_vcpu_srcu_read_lock(vcpu);
2168 
2169         switch (msr) {
2170         case APIC_BASE_MSR + (APIC_ICR >> 4):
2171                 data = kvm_read_edx_eax(vcpu);
2172                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2173                         kvm_skip_emulated_instruction(vcpu);
2174                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2175                 }
2176                 break;
2177         case MSR_IA32_TSC_DEADLINE:
2178                 data = kvm_read_edx_eax(vcpu);
2179                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2180                         kvm_skip_emulated_instruction(vcpu);
2181                         ret = EXIT_FASTPATH_REENTER_GUEST;
2182                 }
2183                 break;
2184         default:
2185                 break;
2186         }
2187 
2188         if (ret != EXIT_FASTPATH_NONE)
2189                 trace_kvm_msr_write(msr, data);
2190 
2191         kvm_vcpu_srcu_read_unlock(vcpu);
2192 
2193         return ret;
2194 }
2195 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2196 
2197 /*
2198  * Adapt set_msr() to msr_io()'s calling convention
2199  */
2200 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2201 {
2202         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2203 }
2204 
2205 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2206 {
2207         u64 val;
2208 
2209         /*
2210          * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2211          * not support modifying the guest vCPU model on the fly, e.g. changing
2212          * the nVMX capabilities while L2 is running is nonsensical.  Allow
2213          * writes of the same value, e.g. to allow userspace to blindly stuff
2214          * all MSRs when emulating RESET.
2215          */
2216         if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2217             (do_get_msr(vcpu, index, &val) || *data != val))
2218                 return -EINVAL;
2219 
2220         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2221 }
2222 
2223 #ifdef CONFIG_X86_64
2224 struct pvclock_clock {
2225         int vclock_mode;
2226         u64 cycle_last;
2227         u64 mask;
2228         u32 mult;
2229         u32 shift;
2230         u64 base_cycles;
2231         u64 offset;
2232 };
2233 
2234 struct pvclock_gtod_data {
2235         seqcount_t      seq;
2236 
2237         struct pvclock_clock clock; /* extract of a clocksource struct */
2238         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2239 
2240         ktime_t         offs_boot;
2241         u64             wall_time_sec;
2242 };
2243 
2244 static struct pvclock_gtod_data pvclock_gtod_data;
2245 
2246 static void update_pvclock_gtod(struct timekeeper *tk)
2247 {
2248         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2249 
2250         write_seqcount_begin(&vdata->seq);
2251 
2252         /* copy pvclock gtod data */
2253         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2254         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2255         vdata->clock.mask               = tk->tkr_mono.mask;
2256         vdata->clock.mult               = tk->tkr_mono.mult;
2257         vdata->clock.shift              = tk->tkr_mono.shift;
2258         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2259         vdata->clock.offset             = tk->tkr_mono.base;
2260 
2261         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2262         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2263         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2264         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2265         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2266         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2267         vdata->raw_clock.offset         = tk->tkr_raw.base;
2268 
2269         vdata->wall_time_sec            = tk->xtime_sec;
2270 
2271         vdata->offs_boot                = tk->offs_boot;
2272 
2273         write_seqcount_end(&vdata->seq);
2274 }
2275 
2276 static s64 get_kvmclock_base_ns(void)
2277 {
2278         /* Count up from boot time, but with the frequency of the raw clock.  */
2279         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2280 }
2281 #else
2282 static s64 get_kvmclock_base_ns(void)
2283 {
2284         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2285         return ktime_get_boottime_ns();
2286 }
2287 #endif
2288 
2289 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2290 {
2291         int version;
2292         int r;
2293         struct pvclock_wall_clock wc;
2294         u32 wc_sec_hi;
2295         u64 wall_nsec;
2296 
2297         if (!wall_clock)
2298                 return;
2299 
2300         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2301         if (r)
2302                 return;
2303 
2304         if (version & 1)
2305                 ++version;  /* first time write, random junk */
2306 
2307         ++version;
2308 
2309         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2310                 return;
2311 
2312         wall_nsec = kvm_get_wall_clock_epoch(kvm);
2313 
2314         wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2315         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2316         wc.version = version;
2317 
2318         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2319 
2320         if (sec_hi_ofs) {
2321                 wc_sec_hi = wall_nsec >> 32;
2322                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2323                                 &wc_sec_hi, sizeof(wc_sec_hi));
2324         }
2325 
2326         version++;
2327         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2328 }
2329 
2330 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2331                                   bool old_msr, bool host_initiated)
2332 {
2333         struct kvm_arch *ka = &vcpu->kvm->arch;
2334 
2335         if (vcpu->vcpu_id == 0 && !host_initiated) {
2336                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2337                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2338 
2339                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2340         }
2341 
2342         vcpu->arch.time = system_time;
2343         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2344 
2345         /* we verify if the enable bit is set... */
2346         if (system_time & 1)
2347                 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2348                                  sizeof(struct pvclock_vcpu_time_info));
2349         else
2350                 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2351 
2352         return;
2353 }
2354 
2355 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2356 {
2357         do_shl32_div32(dividend, divisor);
2358         return dividend;
2359 }
2360 
2361 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2362                                s8 *pshift, u32 *pmultiplier)
2363 {
2364         uint64_t scaled64;
2365         int32_t  shift = 0;
2366         uint64_t tps64;
2367         uint32_t tps32;
2368 
2369         tps64 = base_hz;
2370         scaled64 = scaled_hz;
2371         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2372                 tps64 >>= 1;
2373                 shift--;
2374         }
2375 
2376         tps32 = (uint32_t)tps64;
2377         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2378                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2379                         scaled64 >>= 1;
2380                 else
2381                         tps32 <<= 1;
2382                 shift++;
2383         }
2384 
2385         *pshift = shift;
2386         *pmultiplier = div_frac(scaled64, tps32);
2387 }
2388 
2389 #ifdef CONFIG_X86_64
2390 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2391 #endif
2392 
2393 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2394 static unsigned long max_tsc_khz;
2395 
2396 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2397 {
2398         u64 v = (u64)khz * (1000000 + ppm);
2399         do_div(v, 1000000);
2400         return v;
2401 }
2402 
2403 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2404 
2405 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2406 {
2407         u64 ratio;
2408 
2409         /* Guest TSC same frequency as host TSC? */
2410         if (!scale) {
2411                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2412                 return 0;
2413         }
2414 
2415         /* TSC scaling supported? */
2416         if (!kvm_caps.has_tsc_control) {
2417                 if (user_tsc_khz > tsc_khz) {
2418                         vcpu->arch.tsc_catchup = 1;
2419                         vcpu->arch.tsc_always_catchup = 1;
2420                         return 0;
2421                 } else {
2422                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2423                         return -1;
2424                 }
2425         }
2426 
2427         /* TSC scaling required  - calculate ratio */
2428         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2429                                 user_tsc_khz, tsc_khz);
2430 
2431         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2432                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2433                                     user_tsc_khz);
2434                 return -1;
2435         }
2436 
2437         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2438         return 0;
2439 }
2440 
2441 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2442 {
2443         u32 thresh_lo, thresh_hi;
2444         int use_scaling = 0;
2445 
2446         /* tsc_khz can be zero if TSC calibration fails */
2447         if (user_tsc_khz == 0) {
2448                 /* set tsc_scaling_ratio to a safe value */
2449                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2450                 return -1;
2451         }
2452 
2453         /* Compute a scale to convert nanoseconds in TSC cycles */
2454         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2455                            &vcpu->arch.virtual_tsc_shift,
2456                            &vcpu->arch.virtual_tsc_mult);
2457         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2458 
2459         /*
2460          * Compute the variation in TSC rate which is acceptable
2461          * within the range of tolerance and decide if the
2462          * rate being applied is within that bounds of the hardware
2463          * rate.  If so, no scaling or compensation need be done.
2464          */
2465         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2466         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2467         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2468                 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2469                          user_tsc_khz, thresh_lo, thresh_hi);
2470                 use_scaling = 1;
2471         }
2472         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2473 }
2474 
2475 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2476 {
2477         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2478                                       vcpu->arch.virtual_tsc_mult,
2479                                       vcpu->arch.virtual_tsc_shift);
2480         tsc += vcpu->arch.this_tsc_write;
2481         return tsc;
2482 }
2483 
2484 #ifdef CONFIG_X86_64
2485 static inline bool gtod_is_based_on_tsc(int mode)
2486 {
2487         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2488 }
2489 #endif
2490 
2491 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2492 {
2493 #ifdef CONFIG_X86_64
2494         struct kvm_arch *ka = &vcpu->kvm->arch;
2495         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2496 
2497         /*
2498          * To use the masterclock, the host clocksource must be based on TSC
2499          * and all vCPUs must have matching TSCs.  Note, the count for matching
2500          * vCPUs doesn't include the reference vCPU, hence "+1".
2501          */
2502         bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2503                                  atomic_read(&vcpu->kvm->online_vcpus)) &&
2504                                 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2505 
2506         /*
2507          * Request a masterclock update if the masterclock needs to be toggled
2508          * on/off, or when starting a new generation and the masterclock is
2509          * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2510          * taken _after_ the new generation is created).
2511          */
2512         if ((ka->use_master_clock && new_generation) ||
2513             (ka->use_master_clock != use_master_clock))
2514                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2515 
2516         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2517                             atomic_read(&vcpu->kvm->online_vcpus),
2518                             ka->use_master_clock, gtod->clock.vclock_mode);
2519 #endif
2520 }
2521 
2522 /*
2523  * Multiply tsc by a fixed point number represented by ratio.
2524  *
2525  * The most significant 64-N bits (mult) of ratio represent the
2526  * integral part of the fixed point number; the remaining N bits
2527  * (frac) represent the fractional part, ie. ratio represents a fixed
2528  * point number (mult + frac * 2^(-N)).
2529  *
2530  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2531  */
2532 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2533 {
2534         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2535 }
2536 
2537 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2538 {
2539         u64 _tsc = tsc;
2540 
2541         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2542                 _tsc = __scale_tsc(ratio, tsc);
2543 
2544         return _tsc;
2545 }
2546 
2547 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2548 {
2549         u64 tsc;
2550 
2551         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2552 
2553         return target_tsc - tsc;
2554 }
2555 
2556 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2557 {
2558         return vcpu->arch.l1_tsc_offset +
2559                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2560 }
2561 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2562 
2563 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2564 {
2565         u64 nested_offset;
2566 
2567         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2568                 nested_offset = l1_offset;
2569         else
2570                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2571                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2572 
2573         nested_offset += l2_offset;
2574         return nested_offset;
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2577 
2578 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2579 {
2580         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2581                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2582                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2583 
2584         return l1_multiplier;
2585 }
2586 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2587 
2588 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2589 {
2590         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2591                                    vcpu->arch.l1_tsc_offset,
2592                                    l1_offset);
2593 
2594         vcpu->arch.l1_tsc_offset = l1_offset;
2595 
2596         /*
2597          * If we are here because L1 chose not to trap WRMSR to TSC then
2598          * according to the spec this should set L1's TSC (as opposed to
2599          * setting L1's offset for L2).
2600          */
2601         if (is_guest_mode(vcpu))
2602                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2603                         l1_offset,
2604                         kvm_x86_call(get_l2_tsc_offset)(vcpu),
2605                         kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2606         else
2607                 vcpu->arch.tsc_offset = l1_offset;
2608 
2609         kvm_x86_call(write_tsc_offset)(vcpu);
2610 }
2611 
2612 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2613 {
2614         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2615 
2616         /* Userspace is changing the multiplier while L2 is active */
2617         if (is_guest_mode(vcpu))
2618                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2619                         l1_multiplier,
2620                         kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2621         else
2622                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2623 
2624         if (kvm_caps.has_tsc_control)
2625                 kvm_x86_call(write_tsc_multiplier)(vcpu);
2626 }
2627 
2628 static inline bool kvm_check_tsc_unstable(void)
2629 {
2630 #ifdef CONFIG_X86_64
2631         /*
2632          * TSC is marked unstable when we're running on Hyper-V,
2633          * 'TSC page' clocksource is good.
2634          */
2635         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2636                 return false;
2637 #endif
2638         return check_tsc_unstable();
2639 }
2640 
2641 /*
2642  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2643  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2644  * participates in.
2645  */
2646 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2647                                   u64 ns, bool matched)
2648 {
2649         struct kvm *kvm = vcpu->kvm;
2650 
2651         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2652 
2653         /*
2654          * We also track th most recent recorded KHZ, write and time to
2655          * allow the matching interval to be extended at each write.
2656          */
2657         kvm->arch.last_tsc_nsec = ns;
2658         kvm->arch.last_tsc_write = tsc;
2659         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2660         kvm->arch.last_tsc_offset = offset;
2661 
2662         vcpu->arch.last_guest_tsc = tsc;
2663 
2664         kvm_vcpu_write_tsc_offset(vcpu, offset);
2665 
2666         if (!matched) {
2667                 /*
2668                  * We split periods of matched TSC writes into generations.
2669                  * For each generation, we track the original measured
2670                  * nanosecond time, offset, and write, so if TSCs are in
2671                  * sync, we can match exact offset, and if not, we can match
2672                  * exact software computation in compute_guest_tsc()
2673                  *
2674                  * These values are tracked in kvm->arch.cur_xxx variables.
2675                  */
2676                 kvm->arch.cur_tsc_generation++;
2677                 kvm->arch.cur_tsc_nsec = ns;
2678                 kvm->arch.cur_tsc_write = tsc;
2679                 kvm->arch.cur_tsc_offset = offset;
2680                 kvm->arch.nr_vcpus_matched_tsc = 0;
2681         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2682                 kvm->arch.nr_vcpus_matched_tsc++;
2683         }
2684 
2685         /* Keep track of which generation this VCPU has synchronized to */
2686         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2687         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2688         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2689 
2690         kvm_track_tsc_matching(vcpu, !matched);
2691 }
2692 
2693 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2694 {
2695         u64 data = user_value ? *user_value : 0;
2696         struct kvm *kvm = vcpu->kvm;
2697         u64 offset, ns, elapsed;
2698         unsigned long flags;
2699         bool matched = false;
2700         bool synchronizing = false;
2701 
2702         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2703         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2704         ns = get_kvmclock_base_ns();
2705         elapsed = ns - kvm->arch.last_tsc_nsec;
2706 
2707         if (vcpu->arch.virtual_tsc_khz) {
2708                 if (data == 0) {
2709                         /*
2710                          * Force synchronization when creating a vCPU, or when
2711                          * userspace explicitly writes a zero value.
2712                          */
2713                         synchronizing = true;
2714                 } else if (kvm->arch.user_set_tsc) {
2715                         u64 tsc_exp = kvm->arch.last_tsc_write +
2716                                                 nsec_to_cycles(vcpu, elapsed);
2717                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2718                         /*
2719                          * Here lies UAPI baggage: when a user-initiated TSC write has
2720                          * a small delta (1 second) of virtual cycle time against the
2721                          * previously set vCPU, we assume that they were intended to be
2722                          * in sync and the delta was only due to the racy nature of the
2723                          * legacy API.
2724                          *
2725                          * This trick falls down when restoring a guest which genuinely
2726                          * has been running for less time than the 1 second of imprecision
2727                          * which we allow for in the legacy API. In this case, the first
2728                          * value written by userspace (on any vCPU) should not be subject
2729                          * to this 'correction' to make it sync up with values that only
2730                          * come from the kernel's default vCPU creation. Make the 1-second
2731                          * slop hack only trigger if the user_set_tsc flag is already set.
2732                          */
2733                         synchronizing = data < tsc_exp + tsc_hz &&
2734                                         data + tsc_hz > tsc_exp;
2735                 }
2736         }
2737 
2738         if (user_value)
2739                 kvm->arch.user_set_tsc = true;
2740 
2741         /*
2742          * For a reliable TSC, we can match TSC offsets, and for an unstable
2743          * TSC, we add elapsed time in this computation.  We could let the
2744          * compensation code attempt to catch up if we fall behind, but
2745          * it's better to try to match offsets from the beginning.
2746          */
2747         if (synchronizing &&
2748             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2749                 if (!kvm_check_tsc_unstable()) {
2750                         offset = kvm->arch.cur_tsc_offset;
2751                 } else {
2752                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2753                         data += delta;
2754                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2755                 }
2756                 matched = true;
2757         }
2758 
2759         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2760         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2761 }
2762 
2763 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2764                                            s64 adjustment)
2765 {
2766         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2767         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2768 }
2769 
2770 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2771 {
2772         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2773                 WARN_ON(adjustment < 0);
2774         adjustment = kvm_scale_tsc((u64) adjustment,
2775                                    vcpu->arch.l1_tsc_scaling_ratio);
2776         adjust_tsc_offset_guest(vcpu, adjustment);
2777 }
2778 
2779 #ifdef CONFIG_X86_64
2780 
2781 static u64 read_tsc(void)
2782 {
2783         u64 ret = (u64)rdtsc_ordered();
2784         u64 last = pvclock_gtod_data.clock.cycle_last;
2785 
2786         if (likely(ret >= last))
2787                 return ret;
2788 
2789         /*
2790          * GCC likes to generate cmov here, but this branch is extremely
2791          * predictable (it's just a function of time and the likely is
2792          * very likely) and there's a data dependence, so force GCC
2793          * to generate a branch instead.  I don't barrier() because
2794          * we don't actually need a barrier, and if this function
2795          * ever gets inlined it will generate worse code.
2796          */
2797         asm volatile ("");
2798         return last;
2799 }
2800 
2801 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2802                           int *mode)
2803 {
2804         u64 tsc_pg_val;
2805         long v;
2806 
2807         switch (clock->vclock_mode) {
2808         case VDSO_CLOCKMODE_HVCLOCK:
2809                 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2810                                          tsc_timestamp, &tsc_pg_val)) {
2811                         /* TSC page valid */
2812                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2813                         v = (tsc_pg_val - clock->cycle_last) &
2814                                 clock->mask;
2815                 } else {
2816                         /* TSC page invalid */
2817                         *mode = VDSO_CLOCKMODE_NONE;
2818                 }
2819                 break;
2820         case VDSO_CLOCKMODE_TSC:
2821                 *mode = VDSO_CLOCKMODE_TSC;
2822                 *tsc_timestamp = read_tsc();
2823                 v = (*tsc_timestamp - clock->cycle_last) &
2824                         clock->mask;
2825                 break;
2826         default:
2827                 *mode = VDSO_CLOCKMODE_NONE;
2828         }
2829 
2830         if (*mode == VDSO_CLOCKMODE_NONE)
2831                 *tsc_timestamp = v = 0;
2832 
2833         return v * clock->mult;
2834 }
2835 
2836 /*
2837  * As with get_kvmclock_base_ns(), this counts from boot time, at the
2838  * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2839  */
2840 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2841 {
2842         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2843         unsigned long seq;
2844         int mode;
2845         u64 ns;
2846 
2847         do {
2848                 seq = read_seqcount_begin(&gtod->seq);
2849                 ns = gtod->raw_clock.base_cycles;
2850                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2851                 ns >>= gtod->raw_clock.shift;
2852                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2853         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2854         *t = ns;
2855 
2856         return mode;
2857 }
2858 
2859 /*
2860  * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2861  * no boot time offset.
2862  */
2863 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2864 {
2865         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2866         unsigned long seq;
2867         int mode;
2868         u64 ns;
2869 
2870         do {
2871                 seq = read_seqcount_begin(&gtod->seq);
2872                 ns = gtod->clock.base_cycles;
2873                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2874                 ns >>= gtod->clock.shift;
2875                 ns += ktime_to_ns(gtod->clock.offset);
2876         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2877         *t = ns;
2878 
2879         return mode;
2880 }
2881 
2882 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2883 {
2884         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2885         unsigned long seq;
2886         int mode;
2887         u64 ns;
2888 
2889         do {
2890                 seq = read_seqcount_begin(&gtod->seq);
2891                 ts->tv_sec = gtod->wall_time_sec;
2892                 ns = gtod->clock.base_cycles;
2893                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2894                 ns >>= gtod->clock.shift;
2895         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2896 
2897         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2898         ts->tv_nsec = ns;
2899 
2900         return mode;
2901 }
2902 
2903 /*
2904  * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2905  * reports the TSC value from which it do so. Returns true if host is
2906  * using TSC based clocksource.
2907  */
2908 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2909 {
2910         /* checked again under seqlock below */
2911         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2912                 return false;
2913 
2914         return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2915                                                      tsc_timestamp));
2916 }
2917 
2918 /*
2919  * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2920  * so. Returns true if host is using TSC based clocksource.
2921  */
2922 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2923 {
2924         /* checked again under seqlock below */
2925         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2926                 return false;
2927 
2928         return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2929                                                  tsc_timestamp));
2930 }
2931 
2932 /*
2933  * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2934  * so. Returns true if host is using TSC based clocksource.
2935  *
2936  * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2937  * for that.
2938  */
2939 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2940                                            u64 *tsc_timestamp)
2941 {
2942         /* checked again under seqlock below */
2943         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2944                 return false;
2945 
2946         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2947 }
2948 #endif
2949 
2950 /*
2951  *
2952  * Assuming a stable TSC across physical CPUS, and a stable TSC
2953  * across virtual CPUs, the following condition is possible.
2954  * Each numbered line represents an event visible to both
2955  * CPUs at the next numbered event.
2956  *
2957  * "timespecX" represents host monotonic time. "tscX" represents
2958  * RDTSC value.
2959  *
2960  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2961  *
2962  * 1.  read timespec0,tsc0
2963  * 2.                                   | timespec1 = timespec0 + N
2964  *                                      | tsc1 = tsc0 + M
2965  * 3. transition to guest               | transition to guest
2966  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2967  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2968  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2969  *
2970  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2971  *
2972  *      - ret0 < ret1
2973  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2974  *              ...
2975  *      - 0 < N - M => M < N
2976  *
2977  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2978  * always the case (the difference between two distinct xtime instances
2979  * might be smaller then the difference between corresponding TSC reads,
2980  * when updating guest vcpus pvclock areas).
2981  *
2982  * To avoid that problem, do not allow visibility of distinct
2983  * system_timestamp/tsc_timestamp values simultaneously: use a master
2984  * copy of host monotonic time values. Update that master copy
2985  * in lockstep.
2986  *
2987  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2988  *
2989  */
2990 
2991 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2992 {
2993 #ifdef CONFIG_X86_64
2994         struct kvm_arch *ka = &kvm->arch;
2995         int vclock_mode;
2996         bool host_tsc_clocksource, vcpus_matched;
2997 
2998         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2999         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3000                         atomic_read(&kvm->online_vcpus));
3001 
3002         /*
3003          * If the host uses TSC clock, then passthrough TSC as stable
3004          * to the guest.
3005          */
3006         host_tsc_clocksource = kvm_get_time_and_clockread(
3007                                         &ka->master_kernel_ns,
3008                                         &ka->master_cycle_now);
3009 
3010         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3011                                 && !ka->backwards_tsc_observed
3012                                 && !ka->boot_vcpu_runs_old_kvmclock;
3013 
3014         if (ka->use_master_clock)
3015                 atomic_set(&kvm_guest_has_master_clock, 1);
3016 
3017         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3018         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3019                                         vcpus_matched);
3020 #endif
3021 }
3022 
3023 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3024 {
3025         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3026 }
3027 
3028 static void __kvm_start_pvclock_update(struct kvm *kvm)
3029 {
3030         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3031         write_seqcount_begin(&kvm->arch.pvclock_sc);
3032 }
3033 
3034 static void kvm_start_pvclock_update(struct kvm *kvm)
3035 {
3036         kvm_make_mclock_inprogress_request(kvm);
3037 
3038         /* no guest entries from this point */
3039         __kvm_start_pvclock_update(kvm);
3040 }
3041 
3042 static void kvm_end_pvclock_update(struct kvm *kvm)
3043 {
3044         struct kvm_arch *ka = &kvm->arch;
3045         struct kvm_vcpu *vcpu;
3046         unsigned long i;
3047 
3048         write_seqcount_end(&ka->pvclock_sc);
3049         raw_spin_unlock_irq(&ka->tsc_write_lock);
3050         kvm_for_each_vcpu(i, vcpu, kvm)
3051                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3052 
3053         /* guest entries allowed */
3054         kvm_for_each_vcpu(i, vcpu, kvm)
3055                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3056 }
3057 
3058 static void kvm_update_masterclock(struct kvm *kvm)
3059 {
3060         kvm_hv_request_tsc_page_update(kvm);
3061         kvm_start_pvclock_update(kvm);
3062         pvclock_update_vm_gtod_copy(kvm);
3063         kvm_end_pvclock_update(kvm);
3064 }
3065 
3066 /*
3067  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3068  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3069  * can change during boot even if the TSC is constant, as it's possible for KVM
3070  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3071  * notification when calibration completes, but practically speaking calibration
3072  * will complete before userspace is alive enough to create VMs.
3073  */
3074 static unsigned long get_cpu_tsc_khz(void)
3075 {
3076         if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3077                 return tsc_khz;
3078         else
3079                 return __this_cpu_read(cpu_tsc_khz);
3080 }
3081 
3082 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3083 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3084 {
3085         struct kvm_arch *ka = &kvm->arch;
3086         struct pvclock_vcpu_time_info hv_clock;
3087 
3088         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3089         get_cpu();
3090 
3091         data->flags = 0;
3092         if (ka->use_master_clock &&
3093             (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3094 #ifdef CONFIG_X86_64
3095                 struct timespec64 ts;
3096 
3097                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3098                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3099                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3100                 } else
3101 #endif
3102                 data->host_tsc = rdtsc();
3103 
3104                 data->flags |= KVM_CLOCK_TSC_STABLE;
3105                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3106                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3107                 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3108                                    &hv_clock.tsc_shift,
3109                                    &hv_clock.tsc_to_system_mul);
3110                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3111         } else {
3112                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3113         }
3114 
3115         put_cpu();
3116 }
3117 
3118 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3119 {
3120         struct kvm_arch *ka = &kvm->arch;
3121         unsigned seq;
3122 
3123         do {
3124                 seq = read_seqcount_begin(&ka->pvclock_sc);
3125                 __get_kvmclock(kvm, data);
3126         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3127 }
3128 
3129 u64 get_kvmclock_ns(struct kvm *kvm)
3130 {
3131         struct kvm_clock_data data;
3132 
3133         get_kvmclock(kvm, &data);
3134         return data.clock;
3135 }
3136 
3137 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3138                                     struct gfn_to_pfn_cache *gpc,
3139                                     unsigned int offset,
3140                                     bool force_tsc_unstable)
3141 {
3142         struct kvm_vcpu_arch *vcpu = &v->arch;
3143         struct pvclock_vcpu_time_info *guest_hv_clock;
3144         unsigned long flags;
3145 
3146         read_lock_irqsave(&gpc->lock, flags);
3147         while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3148                 read_unlock_irqrestore(&gpc->lock, flags);
3149 
3150                 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3151                         return;
3152 
3153                 read_lock_irqsave(&gpc->lock, flags);
3154         }
3155 
3156         guest_hv_clock = (void *)(gpc->khva + offset);
3157 
3158         /*
3159          * This VCPU is paused, but it's legal for a guest to read another
3160          * VCPU's kvmclock, so we really have to follow the specification where
3161          * it says that version is odd if data is being modified, and even after
3162          * it is consistent.
3163          */
3164 
3165         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3166         smp_wmb();
3167 
3168         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3169         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3170 
3171         if (vcpu->pvclock_set_guest_stopped_request) {
3172                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3173                 vcpu->pvclock_set_guest_stopped_request = false;
3174         }
3175 
3176         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3177 
3178         if (force_tsc_unstable)
3179                 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3180 
3181         smp_wmb();
3182 
3183         guest_hv_clock->version = ++vcpu->hv_clock.version;
3184 
3185         kvm_gpc_mark_dirty_in_slot(gpc);
3186         read_unlock_irqrestore(&gpc->lock, flags);
3187 
3188         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3189 }
3190 
3191 static int kvm_guest_time_update(struct kvm_vcpu *v)
3192 {
3193         unsigned long flags, tgt_tsc_khz;
3194         unsigned seq;
3195         struct kvm_vcpu_arch *vcpu = &v->arch;
3196         struct kvm_arch *ka = &v->kvm->arch;
3197         s64 kernel_ns;
3198         u64 tsc_timestamp, host_tsc;
3199         u8 pvclock_flags;
3200         bool use_master_clock;
3201 #ifdef CONFIG_KVM_XEN
3202         /*
3203          * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3204          * explicitly told to use TSC as its clocksource Xen will not set this bit.
3205          * This default behaviour led to bugs in some guest kernels which cause
3206          * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3207          */
3208         bool xen_pvclock_tsc_unstable =
3209                 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3210 #endif
3211 
3212         kernel_ns = 0;
3213         host_tsc = 0;
3214 
3215         /*
3216          * If the host uses TSC clock, then passthrough TSC as stable
3217          * to the guest.
3218          */
3219         do {
3220                 seq = read_seqcount_begin(&ka->pvclock_sc);
3221                 use_master_clock = ka->use_master_clock;
3222                 if (use_master_clock) {
3223                         host_tsc = ka->master_cycle_now;
3224                         kernel_ns = ka->master_kernel_ns;
3225                 }
3226         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3227 
3228         /* Keep irq disabled to prevent changes to the clock */
3229         local_irq_save(flags);
3230         tgt_tsc_khz = get_cpu_tsc_khz();
3231         if (unlikely(tgt_tsc_khz == 0)) {
3232                 local_irq_restore(flags);
3233                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3234                 return 1;
3235         }
3236         if (!use_master_clock) {
3237                 host_tsc = rdtsc();
3238                 kernel_ns = get_kvmclock_base_ns();
3239         }
3240 
3241         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3242 
3243         /*
3244          * We may have to catch up the TSC to match elapsed wall clock
3245          * time for two reasons, even if kvmclock is used.
3246          *   1) CPU could have been running below the maximum TSC rate
3247          *   2) Broken TSC compensation resets the base at each VCPU
3248          *      entry to avoid unknown leaps of TSC even when running
3249          *      again on the same CPU.  This may cause apparent elapsed
3250          *      time to disappear, and the guest to stand still or run
3251          *      very slowly.
3252          */
3253         if (vcpu->tsc_catchup) {
3254                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3255                 if (tsc > tsc_timestamp) {
3256                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3257                         tsc_timestamp = tsc;
3258                 }
3259         }
3260 
3261         local_irq_restore(flags);
3262 
3263         /* With all the info we got, fill in the values */
3264 
3265         if (kvm_caps.has_tsc_control)
3266                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3267                                             v->arch.l1_tsc_scaling_ratio);
3268 
3269         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3270                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3271                                    &vcpu->hv_clock.tsc_shift,
3272                                    &vcpu->hv_clock.tsc_to_system_mul);
3273                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3274                 kvm_xen_update_tsc_info(v);
3275         }
3276 
3277         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3278         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3279         vcpu->last_guest_tsc = tsc_timestamp;
3280 
3281         /* If the host uses TSC clocksource, then it is stable */
3282         pvclock_flags = 0;
3283         if (use_master_clock)
3284                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3285 
3286         vcpu->hv_clock.flags = pvclock_flags;
3287 
3288         if (vcpu->pv_time.active)
3289                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3290 #ifdef CONFIG_KVM_XEN
3291         if (vcpu->xen.vcpu_info_cache.active)
3292                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3293                                         offsetof(struct compat_vcpu_info, time),
3294                                         xen_pvclock_tsc_unstable);
3295         if (vcpu->xen.vcpu_time_info_cache.active)
3296                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3297                                         xen_pvclock_tsc_unstable);
3298 #endif
3299         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3300         return 0;
3301 }
3302 
3303 /*
3304  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3305  * which it started (i.e. its epoch, when its kvmclock was zero).
3306  *
3307  * In fact those clocks are subtly different; wall clock frequency is
3308  * adjusted by NTP and has leap seconds, while the kvmclock is a
3309  * simple function of the TSC without any such adjustment.
3310  *
3311  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3312  * that and kvmclock, but even that would be subject to change over
3313  * time.
3314  *
3315  * Attempt to calculate the epoch at a given moment using the *same*
3316  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3317  * wallclock and kvmclock times, and subtracting one from the other.
3318  *
3319  * Fall back to using their values at slightly different moments by
3320  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3321  */
3322 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3323 {
3324 #ifdef CONFIG_X86_64
3325         struct pvclock_vcpu_time_info hv_clock;
3326         struct kvm_arch *ka = &kvm->arch;
3327         unsigned long seq, local_tsc_khz;
3328         struct timespec64 ts;
3329         uint64_t host_tsc;
3330 
3331         do {
3332                 seq = read_seqcount_begin(&ka->pvclock_sc);
3333 
3334                 local_tsc_khz = 0;
3335                 if (!ka->use_master_clock)
3336                         break;
3337 
3338                 /*
3339                  * The TSC read and the call to get_cpu_tsc_khz() must happen
3340                  * on the same CPU.
3341                  */
3342                 get_cpu();
3343 
3344                 local_tsc_khz = get_cpu_tsc_khz();
3345 
3346                 if (local_tsc_khz &&
3347                     !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3348                         local_tsc_khz = 0; /* Fall back to old method */
3349 
3350                 put_cpu();
3351 
3352                 /*
3353                  * These values must be snapshotted within the seqcount loop.
3354                  * After that, it's just mathematics which can happen on any
3355                  * CPU at any time.
3356                  */
3357                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3358                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3359 
3360         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3361 
3362         /*
3363          * If the conditions were right, and obtaining the wallclock+TSC was
3364          * successful, calculate the KVM clock at the corresponding time and
3365          * subtract one from the other to get the guest's epoch in nanoseconds
3366          * since 1970-01-01.
3367          */
3368         if (local_tsc_khz) {
3369                 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3370                                    &hv_clock.tsc_shift,
3371                                    &hv_clock.tsc_to_system_mul);
3372                 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3373                         __pvclock_read_cycles(&hv_clock, host_tsc);
3374         }
3375 #endif
3376         return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3377 }
3378 
3379 /*
3380  * kvmclock updates which are isolated to a given vcpu, such as
3381  * vcpu->cpu migration, should not allow system_timestamp from
3382  * the rest of the vcpus to remain static. Otherwise ntp frequency
3383  * correction applies to one vcpu's system_timestamp but not
3384  * the others.
3385  *
3386  * So in those cases, request a kvmclock update for all vcpus.
3387  * We need to rate-limit these requests though, as they can
3388  * considerably slow guests that have a large number of vcpus.
3389  * The time for a remote vcpu to update its kvmclock is bound
3390  * by the delay we use to rate-limit the updates.
3391  */
3392 
3393 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3394 
3395 static void kvmclock_update_fn(struct work_struct *work)
3396 {
3397         unsigned long i;
3398         struct delayed_work *dwork = to_delayed_work(work);
3399         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3400                                            kvmclock_update_work);
3401         struct kvm *kvm = container_of(ka, struct kvm, arch);
3402         struct kvm_vcpu *vcpu;
3403 
3404         kvm_for_each_vcpu(i, vcpu, kvm) {
3405                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3406                 kvm_vcpu_kick(vcpu);
3407         }
3408 }
3409 
3410 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3411 {
3412         struct kvm *kvm = v->kvm;
3413 
3414         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3415         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3416                                         KVMCLOCK_UPDATE_DELAY);
3417 }
3418 
3419 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3420 
3421 static void kvmclock_sync_fn(struct work_struct *work)
3422 {
3423         struct delayed_work *dwork = to_delayed_work(work);
3424         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3425                                            kvmclock_sync_work);
3426         struct kvm *kvm = container_of(ka, struct kvm, arch);
3427 
3428         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3429         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3430                                         KVMCLOCK_SYNC_PERIOD);
3431 }
3432 
3433 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3434 static bool is_mci_control_msr(u32 msr)
3435 {
3436         return (msr & 3) == 0;
3437 }
3438 static bool is_mci_status_msr(u32 msr)
3439 {
3440         return (msr & 3) == 1;
3441 }
3442 
3443 /*
3444  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3445  */
3446 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3447 {
3448         /* McStatusWrEn enabled? */
3449         if (guest_cpuid_is_amd_compatible(vcpu))
3450                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3451 
3452         return false;
3453 }
3454 
3455 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3456 {
3457         u64 mcg_cap = vcpu->arch.mcg_cap;
3458         unsigned bank_num = mcg_cap & 0xff;
3459         u32 msr = msr_info->index;
3460         u64 data = msr_info->data;
3461         u32 offset, last_msr;
3462 
3463         switch (msr) {
3464         case MSR_IA32_MCG_STATUS:
3465                 vcpu->arch.mcg_status = data;
3466                 break;
3467         case MSR_IA32_MCG_CTL:
3468                 if (!(mcg_cap & MCG_CTL_P) &&
3469                     (data || !msr_info->host_initiated))
3470                         return 1;
3471                 if (data != 0 && data != ~(u64)0)
3472                         return 1;
3473                 vcpu->arch.mcg_ctl = data;
3474                 break;
3475         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3476                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3477                 if (msr > last_msr)
3478                         return 1;
3479 
3480                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3481                         return 1;
3482                 /* An attempt to write a 1 to a reserved bit raises #GP */
3483                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3484                         return 1;
3485                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3486                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3487                 vcpu->arch.mci_ctl2_banks[offset] = data;
3488                 break;
3489         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3490                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3491                 if (msr > last_msr)
3492                         return 1;
3493 
3494                 /*
3495                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3496                  * values are architecturally undefined.  But, some Linux
3497                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3498                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3499                  * other bits in order to avoid an uncaught #GP in the guest.
3500                  *
3501                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3502                  * single-bit ECC data errors.
3503                  */
3504                 if (is_mci_control_msr(msr) &&
3505                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3506                         return 1;
3507 
3508                 /*
3509                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3510                  * AMD-based CPUs allow non-zero values, but if and only if
3511                  * HWCR[McStatusWrEn] is set.
3512                  */
3513                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3514                     data != 0 && !can_set_mci_status(vcpu))
3515                         return 1;
3516 
3517                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3518                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3519                 vcpu->arch.mce_banks[offset] = data;
3520                 break;
3521         default:
3522                 return 1;
3523         }
3524         return 0;
3525 }
3526 
3527 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3528 {
3529         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3530 
3531         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3532 }
3533 
3534 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3535 {
3536         gpa_t gpa = data & ~0x3f;
3537 
3538         /* Bits 4:5 are reserved, Should be zero */
3539         if (data & 0x30)
3540                 return 1;
3541 
3542         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3543             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3544                 return 1;
3545 
3546         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3547             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3548                 return 1;
3549 
3550         if (!lapic_in_kernel(vcpu))
3551                 return data ? 1 : 0;
3552 
3553         vcpu->arch.apf.msr_en_val = data;
3554 
3555         if (!kvm_pv_async_pf_enabled(vcpu)) {
3556                 kvm_clear_async_pf_completion_queue(vcpu);
3557                 kvm_async_pf_hash_reset(vcpu);
3558                 return 0;
3559         }
3560 
3561         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3562                                         sizeof(u64)))
3563                 return 1;
3564 
3565         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3566         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3567 
3568         kvm_async_pf_wakeup_all(vcpu);
3569 
3570         return 0;
3571 }
3572 
3573 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3574 {
3575         /* Bits 8-63 are reserved */
3576         if (data >> 8)
3577                 return 1;
3578 
3579         if (!lapic_in_kernel(vcpu))
3580                 return 1;
3581 
3582         vcpu->arch.apf.msr_int_val = data;
3583 
3584         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3585 
3586         return 0;
3587 }
3588 
3589 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3590 {
3591         kvm_gpc_deactivate(&vcpu->arch.pv_time);
3592         vcpu->arch.time = 0;
3593 }
3594 
3595 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3596 {
3597         ++vcpu->stat.tlb_flush;
3598         kvm_x86_call(flush_tlb_all)(vcpu);
3599 
3600         /* Flushing all ASIDs flushes the current ASID... */
3601         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3602 }
3603 
3604 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3605 {
3606         ++vcpu->stat.tlb_flush;
3607 
3608         if (!tdp_enabled) {
3609                 /*
3610                  * A TLB flush on behalf of the guest is equivalent to
3611                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3612                  * a forced sync of the shadow page tables.  Ensure all the
3613                  * roots are synced and the guest TLB in hardware is clean.
3614                  */
3615                 kvm_mmu_sync_roots(vcpu);
3616                 kvm_mmu_sync_prev_roots(vcpu);
3617         }
3618 
3619         kvm_x86_call(flush_tlb_guest)(vcpu);
3620 
3621         /*
3622          * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3623          * grained flushing.
3624          */
3625         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3626 }
3627 
3628 
3629 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3630 {
3631         ++vcpu->stat.tlb_flush;
3632         kvm_x86_call(flush_tlb_current)(vcpu);
3633 }
3634 
3635 /*
3636  * Service "local" TLB flush requests, which are specific to the current MMU
3637  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3638  * TLB flushes that are targeted at an MMU context also need to be serviced
3639  * prior before nested VM-Enter/VM-Exit.
3640  */
3641 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3642 {
3643         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3644                 kvm_vcpu_flush_tlb_current(vcpu);
3645 
3646         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3647                 kvm_vcpu_flush_tlb_guest(vcpu);
3648 }
3649 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3650 
3651 static void record_steal_time(struct kvm_vcpu *vcpu)
3652 {
3653         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3654         struct kvm_steal_time __user *st;
3655         struct kvm_memslots *slots;
3656         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3657         u64 steal;
3658         u32 version;
3659 
3660         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3661                 kvm_xen_runstate_set_running(vcpu);
3662                 return;
3663         }
3664 
3665         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3666                 return;
3667 
3668         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3669                 return;
3670 
3671         slots = kvm_memslots(vcpu->kvm);
3672 
3673         if (unlikely(slots->generation != ghc->generation ||
3674                      gpa != ghc->gpa ||
3675                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3676                 /* We rely on the fact that it fits in a single page. */
3677                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3678 
3679                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3680                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3681                         return;
3682         }
3683 
3684         st = (struct kvm_steal_time __user *)ghc->hva;
3685         /*
3686          * Doing a TLB flush here, on the guest's behalf, can avoid
3687          * expensive IPIs.
3688          */
3689         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3690                 u8 st_preempted = 0;
3691                 int err = -EFAULT;
3692 
3693                 if (!user_access_begin(st, sizeof(*st)))
3694                         return;
3695 
3696                 asm volatile("1: xchgb %0, %2\n"
3697                              "xor %1, %1\n"
3698                              "2:\n"
3699                              _ASM_EXTABLE_UA(1b, 2b)
3700                              : "+q" (st_preempted),
3701                                "+&r" (err),
3702                                "+m" (st->preempted));
3703                 if (err)
3704                         goto out;
3705 
3706                 user_access_end();
3707 
3708                 vcpu->arch.st.preempted = 0;
3709 
3710                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3711                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3712                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3713                         kvm_vcpu_flush_tlb_guest(vcpu);
3714 
3715                 if (!user_access_begin(st, sizeof(*st)))
3716                         goto dirty;
3717         } else {
3718                 if (!user_access_begin(st, sizeof(*st)))
3719                         return;
3720 
3721                 unsafe_put_user(0, &st->preempted, out);
3722                 vcpu->arch.st.preempted = 0;
3723         }
3724 
3725         unsafe_get_user(version, &st->version, out);
3726         if (version & 1)
3727                 version += 1;  /* first time write, random junk */
3728 
3729         version += 1;
3730         unsafe_put_user(version, &st->version, out);
3731 
3732         smp_wmb();
3733 
3734         unsafe_get_user(steal, &st->steal, out);
3735         steal += current->sched_info.run_delay -
3736                 vcpu->arch.st.last_steal;
3737         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3738         unsafe_put_user(steal, &st->steal, out);
3739 
3740         version += 1;
3741         unsafe_put_user(version, &st->version, out);
3742 
3743  out:
3744         user_access_end();
3745  dirty:
3746         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3747 }
3748 
3749 static bool kvm_is_msr_to_save(u32 msr_index)
3750 {
3751         unsigned int i;
3752 
3753         for (i = 0; i < num_msrs_to_save; i++) {
3754                 if (msrs_to_save[i] == msr_index)
3755                         return true;
3756         }
3757 
3758         return false;
3759 }
3760 
3761 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3762 {
3763         u32 msr = msr_info->index;
3764         u64 data = msr_info->data;
3765 
3766         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3767                 return kvm_xen_write_hypercall_page(vcpu, data);
3768 
3769         switch (msr) {
3770         case MSR_AMD64_NB_CFG:
3771         case MSR_IA32_UCODE_WRITE:
3772         case MSR_VM_HSAVE_PA:
3773         case MSR_AMD64_PATCH_LOADER:
3774         case MSR_AMD64_BU_CFG2:
3775         case MSR_AMD64_DC_CFG:
3776         case MSR_AMD64_TW_CFG:
3777         case MSR_F15H_EX_CFG:
3778                 break;
3779 
3780         case MSR_IA32_UCODE_REV:
3781                 if (msr_info->host_initiated)
3782                         vcpu->arch.microcode_version = data;
3783                 break;
3784         case MSR_IA32_ARCH_CAPABILITIES:
3785                 if (!msr_info->host_initiated)
3786                         return 1;
3787                 vcpu->arch.arch_capabilities = data;
3788                 break;
3789         case MSR_IA32_PERF_CAPABILITIES:
3790                 if (!msr_info->host_initiated)
3791                         return 1;
3792                 if (data & ~kvm_caps.supported_perf_cap)
3793                         return 1;
3794 
3795                 /*
3796                  * Note, this is not just a performance optimization!  KVM
3797                  * disallows changing feature MSRs after the vCPU has run; PMU
3798                  * refresh will bug the VM if called after the vCPU has run.
3799                  */
3800                 if (vcpu->arch.perf_capabilities == data)
3801                         break;
3802 
3803                 vcpu->arch.perf_capabilities = data;
3804                 kvm_pmu_refresh(vcpu);
3805                 break;
3806         case MSR_IA32_PRED_CMD: {
3807                 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3808 
3809                 if (!msr_info->host_initiated) {
3810                         if ((!guest_has_pred_cmd_msr(vcpu)))
3811                                 return 1;
3812 
3813                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3814                             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3815                                 reserved_bits |= PRED_CMD_IBPB;
3816 
3817                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3818                                 reserved_bits |= PRED_CMD_SBPB;
3819                 }
3820 
3821                 if (!boot_cpu_has(X86_FEATURE_IBPB))
3822                         reserved_bits |= PRED_CMD_IBPB;
3823 
3824                 if (!boot_cpu_has(X86_FEATURE_SBPB))
3825                         reserved_bits |= PRED_CMD_SBPB;
3826 
3827                 if (data & reserved_bits)
3828                         return 1;
3829 
3830                 if (!data)
3831                         break;
3832 
3833                 wrmsrl(MSR_IA32_PRED_CMD, data);
3834                 break;
3835         }
3836         case MSR_IA32_FLUSH_CMD:
3837                 if (!msr_info->host_initiated &&
3838                     !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3839                         return 1;
3840 
3841                 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3842                         return 1;
3843                 if (!data)
3844                         break;
3845 
3846                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3847                 break;
3848         case MSR_EFER:
3849                 return set_efer(vcpu, msr_info);
3850         case MSR_K7_HWCR:
3851                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3852                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3853                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3854 
3855                 /*
3856                  * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3857                  * through at least v6.6 whine if TscFreqSel is clear,
3858                  * depending on F/M/S.
3859                  */
3860                 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3861                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3862                         return 1;
3863                 }
3864                 vcpu->arch.msr_hwcr = data;
3865                 break;
3866         case MSR_FAM10H_MMIO_CONF_BASE:
3867                 if (data != 0) {
3868                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3869                         return 1;
3870                 }
3871                 break;
3872         case MSR_IA32_CR_PAT:
3873                 if (!kvm_pat_valid(data))
3874                         return 1;
3875 
3876                 vcpu->arch.pat = data;
3877                 break;
3878         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3879         case MSR_MTRRdefType:
3880                 return kvm_mtrr_set_msr(vcpu, msr, data);
3881         case MSR_IA32_APICBASE:
3882                 return kvm_set_apic_base(vcpu, msr_info);
3883         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3884                 return kvm_x2apic_msr_write(vcpu, msr, data);
3885         case MSR_IA32_TSC_DEADLINE:
3886                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3887                 break;
3888         case MSR_IA32_TSC_ADJUST:
3889                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3890                         if (!msr_info->host_initiated) {
3891                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3892                                 adjust_tsc_offset_guest(vcpu, adj);
3893                                 /* Before back to guest, tsc_timestamp must be adjusted
3894                                  * as well, otherwise guest's percpu pvclock time could jump.
3895                                  */
3896                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3897                         }
3898                         vcpu->arch.ia32_tsc_adjust_msr = data;
3899                 }
3900                 break;
3901         case MSR_IA32_MISC_ENABLE: {
3902                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3903 
3904                 if (!msr_info->host_initiated) {
3905                         /* RO bits */
3906                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3907                                 return 1;
3908 
3909                         /* R bits, i.e. writes are ignored, but don't fault. */
3910                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3911                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3912                 }
3913 
3914                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3915                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3916                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3917                                 return 1;
3918                         vcpu->arch.ia32_misc_enable_msr = data;
3919                         kvm_update_cpuid_runtime(vcpu);
3920                 } else {
3921                         vcpu->arch.ia32_misc_enable_msr = data;
3922                 }
3923                 break;
3924         }
3925         case MSR_IA32_SMBASE:
3926                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3927                         return 1;
3928                 vcpu->arch.smbase = data;
3929                 break;
3930         case MSR_IA32_POWER_CTL:
3931                 vcpu->arch.msr_ia32_power_ctl = data;
3932                 break;
3933         case MSR_IA32_TSC:
3934                 if (msr_info->host_initiated) {
3935                         kvm_synchronize_tsc(vcpu, &data);
3936                 } else {
3937                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3938                         adjust_tsc_offset_guest(vcpu, adj);
3939                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3940                 }
3941                 break;
3942         case MSR_IA32_XSS:
3943                 if (!msr_info->host_initiated &&
3944                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3945                         return 1;
3946                 /*
3947                  * KVM supports exposing PT to the guest, but does not support
3948                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3949                  * XSAVES/XRSTORS to save/restore PT MSRs.
3950                  */
3951                 if (data & ~kvm_caps.supported_xss)
3952                         return 1;
3953                 vcpu->arch.ia32_xss = data;
3954                 kvm_update_cpuid_runtime(vcpu);
3955                 break;
3956         case MSR_SMI_COUNT:
3957                 if (!msr_info->host_initiated)
3958                         return 1;
3959                 vcpu->arch.smi_count = data;
3960                 break;
3961         case MSR_KVM_WALL_CLOCK_NEW:
3962                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3963                         return 1;
3964 
3965                 vcpu->kvm->arch.wall_clock = data;
3966                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3967                 break;
3968         case MSR_KVM_WALL_CLOCK:
3969                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3970                         return 1;
3971 
3972                 vcpu->kvm->arch.wall_clock = data;
3973                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3974                 break;
3975         case MSR_KVM_SYSTEM_TIME_NEW:
3976                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3977                         return 1;
3978 
3979                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3980                 break;
3981         case MSR_KVM_SYSTEM_TIME:
3982                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3983                         return 1;
3984 
3985                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3986                 break;
3987         case MSR_KVM_ASYNC_PF_EN:
3988                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3989                         return 1;
3990 
3991                 if (kvm_pv_enable_async_pf(vcpu, data))
3992                         return 1;
3993                 break;
3994         case MSR_KVM_ASYNC_PF_INT:
3995                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3996                         return 1;
3997 
3998                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3999                         return 1;
4000                 break;
4001         case MSR_KVM_ASYNC_PF_ACK:
4002                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4003                         return 1;
4004                 if (data & 0x1) {
4005                         vcpu->arch.apf.pageready_pending = false;
4006                         kvm_check_async_pf_completion(vcpu);
4007                 }
4008                 break;
4009         case MSR_KVM_STEAL_TIME:
4010                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4011                         return 1;
4012 
4013                 if (unlikely(!sched_info_on()))
4014                         return 1;
4015 
4016                 if (data & KVM_STEAL_RESERVED_MASK)
4017                         return 1;
4018 
4019                 vcpu->arch.st.msr_val = data;
4020 
4021                 if (!(data & KVM_MSR_ENABLED))
4022                         break;
4023 
4024                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4025 
4026                 break;
4027         case MSR_KVM_PV_EOI_EN:
4028                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4029                         return 1;
4030 
4031                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4032                         return 1;
4033                 break;
4034 
4035         case MSR_KVM_POLL_CONTROL:
4036                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4037                         return 1;
4038 
4039                 /* only enable bit supported */
4040                 if (data & (-1ULL << 1))
4041                         return 1;
4042 
4043                 vcpu->arch.msr_kvm_poll_control = data;
4044                 break;
4045 
4046         case MSR_IA32_MCG_CTL:
4047         case MSR_IA32_MCG_STATUS:
4048         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4049         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4050                 return set_msr_mce(vcpu, msr_info);
4051 
4052         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4053         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4054         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4055         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4056                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4057                         return kvm_pmu_set_msr(vcpu, msr_info);
4058 
4059                 if (data)
4060                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4061                 break;
4062         case MSR_K7_CLK_CTL:
4063                 /*
4064                  * Ignore all writes to this no longer documented MSR.
4065                  * Writes are only relevant for old K7 processors,
4066                  * all pre-dating SVM, but a recommended workaround from
4067                  * AMD for these chips. It is possible to specify the
4068                  * affected processor models on the command line, hence
4069                  * the need to ignore the workaround.
4070                  */
4071                 break;
4072 #ifdef CONFIG_KVM_HYPERV
4073         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4074         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4075         case HV_X64_MSR_SYNDBG_OPTIONS:
4076         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4077         case HV_X64_MSR_CRASH_CTL:
4078         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4079         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4080         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4081         case HV_X64_MSR_TSC_EMULATION_STATUS:
4082         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4083                 return kvm_hv_set_msr_common(vcpu, msr, data,
4084                                              msr_info->host_initiated);
4085 #endif
4086         case MSR_IA32_BBL_CR_CTL3:
4087                 /* Drop writes to this legacy MSR -- see rdmsr
4088                  * counterpart for further detail.
4089                  */
4090                 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4091                 break;
4092         case MSR_AMD64_OSVW_ID_LENGTH:
4093                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4094                         return 1;
4095                 vcpu->arch.osvw.length = data;
4096                 break;
4097         case MSR_AMD64_OSVW_STATUS:
4098                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4099                         return 1;
4100                 vcpu->arch.osvw.status = data;
4101                 break;
4102         case MSR_PLATFORM_INFO:
4103                 if (!msr_info->host_initiated ||
4104                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4105                      cpuid_fault_enabled(vcpu)))
4106                         return 1;
4107                 vcpu->arch.msr_platform_info = data;
4108                 break;
4109         case MSR_MISC_FEATURES_ENABLES:
4110                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4111                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4112                      !supports_cpuid_fault(vcpu)))
4113                         return 1;
4114                 vcpu->arch.msr_misc_features_enables = data;
4115                 break;
4116 #ifdef CONFIG_X86_64
4117         case MSR_IA32_XFD:
4118                 if (!msr_info->host_initiated &&
4119                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4120                         return 1;
4121 
4122                 if (data & ~kvm_guest_supported_xfd(vcpu))
4123                         return 1;
4124 
4125                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4126                 break;
4127         case MSR_IA32_XFD_ERR:
4128                 if (!msr_info->host_initiated &&
4129                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4130                         return 1;
4131 
4132                 if (data & ~kvm_guest_supported_xfd(vcpu))
4133                         return 1;
4134 
4135                 vcpu->arch.guest_fpu.xfd_err = data;
4136                 break;
4137 #endif
4138         default:
4139                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4140                         return kvm_pmu_set_msr(vcpu, msr_info);
4141 
4142                 /*
4143                  * Userspace is allowed to write '' to MSRs that KVM reports
4144                  * as to-be-saved, even if an MSRs isn't fully supported.
4145                  */
4146                 if (msr_info->host_initiated && !data &&
4147                     kvm_is_msr_to_save(msr))
4148                         break;
4149 
4150                 return KVM_MSR_RET_INVALID;
4151         }
4152         return 0;
4153 }
4154 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4155 
4156 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4157 {
4158         u64 data;
4159         u64 mcg_cap = vcpu->arch.mcg_cap;
4160         unsigned bank_num = mcg_cap & 0xff;
4161         u32 offset, last_msr;
4162 
4163         switch (msr) {
4164         case MSR_IA32_P5_MC_ADDR:
4165         case MSR_IA32_P5_MC_TYPE:
4166                 data = 0;
4167                 break;
4168         case MSR_IA32_MCG_CAP:
4169                 data = vcpu->arch.mcg_cap;
4170                 break;
4171         case MSR_IA32_MCG_CTL:
4172                 if (!(mcg_cap & MCG_CTL_P) && !host)
4173                         return 1;
4174                 data = vcpu->arch.mcg_ctl;
4175                 break;
4176         case MSR_IA32_MCG_STATUS:
4177                 data = vcpu->arch.mcg_status;
4178                 break;
4179         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4180                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4181                 if (msr > last_msr)
4182                         return 1;
4183 
4184                 if (!(mcg_cap & MCG_CMCI_P) && !host)
4185                         return 1;
4186                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4187                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
4188                 data = vcpu->arch.mci_ctl2_banks[offset];
4189                 break;
4190         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4191                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4192                 if (msr > last_msr)
4193                         return 1;
4194 
4195                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4196                                             last_msr + 1 - MSR_IA32_MC0_CTL);
4197                 data = vcpu->arch.mce_banks[offset];
4198                 break;
4199         default:
4200                 return 1;
4201         }
4202         *pdata = data;
4203         return 0;
4204 }
4205 
4206 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4207 {
4208         switch (msr_info->index) {
4209         case MSR_IA32_PLATFORM_ID:
4210         case MSR_IA32_EBL_CR_POWERON:
4211         case MSR_IA32_LASTBRANCHFROMIP:
4212         case MSR_IA32_LASTBRANCHTOIP:
4213         case MSR_IA32_LASTINTFROMIP:
4214         case MSR_IA32_LASTINTTOIP:
4215         case MSR_AMD64_SYSCFG:
4216         case MSR_K8_TSEG_ADDR:
4217         case MSR_K8_TSEG_MASK:
4218         case MSR_VM_HSAVE_PA:
4219         case MSR_K8_INT_PENDING_MSG:
4220         case MSR_AMD64_NB_CFG:
4221         case MSR_FAM10H_MMIO_CONF_BASE:
4222         case MSR_AMD64_BU_CFG2:
4223         case MSR_IA32_PERF_CTL:
4224         case MSR_AMD64_DC_CFG:
4225         case MSR_AMD64_TW_CFG:
4226         case MSR_F15H_EX_CFG:
4227         /*
4228          * Intel Sandy Bridge CPUs must support the RAPL (running average power
4229          * limit) MSRs. Just return 0, as we do not want to expose the host
4230          * data here. Do not conditionalize this on CPUID, as KVM does not do
4231          * so for existing CPU-specific MSRs.
4232          */
4233         case MSR_RAPL_POWER_UNIT:
4234         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
4235         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
4236         case MSR_PKG_ENERGY_STATUS:     /* Total package */
4237         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
4238                 msr_info->data = 0;
4239                 break;
4240         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4241         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4242         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4243         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4244                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4245                         return kvm_pmu_get_msr(vcpu, msr_info);
4246                 msr_info->data = 0;
4247                 break;
4248         case MSR_IA32_UCODE_REV:
4249                 msr_info->data = vcpu->arch.microcode_version;
4250                 break;
4251         case MSR_IA32_ARCH_CAPABILITIES:
4252                 if (!msr_info->host_initiated &&
4253                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4254                         return 1;
4255                 msr_info->data = vcpu->arch.arch_capabilities;
4256                 break;
4257         case MSR_IA32_PERF_CAPABILITIES:
4258                 if (!msr_info->host_initiated &&
4259                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4260                         return 1;
4261                 msr_info->data = vcpu->arch.perf_capabilities;
4262                 break;
4263         case MSR_IA32_POWER_CTL:
4264                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4265                 break;
4266         case MSR_IA32_TSC: {
4267                 /*
4268                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4269                  * even when not intercepted. AMD manual doesn't explicitly
4270                  * state this but appears to behave the same.
4271                  *
4272                  * On userspace reads and writes, however, we unconditionally
4273                  * return L1's TSC value to ensure backwards-compatible
4274                  * behavior for migration.
4275                  */
4276                 u64 offset, ratio;
4277 
4278                 if (msr_info->host_initiated) {
4279                         offset = vcpu->arch.l1_tsc_offset;
4280                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4281                 } else {
4282                         offset = vcpu->arch.tsc_offset;
4283                         ratio = vcpu->arch.tsc_scaling_ratio;
4284                 }
4285 
4286                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4287                 break;
4288         }
4289         case MSR_IA32_CR_PAT:
4290                 msr_info->data = vcpu->arch.pat;
4291                 break;
4292         case MSR_MTRRcap:
4293         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4294         case MSR_MTRRdefType:
4295                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4296         case 0xcd: /* fsb frequency */
4297                 msr_info->data = 3;
4298                 break;
4299                 /*
4300                  * MSR_EBC_FREQUENCY_ID
4301                  * Conservative value valid for even the basic CPU models.
4302                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4303                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4304                  * and 266MHz for model 3, or 4. Set Core Clock
4305                  * Frequency to System Bus Frequency Ratio to 1 (bits
4306                  * 31:24) even though these are only valid for CPU
4307                  * models > 2, however guests may end up dividing or
4308                  * multiplying by zero otherwise.
4309                  */
4310         case MSR_EBC_FREQUENCY_ID:
4311                 msr_info->data = 1 << 24;
4312                 break;
4313         case MSR_IA32_APICBASE:
4314                 msr_info->data = kvm_get_apic_base(vcpu);
4315                 break;
4316         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4317                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4318         case MSR_IA32_TSC_DEADLINE:
4319                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4320                 break;
4321         case MSR_IA32_TSC_ADJUST:
4322                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4323                 break;
4324         case MSR_IA32_MISC_ENABLE:
4325                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4326                 break;
4327         case MSR_IA32_SMBASE:
4328                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4329                         return 1;
4330                 msr_info->data = vcpu->arch.smbase;
4331                 break;
4332         case MSR_SMI_COUNT:
4333                 msr_info->data = vcpu->arch.smi_count;
4334                 break;
4335         case MSR_IA32_PERF_STATUS:
4336                 /* TSC increment by tick */
4337                 msr_info->data = 1000ULL;
4338                 /* CPU multiplier */
4339                 msr_info->data |= (((uint64_t)4ULL) << 40);
4340                 break;
4341         case MSR_EFER:
4342                 msr_info->data = vcpu->arch.efer;
4343                 break;
4344         case MSR_KVM_WALL_CLOCK:
4345                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4346                         return 1;
4347 
4348                 msr_info->data = vcpu->kvm->arch.wall_clock;
4349                 break;
4350         case MSR_KVM_WALL_CLOCK_NEW:
4351                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4352                         return 1;
4353 
4354                 msr_info->data = vcpu->kvm->arch.wall_clock;
4355                 break;
4356         case MSR_KVM_SYSTEM_TIME:
4357                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4358                         return 1;
4359 
4360                 msr_info->data = vcpu->arch.time;
4361                 break;
4362         case MSR_KVM_SYSTEM_TIME_NEW:
4363                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4364                         return 1;
4365 
4366                 msr_info->data = vcpu->arch.time;
4367                 break;
4368         case MSR_KVM_ASYNC_PF_EN:
4369                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4370                         return 1;
4371 
4372                 msr_info->data = vcpu->arch.apf.msr_en_val;
4373                 break;
4374         case MSR_KVM_ASYNC_PF_INT:
4375                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4376                         return 1;
4377 
4378                 msr_info->data = vcpu->arch.apf.msr_int_val;
4379                 break;
4380         case MSR_KVM_ASYNC_PF_ACK:
4381                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4382                         return 1;
4383 
4384                 msr_info->data = 0;
4385                 break;
4386         case MSR_KVM_STEAL_TIME:
4387                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4388                         return 1;
4389 
4390                 msr_info->data = vcpu->arch.st.msr_val;
4391                 break;
4392         case MSR_KVM_PV_EOI_EN:
4393                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4394                         return 1;
4395 
4396                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4397                 break;
4398         case MSR_KVM_POLL_CONTROL:
4399                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4400                         return 1;
4401 
4402                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4403                 break;
4404         case MSR_IA32_P5_MC_ADDR:
4405         case MSR_IA32_P5_MC_TYPE:
4406         case MSR_IA32_MCG_CAP:
4407         case MSR_IA32_MCG_CTL:
4408         case MSR_IA32_MCG_STATUS:
4409         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4410         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4411                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4412                                    msr_info->host_initiated);
4413         case MSR_IA32_XSS:
4414                 if (!msr_info->host_initiated &&
4415                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4416                         return 1;
4417                 msr_info->data = vcpu->arch.ia32_xss;
4418                 break;
4419         case MSR_K7_CLK_CTL:
4420                 /*
4421                  * Provide expected ramp-up count for K7. All other
4422                  * are set to zero, indicating minimum divisors for
4423                  * every field.
4424                  *
4425                  * This prevents guest kernels on AMD host with CPU
4426                  * type 6, model 8 and higher from exploding due to
4427                  * the rdmsr failing.
4428                  */
4429                 msr_info->data = 0x20000000;
4430                 break;
4431 #ifdef CONFIG_KVM_HYPERV
4432         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4433         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4434         case HV_X64_MSR_SYNDBG_OPTIONS:
4435         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4436         case HV_X64_MSR_CRASH_CTL:
4437         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4438         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4439         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4440         case HV_X64_MSR_TSC_EMULATION_STATUS:
4441         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4442                 return kvm_hv_get_msr_common(vcpu,
4443                                              msr_info->index, &msr_info->data,
4444                                              msr_info->host_initiated);
4445 #endif
4446         case MSR_IA32_BBL_CR_CTL3:
4447                 /* This legacy MSR exists but isn't fully documented in current
4448                  * silicon.  It is however accessed by winxp in very narrow
4449                  * scenarios where it sets bit #19, itself documented as
4450                  * a "reserved" bit.  Best effort attempt to source coherent
4451                  * read data here should the balance of the register be
4452                  * interpreted by the guest:
4453                  *
4454                  * L2 cache control register 3: 64GB range, 256KB size,
4455                  * enabled, latency 0x1, configured
4456                  */
4457                 msr_info->data = 0xbe702111;
4458                 break;
4459         case MSR_AMD64_OSVW_ID_LENGTH:
4460                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4461                         return 1;
4462                 msr_info->data = vcpu->arch.osvw.length;
4463                 break;
4464         case MSR_AMD64_OSVW_STATUS:
4465                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4466                         return 1;
4467                 msr_info->data = vcpu->arch.osvw.status;
4468                 break;
4469         case MSR_PLATFORM_INFO:
4470                 if (!msr_info->host_initiated &&
4471                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4472                         return 1;
4473                 msr_info->data = vcpu->arch.msr_platform_info;
4474                 break;
4475         case MSR_MISC_FEATURES_ENABLES:
4476                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4477                 break;
4478         case MSR_K7_HWCR:
4479                 msr_info->data = vcpu->arch.msr_hwcr;
4480                 break;
4481 #ifdef CONFIG_X86_64
4482         case MSR_IA32_XFD:
4483                 if (!msr_info->host_initiated &&
4484                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4485                         return 1;
4486 
4487                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4488                 break;
4489         case MSR_IA32_XFD_ERR:
4490                 if (!msr_info->host_initiated &&
4491                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4492                         return 1;
4493 
4494                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4495                 break;
4496 #endif
4497         default:
4498                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4499                         return kvm_pmu_get_msr(vcpu, msr_info);
4500 
4501                 /*
4502                  * Userspace is allowed to read MSRs that KVM reports as
4503                  * to-be-saved, even if an MSR isn't fully supported.
4504                  */
4505                 if (msr_info->host_initiated &&
4506                     kvm_is_msr_to_save(msr_info->index)) {
4507                         msr_info->data = 0;
4508                         break;
4509                 }
4510 
4511                 return KVM_MSR_RET_INVALID;
4512         }
4513         return 0;
4514 }
4515 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4516 
4517 /*
4518  * Read or write a bunch of msrs. All parameters are kernel addresses.
4519  *
4520  * @return number of msrs set successfully.
4521  */
4522 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4523                     struct kvm_msr_entry *entries,
4524                     int (*do_msr)(struct kvm_vcpu *vcpu,
4525                                   unsigned index, u64 *data))
4526 {
4527         int i;
4528 
4529         for (i = 0; i < msrs->nmsrs; ++i)
4530                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4531                         break;
4532 
4533         return i;
4534 }
4535 
4536 /*
4537  * Read or write a bunch of msrs. Parameters are user addresses.
4538  *
4539  * @return number of msrs set successfully.
4540  */
4541 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4542                   int (*do_msr)(struct kvm_vcpu *vcpu,
4543                                 unsigned index, u64 *data),
4544                   int writeback)
4545 {
4546         struct kvm_msrs msrs;
4547         struct kvm_msr_entry *entries;
4548         unsigned size;
4549         int r;
4550 
4551         r = -EFAULT;
4552         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4553                 goto out;
4554 
4555         r = -E2BIG;
4556         if (msrs.nmsrs >= MAX_IO_MSRS)
4557                 goto out;
4558 
4559         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4560         entries = memdup_user(user_msrs->entries, size);
4561         if (IS_ERR(entries)) {
4562                 r = PTR_ERR(entries);
4563                 goto out;
4564         }
4565 
4566         r = __msr_io(vcpu, &msrs, entries, do_msr);
4567 
4568         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4569                 r = -EFAULT;
4570 
4571         kfree(entries);
4572 out:
4573         return r;
4574 }
4575 
4576 static inline bool kvm_can_mwait_in_guest(void)
4577 {
4578         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4579                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4580                 boot_cpu_has(X86_FEATURE_ARAT);
4581 }
4582 
4583 #ifdef CONFIG_KVM_HYPERV
4584 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4585                                             struct kvm_cpuid2 __user *cpuid_arg)
4586 {
4587         struct kvm_cpuid2 cpuid;
4588         int r;
4589 
4590         r = -EFAULT;
4591         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4592                 return r;
4593 
4594         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4595         if (r)
4596                 return r;
4597 
4598         r = -EFAULT;
4599         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4600                 return r;
4601 
4602         return 0;
4603 }
4604 #endif
4605 
4606 static bool kvm_is_vm_type_supported(unsigned long type)
4607 {
4608         return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4609 }
4610 
4611 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4612 {
4613         int r = 0;
4614 
4615         switch (ext) {
4616         case KVM_CAP_IRQCHIP:
4617         case KVM_CAP_HLT:
4618         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4619         case KVM_CAP_SET_TSS_ADDR:
4620         case KVM_CAP_EXT_CPUID:
4621         case KVM_CAP_EXT_EMUL_CPUID:
4622         case KVM_CAP_CLOCKSOURCE:
4623         case KVM_CAP_PIT:
4624         case KVM_CAP_NOP_IO_DELAY:
4625         case KVM_CAP_MP_STATE:
4626         case KVM_CAP_SYNC_MMU:
4627         case KVM_CAP_USER_NMI:
4628         case KVM_CAP_REINJECT_CONTROL:
4629         case KVM_CAP_IRQ_INJECT_STATUS:
4630         case KVM_CAP_IOEVENTFD:
4631         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4632         case KVM_CAP_PIT2:
4633         case KVM_CAP_PIT_STATE2:
4634         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4635         case KVM_CAP_VCPU_EVENTS:
4636 #ifdef CONFIG_KVM_HYPERV
4637         case KVM_CAP_HYPERV:
4638         case KVM_CAP_HYPERV_VAPIC:
4639         case KVM_CAP_HYPERV_SPIN:
4640         case KVM_CAP_HYPERV_TIME:
4641         case KVM_CAP_HYPERV_SYNIC:
4642         case KVM_CAP_HYPERV_SYNIC2:
4643         case KVM_CAP_HYPERV_VP_INDEX:
4644         case KVM_CAP_HYPERV_EVENTFD:
4645         case KVM_CAP_HYPERV_TLBFLUSH:
4646         case KVM_CAP_HYPERV_SEND_IPI:
4647         case KVM_CAP_HYPERV_CPUID:
4648         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4649         case KVM_CAP_SYS_HYPERV_CPUID:
4650 #endif
4651         case KVM_CAP_PCI_SEGMENT:
4652         case KVM_CAP_DEBUGREGS:
4653         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4654         case KVM_CAP_XSAVE:
4655         case KVM_CAP_ASYNC_PF:
4656         case KVM_CAP_ASYNC_PF_INT:
4657         case KVM_CAP_GET_TSC_KHZ:
4658         case KVM_CAP_KVMCLOCK_CTRL:
4659         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4660         case KVM_CAP_TSC_DEADLINE_TIMER:
4661         case KVM_CAP_DISABLE_QUIRKS:
4662         case KVM_CAP_SET_BOOT_CPU_ID:
4663         case KVM_CAP_SPLIT_IRQCHIP:
4664         case KVM_CAP_IMMEDIATE_EXIT:
4665         case KVM_CAP_PMU_EVENT_FILTER:
4666         case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4667         case KVM_CAP_GET_MSR_FEATURES:
4668         case KVM_CAP_MSR_PLATFORM_INFO:
4669         case KVM_CAP_EXCEPTION_PAYLOAD:
4670         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4671         case KVM_CAP_SET_GUEST_DEBUG:
4672         case KVM_CAP_LAST_CPU:
4673         case KVM_CAP_X86_USER_SPACE_MSR:
4674         case KVM_CAP_X86_MSR_FILTER:
4675         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4676 #ifdef CONFIG_X86_SGX_KVM
4677         case KVM_CAP_SGX_ATTRIBUTE:
4678 #endif
4679         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4680         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4681         case KVM_CAP_SREGS2:
4682         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4683         case KVM_CAP_VCPU_ATTRIBUTES:
4684         case KVM_CAP_SYS_ATTRIBUTES:
4685         case KVM_CAP_VAPIC:
4686         case KVM_CAP_ENABLE_CAP:
4687         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4688         case KVM_CAP_IRQFD_RESAMPLE:
4689         case KVM_CAP_MEMORY_FAULT_INFO:
4690         case KVM_CAP_X86_GUEST_MODE:
4691                 r = 1;
4692                 break;
4693         case KVM_CAP_PRE_FAULT_MEMORY:
4694                 r = tdp_enabled;
4695                 break;
4696         case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4697                 r = APIC_BUS_CYCLE_NS_DEFAULT;
4698                 break;
4699         case KVM_CAP_EXIT_HYPERCALL:
4700                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4701                 break;
4702         case KVM_CAP_SET_GUEST_DEBUG2:
4703                 return KVM_GUESTDBG_VALID_MASK;
4704 #ifdef CONFIG_KVM_XEN
4705         case KVM_CAP_XEN_HVM:
4706                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4707                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4708                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4709                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4710                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4711                     KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4712                     KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4713                 if (sched_info_on())
4714                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4715                              KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4716                 break;
4717 #endif
4718         case KVM_CAP_SYNC_REGS:
4719                 r = KVM_SYNC_X86_VALID_FIELDS;
4720                 break;
4721         case KVM_CAP_ADJUST_CLOCK:
4722                 r = KVM_CLOCK_VALID_FLAGS;
4723                 break;
4724         case KVM_CAP_X86_DISABLE_EXITS:
4725                 r = KVM_X86_DISABLE_EXITS_PAUSE;
4726 
4727                 if (!mitigate_smt_rsb) {
4728                         r |= KVM_X86_DISABLE_EXITS_HLT |
4729                              KVM_X86_DISABLE_EXITS_CSTATE;
4730 
4731                         if (kvm_can_mwait_in_guest())
4732                                 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4733                 }
4734                 break;
4735         case KVM_CAP_X86_SMM:
4736                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4737                         break;
4738 
4739                 /* SMBASE is usually relocated above 1M on modern chipsets,
4740                  * and SMM handlers might indeed rely on 4G segment limits,
4741                  * so do not report SMM to be available if real mode is
4742                  * emulated via vm86 mode.  Still, do not go to great lengths
4743                  * to avoid userspace's usage of the feature, because it is a
4744                  * fringe case that is not enabled except via specific settings
4745                  * of the module parameters.
4746                  */
4747                 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4748                 break;
4749         case KVM_CAP_NR_VCPUS:
4750                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4751                 break;
4752         case KVM_CAP_MAX_VCPUS:
4753                 r = KVM_MAX_VCPUS;
4754                 break;
4755         case KVM_CAP_MAX_VCPU_ID:
4756                 r = KVM_MAX_VCPU_IDS;
4757                 break;
4758         case KVM_CAP_PV_MMU:    /* obsolete */
4759                 r = 0;
4760                 break;
4761         case KVM_CAP_MCE:
4762                 r = KVM_MAX_MCE_BANKS;
4763                 break;
4764         case KVM_CAP_XCRS:
4765                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4766                 break;
4767         case KVM_CAP_TSC_CONTROL:
4768         case KVM_CAP_VM_TSC_CONTROL:
4769                 r = kvm_caps.has_tsc_control;
4770                 break;
4771         case KVM_CAP_X2APIC_API:
4772                 r = KVM_X2APIC_API_VALID_FLAGS;
4773                 break;
4774         case KVM_CAP_NESTED_STATE:
4775                 r = kvm_x86_ops.nested_ops->get_state ?
4776                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4777                 break;
4778 #ifdef CONFIG_KVM_HYPERV
4779         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4780                 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4781                 break;
4782         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4783                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4784                 break;
4785 #endif
4786         case KVM_CAP_SMALLER_MAXPHYADDR:
4787                 r = (int) allow_smaller_maxphyaddr;
4788                 break;
4789         case KVM_CAP_STEAL_TIME:
4790                 r = sched_info_on();
4791                 break;
4792         case KVM_CAP_X86_BUS_LOCK_EXIT:
4793                 if (kvm_caps.has_bus_lock_exit)
4794                         r = KVM_BUS_LOCK_DETECTION_OFF |
4795                             KVM_BUS_LOCK_DETECTION_EXIT;
4796                 else
4797                         r = 0;
4798                 break;
4799         case KVM_CAP_XSAVE2: {
4800                 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4801                 if (r < sizeof(struct kvm_xsave))
4802                         r = sizeof(struct kvm_xsave);
4803                 break;
4804         }
4805         case KVM_CAP_PMU_CAPABILITY:
4806                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4807                 break;
4808         case KVM_CAP_DISABLE_QUIRKS2:
4809                 r = KVM_X86_VALID_QUIRKS;
4810                 break;
4811         case KVM_CAP_X86_NOTIFY_VMEXIT:
4812                 r = kvm_caps.has_notify_vmexit;
4813                 break;
4814         case KVM_CAP_VM_TYPES:
4815                 r = kvm_caps.supported_vm_types;
4816                 break;
4817         case KVM_CAP_READONLY_MEM:
4818                 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4819                 break;
4820         default:
4821                 break;
4822         }
4823         return r;
4824 }
4825 
4826 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4827 {
4828         if (attr->group) {
4829                 if (kvm_x86_ops.dev_get_attr)
4830                         return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4831                 return -ENXIO;
4832         }
4833 
4834         switch (attr->attr) {
4835         case KVM_X86_XCOMP_GUEST_SUPP:
4836                 *val = kvm_caps.supported_xcr0;
4837                 return 0;
4838         default:
4839                 return -ENXIO;
4840         }
4841 }
4842 
4843 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4844 {
4845         u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4846         int r;
4847         u64 val;
4848 
4849         r = __kvm_x86_dev_get_attr(attr, &val);
4850         if (r < 0)
4851                 return r;
4852 
4853         if (put_user(val, uaddr))
4854                 return -EFAULT;
4855 
4856         return 0;
4857 }
4858 
4859 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4860 {
4861         u64 val;
4862 
4863         return __kvm_x86_dev_get_attr(attr, &val);
4864 }
4865 
4866 long kvm_arch_dev_ioctl(struct file *filp,
4867                         unsigned int ioctl, unsigned long arg)
4868 {
4869         void __user *argp = (void __user *)arg;
4870         long r;
4871 
4872         switch (ioctl) {
4873         case KVM_GET_MSR_INDEX_LIST: {
4874                 struct kvm_msr_list __user *user_msr_list = argp;
4875                 struct kvm_msr_list msr_list;
4876                 unsigned n;
4877 
4878                 r = -EFAULT;
4879                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4880                         goto out;
4881                 n = msr_list.nmsrs;
4882                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4883                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4884                         goto out;
4885                 r = -E2BIG;
4886                 if (n < msr_list.nmsrs)
4887                         goto out;
4888                 r = -EFAULT;
4889                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4890                                  num_msrs_to_save * sizeof(u32)))
4891                         goto out;
4892                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4893                                  &emulated_msrs,
4894                                  num_emulated_msrs * sizeof(u32)))
4895                         goto out;
4896                 r = 0;
4897                 break;
4898         }
4899         case KVM_GET_SUPPORTED_CPUID:
4900         case KVM_GET_EMULATED_CPUID: {
4901                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4902                 struct kvm_cpuid2 cpuid;
4903 
4904                 r = -EFAULT;
4905                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4906                         goto out;
4907 
4908                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4909                                             ioctl);
4910                 if (r)
4911                         goto out;
4912 
4913                 r = -EFAULT;
4914                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4915                         goto out;
4916                 r = 0;
4917                 break;
4918         }
4919         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4920                 r = -EFAULT;
4921                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4922                                  sizeof(kvm_caps.supported_mce_cap)))
4923                         goto out;
4924                 r = 0;
4925                 break;
4926         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4927                 struct kvm_msr_list __user *user_msr_list = argp;
4928                 struct kvm_msr_list msr_list;
4929                 unsigned int n;
4930 
4931                 r = -EFAULT;
4932                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4933                         goto out;
4934                 n = msr_list.nmsrs;
4935                 msr_list.nmsrs = num_msr_based_features;
4936                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4937                         goto out;
4938                 r = -E2BIG;
4939                 if (n < msr_list.nmsrs)
4940                         goto out;
4941                 r = -EFAULT;
4942                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4943                                  num_msr_based_features * sizeof(u32)))
4944                         goto out;
4945                 r = 0;
4946                 break;
4947         }
4948         case KVM_GET_MSRS:
4949                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4950                 break;
4951 #ifdef CONFIG_KVM_HYPERV
4952         case KVM_GET_SUPPORTED_HV_CPUID:
4953                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4954                 break;
4955 #endif
4956         case KVM_GET_DEVICE_ATTR: {
4957                 struct kvm_device_attr attr;
4958                 r = -EFAULT;
4959                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4960                         break;
4961                 r = kvm_x86_dev_get_attr(&attr);
4962                 break;
4963         }
4964         case KVM_HAS_DEVICE_ATTR: {
4965                 struct kvm_device_attr attr;
4966                 r = -EFAULT;
4967                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4968                         break;
4969                 r = kvm_x86_dev_has_attr(&attr);
4970                 break;
4971         }
4972         default:
4973                 r = -EINVAL;
4974                 break;
4975         }
4976 out:
4977         return r;
4978 }
4979 
4980 static void wbinvd_ipi(void *garbage)
4981 {
4982         wbinvd();
4983 }
4984 
4985 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4986 {
4987         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4988 }
4989 
4990 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4991 {
4992         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4993 
4994         vcpu->arch.l1tf_flush_l1d = true;
4995 
4996         if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4997                 pmu->need_cleanup = true;
4998                 kvm_make_request(KVM_REQ_PMU, vcpu);
4999         }
5000 
5001         /* Address WBINVD may be executed by guest */
5002         if (need_emulate_wbinvd(vcpu)) {
5003                 if (kvm_x86_call(has_wbinvd_exit)())
5004                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5005                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5006                         smp_call_function_single(vcpu->cpu,
5007                                         wbinvd_ipi, NULL, 1);
5008         }
5009 
5010         kvm_x86_call(vcpu_load)(vcpu, cpu);
5011 
5012         /* Save host pkru register if supported */
5013         vcpu->arch.host_pkru = read_pkru();
5014 
5015         /* Apply any externally detected TSC adjustments (due to suspend) */
5016         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5017                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5018                 vcpu->arch.tsc_offset_adjustment = 0;
5019                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5020         }
5021 
5022         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5023                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5024                                 rdtsc() - vcpu->arch.last_host_tsc;
5025                 if (tsc_delta < 0)
5026                         mark_tsc_unstable("KVM discovered backwards TSC");
5027 
5028                 if (kvm_check_tsc_unstable()) {
5029                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5030                                                 vcpu->arch.last_guest_tsc);
5031                         kvm_vcpu_write_tsc_offset(vcpu, offset);
5032                         vcpu->arch.tsc_catchup = 1;
5033                 }
5034 
5035                 if (kvm_lapic_hv_timer_in_use(vcpu))
5036                         kvm_lapic_restart_hv_timer(vcpu);
5037 
5038                 /*
5039                  * On a host with synchronized TSC, there is no need to update
5040                  * kvmclock on vcpu->cpu migration
5041                  */
5042                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5043                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5044                 if (vcpu->cpu != cpu)
5045                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5046                 vcpu->cpu = cpu;
5047         }
5048 
5049         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5050 }
5051 
5052 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5053 {
5054         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5055         struct kvm_steal_time __user *st;
5056         struct kvm_memslots *slots;
5057         static const u8 preempted = KVM_VCPU_PREEMPTED;
5058         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5059 
5060         /*
5061          * The vCPU can be marked preempted if and only if the VM-Exit was on
5062          * an instruction boundary and will not trigger guest emulation of any
5063          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5064          * when this is true, for example allowing the vCPU to be marked
5065          * preempted if and only if the VM-Exit was due to a host interrupt.
5066          */
5067         if (!vcpu->arch.at_instruction_boundary) {
5068                 vcpu->stat.preemption_other++;
5069                 return;
5070         }
5071 
5072         vcpu->stat.preemption_reported++;
5073         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5074                 return;
5075 
5076         if (vcpu->arch.st.preempted)
5077                 return;
5078 
5079         /* This happens on process exit */
5080         if (unlikely(current->mm != vcpu->kvm->mm))
5081                 return;
5082 
5083         slots = kvm_memslots(vcpu->kvm);
5084 
5085         if (unlikely(slots->generation != ghc->generation ||
5086                      gpa != ghc->gpa ||
5087                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5088                 return;
5089 
5090         st = (struct kvm_steal_time __user *)ghc->hva;
5091         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5092 
5093         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5094                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5095 
5096         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5097 }
5098 
5099 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5100 {
5101         int idx;
5102 
5103         if (vcpu->preempted) {
5104                 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu);
5105 
5106                 /*
5107                  * Take the srcu lock as memslots will be accessed to check the gfn
5108                  * cache generation against the memslots generation.
5109                  */
5110                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5111                 if (kvm_xen_msr_enabled(vcpu->kvm))
5112                         kvm_xen_runstate_set_preempted(vcpu);
5113                 else
5114                         kvm_steal_time_set_preempted(vcpu);
5115                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5116         }
5117 
5118         kvm_x86_call(vcpu_put)(vcpu);
5119         vcpu->arch.last_host_tsc = rdtsc();
5120 }
5121 
5122 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5123                                     struct kvm_lapic_state *s)
5124 {
5125         kvm_x86_call(sync_pir_to_irr)(vcpu);
5126 
5127         return kvm_apic_get_state(vcpu, s);
5128 }
5129 
5130 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5131                                     struct kvm_lapic_state *s)
5132 {
5133         int r;
5134 
5135         r = kvm_apic_set_state(vcpu, s);
5136         if (r)
5137                 return r;
5138         update_cr8_intercept(vcpu);
5139 
5140         return 0;
5141 }
5142 
5143 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5144 {
5145         /*
5146          * We can accept userspace's request for interrupt injection
5147          * as long as we have a place to store the interrupt number.
5148          * The actual injection will happen when the CPU is able to
5149          * deliver the interrupt.
5150          */
5151         if (kvm_cpu_has_extint(vcpu))
5152                 return false;
5153 
5154         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5155         return (!lapic_in_kernel(vcpu) ||
5156                 kvm_apic_accept_pic_intr(vcpu));
5157 }
5158 
5159 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5160 {
5161         /*
5162          * Do not cause an interrupt window exit if an exception
5163          * is pending or an event needs reinjection; userspace
5164          * might want to inject the interrupt manually using KVM_SET_REGS
5165          * or KVM_SET_SREGS.  For that to work, we must be at an
5166          * instruction boundary and with no events half-injected.
5167          */
5168         return (kvm_arch_interrupt_allowed(vcpu) &&
5169                 kvm_cpu_accept_dm_intr(vcpu) &&
5170                 !kvm_event_needs_reinjection(vcpu) &&
5171                 !kvm_is_exception_pending(vcpu));
5172 }
5173 
5174 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5175                                     struct kvm_interrupt *irq)
5176 {
5177         if (irq->irq >= KVM_NR_INTERRUPTS)
5178                 return -EINVAL;
5179 
5180         if (!irqchip_in_kernel(vcpu->kvm)) {
5181                 kvm_queue_interrupt(vcpu, irq->irq, false);
5182                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5183                 return 0;
5184         }
5185 
5186         /*
5187          * With in-kernel LAPIC, we only use this to inject EXTINT, so
5188          * fail for in-kernel 8259.
5189          */
5190         if (pic_in_kernel(vcpu->kvm))
5191                 return -ENXIO;
5192 
5193         if (vcpu->arch.pending_external_vector != -1)
5194                 return -EEXIST;
5195 
5196         vcpu->arch.pending_external_vector = irq->irq;
5197         kvm_make_request(KVM_REQ_EVENT, vcpu);
5198         return 0;
5199 }
5200 
5201 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5202 {
5203         kvm_inject_nmi(vcpu);
5204 
5205         return 0;
5206 }
5207 
5208 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5209                                            struct kvm_tpr_access_ctl *tac)
5210 {
5211         if (tac->flags)
5212                 return -EINVAL;
5213         vcpu->arch.tpr_access_reporting = !!tac->enabled;
5214         return 0;
5215 }
5216 
5217 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5218                                         u64 mcg_cap)
5219 {
5220         int r;
5221         unsigned bank_num = mcg_cap & 0xff, bank;
5222 
5223         r = -EINVAL;
5224         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5225                 goto out;
5226         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5227                 goto out;
5228         r = 0;
5229         vcpu->arch.mcg_cap = mcg_cap;
5230         /* Init IA32_MCG_CTL to all 1s */
5231         if (mcg_cap & MCG_CTL_P)
5232                 vcpu->arch.mcg_ctl = ~(u64)0;
5233         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5234         for (bank = 0; bank < bank_num; bank++) {
5235                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5236                 if (mcg_cap & MCG_CMCI_P)
5237                         vcpu->arch.mci_ctl2_banks[bank] = 0;
5238         }
5239 
5240         kvm_apic_after_set_mcg_cap(vcpu);
5241 
5242         kvm_x86_call(setup_mce)(vcpu);
5243 out:
5244         return r;
5245 }
5246 
5247 /*
5248  * Validate this is an UCNA (uncorrectable no action) error by checking the
5249  * MCG_STATUS and MCi_STATUS registers:
5250  * - none of the bits for Machine Check Exceptions are set
5251  * - both the VAL (valid) and UC (uncorrectable) bits are set
5252  * MCI_STATUS_PCC - Processor Context Corrupted
5253  * MCI_STATUS_S - Signaled as a Machine Check Exception
5254  * MCI_STATUS_AR - Software recoverable Action Required
5255  */
5256 static bool is_ucna(struct kvm_x86_mce *mce)
5257 {
5258         return  !mce->mcg_status &&
5259                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5260                 (mce->status & MCI_STATUS_VAL) &&
5261                 (mce->status & MCI_STATUS_UC);
5262 }
5263 
5264 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5265 {
5266         u64 mcg_cap = vcpu->arch.mcg_cap;
5267 
5268         banks[1] = mce->status;
5269         banks[2] = mce->addr;
5270         banks[3] = mce->misc;
5271         vcpu->arch.mcg_status = mce->mcg_status;
5272 
5273         if (!(mcg_cap & MCG_CMCI_P) ||
5274             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5275                 return 0;
5276 
5277         if (lapic_in_kernel(vcpu))
5278                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5279 
5280         return 0;
5281 }
5282 
5283 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5284                                       struct kvm_x86_mce *mce)
5285 {
5286         u64 mcg_cap = vcpu->arch.mcg_cap;
5287         unsigned bank_num = mcg_cap & 0xff;
5288         u64 *banks = vcpu->arch.mce_banks;
5289 
5290         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5291                 return -EINVAL;
5292 
5293         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5294 
5295         if (is_ucna(mce))
5296                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5297 
5298         /*
5299          * if IA32_MCG_CTL is not all 1s, the uncorrected error
5300          * reporting is disabled
5301          */
5302         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5303             vcpu->arch.mcg_ctl != ~(u64)0)
5304                 return 0;
5305         /*
5306          * if IA32_MCi_CTL is not all 1s, the uncorrected error
5307          * reporting is disabled for the bank
5308          */
5309         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5310                 return 0;
5311         if (mce->status & MCI_STATUS_UC) {
5312                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5313                     !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5314                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5315                         return 0;
5316                 }
5317                 if (banks[1] & MCI_STATUS_VAL)
5318                         mce->status |= MCI_STATUS_OVER;
5319                 banks[2] = mce->addr;
5320                 banks[3] = mce->misc;
5321                 vcpu->arch.mcg_status = mce->mcg_status;
5322                 banks[1] = mce->status;
5323                 kvm_queue_exception(vcpu, MC_VECTOR);
5324         } else if (!(banks[1] & MCI_STATUS_VAL)
5325                    || !(banks[1] & MCI_STATUS_UC)) {
5326                 if (banks[1] & MCI_STATUS_VAL)
5327                         mce->status |= MCI_STATUS_OVER;
5328                 banks[2] = mce->addr;
5329                 banks[3] = mce->misc;
5330                 banks[1] = mce->status;
5331         } else
5332                 banks[1] |= MCI_STATUS_OVER;
5333         return 0;
5334 }
5335 
5336 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5337                                                struct kvm_vcpu_events *events)
5338 {
5339         struct kvm_queued_exception *ex;
5340 
5341         process_nmi(vcpu);
5342 
5343 #ifdef CONFIG_KVM_SMM
5344         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5345                 process_smi(vcpu);
5346 #endif
5347 
5348         /*
5349          * KVM's ABI only allows for one exception to be migrated.  Luckily,
5350          * the only time there can be two queued exceptions is if there's a
5351          * non-exiting _injected_ exception, and a pending exiting exception.
5352          * In that case, ignore the VM-Exiting exception as it's an extension
5353          * of the injected exception.
5354          */
5355         if (vcpu->arch.exception_vmexit.pending &&
5356             !vcpu->arch.exception.pending &&
5357             !vcpu->arch.exception.injected)
5358                 ex = &vcpu->arch.exception_vmexit;
5359         else
5360                 ex = &vcpu->arch.exception;
5361 
5362         /*
5363          * In guest mode, payload delivery should be deferred if the exception
5364          * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5365          * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5366          * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5367          * propagate the payload and so it cannot be safely deferred.  Deliver
5368          * the payload if the capability hasn't been requested.
5369          */
5370         if (!vcpu->kvm->arch.exception_payload_enabled &&
5371             ex->pending && ex->has_payload)
5372                 kvm_deliver_exception_payload(vcpu, ex);
5373 
5374         memset(events, 0, sizeof(*events));
5375 
5376         /*
5377          * The API doesn't provide the instruction length for software
5378          * exceptions, so don't report them. As long as the guest RIP
5379          * isn't advanced, we should expect to encounter the exception
5380          * again.
5381          */
5382         if (!kvm_exception_is_soft(ex->vector)) {
5383                 events->exception.injected = ex->injected;
5384                 events->exception.pending = ex->pending;
5385                 /*
5386                  * For ABI compatibility, deliberately conflate
5387                  * pending and injected exceptions when
5388                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5389                  */
5390                 if (!vcpu->kvm->arch.exception_payload_enabled)
5391                         events->exception.injected |= ex->pending;
5392         }
5393         events->exception.nr = ex->vector;
5394         events->exception.has_error_code = ex->has_error_code;
5395         events->exception.error_code = ex->error_code;
5396         events->exception_has_payload = ex->has_payload;
5397         events->exception_payload = ex->payload;
5398 
5399         events->interrupt.injected =
5400                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5401         events->interrupt.nr = vcpu->arch.interrupt.nr;
5402         events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5403 
5404         events->nmi.injected = vcpu->arch.nmi_injected;
5405         events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5406         events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5407 
5408         /* events->sipi_vector is never valid when reporting to user space */
5409 
5410 #ifdef CONFIG_KVM_SMM
5411         events->smi.smm = is_smm(vcpu);
5412         events->smi.pending = vcpu->arch.smi_pending;
5413         events->smi.smm_inside_nmi =
5414                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5415 #endif
5416         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5417 
5418         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5419                          | KVM_VCPUEVENT_VALID_SHADOW
5420                          | KVM_VCPUEVENT_VALID_SMM);
5421         if (vcpu->kvm->arch.exception_payload_enabled)
5422                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5423         if (vcpu->kvm->arch.triple_fault_event) {
5424                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5425                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5426         }
5427 }
5428 
5429 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5430                                               struct kvm_vcpu_events *events)
5431 {
5432         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5433                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5434                               | KVM_VCPUEVENT_VALID_SHADOW
5435                               | KVM_VCPUEVENT_VALID_SMM
5436                               | KVM_VCPUEVENT_VALID_PAYLOAD
5437                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5438                 return -EINVAL;
5439 
5440         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5441                 if (!vcpu->kvm->arch.exception_payload_enabled)
5442                         return -EINVAL;
5443                 if (events->exception.pending)
5444                         events->exception.injected = 0;
5445                 else
5446                         events->exception_has_payload = 0;
5447         } else {
5448                 events->exception.pending = 0;
5449                 events->exception_has_payload = 0;
5450         }
5451 
5452         if ((events->exception.injected || events->exception.pending) &&
5453             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5454                 return -EINVAL;
5455 
5456         /* INITs are latched while in SMM */
5457         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5458             (events->smi.smm || events->smi.pending) &&
5459             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5460                 return -EINVAL;
5461 
5462         process_nmi(vcpu);
5463 
5464         /*
5465          * Flag that userspace is stuffing an exception, the next KVM_RUN will
5466          * morph the exception to a VM-Exit if appropriate.  Do this only for
5467          * pending exceptions, already-injected exceptions are not subject to
5468          * intercpetion.  Note, userspace that conflates pending and injected
5469          * is hosed, and will incorrectly convert an injected exception into a
5470          * pending exception, which in turn may cause a spurious VM-Exit.
5471          */
5472         vcpu->arch.exception_from_userspace = events->exception.pending;
5473 
5474         vcpu->arch.exception_vmexit.pending = false;
5475 
5476         vcpu->arch.exception.injected = events->exception.injected;
5477         vcpu->arch.exception.pending = events->exception.pending;
5478         vcpu->arch.exception.vector = events->exception.nr;
5479         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5480         vcpu->arch.exception.error_code = events->exception.error_code;
5481         vcpu->arch.exception.has_payload = events->exception_has_payload;
5482         vcpu->arch.exception.payload = events->exception_payload;
5483 
5484         vcpu->arch.interrupt.injected = events->interrupt.injected;
5485         vcpu->arch.interrupt.nr = events->interrupt.nr;
5486         vcpu->arch.interrupt.soft = events->interrupt.soft;
5487         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5488                 kvm_x86_call(set_interrupt_shadow)(vcpu,
5489                                                    events->interrupt.shadow);
5490 
5491         vcpu->arch.nmi_injected = events->nmi.injected;
5492         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5493                 vcpu->arch.nmi_pending = 0;
5494                 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5495                 if (events->nmi.pending)
5496                         kvm_make_request(KVM_REQ_NMI, vcpu);
5497         }
5498         kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5499 
5500         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5501             lapic_in_kernel(vcpu))
5502                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5503 
5504         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5505 #ifdef CONFIG_KVM_SMM
5506                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5507                         kvm_leave_nested(vcpu);
5508                         kvm_smm_changed(vcpu, events->smi.smm);
5509                 }
5510 
5511                 vcpu->arch.smi_pending = events->smi.pending;
5512 
5513                 if (events->smi.smm) {
5514                         if (events->smi.smm_inside_nmi)
5515                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5516                         else
5517                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5518                 }
5519 
5520 #else
5521                 if (events->smi.smm || events->smi.pending ||
5522                     events->smi.smm_inside_nmi)
5523                         return -EINVAL;
5524 #endif
5525 
5526                 if (lapic_in_kernel(vcpu)) {
5527                         if (events->smi.latched_init)
5528                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5529                         else
5530                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5531                 }
5532         }
5533 
5534         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5535                 if (!vcpu->kvm->arch.triple_fault_event)
5536                         return -EINVAL;
5537                 if (events->triple_fault.pending)
5538                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5539                 else
5540                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5541         }
5542 
5543         kvm_make_request(KVM_REQ_EVENT, vcpu);
5544 
5545         return 0;
5546 }
5547 
5548 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5549                                             struct kvm_debugregs *dbgregs)
5550 {
5551         unsigned int i;
5552 
5553         if (vcpu->kvm->arch.has_protected_state &&
5554             vcpu->arch.guest_state_protected)
5555                 return -EINVAL;
5556 
5557         memset(dbgregs, 0, sizeof(*dbgregs));
5558 
5559         BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5560         for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5561                 dbgregs->db[i] = vcpu->arch.db[i];
5562 
5563         dbgregs->dr6 = vcpu->arch.dr6;
5564         dbgregs->dr7 = vcpu->arch.dr7;
5565         return 0;
5566 }
5567 
5568 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5569                                             struct kvm_debugregs *dbgregs)
5570 {
5571         unsigned int i;
5572 
5573         if (vcpu->kvm->arch.has_protected_state &&
5574             vcpu->arch.guest_state_protected)
5575                 return -EINVAL;
5576 
5577         if (dbgregs->flags)
5578                 return -EINVAL;
5579 
5580         if (!kvm_dr6_valid(dbgregs->dr6))
5581                 return -EINVAL;
5582         if (!kvm_dr7_valid(dbgregs->dr7))
5583                 return -EINVAL;
5584 
5585         for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5586                 vcpu->arch.db[i] = dbgregs->db[i];
5587 
5588         kvm_update_dr0123(vcpu);
5589         vcpu->arch.dr6 = dbgregs->dr6;
5590         vcpu->arch.dr7 = dbgregs->dr7;
5591         kvm_update_dr7(vcpu);
5592 
5593         return 0;
5594 }
5595 
5596 
5597 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5598                                          u8 *state, unsigned int size)
5599 {
5600         /*
5601          * Only copy state for features that are enabled for the guest.  The
5602          * state itself isn't problematic, but setting bits in the header for
5603          * features that are supported in *this* host but not exposed to the
5604          * guest can result in KVM_SET_XSAVE failing when live migrating to a
5605          * compatible host without the features that are NOT exposed to the
5606          * guest.
5607          *
5608          * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5609          * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5610          * supported by the host.
5611          */
5612         u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5613                              XFEATURE_MASK_FPSSE;
5614 
5615         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5616                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5617 
5618         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5619                                        supported_xcr0, vcpu->arch.pkru);
5620         return 0;
5621 }
5622 
5623 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5624                                         struct kvm_xsave *guest_xsave)
5625 {
5626         return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5627                                              sizeof(guest_xsave->region));
5628 }
5629 
5630 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5631                                         struct kvm_xsave *guest_xsave)
5632 {
5633         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5634                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5635 
5636         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5637                                               guest_xsave->region,
5638                                               kvm_caps.supported_xcr0,
5639                                               &vcpu->arch.pkru);
5640 }
5641 
5642 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5643                                        struct kvm_xcrs *guest_xcrs)
5644 {
5645         if (vcpu->kvm->arch.has_protected_state &&
5646             vcpu->arch.guest_state_protected)
5647                 return -EINVAL;
5648 
5649         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5650                 guest_xcrs->nr_xcrs = 0;
5651                 return 0;
5652         }
5653 
5654         guest_xcrs->nr_xcrs = 1;
5655         guest_xcrs->flags = 0;
5656         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5657         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5658         return 0;
5659 }
5660 
5661 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5662                                        struct kvm_xcrs *guest_xcrs)
5663 {
5664         int i, r = 0;
5665 
5666         if (vcpu->kvm->arch.has_protected_state &&
5667             vcpu->arch.guest_state_protected)
5668                 return -EINVAL;
5669 
5670         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5671                 return -EINVAL;
5672 
5673         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5674                 return -EINVAL;
5675 
5676         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5677                 /* Only support XCR0 currently */
5678                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5679                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5680                                 guest_xcrs->xcrs[i].value);
5681                         break;
5682                 }
5683         if (r)
5684                 r = -EINVAL;
5685         return r;
5686 }
5687 
5688 /*
5689  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5690  * stopped by the hypervisor.  This function will be called from the host only.
5691  * EINVAL is returned when the host attempts to set the flag for a guest that
5692  * does not support pv clocks.
5693  */
5694 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5695 {
5696         if (!vcpu->arch.pv_time.active)
5697                 return -EINVAL;
5698         vcpu->arch.pvclock_set_guest_stopped_request = true;
5699         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5700         return 0;
5701 }
5702 
5703 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5704                                  struct kvm_device_attr *attr)
5705 {
5706         int r;
5707 
5708         switch (attr->attr) {
5709         case KVM_VCPU_TSC_OFFSET:
5710                 r = 0;
5711                 break;
5712         default:
5713                 r = -ENXIO;
5714         }
5715 
5716         return r;
5717 }
5718 
5719 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5720                                  struct kvm_device_attr *attr)
5721 {
5722         u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5723         int r;
5724 
5725         switch (attr->attr) {
5726         case KVM_VCPU_TSC_OFFSET:
5727                 r = -EFAULT;
5728                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5729                         break;
5730                 r = 0;
5731                 break;
5732         default:
5733                 r = -ENXIO;
5734         }
5735 
5736         return r;
5737 }
5738 
5739 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5740                                  struct kvm_device_attr *attr)
5741 {
5742         u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5743         struct kvm *kvm = vcpu->kvm;
5744         int r;
5745 
5746         switch (attr->attr) {
5747         case KVM_VCPU_TSC_OFFSET: {
5748                 u64 offset, tsc, ns;
5749                 unsigned long flags;
5750                 bool matched;
5751 
5752                 r = -EFAULT;
5753                 if (get_user(offset, uaddr))
5754                         break;
5755 
5756                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5757 
5758                 matched = (vcpu->arch.virtual_tsc_khz &&
5759                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5760                            kvm->arch.last_tsc_offset == offset);
5761 
5762                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5763                 ns = get_kvmclock_base_ns();
5764 
5765                 kvm->arch.user_set_tsc = true;
5766                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5767                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5768 
5769                 r = 0;
5770                 break;
5771         }
5772         default:
5773                 r = -ENXIO;
5774         }
5775 
5776         return r;
5777 }
5778 
5779 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5780                                       unsigned int ioctl,
5781                                       void __user *argp)
5782 {
5783         struct kvm_device_attr attr;
5784         int r;
5785 
5786         if (copy_from_user(&attr, argp, sizeof(attr)))
5787                 return -EFAULT;
5788 
5789         if (attr.group != KVM_VCPU_TSC_CTRL)
5790                 return -ENXIO;
5791 
5792         switch (ioctl) {
5793         case KVM_HAS_DEVICE_ATTR:
5794                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5795                 break;
5796         case KVM_GET_DEVICE_ATTR:
5797                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5798                 break;
5799         case KVM_SET_DEVICE_ATTR:
5800                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5801                 break;
5802         }
5803 
5804         return r;
5805 }
5806 
5807 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5808                                      struct kvm_enable_cap *cap)
5809 {
5810         if (cap->flags)
5811                 return -EINVAL;
5812 
5813         switch (cap->cap) {
5814 #ifdef CONFIG_KVM_HYPERV
5815         case KVM_CAP_HYPERV_SYNIC2:
5816                 if (cap->args[0])
5817                         return -EINVAL;
5818                 fallthrough;
5819 
5820         case KVM_CAP_HYPERV_SYNIC:
5821                 if (!irqchip_in_kernel(vcpu->kvm))
5822                         return -EINVAL;
5823                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5824                                              KVM_CAP_HYPERV_SYNIC2);
5825         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5826                 {
5827                         int r;
5828                         uint16_t vmcs_version;
5829                         void __user *user_ptr;
5830 
5831                         if (!kvm_x86_ops.nested_ops->enable_evmcs)
5832                                 return -ENOTTY;
5833                         r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5834                         if (!r) {
5835                                 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5836                                 if (copy_to_user(user_ptr, &vmcs_version,
5837                                                  sizeof(vmcs_version)))
5838                                         r = -EFAULT;
5839                         }
5840                         return r;
5841                 }
5842         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5843                 if (!kvm_x86_ops.enable_l2_tlb_flush)
5844                         return -ENOTTY;
5845 
5846                 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5847 
5848         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5849                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5850 #endif
5851 
5852         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5853                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5854                 if (vcpu->arch.pv_cpuid.enforce)
5855                         kvm_update_pv_runtime(vcpu);
5856 
5857                 return 0;
5858         default:
5859                 return -EINVAL;
5860         }
5861 }
5862 
5863 long kvm_arch_vcpu_ioctl(struct file *filp,
5864                          unsigned int ioctl, unsigned long arg)
5865 {
5866         struct kvm_vcpu *vcpu = filp->private_data;
5867         void __user *argp = (void __user *)arg;
5868         int r;
5869         union {
5870                 struct kvm_sregs2 *sregs2;
5871                 struct kvm_lapic_state *lapic;
5872                 struct kvm_xsave *xsave;
5873                 struct kvm_xcrs *xcrs;
5874                 void *buffer;
5875         } u;
5876 
5877         vcpu_load(vcpu);
5878 
5879         u.buffer = NULL;
5880         switch (ioctl) {
5881         case KVM_GET_LAPIC: {
5882                 r = -EINVAL;
5883                 if (!lapic_in_kernel(vcpu))
5884                         goto out;
5885                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5886 
5887                 r = -ENOMEM;
5888                 if (!u.lapic)
5889                         goto out;
5890                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5891                 if (r)
5892                         goto out;
5893                 r = -EFAULT;
5894                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5895                         goto out;
5896                 r = 0;
5897                 break;
5898         }
5899         case KVM_SET_LAPIC: {
5900                 r = -EINVAL;
5901                 if (!lapic_in_kernel(vcpu))
5902                         goto out;
5903                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5904                 if (IS_ERR(u.lapic)) {
5905                         r = PTR_ERR(u.lapic);
5906                         goto out_nofree;
5907                 }
5908 
5909                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5910                 break;
5911         }
5912         case KVM_INTERRUPT: {
5913                 struct kvm_interrupt irq;
5914 
5915                 r = -EFAULT;
5916                 if (copy_from_user(&irq, argp, sizeof(irq)))
5917                         goto out;
5918                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5919                 break;
5920         }
5921         case KVM_NMI: {
5922                 r = kvm_vcpu_ioctl_nmi(vcpu);
5923                 break;
5924         }
5925         case KVM_SMI: {
5926                 r = kvm_inject_smi(vcpu);
5927                 break;
5928         }
5929         case KVM_SET_CPUID: {
5930                 struct kvm_cpuid __user *cpuid_arg = argp;
5931                 struct kvm_cpuid cpuid;
5932 
5933                 r = -EFAULT;
5934                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5935                         goto out;
5936                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5937                 break;
5938         }
5939         case KVM_SET_CPUID2: {
5940                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5941                 struct kvm_cpuid2 cpuid;
5942 
5943                 r = -EFAULT;
5944                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5945                         goto out;
5946                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5947                                               cpuid_arg->entries);
5948                 break;
5949         }
5950         case KVM_GET_CPUID2: {
5951                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5952                 struct kvm_cpuid2 cpuid;
5953 
5954                 r = -EFAULT;
5955                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5956                         goto out;
5957                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5958                                               cpuid_arg->entries);
5959                 if (r)
5960                         goto out;
5961                 r = -EFAULT;
5962                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5963                         goto out;
5964                 r = 0;
5965                 break;
5966         }
5967         case KVM_GET_MSRS: {
5968                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5969                 r = msr_io(vcpu, argp, do_get_msr, 1);
5970                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5971                 break;
5972         }
5973         case KVM_SET_MSRS: {
5974                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5975                 r = msr_io(vcpu, argp, do_set_msr, 0);
5976                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5977                 break;
5978         }
5979         case KVM_TPR_ACCESS_REPORTING: {
5980                 struct kvm_tpr_access_ctl tac;
5981 
5982                 r = -EFAULT;
5983                 if (copy_from_user(&tac, argp, sizeof(tac)))
5984                         goto out;
5985                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5986                 if (r)
5987                         goto out;
5988                 r = -EFAULT;
5989                 if (copy_to_user(argp, &tac, sizeof(tac)))
5990                         goto out;
5991                 r = 0;
5992                 break;
5993         };
5994         case KVM_SET_VAPIC_ADDR: {
5995                 struct kvm_vapic_addr va;
5996                 int idx;
5997 
5998                 r = -EINVAL;
5999                 if (!lapic_in_kernel(vcpu))
6000                         goto out;
6001                 r = -EFAULT;
6002                 if (copy_from_user(&va, argp, sizeof(va)))
6003                         goto out;
6004                 idx = srcu_read_lock(&vcpu->kvm->srcu);
6005                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6006                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6007                 break;
6008         }
6009         case KVM_X86_SETUP_MCE: {
6010                 u64 mcg_cap;
6011 
6012                 r = -EFAULT;
6013                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6014                         goto out;
6015                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6016                 break;
6017         }
6018         case KVM_X86_SET_MCE: {
6019                 struct kvm_x86_mce mce;
6020 
6021                 r = -EFAULT;
6022                 if (copy_from_user(&mce, argp, sizeof(mce)))
6023                         goto out;
6024                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6025                 break;
6026         }
6027         case KVM_GET_VCPU_EVENTS: {
6028                 struct kvm_vcpu_events events;
6029 
6030                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6031 
6032                 r = -EFAULT;
6033                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6034                         break;
6035                 r = 0;
6036                 break;
6037         }
6038         case KVM_SET_VCPU_EVENTS: {
6039                 struct kvm_vcpu_events events;
6040 
6041                 r = -EFAULT;
6042                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6043                         break;
6044 
6045                 kvm_vcpu_srcu_read_lock(vcpu);
6046                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6047                 kvm_vcpu_srcu_read_unlock(vcpu);
6048                 break;
6049         }
6050         case KVM_GET_DEBUGREGS: {
6051                 struct kvm_debugregs dbgregs;
6052 
6053                 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6054                 if (r < 0)
6055                         break;
6056 
6057                 r = -EFAULT;
6058                 if (copy_to_user(argp, &dbgregs,
6059                                  sizeof(struct kvm_debugregs)))
6060                         break;
6061                 r = 0;
6062                 break;
6063         }
6064         case KVM_SET_DEBUGREGS: {
6065                 struct kvm_debugregs dbgregs;
6066 
6067                 r = -EFAULT;
6068                 if (copy_from_user(&dbgregs, argp,
6069                                    sizeof(struct kvm_debugregs)))
6070                         break;
6071 
6072                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6073                 break;
6074         }
6075         case KVM_GET_XSAVE: {
6076                 r = -EINVAL;
6077                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6078                         break;
6079 
6080                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6081                 r = -ENOMEM;
6082                 if (!u.xsave)
6083                         break;
6084 
6085                 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6086                 if (r < 0)
6087                         break;
6088 
6089                 r = -EFAULT;
6090                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6091                         break;
6092                 r = 0;
6093                 break;
6094         }
6095         case KVM_SET_XSAVE: {
6096                 int size = vcpu->arch.guest_fpu.uabi_size;
6097 
6098                 u.xsave = memdup_user(argp, size);
6099                 if (IS_ERR(u.xsave)) {
6100                         r = PTR_ERR(u.xsave);
6101                         goto out_nofree;
6102                 }
6103 
6104                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6105                 break;
6106         }
6107 
6108         case KVM_GET_XSAVE2: {
6109                 int size = vcpu->arch.guest_fpu.uabi_size;
6110 
6111                 u.xsave = kzalloc(size, GFP_KERNEL);
6112                 r = -ENOMEM;
6113                 if (!u.xsave)
6114                         break;
6115 
6116                 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6117                 if (r < 0)
6118                         break;
6119 
6120                 r = -EFAULT;
6121                 if (copy_to_user(argp, u.xsave, size))
6122                         break;
6123 
6124                 r = 0;
6125                 break;
6126         }
6127 
6128         case KVM_GET_XCRS: {
6129                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6130                 r = -ENOMEM;
6131                 if (!u.xcrs)
6132                         break;
6133 
6134                 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6135                 if (r < 0)
6136                         break;
6137 
6138                 r = -EFAULT;
6139                 if (copy_to_user(argp, u.xcrs,
6140                                  sizeof(struct kvm_xcrs)))
6141                         break;
6142                 r = 0;
6143                 break;
6144         }
6145         case KVM_SET_XCRS: {
6146                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6147                 if (IS_ERR(u.xcrs)) {
6148                         r = PTR_ERR(u.xcrs);
6149                         goto out_nofree;
6150                 }
6151 
6152                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6153                 break;
6154         }
6155         case KVM_SET_TSC_KHZ: {
6156                 u32 user_tsc_khz;
6157 
6158                 r = -EINVAL;
6159                 user_tsc_khz = (u32)arg;
6160 
6161                 if (kvm_caps.has_tsc_control &&
6162                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6163                         goto out;
6164 
6165                 if (user_tsc_khz == 0)
6166                         user_tsc_khz = tsc_khz;
6167 
6168                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6169                         r = 0;
6170 
6171                 goto out;
6172         }
6173         case KVM_GET_TSC_KHZ: {
6174                 r = vcpu->arch.virtual_tsc_khz;
6175                 goto out;
6176         }
6177         case KVM_KVMCLOCK_CTRL: {
6178                 r = kvm_set_guest_paused(vcpu);
6179                 goto out;
6180         }
6181         case KVM_ENABLE_CAP: {
6182                 struct kvm_enable_cap cap;
6183 
6184                 r = -EFAULT;
6185                 if (copy_from_user(&cap, argp, sizeof(cap)))
6186                         goto out;
6187                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6188                 break;
6189         }
6190         case KVM_GET_NESTED_STATE: {
6191                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6192                 u32 user_data_size;
6193 
6194                 r = -EINVAL;
6195                 if (!kvm_x86_ops.nested_ops->get_state)
6196                         break;
6197 
6198                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6199                 r = -EFAULT;
6200                 if (get_user(user_data_size, &user_kvm_nested_state->size))
6201                         break;
6202 
6203                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6204                                                      user_data_size);
6205                 if (r < 0)
6206                         break;
6207 
6208                 if (r > user_data_size) {
6209                         if (put_user(r, &user_kvm_nested_state->size))
6210                                 r = -EFAULT;
6211                         else
6212                                 r = -E2BIG;
6213                         break;
6214                 }
6215 
6216                 r = 0;
6217                 break;
6218         }
6219         case KVM_SET_NESTED_STATE: {
6220                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6221                 struct kvm_nested_state kvm_state;
6222                 int idx;
6223 
6224                 r = -EINVAL;
6225                 if (!kvm_x86_ops.nested_ops->set_state)
6226                         break;
6227 
6228                 r = -EFAULT;
6229                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6230                         break;
6231 
6232                 r = -EINVAL;
6233                 if (kvm_state.size < sizeof(kvm_state))
6234                         break;
6235 
6236                 if (kvm_state.flags &
6237                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6238                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6239                       | KVM_STATE_NESTED_GIF_SET))
6240                         break;
6241 
6242                 /* nested_run_pending implies guest_mode.  */
6243                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6244                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6245                         break;
6246 
6247                 idx = srcu_read_lock(&vcpu->kvm->srcu);
6248                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6249                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6250                 break;
6251         }
6252 #ifdef CONFIG_KVM_HYPERV
6253         case KVM_GET_SUPPORTED_HV_CPUID:
6254                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6255                 break;
6256 #endif
6257 #ifdef CONFIG_KVM_XEN
6258         case KVM_XEN_VCPU_GET_ATTR: {
6259                 struct kvm_xen_vcpu_attr xva;
6260 
6261                 r = -EFAULT;
6262                 if (copy_from_user(&xva, argp, sizeof(xva)))
6263                         goto out;
6264                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6265                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6266                         r = -EFAULT;
6267                 break;
6268         }
6269         case KVM_XEN_VCPU_SET_ATTR: {
6270                 struct kvm_xen_vcpu_attr xva;
6271 
6272                 r = -EFAULT;
6273                 if (copy_from_user(&xva, argp, sizeof(xva)))
6274                         goto out;
6275                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6276                 break;
6277         }
6278 #endif
6279         case KVM_GET_SREGS2: {
6280                 r = -EINVAL;
6281                 if (vcpu->kvm->arch.has_protected_state &&
6282                     vcpu->arch.guest_state_protected)
6283                         goto out;
6284 
6285                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6286                 r = -ENOMEM;
6287                 if (!u.sregs2)
6288                         goto out;
6289                 __get_sregs2(vcpu, u.sregs2);
6290                 r = -EFAULT;
6291                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6292                         goto out;
6293                 r = 0;
6294                 break;
6295         }
6296         case KVM_SET_SREGS2: {
6297                 r = -EINVAL;
6298                 if (vcpu->kvm->arch.has_protected_state &&
6299                     vcpu->arch.guest_state_protected)
6300                         goto out;
6301 
6302                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6303                 if (IS_ERR(u.sregs2)) {
6304                         r = PTR_ERR(u.sregs2);
6305                         u.sregs2 = NULL;
6306                         goto out;
6307                 }
6308                 r = __set_sregs2(vcpu, u.sregs2);
6309                 break;
6310         }
6311         case KVM_HAS_DEVICE_ATTR:
6312         case KVM_GET_DEVICE_ATTR:
6313         case KVM_SET_DEVICE_ATTR:
6314                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6315                 break;
6316         default:
6317                 r = -EINVAL;
6318         }
6319 out:
6320         kfree(u.buffer);
6321 out_nofree:
6322         vcpu_put(vcpu);
6323         return r;
6324 }
6325 
6326 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6327 {
6328         return VM_FAULT_SIGBUS;
6329 }
6330 
6331 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6332 {
6333         int ret;
6334 
6335         if (addr > (unsigned int)(-3 * PAGE_SIZE))
6336                 return -EINVAL;
6337         ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6338         return ret;
6339 }
6340 
6341 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6342                                               u64 ident_addr)
6343 {
6344         return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6345 }
6346 
6347 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6348                                          unsigned long kvm_nr_mmu_pages)
6349 {
6350         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6351                 return -EINVAL;
6352 
6353         mutex_lock(&kvm->slots_lock);
6354 
6355         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6356         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6357 
6358         mutex_unlock(&kvm->slots_lock);
6359         return 0;
6360 }
6361 
6362 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6363 {
6364         struct kvm_pic *pic = kvm->arch.vpic;
6365         int r;
6366 
6367         r = 0;
6368         switch (chip->chip_id) {
6369         case KVM_IRQCHIP_PIC_MASTER:
6370                 memcpy(&chip->chip.pic, &pic->pics[0],
6371                         sizeof(struct kvm_pic_state));
6372                 break;
6373         case KVM_IRQCHIP_PIC_SLAVE:
6374                 memcpy(&chip->chip.pic, &pic->pics[1],
6375                         sizeof(struct kvm_pic_state));
6376                 break;
6377         case KVM_IRQCHIP_IOAPIC:
6378                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6379                 break;
6380         default:
6381                 r = -EINVAL;
6382                 break;
6383         }
6384         return r;
6385 }
6386 
6387 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6388 {
6389         struct kvm_pic *pic = kvm->arch.vpic;
6390         int r;
6391 
6392         r = 0;
6393         switch (chip->chip_id) {
6394         case KVM_IRQCHIP_PIC_MASTER:
6395                 spin_lock(&pic->lock);
6396                 memcpy(&pic->pics[0], &chip->chip.pic,
6397                         sizeof(struct kvm_pic_state));
6398                 spin_unlock(&pic->lock);
6399                 break;
6400         case KVM_IRQCHIP_PIC_SLAVE:
6401                 spin_lock(&pic->lock);
6402                 memcpy(&pic->pics[1], &chip->chip.pic,
6403                         sizeof(struct kvm_pic_state));
6404                 spin_unlock(&pic->lock);
6405                 break;
6406         case KVM_IRQCHIP_IOAPIC:
6407                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6408                 break;
6409         default:
6410                 r = -EINVAL;
6411                 break;
6412         }
6413         kvm_pic_update_irq(pic);
6414         return r;
6415 }
6416 
6417 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6418 {
6419         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6420 
6421         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6422 
6423         mutex_lock(&kps->lock);
6424         memcpy(ps, &kps->channels, sizeof(*ps));
6425         mutex_unlock(&kps->lock);
6426         return 0;
6427 }
6428 
6429 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6430 {
6431         int i;
6432         struct kvm_pit *pit = kvm->arch.vpit;
6433 
6434         mutex_lock(&pit->pit_state.lock);
6435         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6436         for (i = 0; i < 3; i++)
6437                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6438         mutex_unlock(&pit->pit_state.lock);
6439         return 0;
6440 }
6441 
6442 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6443 {
6444         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6445         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6446                 sizeof(ps->channels));
6447         ps->flags = kvm->arch.vpit->pit_state.flags;
6448         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6449         memset(&ps->reserved, 0, sizeof(ps->reserved));
6450         return 0;
6451 }
6452 
6453 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6454 {
6455         int start = 0;
6456         int i;
6457         u32 prev_legacy, cur_legacy;
6458         struct kvm_pit *pit = kvm->arch.vpit;
6459 
6460         mutex_lock(&pit->pit_state.lock);
6461         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6462         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6463         if (!prev_legacy && cur_legacy)
6464                 start = 1;
6465         memcpy(&pit->pit_state.channels, &ps->channels,
6466                sizeof(pit->pit_state.channels));
6467         pit->pit_state.flags = ps->flags;
6468         for (i = 0; i < 3; i++)
6469                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6470                                    start && i == 0);
6471         mutex_unlock(&pit->pit_state.lock);
6472         return 0;
6473 }
6474 
6475 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6476                                  struct kvm_reinject_control *control)
6477 {
6478         struct kvm_pit *pit = kvm->arch.vpit;
6479 
6480         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6481          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6482          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6483          */
6484         mutex_lock(&pit->pit_state.lock);
6485         kvm_pit_set_reinject(pit, control->pit_reinject);
6486         mutex_unlock(&pit->pit_state.lock);
6487 
6488         return 0;
6489 }
6490 
6491 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6492 {
6493 
6494         /*
6495          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6496          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6497          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6498          * VM-Exit.
6499          */
6500         struct kvm_vcpu *vcpu;
6501         unsigned long i;
6502 
6503         if (!kvm_x86_ops.cpu_dirty_log_size)
6504                 return;
6505 
6506         kvm_for_each_vcpu(i, vcpu, kvm)
6507                 kvm_vcpu_kick(vcpu);
6508 }
6509 
6510 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6511                         bool line_status)
6512 {
6513         if (!irqchip_in_kernel(kvm))
6514                 return -ENXIO;
6515 
6516         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6517                                         irq_event->irq, irq_event->level,
6518                                         line_status);
6519         return 0;
6520 }
6521 
6522 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6523                             struct kvm_enable_cap *cap)
6524 {
6525         int r;
6526 
6527         if (cap->flags)
6528                 return -EINVAL;
6529 
6530         switch (cap->cap) {
6531         case KVM_CAP_DISABLE_QUIRKS2:
6532                 r = -EINVAL;
6533                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6534                         break;
6535                 fallthrough;
6536         case KVM_CAP_DISABLE_QUIRKS:
6537                 kvm->arch.disabled_quirks = cap->args[0];
6538                 r = 0;
6539                 break;
6540         case KVM_CAP_SPLIT_IRQCHIP: {
6541                 mutex_lock(&kvm->lock);
6542                 r = -EINVAL;
6543                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6544                         goto split_irqchip_unlock;
6545                 r = -EEXIST;
6546                 if (irqchip_in_kernel(kvm))
6547                         goto split_irqchip_unlock;
6548                 if (kvm->created_vcpus)
6549                         goto split_irqchip_unlock;
6550                 /* Pairs with irqchip_in_kernel. */
6551                 smp_wmb();
6552                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6553                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6554                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6555                 r = 0;
6556 split_irqchip_unlock:
6557                 mutex_unlock(&kvm->lock);
6558                 break;
6559         }
6560         case KVM_CAP_X2APIC_API:
6561                 r = -EINVAL;
6562                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6563                         break;
6564 
6565                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6566                         kvm->arch.x2apic_format = true;
6567                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6568                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6569 
6570                 r = 0;
6571                 break;
6572         case KVM_CAP_X86_DISABLE_EXITS:
6573                 r = -EINVAL;
6574                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6575                         break;
6576 
6577                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6578                         kvm->arch.pause_in_guest = true;
6579 
6580 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6581                     "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6582 
6583                 if (!mitigate_smt_rsb) {
6584                         if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6585                             (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6586                                 pr_warn_once(SMT_RSB_MSG);
6587 
6588                         if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6589                             kvm_can_mwait_in_guest())
6590                                 kvm->arch.mwait_in_guest = true;
6591                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6592                                 kvm->arch.hlt_in_guest = true;
6593                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6594                                 kvm->arch.cstate_in_guest = true;
6595                 }
6596 
6597                 r = 0;
6598                 break;
6599         case KVM_CAP_MSR_PLATFORM_INFO:
6600                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6601                 r = 0;
6602                 break;
6603         case KVM_CAP_EXCEPTION_PAYLOAD:
6604                 kvm->arch.exception_payload_enabled = cap->args[0];
6605                 r = 0;
6606                 break;
6607         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6608                 kvm->arch.triple_fault_event = cap->args[0];
6609                 r = 0;
6610                 break;
6611         case KVM_CAP_X86_USER_SPACE_MSR:
6612                 r = -EINVAL;
6613                 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6614                         break;
6615                 kvm->arch.user_space_msr_mask = cap->args[0];
6616                 r = 0;
6617                 break;
6618         case KVM_CAP_X86_BUS_LOCK_EXIT:
6619                 r = -EINVAL;
6620                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6621                         break;
6622 
6623                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6624                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6625                         break;
6626 
6627                 if (kvm_caps.has_bus_lock_exit &&
6628                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6629                         kvm->arch.bus_lock_detection_enabled = true;
6630                 r = 0;
6631                 break;
6632 #ifdef CONFIG_X86_SGX_KVM
6633         case KVM_CAP_SGX_ATTRIBUTE: {
6634                 unsigned long allowed_attributes = 0;
6635 
6636                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6637                 if (r)
6638                         break;
6639 
6640                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6641                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6642                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6643                         kvm->arch.sgx_provisioning_allowed = true;
6644                 else
6645                         r = -EINVAL;
6646                 break;
6647         }
6648 #endif
6649         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6650                 r = -EINVAL;
6651                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6652                         break;
6653 
6654                 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6655                 break;
6656         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6657                 r = -EINVAL;
6658                 if (!kvm_x86_ops.vm_move_enc_context_from)
6659                         break;
6660 
6661                 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6662                 break;
6663         case KVM_CAP_EXIT_HYPERCALL:
6664                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6665                         r = -EINVAL;
6666                         break;
6667                 }
6668                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6669                 r = 0;
6670                 break;
6671         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6672                 r = -EINVAL;
6673                 if (cap->args[0] & ~1)
6674                         break;
6675                 kvm->arch.exit_on_emulation_error = cap->args[0];
6676                 r = 0;
6677                 break;
6678         case KVM_CAP_PMU_CAPABILITY:
6679                 r = -EINVAL;
6680                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6681                         break;
6682 
6683                 mutex_lock(&kvm->lock);
6684                 if (!kvm->created_vcpus) {
6685                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6686                         r = 0;
6687                 }
6688                 mutex_unlock(&kvm->lock);
6689                 break;
6690         case KVM_CAP_MAX_VCPU_ID:
6691                 r = -EINVAL;
6692                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6693                         break;
6694 
6695                 mutex_lock(&kvm->lock);
6696                 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6697                         ;
6698                 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6699                         r = 0;
6700                 } else if (!kvm->arch.max_vcpu_ids) {
6701                         kvm->arch.max_vcpu_ids = cap->args[0];
6702                         r = 0;
6703                 }
6704                 mutex_unlock(&kvm->lock);
6705                 break;
6706         case KVM_CAP_X86_NOTIFY_VMEXIT:
6707                 r = -EINVAL;
6708                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6709                         break;
6710                 if (!kvm_caps.has_notify_vmexit)
6711                         break;
6712                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6713                         break;
6714                 mutex_lock(&kvm->lock);
6715                 if (!kvm->created_vcpus) {
6716                         kvm->arch.notify_window = cap->args[0] >> 32;
6717                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6718                         r = 0;
6719                 }
6720                 mutex_unlock(&kvm->lock);
6721                 break;
6722         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6723                 r = -EINVAL;
6724 
6725                 /*
6726                  * Since the risk of disabling NX hugepages is a guest crashing
6727                  * the system, ensure the userspace process has permission to
6728                  * reboot the system.
6729                  *
6730                  * Note that unlike the reboot() syscall, the process must have
6731                  * this capability in the root namespace because exposing
6732                  * /dev/kvm into a container does not limit the scope of the
6733                  * iTLB multihit bug to that container. In other words,
6734                  * this must use capable(), not ns_capable().
6735                  */
6736                 if (!capable(CAP_SYS_BOOT)) {
6737                         r = -EPERM;
6738                         break;
6739                 }
6740 
6741                 if (cap->args[0])
6742                         break;
6743 
6744                 mutex_lock(&kvm->lock);
6745                 if (!kvm->created_vcpus) {
6746                         kvm->arch.disable_nx_huge_pages = true;
6747                         r = 0;
6748                 }
6749                 mutex_unlock(&kvm->lock);
6750                 break;
6751         case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6752                 u64 bus_cycle_ns = cap->args[0];
6753                 u64 unused;
6754 
6755                 /*
6756                  * Guard against overflow in tmict_to_ns(). 128 is the highest
6757                  * divide value that can be programmed in APIC_TDCR.
6758                  */
6759                 r = -EINVAL;
6760                 if (!bus_cycle_ns ||
6761                     check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6762                         break;
6763 
6764                 r = 0;
6765                 mutex_lock(&kvm->lock);
6766                 if (!irqchip_in_kernel(kvm))
6767                         r = -ENXIO;
6768                 else if (kvm->created_vcpus)
6769                         r = -EINVAL;
6770                 else
6771                         kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6772                 mutex_unlock(&kvm->lock);
6773                 break;
6774         }
6775         default:
6776                 r = -EINVAL;
6777                 break;
6778         }
6779         return r;
6780 }
6781 
6782 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6783 {
6784         struct kvm_x86_msr_filter *msr_filter;
6785 
6786         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6787         if (!msr_filter)
6788                 return NULL;
6789 
6790         msr_filter->default_allow = default_allow;
6791         return msr_filter;
6792 }
6793 
6794 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6795 {
6796         u32 i;
6797 
6798         if (!msr_filter)
6799                 return;
6800 
6801         for (i = 0; i < msr_filter->count; i++)
6802                 kfree(msr_filter->ranges[i].bitmap);
6803 
6804         kfree(msr_filter);
6805 }
6806 
6807 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6808                               struct kvm_msr_filter_range *user_range)
6809 {
6810         unsigned long *bitmap;
6811         size_t bitmap_size;
6812 
6813         if (!user_range->nmsrs)
6814                 return 0;
6815 
6816         if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6817                 return -EINVAL;
6818 
6819         if (!user_range->flags)
6820                 return -EINVAL;
6821 
6822         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6823         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6824                 return -EINVAL;
6825 
6826         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6827         if (IS_ERR(bitmap))
6828                 return PTR_ERR(bitmap);
6829 
6830         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6831                 .flags = user_range->flags,
6832                 .base = user_range->base,
6833                 .nmsrs = user_range->nmsrs,
6834                 .bitmap = bitmap,
6835         };
6836 
6837         msr_filter->count++;
6838         return 0;
6839 }
6840 
6841 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6842                                        struct kvm_msr_filter *filter)
6843 {
6844         struct kvm_x86_msr_filter *new_filter, *old_filter;
6845         bool default_allow;
6846         bool empty = true;
6847         int r;
6848         u32 i;
6849 
6850         if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6851                 return -EINVAL;
6852 
6853         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6854                 empty &= !filter->ranges[i].nmsrs;
6855 
6856         default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6857         if (empty && !default_allow)
6858                 return -EINVAL;
6859 
6860         new_filter = kvm_alloc_msr_filter(default_allow);
6861         if (!new_filter)
6862                 return -ENOMEM;
6863 
6864         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6865                 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6866                 if (r) {
6867                         kvm_free_msr_filter(new_filter);
6868                         return r;
6869                 }
6870         }
6871 
6872         mutex_lock(&kvm->lock);
6873         old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6874                                          mutex_is_locked(&kvm->lock));
6875         mutex_unlock(&kvm->lock);
6876         synchronize_srcu(&kvm->srcu);
6877 
6878         kvm_free_msr_filter(old_filter);
6879 
6880         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6881 
6882         return 0;
6883 }
6884 
6885 #ifdef CONFIG_KVM_COMPAT
6886 /* for KVM_X86_SET_MSR_FILTER */
6887 struct kvm_msr_filter_range_compat {
6888         __u32 flags;
6889         __u32 nmsrs;
6890         __u32 base;
6891         __u32 bitmap;
6892 };
6893 
6894 struct kvm_msr_filter_compat {
6895         __u32 flags;
6896         struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6897 };
6898 
6899 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6900 
6901 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6902                               unsigned long arg)
6903 {
6904         void __user *argp = (void __user *)arg;
6905         struct kvm *kvm = filp->private_data;
6906         long r = -ENOTTY;
6907 
6908         switch (ioctl) {
6909         case KVM_X86_SET_MSR_FILTER_COMPAT: {
6910                 struct kvm_msr_filter __user *user_msr_filter = argp;
6911                 struct kvm_msr_filter_compat filter_compat;
6912                 struct kvm_msr_filter filter;
6913                 int i;
6914 
6915                 if (copy_from_user(&filter_compat, user_msr_filter,
6916                                    sizeof(filter_compat)))
6917                         return -EFAULT;
6918 
6919                 filter.flags = filter_compat.flags;
6920                 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6921                         struct kvm_msr_filter_range_compat *cr;
6922 
6923                         cr = &filter_compat.ranges[i];
6924                         filter.ranges[i] = (struct kvm_msr_filter_range) {
6925                                 .flags = cr->flags,
6926                                 .nmsrs = cr->nmsrs,
6927                                 .base = cr->base,
6928                                 .bitmap = (__u8 *)(ulong)cr->bitmap,
6929                         };
6930                 }
6931 
6932                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6933                 break;
6934         }
6935         }
6936 
6937         return r;
6938 }
6939 #endif
6940 
6941 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6942 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6943 {
6944         struct kvm_vcpu *vcpu;
6945         unsigned long i;
6946         int ret = 0;
6947 
6948         mutex_lock(&kvm->lock);
6949         kvm_for_each_vcpu(i, vcpu, kvm) {
6950                 if (!vcpu->arch.pv_time.active)
6951                         continue;
6952 
6953                 ret = kvm_set_guest_paused(vcpu);
6954                 if (ret) {
6955                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6956                                 vcpu->vcpu_id, ret);
6957                         break;
6958                 }
6959         }
6960         mutex_unlock(&kvm->lock);
6961 
6962         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6963 }
6964 
6965 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6966 {
6967         switch (state) {
6968         case PM_HIBERNATION_PREPARE:
6969         case PM_SUSPEND_PREPARE:
6970                 return kvm_arch_suspend_notifier(kvm);
6971         }
6972 
6973         return NOTIFY_DONE;
6974 }
6975 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6976 
6977 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6978 {
6979         struct kvm_clock_data data = { 0 };
6980 
6981         get_kvmclock(kvm, &data);
6982         if (copy_to_user(argp, &data, sizeof(data)))
6983                 return -EFAULT;
6984 
6985         return 0;
6986 }
6987 
6988 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6989 {
6990         struct kvm_arch *ka = &kvm->arch;
6991         struct kvm_clock_data data;
6992         u64 now_raw_ns;
6993 
6994         if (copy_from_user(&data, argp, sizeof(data)))
6995                 return -EFAULT;
6996 
6997         /*
6998          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6999          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
7000          */
7001         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
7002                 return -EINVAL;
7003 
7004         kvm_hv_request_tsc_page_update(kvm);
7005         kvm_start_pvclock_update(kvm);
7006         pvclock_update_vm_gtod_copy(kvm);
7007 
7008         /*
7009          * This pairs with kvm_guest_time_update(): when masterclock is
7010          * in use, we use master_kernel_ns + kvmclock_offset to set
7011          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7012          * is slightly ahead) here we risk going negative on unsigned
7013          * 'system_time' when 'data.clock' is very small.
7014          */
7015         if (data.flags & KVM_CLOCK_REALTIME) {
7016                 u64 now_real_ns = ktime_get_real_ns();
7017 
7018                 /*
7019                  * Avoid stepping the kvmclock backwards.
7020                  */
7021                 if (now_real_ns > data.realtime)
7022                         data.clock += now_real_ns - data.realtime;
7023         }
7024 
7025         if (ka->use_master_clock)
7026                 now_raw_ns = ka->master_kernel_ns;
7027         else
7028                 now_raw_ns = get_kvmclock_base_ns();
7029         ka->kvmclock_offset = data.clock - now_raw_ns;
7030         kvm_end_pvclock_update(kvm);
7031         return 0;
7032 }
7033 
7034 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7035 {
7036         struct kvm *kvm = filp->private_data;
7037         void __user *argp = (void __user *)arg;
7038         int r = -ENOTTY;
7039         /*
7040          * This union makes it completely explicit to gcc-3.x
7041          * that these two variables' stack usage should be
7042          * combined, not added together.
7043          */
7044         union {
7045                 struct kvm_pit_state ps;
7046                 struct kvm_pit_state2 ps2;
7047                 struct kvm_pit_config pit_config;
7048         } u;
7049 
7050         switch (ioctl) {
7051         case KVM_SET_TSS_ADDR:
7052                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7053                 break;
7054         case KVM_SET_IDENTITY_MAP_ADDR: {
7055                 u64 ident_addr;
7056 
7057                 mutex_lock(&kvm->lock);
7058                 r = -EINVAL;
7059                 if (kvm->created_vcpus)
7060                         goto set_identity_unlock;
7061                 r = -EFAULT;
7062                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7063                         goto set_identity_unlock;
7064                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7065 set_identity_unlock:
7066                 mutex_unlock(&kvm->lock);
7067                 break;
7068         }
7069         case KVM_SET_NR_MMU_PAGES:
7070                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7071                 break;
7072         case KVM_CREATE_IRQCHIP: {
7073                 mutex_lock(&kvm->lock);
7074 
7075                 r = -EEXIST;
7076                 if (irqchip_in_kernel(kvm))
7077                         goto create_irqchip_unlock;
7078 
7079                 r = -EINVAL;
7080                 if (kvm->created_vcpus)
7081                         goto create_irqchip_unlock;
7082 
7083                 r = kvm_pic_init(kvm);
7084                 if (r)
7085                         goto create_irqchip_unlock;
7086 
7087                 r = kvm_ioapic_init(kvm);
7088                 if (r) {
7089                         kvm_pic_destroy(kvm);
7090                         goto create_irqchip_unlock;
7091                 }
7092 
7093                 r = kvm_setup_default_irq_routing(kvm);
7094                 if (r) {
7095                         kvm_ioapic_destroy(kvm);
7096                         kvm_pic_destroy(kvm);
7097                         goto create_irqchip_unlock;
7098                 }
7099                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7100                 smp_wmb();
7101                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7102                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7103         create_irqchip_unlock:
7104                 mutex_unlock(&kvm->lock);
7105                 break;
7106         }
7107         case KVM_CREATE_PIT:
7108                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7109                 goto create_pit;
7110         case KVM_CREATE_PIT2:
7111                 r = -EFAULT;
7112                 if (copy_from_user(&u.pit_config, argp,
7113                                    sizeof(struct kvm_pit_config)))
7114                         goto out;
7115         create_pit:
7116                 mutex_lock(&kvm->lock);
7117                 r = -EEXIST;
7118                 if (kvm->arch.vpit)
7119                         goto create_pit_unlock;
7120                 r = -ENOENT;
7121                 if (!pic_in_kernel(kvm))
7122                         goto create_pit_unlock;
7123                 r = -ENOMEM;
7124                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7125                 if (kvm->arch.vpit)
7126                         r = 0;
7127         create_pit_unlock:
7128                 mutex_unlock(&kvm->lock);
7129                 break;
7130         case KVM_GET_IRQCHIP: {
7131                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7132                 struct kvm_irqchip *chip;
7133 
7134                 chip = memdup_user(argp, sizeof(*chip));
7135                 if (IS_ERR(chip)) {
7136                         r = PTR_ERR(chip);
7137                         goto out;
7138                 }
7139 
7140                 r = -ENXIO;
7141                 if (!irqchip_kernel(kvm))
7142                         goto get_irqchip_out;
7143                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7144                 if (r)
7145                         goto get_irqchip_out;
7146                 r = -EFAULT;
7147                 if (copy_to_user(argp, chip, sizeof(*chip)))
7148                         goto get_irqchip_out;
7149                 r = 0;
7150         get_irqchip_out:
7151                 kfree(chip);
7152                 break;
7153         }
7154         case KVM_SET_IRQCHIP: {
7155                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7156                 struct kvm_irqchip *chip;
7157 
7158                 chip = memdup_user(argp, sizeof(*chip));
7159                 if (IS_ERR(chip)) {
7160                         r = PTR_ERR(chip);
7161                         goto out;
7162                 }
7163 
7164                 r = -ENXIO;
7165                 if (!irqchip_kernel(kvm))
7166                         goto set_irqchip_out;
7167                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7168         set_irqchip_out:
7169                 kfree(chip);
7170                 break;
7171         }
7172         case KVM_GET_PIT: {
7173                 r = -EFAULT;
7174                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7175                         goto out;
7176                 r = -ENXIO;
7177                 if (!kvm->arch.vpit)
7178                         goto out;
7179                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7180                 if (r)
7181                         goto out;
7182                 r = -EFAULT;
7183                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7184                         goto out;
7185                 r = 0;
7186                 break;
7187         }
7188         case KVM_SET_PIT: {
7189                 r = -EFAULT;
7190                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7191                         goto out;
7192                 mutex_lock(&kvm->lock);
7193                 r = -ENXIO;
7194                 if (!kvm->arch.vpit)
7195                         goto set_pit_out;
7196                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7197 set_pit_out:
7198                 mutex_unlock(&kvm->lock);
7199                 break;
7200         }
7201         case KVM_GET_PIT2: {
7202                 r = -ENXIO;
7203                 if (!kvm->arch.vpit)
7204                         goto out;
7205                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7206                 if (r)
7207                         goto out;
7208                 r = -EFAULT;
7209                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7210                         goto out;
7211                 r = 0;
7212                 break;
7213         }
7214         case KVM_SET_PIT2: {
7215                 r = -EFAULT;
7216                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7217                         goto out;
7218                 mutex_lock(&kvm->lock);
7219                 r = -ENXIO;
7220                 if (!kvm->arch.vpit)
7221                         goto set_pit2_out;
7222                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7223 set_pit2_out:
7224                 mutex_unlock(&kvm->lock);
7225                 break;
7226         }
7227         case KVM_REINJECT_CONTROL: {
7228                 struct kvm_reinject_control control;
7229                 r =  -EFAULT;
7230                 if (copy_from_user(&control, argp, sizeof(control)))
7231                         goto out;
7232                 r = -ENXIO;
7233                 if (!kvm->arch.vpit)
7234                         goto out;
7235                 r = kvm_vm_ioctl_reinject(kvm, &control);
7236                 break;
7237         }
7238         case KVM_SET_BOOT_CPU_ID:
7239                 r = 0;
7240                 mutex_lock(&kvm->lock);
7241                 if (kvm->created_vcpus)
7242                         r = -EBUSY;
7243                 else if (arg > KVM_MAX_VCPU_IDS ||
7244                          (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7245                         r = -EINVAL;
7246                 else
7247                         kvm->arch.bsp_vcpu_id = arg;
7248                 mutex_unlock(&kvm->lock);
7249                 break;
7250 #ifdef CONFIG_KVM_XEN
7251         case KVM_XEN_HVM_CONFIG: {
7252                 struct kvm_xen_hvm_config xhc;
7253                 r = -EFAULT;
7254                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7255                         goto out;
7256                 r = kvm_xen_hvm_config(kvm, &xhc);
7257                 break;
7258         }
7259         case KVM_XEN_HVM_GET_ATTR: {
7260                 struct kvm_xen_hvm_attr xha;
7261 
7262                 r = -EFAULT;
7263                 if (copy_from_user(&xha, argp, sizeof(xha)))
7264                         goto out;
7265                 r = kvm_xen_hvm_get_attr(kvm, &xha);
7266                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7267                         r = -EFAULT;
7268                 break;
7269         }
7270         case KVM_XEN_HVM_SET_ATTR: {
7271                 struct kvm_xen_hvm_attr xha;
7272 
7273                 r = -EFAULT;
7274                 if (copy_from_user(&xha, argp, sizeof(xha)))
7275                         goto out;
7276                 r = kvm_xen_hvm_set_attr(kvm, &xha);
7277                 break;
7278         }
7279         case KVM_XEN_HVM_EVTCHN_SEND: {
7280                 struct kvm_irq_routing_xen_evtchn uxe;
7281 
7282                 r = -EFAULT;
7283                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7284                         goto out;
7285                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7286                 break;
7287         }
7288 #endif
7289         case KVM_SET_CLOCK:
7290                 r = kvm_vm_ioctl_set_clock(kvm, argp);
7291                 break;
7292         case KVM_GET_CLOCK:
7293                 r = kvm_vm_ioctl_get_clock(kvm, argp);
7294                 break;
7295         case KVM_SET_TSC_KHZ: {
7296                 u32 user_tsc_khz;
7297 
7298                 r = -EINVAL;
7299                 user_tsc_khz = (u32)arg;
7300 
7301                 if (kvm_caps.has_tsc_control &&
7302                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7303                         goto out;
7304 
7305                 if (user_tsc_khz == 0)
7306                         user_tsc_khz = tsc_khz;
7307 
7308                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7309                 r = 0;
7310 
7311                 goto out;
7312         }
7313         case KVM_GET_TSC_KHZ: {
7314                 r = READ_ONCE(kvm->arch.default_tsc_khz);
7315                 goto out;
7316         }
7317         case KVM_MEMORY_ENCRYPT_OP: {
7318                 r = -ENOTTY;
7319                 if (!kvm_x86_ops.mem_enc_ioctl)
7320                         goto out;
7321 
7322                 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7323                 break;
7324         }
7325         case KVM_MEMORY_ENCRYPT_REG_REGION: {
7326                 struct kvm_enc_region region;
7327 
7328                 r = -EFAULT;
7329                 if (copy_from_user(&region, argp, sizeof(region)))
7330                         goto out;
7331 
7332                 r = -ENOTTY;
7333                 if (!kvm_x86_ops.mem_enc_register_region)
7334                         goto out;
7335 
7336                 r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7337                 break;
7338         }
7339         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7340                 struct kvm_enc_region region;
7341 
7342                 r = -EFAULT;
7343                 if (copy_from_user(&region, argp, sizeof(region)))
7344                         goto out;
7345 
7346                 r = -ENOTTY;
7347                 if (!kvm_x86_ops.mem_enc_unregister_region)
7348                         goto out;
7349 
7350                 r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7351                 break;
7352         }
7353 #ifdef CONFIG_KVM_HYPERV
7354         case KVM_HYPERV_EVENTFD: {
7355                 struct kvm_hyperv_eventfd hvevfd;
7356 
7357                 r = -EFAULT;
7358                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7359                         goto out;
7360                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7361                 break;
7362         }
7363 #endif
7364         case KVM_SET_PMU_EVENT_FILTER:
7365                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7366                 break;
7367         case KVM_X86_SET_MSR_FILTER: {
7368                 struct kvm_msr_filter __user *user_msr_filter = argp;
7369                 struct kvm_msr_filter filter;
7370 
7371                 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7372                         return -EFAULT;
7373 
7374                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7375                 break;
7376         }
7377         default:
7378                 r = -ENOTTY;
7379         }
7380 out:
7381         return r;
7382 }
7383 
7384 static void kvm_probe_feature_msr(u32 msr_index)
7385 {
7386         struct kvm_msr_entry msr = {
7387                 .index = msr_index,
7388         };
7389 
7390         if (kvm_get_msr_feature(&msr))
7391                 return;
7392 
7393         msr_based_features[num_msr_based_features++] = msr_index;
7394 }
7395 
7396 static void kvm_probe_msr_to_save(u32 msr_index)
7397 {
7398         u32 dummy[2];
7399 
7400         if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7401                 return;
7402 
7403         /*
7404          * Even MSRs that are valid in the host may not be exposed to guests in
7405          * some cases.
7406          */
7407         switch (msr_index) {
7408         case MSR_IA32_BNDCFGS:
7409                 if (!kvm_mpx_supported())
7410                         return;
7411                 break;
7412         case MSR_TSC_AUX:
7413                 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7414                     !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7415                         return;
7416                 break;
7417         case MSR_IA32_UMWAIT_CONTROL:
7418                 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7419                         return;
7420                 break;
7421         case MSR_IA32_RTIT_CTL:
7422         case MSR_IA32_RTIT_STATUS:
7423                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7424                         return;
7425                 break;
7426         case MSR_IA32_RTIT_CR3_MATCH:
7427                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7428                     !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7429                         return;
7430                 break;
7431         case MSR_IA32_RTIT_OUTPUT_BASE:
7432         case MSR_IA32_RTIT_OUTPUT_MASK:
7433                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7434                     (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7435                      !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7436                         return;
7437                 break;
7438         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7439                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7440                     (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7441                      intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7442                         return;
7443                 break;
7444         case MSR_ARCH_PERFMON_PERFCTR0 ...
7445              MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7446                 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7447                     kvm_pmu_cap.num_counters_gp)
7448                         return;
7449                 break;
7450         case MSR_ARCH_PERFMON_EVENTSEL0 ...
7451              MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7452                 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7453                     kvm_pmu_cap.num_counters_gp)
7454                         return;
7455                 break;
7456         case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7457              MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7458                 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7459                     kvm_pmu_cap.num_counters_fixed)
7460                         return;
7461                 break;
7462         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7463         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7464         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7465                 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7466                         return;
7467                 break;
7468         case MSR_IA32_XFD:
7469         case MSR_IA32_XFD_ERR:
7470                 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7471                         return;
7472                 break;
7473         case MSR_IA32_TSX_CTRL:
7474                 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7475                         return;
7476                 break;
7477         default:
7478                 break;
7479         }
7480 
7481         msrs_to_save[num_msrs_to_save++] = msr_index;
7482 }
7483 
7484 static void kvm_init_msr_lists(void)
7485 {
7486         unsigned i;
7487 
7488         BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7489                          "Please update the fixed PMCs in msrs_to_save_pmu[]");
7490 
7491         num_msrs_to_save = 0;
7492         num_emulated_msrs = 0;
7493         num_msr_based_features = 0;
7494 
7495         for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7496                 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7497 
7498         if (enable_pmu) {
7499                 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7500                         kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7501         }
7502 
7503         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7504                 if (!kvm_x86_call(has_emulated_msr)(NULL,
7505                                                     emulated_msrs_all[i]))
7506                         continue;
7507 
7508                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7509         }
7510 
7511         for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7512                 kvm_probe_feature_msr(i);
7513 
7514         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7515                 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7516 }
7517 
7518 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7519                            const void *v)
7520 {
7521         int handled = 0;
7522         int n;
7523 
7524         do {
7525                 n = min(len, 8);
7526                 if (!(lapic_in_kernel(vcpu) &&
7527                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7528                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7529                         break;
7530                 handled += n;
7531                 addr += n;
7532                 len -= n;
7533                 v += n;
7534         } while (len);
7535 
7536         return handled;
7537 }
7538 
7539 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7540 {
7541         int handled = 0;
7542         int n;
7543 
7544         do {
7545                 n = min(len, 8);
7546                 if (!(lapic_in_kernel(vcpu) &&
7547                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7548                                          addr, n, v))
7549                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7550                         break;
7551                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7552                 handled += n;
7553                 addr += n;
7554                 len -= n;
7555                 v += n;
7556         } while (len);
7557 
7558         return handled;
7559 }
7560 
7561 void kvm_set_segment(struct kvm_vcpu *vcpu,
7562                      struct kvm_segment *var, int seg)
7563 {
7564         kvm_x86_call(set_segment)(vcpu, var, seg);
7565 }
7566 
7567 void kvm_get_segment(struct kvm_vcpu *vcpu,
7568                      struct kvm_segment *var, int seg)
7569 {
7570         kvm_x86_call(get_segment)(vcpu, var, seg);
7571 }
7572 
7573 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7574                            struct x86_exception *exception)
7575 {
7576         struct kvm_mmu *mmu = vcpu->arch.mmu;
7577         gpa_t t_gpa;
7578 
7579         BUG_ON(!mmu_is_nested(vcpu));
7580 
7581         /* NPT walks are always user-walks */
7582         access |= PFERR_USER_MASK;
7583         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7584 
7585         return t_gpa;
7586 }
7587 
7588 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7589                               struct x86_exception *exception)
7590 {
7591         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7592 
7593         u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7594         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7595 }
7596 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7597 
7598 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7599                                struct x86_exception *exception)
7600 {
7601         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7602 
7603         u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7604         access |= PFERR_WRITE_MASK;
7605         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7606 }
7607 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7608 
7609 /* uses this to access any guest's mapped memory without checking CPL */
7610 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7611                                 struct x86_exception *exception)
7612 {
7613         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7614 
7615         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7616 }
7617 
7618 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7619                                       struct kvm_vcpu *vcpu, u64 access,
7620                                       struct x86_exception *exception)
7621 {
7622         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7623         void *data = val;
7624         int r = X86EMUL_CONTINUE;
7625 
7626         while (bytes) {
7627                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7628                 unsigned offset = addr & (PAGE_SIZE-1);
7629                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7630                 int ret;
7631 
7632                 if (gpa == INVALID_GPA)
7633                         return X86EMUL_PROPAGATE_FAULT;
7634                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7635                                                offset, toread);
7636                 if (ret < 0) {
7637                         r = X86EMUL_IO_NEEDED;
7638                         goto out;
7639                 }
7640 
7641                 bytes -= toread;
7642                 data += toread;
7643                 addr += toread;
7644         }
7645 out:
7646         return r;
7647 }
7648 
7649 /* used for instruction fetching */
7650 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7651                                 gva_t addr, void *val, unsigned int bytes,
7652                                 struct x86_exception *exception)
7653 {
7654         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7655         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7656         u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7657         unsigned offset;
7658         int ret;
7659 
7660         /* Inline kvm_read_guest_virt_helper for speed.  */
7661         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7662                                     exception);
7663         if (unlikely(gpa == INVALID_GPA))
7664                 return X86EMUL_PROPAGATE_FAULT;
7665 
7666         offset = addr & (PAGE_SIZE-1);
7667         if (WARN_ON(offset + bytes > PAGE_SIZE))
7668                 bytes = (unsigned)PAGE_SIZE - offset;
7669         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7670                                        offset, bytes);
7671         if (unlikely(ret < 0))
7672                 return X86EMUL_IO_NEEDED;
7673 
7674         return X86EMUL_CONTINUE;
7675 }
7676 
7677 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7678                                gva_t addr, void *val, unsigned int bytes,
7679                                struct x86_exception *exception)
7680 {
7681         u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7682 
7683         /*
7684          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7685          * is returned, but our callers are not ready for that and they blindly
7686          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7687          * uninitialized kernel stack memory into cr2 and error code.
7688          */
7689         memset(exception, 0, sizeof(*exception));
7690         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7691                                           exception);
7692 }
7693 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7694 
7695 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7696                              gva_t addr, void *val, unsigned int bytes,
7697                              struct x86_exception *exception, bool system)
7698 {
7699         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7700         u64 access = 0;
7701 
7702         if (system)
7703                 access |= PFERR_IMPLICIT_ACCESS;
7704         else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7705                 access |= PFERR_USER_MASK;
7706 
7707         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7708 }
7709 
7710 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7711                                       struct kvm_vcpu *vcpu, u64 access,
7712                                       struct x86_exception *exception)
7713 {
7714         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7715         void *data = val;
7716         int r = X86EMUL_CONTINUE;
7717 
7718         while (bytes) {
7719                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7720                 unsigned offset = addr & (PAGE_SIZE-1);
7721                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7722                 int ret;
7723 
7724                 if (gpa == INVALID_GPA)
7725                         return X86EMUL_PROPAGATE_FAULT;
7726                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7727                 if (ret < 0) {
7728                         r = X86EMUL_IO_NEEDED;
7729                         goto out;
7730                 }
7731 
7732                 bytes -= towrite;
7733                 data += towrite;
7734                 addr += towrite;
7735         }
7736 out:
7737         return r;
7738 }
7739 
7740 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7741                               unsigned int bytes, struct x86_exception *exception,
7742                               bool system)
7743 {
7744         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7745         u64 access = PFERR_WRITE_MASK;
7746 
7747         if (system)
7748                 access |= PFERR_IMPLICIT_ACCESS;
7749         else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7750                 access |= PFERR_USER_MASK;
7751 
7752         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7753                                            access, exception);
7754 }
7755 
7756 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7757                                 unsigned int bytes, struct x86_exception *exception)
7758 {
7759         /* kvm_write_guest_virt_system can pull in tons of pages. */
7760         vcpu->arch.l1tf_flush_l1d = true;
7761 
7762         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7763                                            PFERR_WRITE_MASK, exception);
7764 }
7765 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7766 
7767 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7768                                   void *insn, int insn_len)
7769 {
7770         return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7771                                                        insn, insn_len);
7772 }
7773 
7774 int handle_ud(struct kvm_vcpu *vcpu)
7775 {
7776         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7777         int fep_flags = READ_ONCE(force_emulation_prefix);
7778         int emul_type = EMULTYPE_TRAP_UD;
7779         char sig[5]; /* ud2; .ascii "kvm" */
7780         struct x86_exception e;
7781         int r;
7782 
7783         r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7784         if (r != X86EMUL_CONTINUE)
7785                 return 1;
7786 
7787         if (fep_flags &&
7788             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7789                                 sig, sizeof(sig), &e) == 0 &&
7790             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7791                 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7792                         kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7793                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7794                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7795         }
7796 
7797         return kvm_emulate_instruction(vcpu, emul_type);
7798 }
7799 EXPORT_SYMBOL_GPL(handle_ud);
7800 
7801 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7802                             gpa_t gpa, bool write)
7803 {
7804         /* For APIC access vmexit */
7805         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7806                 return 1;
7807 
7808         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7809                 trace_vcpu_match_mmio(gva, gpa, write, true);
7810                 return 1;
7811         }
7812 
7813         return 0;
7814 }
7815 
7816 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7817                                 gpa_t *gpa, struct x86_exception *exception,
7818                                 bool write)
7819 {
7820         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7821         u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7822                      | (write ? PFERR_WRITE_MASK : 0);
7823 
7824         /*
7825          * currently PKRU is only applied to ept enabled guest so
7826          * there is no pkey in EPT page table for L1 guest or EPT
7827          * shadow page table for L2 guest.
7828          */
7829         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7830             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7831                               vcpu->arch.mmio_access, 0, access))) {
7832                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7833                                         (gva & (PAGE_SIZE - 1));
7834                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7835                 return 1;
7836         }
7837 
7838         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7839 
7840         if (*gpa == INVALID_GPA)
7841                 return -1;
7842 
7843         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7844 }
7845 
7846 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7847                         const void *val, int bytes)
7848 {
7849         int ret;
7850 
7851         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7852         if (ret < 0)
7853                 return 0;
7854         kvm_page_track_write(vcpu, gpa, val, bytes);
7855         return 1;
7856 }
7857 
7858 struct read_write_emulator_ops {
7859         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7860                                   int bytes);
7861         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7862                                   void *val, int bytes);
7863         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7864                                int bytes, void *val);
7865         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7866                                     void *val, int bytes);
7867         bool write;
7868 };
7869 
7870 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7871 {
7872         if (vcpu->mmio_read_completed) {
7873                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7874                                vcpu->mmio_fragments[0].gpa, val);
7875                 vcpu->mmio_read_completed = 0;
7876                 return 1;
7877         }
7878 
7879         return 0;
7880 }
7881 
7882 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7883                         void *val, int bytes)
7884 {
7885         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7886 }
7887 
7888 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7889                          void *val, int bytes)
7890 {
7891         return emulator_write_phys(vcpu, gpa, val, bytes);
7892 }
7893 
7894 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7895 {
7896         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7897         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7898 }
7899 
7900 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7901                           void *val, int bytes)
7902 {
7903         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7904         return X86EMUL_IO_NEEDED;
7905 }
7906 
7907 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7908                            void *val, int bytes)
7909 {
7910         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7911 
7912         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7913         return X86EMUL_CONTINUE;
7914 }
7915 
7916 static const struct read_write_emulator_ops read_emultor = {
7917         .read_write_prepare = read_prepare,
7918         .read_write_emulate = read_emulate,
7919         .read_write_mmio = vcpu_mmio_read,
7920         .read_write_exit_mmio = read_exit_mmio,
7921 };
7922 
7923 static const struct read_write_emulator_ops write_emultor = {
7924         .read_write_emulate = write_emulate,
7925         .read_write_mmio = write_mmio,
7926         .read_write_exit_mmio = write_exit_mmio,
7927         .write = true,
7928 };
7929 
7930 static int emulator_read_write_onepage(unsigned long addr, void *val,
7931                                        unsigned int bytes,
7932                                        struct x86_exception *exception,
7933                                        struct kvm_vcpu *vcpu,
7934                                        const struct read_write_emulator_ops *ops)
7935 {
7936         gpa_t gpa;
7937         int handled, ret;
7938         bool write = ops->write;
7939         struct kvm_mmio_fragment *frag;
7940         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7941 
7942         /*
7943          * If the exit was due to a NPF we may already have a GPA.
7944          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7945          * Note, this cannot be used on string operations since string
7946          * operation using rep will only have the initial GPA from the NPF
7947          * occurred.
7948          */
7949         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7950             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7951                 gpa = ctxt->gpa_val;
7952                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7953         } else {
7954                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7955                 if (ret < 0)
7956                         return X86EMUL_PROPAGATE_FAULT;
7957         }
7958 
7959         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7960                 return X86EMUL_CONTINUE;
7961 
7962         /*
7963          * Is this MMIO handled locally?
7964          */
7965         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7966         if (handled == bytes)
7967                 return X86EMUL_CONTINUE;
7968 
7969         gpa += handled;
7970         bytes -= handled;
7971         val += handled;
7972 
7973         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7974         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7975         frag->gpa = gpa;
7976         frag->data = val;
7977         frag->len = bytes;
7978         return X86EMUL_CONTINUE;
7979 }
7980 
7981 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7982                         unsigned long addr,
7983                         void *val, unsigned int bytes,
7984                         struct x86_exception *exception,
7985                         const struct read_write_emulator_ops *ops)
7986 {
7987         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7988         gpa_t gpa;
7989         int rc;
7990 
7991         if (ops->read_write_prepare &&
7992                   ops->read_write_prepare(vcpu, val, bytes))
7993                 return X86EMUL_CONTINUE;
7994 
7995         vcpu->mmio_nr_fragments = 0;
7996 
7997         /* Crossing a page boundary? */
7998         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7999                 int now;
8000 
8001                 now = -addr & ~PAGE_MASK;
8002                 rc = emulator_read_write_onepage(addr, val, now, exception,
8003                                                  vcpu, ops);
8004 
8005                 if (rc != X86EMUL_CONTINUE)
8006                         return rc;
8007                 addr += now;
8008                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8009                         addr = (u32)addr;
8010                 val += now;
8011                 bytes -= now;
8012         }
8013 
8014         rc = emulator_read_write_onepage(addr, val, bytes, exception,
8015                                          vcpu, ops);
8016         if (rc != X86EMUL_CONTINUE)
8017                 return rc;
8018 
8019         if (!vcpu->mmio_nr_fragments)
8020                 return rc;
8021 
8022         gpa = vcpu->mmio_fragments[0].gpa;
8023 
8024         vcpu->mmio_needed = 1;
8025         vcpu->mmio_cur_fragment = 0;
8026 
8027         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8028         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8029         vcpu->run->exit_reason = KVM_EXIT_MMIO;
8030         vcpu->run->mmio.phys_addr = gpa;
8031 
8032         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8033 }
8034 
8035 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8036                                   unsigned long addr,
8037                                   void *val,
8038                                   unsigned int bytes,
8039                                   struct x86_exception *exception)
8040 {
8041         return emulator_read_write(ctxt, addr, val, bytes,
8042                                    exception, &read_emultor);
8043 }
8044 
8045 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8046                             unsigned long addr,
8047                             const void *val,
8048                             unsigned int bytes,
8049                             struct x86_exception *exception)
8050 {
8051         return emulator_read_write(ctxt, addr, (void *)val, bytes,
8052                                    exception, &write_emultor);
8053 }
8054 
8055 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8056         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8057 
8058 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8059                                      unsigned long addr,
8060                                      const void *old,
8061                                      const void *new,
8062                                      unsigned int bytes,
8063                                      struct x86_exception *exception)
8064 {
8065         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8066         u64 page_line_mask;
8067         unsigned long hva;
8068         gpa_t gpa;
8069         int r;
8070 
8071         /* guests cmpxchg8b have to be emulated atomically */
8072         if (bytes > 8 || (bytes & (bytes - 1)))
8073                 goto emul_write;
8074 
8075         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8076 
8077         if (gpa == INVALID_GPA ||
8078             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8079                 goto emul_write;
8080 
8081         /*
8082          * Emulate the atomic as a straight write to avoid #AC if SLD is
8083          * enabled in the host and the access splits a cache line.
8084          */
8085         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8086                 page_line_mask = ~(cache_line_size() - 1);
8087         else
8088                 page_line_mask = PAGE_MASK;
8089 
8090         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8091                 goto emul_write;
8092 
8093         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8094         if (kvm_is_error_hva(hva))
8095                 goto emul_write;
8096 
8097         hva += offset_in_page(gpa);
8098 
8099         switch (bytes) {
8100         case 1:
8101                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8102                 break;
8103         case 2:
8104                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8105                 break;
8106         case 4:
8107                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8108                 break;
8109         case 8:
8110                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8111                 break;
8112         default:
8113                 BUG();
8114         }
8115 
8116         if (r < 0)
8117                 return X86EMUL_UNHANDLEABLE;
8118 
8119         /*
8120          * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8121          * successful, as the old value is written back on failure.  Note, for
8122          * live migration, this is unnecessarily conservative as CMPXCHG writes
8123          * back the original value and the access is atomic, but KVM's ABI is
8124          * that all writes are dirty logged, regardless of the value written.
8125          */
8126         kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8127 
8128         if (r)
8129                 return X86EMUL_CMPXCHG_FAILED;
8130 
8131         kvm_page_track_write(vcpu, gpa, new, bytes);
8132 
8133         return X86EMUL_CONTINUE;
8134 
8135 emul_write:
8136         pr_warn_once("emulating exchange as write\n");
8137 
8138         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8139 }
8140 
8141 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8142                                unsigned short port, void *data,
8143                                unsigned int count, bool in)
8144 {
8145         unsigned i;
8146         int r;
8147 
8148         WARN_ON_ONCE(vcpu->arch.pio.count);
8149         for (i = 0; i < count; i++) {
8150                 if (in)
8151                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8152                 else
8153                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8154 
8155                 if (r) {
8156                         if (i == 0)
8157                                 goto userspace_io;
8158 
8159                         /*
8160                          * Userspace must have unregistered the device while PIO
8161                          * was running.  Drop writes / read as 0.
8162                          */
8163                         if (in)
8164                                 memset(data, 0, size * (count - i));
8165                         break;
8166                 }
8167 
8168                 data += size;
8169         }
8170         return 1;
8171 
8172 userspace_io:
8173         vcpu->arch.pio.port = port;
8174         vcpu->arch.pio.in = in;
8175         vcpu->arch.pio.count = count;
8176         vcpu->arch.pio.size = size;
8177 
8178         if (in)
8179                 memset(vcpu->arch.pio_data, 0, size * count);
8180         else
8181                 memcpy(vcpu->arch.pio_data, data, size * count);
8182 
8183         vcpu->run->exit_reason = KVM_EXIT_IO;
8184         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8185         vcpu->run->io.size = size;
8186         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8187         vcpu->run->io.count = count;
8188         vcpu->run->io.port = port;
8189         return 0;
8190 }
8191 
8192 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8193                            unsigned short port, void *val, unsigned int count)
8194 {
8195         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8196         if (r)
8197                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8198 
8199         return r;
8200 }
8201 
8202 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8203 {
8204         int size = vcpu->arch.pio.size;
8205         unsigned int count = vcpu->arch.pio.count;
8206         memcpy(val, vcpu->arch.pio_data, size * count);
8207         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8208         vcpu->arch.pio.count = 0;
8209 }
8210 
8211 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8212                                     int size, unsigned short port, void *val,
8213                                     unsigned int count)
8214 {
8215         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8216         if (vcpu->arch.pio.count) {
8217                 /*
8218                  * Complete a previous iteration that required userspace I/O.
8219                  * Note, @count isn't guaranteed to match pio.count as userspace
8220                  * can modify ECX before rerunning the vCPU.  Ignore any such
8221                  * shenanigans as KVM doesn't support modifying the rep count,
8222                  * and the emulator ensures @count doesn't overflow the buffer.
8223                  */
8224                 complete_emulator_pio_in(vcpu, val);
8225                 return 1;
8226         }
8227 
8228         return emulator_pio_in(vcpu, size, port, val, count);
8229 }
8230 
8231 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8232                             unsigned short port, const void *val,
8233                             unsigned int count)
8234 {
8235         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8236         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8237 }
8238 
8239 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8240                                      int size, unsigned short port,
8241                                      const void *val, unsigned int count)
8242 {
8243         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8244 }
8245 
8246 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8247 {
8248         return kvm_x86_call(get_segment_base)(vcpu, seg);
8249 }
8250 
8251 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8252 {
8253         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8254 }
8255 
8256 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8257 {
8258         if (!need_emulate_wbinvd(vcpu))
8259                 return X86EMUL_CONTINUE;
8260 
8261         if (kvm_x86_call(has_wbinvd_exit)()) {
8262                 int cpu = get_cpu();
8263 
8264                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8265                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8266                                 wbinvd_ipi, NULL, 1);
8267                 put_cpu();
8268                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8269         } else
8270                 wbinvd();
8271         return X86EMUL_CONTINUE;
8272 }
8273 
8274 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8275 {
8276         kvm_emulate_wbinvd_noskip(vcpu);
8277         return kvm_skip_emulated_instruction(vcpu);
8278 }
8279 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8280 
8281 
8282 
8283 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8284 {
8285         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8286 }
8287 
8288 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8289 {
8290         return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8291 }
8292 
8293 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8294                            unsigned long value)
8295 {
8296 
8297         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8298 }
8299 
8300 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8301 {
8302         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8303 }
8304 
8305 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8306 {
8307         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8308         unsigned long value;
8309 
8310         switch (cr) {
8311         case 0:
8312                 value = kvm_read_cr0(vcpu);
8313                 break;
8314         case 2:
8315                 value = vcpu->arch.cr2;
8316                 break;
8317         case 3:
8318                 value = kvm_read_cr3(vcpu);
8319                 break;
8320         case 4:
8321                 value = kvm_read_cr4(vcpu);
8322                 break;
8323         case 8:
8324                 value = kvm_get_cr8(vcpu);
8325                 break;
8326         default:
8327                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8328                 return 0;
8329         }
8330 
8331         return value;
8332 }
8333 
8334 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8335 {
8336         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8337         int res = 0;
8338 
8339         switch (cr) {
8340         case 0:
8341                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8342                 break;
8343         case 2:
8344                 vcpu->arch.cr2 = val;
8345                 break;
8346         case 3:
8347                 res = kvm_set_cr3(vcpu, val);
8348                 break;
8349         case 4:
8350                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8351                 break;
8352         case 8:
8353                 res = kvm_set_cr8(vcpu, val);
8354                 break;
8355         default:
8356                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8357                 res = -1;
8358         }
8359 
8360         return res;
8361 }
8362 
8363 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8364 {
8365         return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8366 }
8367 
8368 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8369 {
8370         kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8371 }
8372 
8373 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8374 {
8375         kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8376 }
8377 
8378 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8379 {
8380         kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8381 }
8382 
8383 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8384 {
8385         kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8386 }
8387 
8388 static unsigned long emulator_get_cached_segment_base(
8389         struct x86_emulate_ctxt *ctxt, int seg)
8390 {
8391         return get_segment_base(emul_to_vcpu(ctxt), seg);
8392 }
8393 
8394 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8395                                  struct desc_struct *desc, u32 *base3,
8396                                  int seg)
8397 {
8398         struct kvm_segment var;
8399 
8400         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8401         *selector = var.selector;
8402 
8403         if (var.unusable) {
8404                 memset(desc, 0, sizeof(*desc));
8405                 if (base3)
8406                         *base3 = 0;
8407                 return false;
8408         }
8409 
8410         if (var.g)
8411                 var.limit >>= 12;
8412         set_desc_limit(desc, var.limit);
8413         set_desc_base(desc, (unsigned long)var.base);
8414 #ifdef CONFIG_X86_64
8415         if (base3)
8416                 *base3 = var.base >> 32;
8417 #endif
8418         desc->type = var.type;
8419         desc->s = var.s;
8420         desc->dpl = var.dpl;
8421         desc->p = var.present;
8422         desc->avl = var.avl;
8423         desc->l = var.l;
8424         desc->d = var.db;
8425         desc->g = var.g;
8426 
8427         return true;
8428 }
8429 
8430 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8431                                  struct desc_struct *desc, u32 base3,
8432                                  int seg)
8433 {
8434         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8435         struct kvm_segment var;
8436 
8437         var.selector = selector;
8438         var.base = get_desc_base(desc);
8439 #ifdef CONFIG_X86_64
8440         var.base |= ((u64)base3) << 32;
8441 #endif
8442         var.limit = get_desc_limit(desc);
8443         if (desc->g)
8444                 var.limit = (var.limit << 12) | 0xfff;
8445         var.type = desc->type;
8446         var.dpl = desc->dpl;
8447         var.db = desc->d;
8448         var.s = desc->s;
8449         var.l = desc->l;
8450         var.g = desc->g;
8451         var.avl = desc->avl;
8452         var.present = desc->p;
8453         var.unusable = !var.present;
8454         var.padding = 0;
8455 
8456         kvm_set_segment(vcpu, &var, seg);
8457         return;
8458 }
8459 
8460 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8461                                         u32 msr_index, u64 *pdata)
8462 {
8463         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8464         int r;
8465 
8466         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8467         if (r < 0)
8468                 return X86EMUL_UNHANDLEABLE;
8469 
8470         if (r) {
8471                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8472                                        complete_emulated_rdmsr, r))
8473                         return X86EMUL_IO_NEEDED;
8474 
8475                 trace_kvm_msr_read_ex(msr_index);
8476                 return X86EMUL_PROPAGATE_FAULT;
8477         }
8478 
8479         trace_kvm_msr_read(msr_index, *pdata);
8480         return X86EMUL_CONTINUE;
8481 }
8482 
8483 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8484                                         u32 msr_index, u64 data)
8485 {
8486         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8487         int r;
8488 
8489         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8490         if (r < 0)
8491                 return X86EMUL_UNHANDLEABLE;
8492 
8493         if (r) {
8494                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8495                                        complete_emulated_msr_access, r))
8496                         return X86EMUL_IO_NEEDED;
8497 
8498                 trace_kvm_msr_write_ex(msr_index, data);
8499                 return X86EMUL_PROPAGATE_FAULT;
8500         }
8501 
8502         trace_kvm_msr_write(msr_index, data);
8503         return X86EMUL_CONTINUE;
8504 }
8505 
8506 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8507                             u32 msr_index, u64 *pdata)
8508 {
8509         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8510 }
8511 
8512 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8513 {
8514         return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8515 }
8516 
8517 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8518                              u32 pmc, u64 *pdata)
8519 {
8520         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8521 }
8522 
8523 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8524 {
8525         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8526 }
8527 
8528 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8529                               struct x86_instruction_info *info,
8530                               enum x86_intercept_stage stage)
8531 {
8532         return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8533                                              &ctxt->exception);
8534 }
8535 
8536 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8537                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8538                               bool exact_only)
8539 {
8540         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8541 }
8542 
8543 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8544 {
8545         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8546 }
8547 
8548 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8549 {
8550         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8551 }
8552 
8553 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8554 {
8555         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8556 }
8557 
8558 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8559 {
8560         return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8561 }
8562 
8563 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8564 {
8565         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8566 }
8567 
8568 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8569 {
8570         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8571 }
8572 
8573 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8574 {
8575         kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8576 }
8577 
8578 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8579 {
8580         return is_smm(emul_to_vcpu(ctxt));
8581 }
8582 
8583 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8584 {
8585         return is_guest_mode(emul_to_vcpu(ctxt));
8586 }
8587 
8588 #ifndef CONFIG_KVM_SMM
8589 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8590 {
8591         WARN_ON_ONCE(1);
8592         return X86EMUL_UNHANDLEABLE;
8593 }
8594 #endif
8595 
8596 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8597 {
8598         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8599 }
8600 
8601 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8602 {
8603         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8604 }
8605 
8606 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8607 {
8608         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8609 
8610         if (!kvm->vm_bugged)
8611                 kvm_vm_bugged(kvm);
8612 }
8613 
8614 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8615                                         gva_t addr, unsigned int flags)
8616 {
8617         if (!kvm_x86_ops.get_untagged_addr)
8618                 return addr;
8619 
8620         return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8621                                                addr, flags);
8622 }
8623 
8624 static const struct x86_emulate_ops emulate_ops = {
8625         .vm_bugged           = emulator_vm_bugged,
8626         .read_gpr            = emulator_read_gpr,
8627         .write_gpr           = emulator_write_gpr,
8628         .read_std            = emulator_read_std,
8629         .write_std           = emulator_write_std,
8630         .fetch               = kvm_fetch_guest_virt,
8631         .read_emulated       = emulator_read_emulated,
8632         .write_emulated      = emulator_write_emulated,
8633         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8634         .invlpg              = emulator_invlpg,
8635         .pio_in_emulated     = emulator_pio_in_emulated,
8636         .pio_out_emulated    = emulator_pio_out_emulated,
8637         .get_segment         = emulator_get_segment,
8638         .set_segment         = emulator_set_segment,
8639         .get_cached_segment_base = emulator_get_cached_segment_base,
8640         .get_gdt             = emulator_get_gdt,
8641         .get_idt             = emulator_get_idt,
8642         .set_gdt             = emulator_set_gdt,
8643         .set_idt             = emulator_set_idt,
8644         .get_cr              = emulator_get_cr,
8645         .set_cr              = emulator_set_cr,
8646         .cpl                 = emulator_get_cpl,
8647         .get_dr              = emulator_get_dr,
8648         .set_dr              = emulator_set_dr,
8649         .set_msr_with_filter = emulator_set_msr_with_filter,
8650         .get_msr_with_filter = emulator_get_msr_with_filter,
8651         .get_msr             = emulator_get_msr,
8652         .check_rdpmc_early   = emulator_check_rdpmc_early,
8653         .read_pmc            = emulator_read_pmc,
8654         .halt                = emulator_halt,
8655         .wbinvd              = emulator_wbinvd,
8656         .fix_hypercall       = emulator_fix_hypercall,
8657         .intercept           = emulator_intercept,
8658         .get_cpuid           = emulator_get_cpuid,
8659         .guest_has_movbe     = emulator_guest_has_movbe,
8660         .guest_has_fxsr      = emulator_guest_has_fxsr,
8661         .guest_has_rdpid     = emulator_guest_has_rdpid,
8662         .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8663         .set_nmi_mask        = emulator_set_nmi_mask,
8664         .is_smm              = emulator_is_smm,
8665         .is_guest_mode       = emulator_is_guest_mode,
8666         .leave_smm           = emulator_leave_smm,
8667         .triple_fault        = emulator_triple_fault,
8668         .set_xcr             = emulator_set_xcr,
8669         .get_untagged_addr   = emulator_get_untagged_addr,
8670 };
8671 
8672 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8673 {
8674         u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8675         /*
8676          * an sti; sti; sequence only disable interrupts for the first
8677          * instruction. So, if the last instruction, be it emulated or
8678          * not, left the system with the INT_STI flag enabled, it
8679          * means that the last instruction is an sti. We should not
8680          * leave the flag on in this case. The same goes for mov ss
8681          */
8682         if (int_shadow & mask)
8683                 mask = 0;
8684         if (unlikely(int_shadow || mask)) {
8685                 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8686                 if (!mask)
8687                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8688         }
8689 }
8690 
8691 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8692 {
8693         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8694 
8695         if (ctxt->exception.vector == PF_VECTOR)
8696                 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8697         else if (ctxt->exception.error_code_valid)
8698                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8699                                       ctxt->exception.error_code);
8700         else
8701                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8702 }
8703 
8704 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8705 {
8706         struct x86_emulate_ctxt *ctxt;
8707 
8708         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8709         if (!ctxt) {
8710                 pr_err("failed to allocate vcpu's emulator\n");
8711                 return NULL;
8712         }
8713 
8714         ctxt->vcpu = vcpu;
8715         ctxt->ops = &emulate_ops;
8716         vcpu->arch.emulate_ctxt = ctxt;
8717 
8718         return ctxt;
8719 }
8720 
8721 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8722 {
8723         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8724         int cs_db, cs_l;
8725 
8726         kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8727 
8728         ctxt->gpa_available = false;
8729         ctxt->eflags = kvm_get_rflags(vcpu);
8730         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8731 
8732         ctxt->eip = kvm_rip_read(vcpu);
8733         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8734                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8735                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8736                      cs_db                              ? X86EMUL_MODE_PROT32 :
8737                                                           X86EMUL_MODE_PROT16;
8738         ctxt->interruptibility = 0;
8739         ctxt->have_exception = false;
8740         ctxt->exception.vector = -1;
8741         ctxt->perm_ok = false;
8742 
8743         init_decode_cache(ctxt);
8744         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8745 }
8746 
8747 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8748 {
8749         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8750         int ret;
8751 
8752         init_emulate_ctxt(vcpu);
8753 
8754         ctxt->op_bytes = 2;
8755         ctxt->ad_bytes = 2;
8756         ctxt->_eip = ctxt->eip + inc_eip;
8757         ret = emulate_int_real(ctxt, irq);
8758 
8759         if (ret != X86EMUL_CONTINUE) {
8760                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8761         } else {
8762                 ctxt->eip = ctxt->_eip;
8763                 kvm_rip_write(vcpu, ctxt->eip);
8764                 kvm_set_rflags(vcpu, ctxt->eflags);
8765         }
8766 }
8767 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8768 
8769 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8770                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8771 {
8772         struct kvm_run *run = vcpu->run;
8773         u64 info[5];
8774         u8 info_start;
8775 
8776         /*
8777          * Zero the whole array used to retrieve the exit info, as casting to
8778          * u32 for select entries will leave some chunks uninitialized.
8779          */
8780         memset(&info, 0, sizeof(info));
8781 
8782         kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8783                                     (u32 *)&info[3], (u32 *)&info[4]);
8784 
8785         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8786         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8787 
8788         /*
8789          * There's currently space for 13 entries, but 5 are used for the exit
8790          * reason and info.  Restrict to 4 to reduce the maintenance burden
8791          * when expanding kvm_run.emulation_failure in the future.
8792          */
8793         if (WARN_ON_ONCE(ndata > 4))
8794                 ndata = 4;
8795 
8796         /* Always include the flags as a 'data' entry. */
8797         info_start = 1;
8798         run->emulation_failure.flags = 0;
8799 
8800         if (insn_size) {
8801                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8802                               sizeof(run->emulation_failure.insn_bytes) != 16));
8803                 info_start += 2;
8804                 run->emulation_failure.flags |=
8805                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8806                 run->emulation_failure.insn_size = insn_size;
8807                 memset(run->emulation_failure.insn_bytes, 0x90,
8808                        sizeof(run->emulation_failure.insn_bytes));
8809                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8810         }
8811 
8812         memcpy(&run->internal.data[info_start], info, sizeof(info));
8813         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8814                ndata * sizeof(data[0]));
8815 
8816         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8817 }
8818 
8819 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8820 {
8821         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8822 
8823         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8824                                        ctxt->fetch.end - ctxt->fetch.data);
8825 }
8826 
8827 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8828                                           u8 ndata)
8829 {
8830         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8831 }
8832 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8833 
8834 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8835 {
8836         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8837 }
8838 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8839 
8840 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8841 {
8842         struct kvm *kvm = vcpu->kvm;
8843 
8844         ++vcpu->stat.insn_emulation_fail;
8845         trace_kvm_emulate_insn_failed(vcpu);
8846 
8847         if (emulation_type & EMULTYPE_VMWARE_GP) {
8848                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8849                 return 1;
8850         }
8851 
8852         if (kvm->arch.exit_on_emulation_error ||
8853             (emulation_type & EMULTYPE_SKIP)) {
8854                 prepare_emulation_ctxt_failure_exit(vcpu);
8855                 return 0;
8856         }
8857 
8858         kvm_queue_exception(vcpu, UD_VECTOR);
8859 
8860         if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8861                 prepare_emulation_ctxt_failure_exit(vcpu);
8862                 return 0;
8863         }
8864 
8865         return 1;
8866 }
8867 
8868 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8869                                   int emulation_type)
8870 {
8871         gpa_t gpa = cr2_or_gpa;
8872         kvm_pfn_t pfn;
8873 
8874         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8875                 return false;
8876 
8877         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8878             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8879                 return false;
8880 
8881         if (!vcpu->arch.mmu->root_role.direct) {
8882                 /*
8883                  * Write permission should be allowed since only
8884                  * write access need to be emulated.
8885                  */
8886                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8887 
8888                 /*
8889                  * If the mapping is invalid in guest, let cpu retry
8890                  * it to generate fault.
8891                  */
8892                 if (gpa == INVALID_GPA)
8893                         return true;
8894         }
8895 
8896         /*
8897          * Do not retry the unhandleable instruction if it faults on the
8898          * readonly host memory, otherwise it will goto a infinite loop:
8899          * retry instruction -> write #PF -> emulation fail -> retry
8900          * instruction -> ...
8901          */
8902         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8903 
8904         /*
8905          * If the instruction failed on the error pfn, it can not be fixed,
8906          * report the error to userspace.
8907          */
8908         if (is_error_noslot_pfn(pfn))
8909                 return false;
8910 
8911         kvm_release_pfn_clean(pfn);
8912 
8913         /*
8914          * If emulation may have been triggered by a write to a shadowed page
8915          * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8916          * guest to let the CPU re-execute the instruction in the hope that the
8917          * CPU can cleanly execute the instruction that KVM failed to emulate.
8918          */
8919         if (vcpu->kvm->arch.indirect_shadow_pages)
8920                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8921 
8922         /*
8923          * If the failed instruction faulted on an access to page tables that
8924          * are used to translate any part of the instruction, KVM can't resolve
8925          * the issue by unprotecting the gfn, as zapping the shadow page will
8926          * result in the instruction taking a !PRESENT page fault and thus put
8927          * the vCPU into an infinite loop of page faults.  E.g. KVM will create
8928          * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8929          * then zap the SPTE to unprotect the gfn, and then do it all over
8930          * again.  Report the error to userspace.
8931          */
8932         return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8933 }
8934 
8935 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8936                               gpa_t cr2_or_gpa,  int emulation_type)
8937 {
8938         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8939         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8940 
8941         last_retry_eip = vcpu->arch.last_retry_eip;
8942         last_retry_addr = vcpu->arch.last_retry_addr;
8943 
8944         /*
8945          * If the emulation is caused by #PF and it is non-page_table
8946          * writing instruction, it means the VM-EXIT is caused by shadow
8947          * page protected, we can zap the shadow page and retry this
8948          * instruction directly.
8949          *
8950          * Note: if the guest uses a non-page-table modifying instruction
8951          * on the PDE that points to the instruction, then we will unmap
8952          * the instruction and go to an infinite loop. So, we cache the
8953          * last retried eip and the last fault address, if we meet the eip
8954          * and the address again, we can break out of the potential infinite
8955          * loop.
8956          */
8957         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8958 
8959         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8960                 return false;
8961 
8962         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8963             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8964                 return false;
8965 
8966         if (x86_page_table_writing_insn(ctxt))
8967                 return false;
8968 
8969         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8970                 return false;
8971 
8972         vcpu->arch.last_retry_eip = ctxt->eip;
8973         vcpu->arch.last_retry_addr = cr2_or_gpa;
8974 
8975         if (!vcpu->arch.mmu->root_role.direct)
8976                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8977 
8978         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8979 
8980         return true;
8981 }
8982 
8983 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8984 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8985 
8986 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8987                                 unsigned long *db)
8988 {
8989         u32 dr6 = 0;
8990         int i;
8991         u32 enable, rwlen;
8992 
8993         enable = dr7;
8994         rwlen = dr7 >> 16;
8995         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8996                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8997                         dr6 |= (1 << i);
8998         return dr6;
8999 }
9000 
9001 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
9002 {
9003         struct kvm_run *kvm_run = vcpu->run;
9004 
9005         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
9006                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
9007                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
9008                 kvm_run->debug.arch.exception = DB_VECTOR;
9009                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9010                 return 0;
9011         }
9012         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
9013         return 1;
9014 }
9015 
9016 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
9017 {
9018         unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9019         int r;
9020 
9021         r = kvm_x86_call(skip_emulated_instruction)(vcpu);
9022         if (unlikely(!r))
9023                 return 0;
9024 
9025         kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9026 
9027         /*
9028          * rflags is the old, "raw" value of the flags.  The new value has
9029          * not been saved yet.
9030          *
9031          * This is correct even for TF set by the guest, because "the
9032          * processor will not generate this exception after the instruction
9033          * that sets the TF flag".
9034          */
9035         if (unlikely(rflags & X86_EFLAGS_TF))
9036                 r = kvm_vcpu_do_singlestep(vcpu);
9037         return r;
9038 }
9039 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
9040 
9041 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9042 {
9043         if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9044                 return true;
9045 
9046         /*
9047          * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
9048          * active, but AMD compatible CPUs do not.
9049          */
9050         if (!guest_cpuid_is_intel_compatible(vcpu))
9051                 return false;
9052 
9053         return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
9054 }
9055 
9056 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9057                                            int emulation_type, int *r)
9058 {
9059         WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9060 
9061         /*
9062          * Do not check for code breakpoints if hardware has already done the
9063          * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
9064          * the instruction has passed all exception checks, and all intercepted
9065          * exceptions that trigger emulation have lower priority than code
9066          * breakpoints, i.e. the fact that the intercepted exception occurred
9067          * means any code breakpoints have already been serviced.
9068          *
9069          * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9070          * hardware has checked the RIP of the magic prefix, but not the RIP of
9071          * the instruction being emulated.  The intent of forced emulation is
9072          * to behave as if KVM intercepted the instruction without an exception
9073          * and without a prefix.
9074          */
9075         if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9076                               EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9077                 return false;
9078 
9079         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9080             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9081                 struct kvm_run *kvm_run = vcpu->run;
9082                 unsigned long eip = kvm_get_linear_rip(vcpu);
9083                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9084                                            vcpu->arch.guest_debug_dr7,
9085                                            vcpu->arch.eff_db);
9086 
9087                 if (dr6 != 0) {
9088                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9089                         kvm_run->debug.arch.pc = eip;
9090                         kvm_run->debug.arch.exception = DB_VECTOR;
9091                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
9092                         *r = 0;
9093                         return true;
9094                 }
9095         }
9096 
9097         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9098             !kvm_is_code_breakpoint_inhibited(vcpu)) {
9099                 unsigned long eip = kvm_get_linear_rip(vcpu);
9100                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9101                                            vcpu->arch.dr7,
9102                                            vcpu->arch.db);
9103 
9104                 if (dr6 != 0) {
9105                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9106                         *r = 1;
9107                         return true;
9108                 }
9109         }
9110 
9111         return false;
9112 }
9113 
9114 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9115 {
9116         switch (ctxt->opcode_len) {
9117         case 1:
9118                 switch (ctxt->b) {
9119                 case 0xe4:      /* IN */
9120                 case 0xe5:
9121                 case 0xec:
9122                 case 0xed:
9123                 case 0xe6:      /* OUT */
9124                 case 0xe7:
9125                 case 0xee:
9126                 case 0xef:
9127                 case 0x6c:      /* INS */
9128                 case 0x6d:
9129                 case 0x6e:      /* OUTS */
9130                 case 0x6f:
9131                         return true;
9132                 }
9133                 break;
9134         case 2:
9135                 switch (ctxt->b) {
9136                 case 0x33:      /* RDPMC */
9137                         return true;
9138                 }
9139                 break;
9140         }
9141 
9142         return false;
9143 }
9144 
9145 /*
9146  * Decode an instruction for emulation.  The caller is responsible for handling
9147  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9148  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9149  * code breakpoints have higher priority and thus have already been done by
9150  * hardware.
9151  *
9152  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9153  *     response to a machine check.
9154  */
9155 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9156                                     void *insn, int insn_len)
9157 {
9158         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9159         int r;
9160 
9161         init_emulate_ctxt(vcpu);
9162 
9163         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9164 
9165         trace_kvm_emulate_insn_start(vcpu);
9166         ++vcpu->stat.insn_emulation;
9167 
9168         return r;
9169 }
9170 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9171 
9172 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9173                             int emulation_type, void *insn, int insn_len)
9174 {
9175         int r;
9176         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9177         bool writeback = true;
9178 
9179         r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9180         if (r != X86EMUL_CONTINUE) {
9181                 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9182                         return 1;
9183 
9184                 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9185                 return handle_emulation_failure(vcpu, emulation_type);
9186         }
9187 
9188         vcpu->arch.l1tf_flush_l1d = true;
9189 
9190         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9191                 kvm_clear_exception_queue(vcpu);
9192 
9193                 /*
9194                  * Return immediately if RIP hits a code breakpoint, such #DBs
9195                  * are fault-like and are higher priority than any faults on
9196                  * the code fetch itself.
9197                  */
9198                 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9199                         return r;
9200 
9201                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9202                                                     insn, insn_len);
9203                 if (r != EMULATION_OK)  {
9204                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
9205                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9206                                 kvm_queue_exception(vcpu, UD_VECTOR);
9207                                 return 1;
9208                         }
9209                         if (reexecute_instruction(vcpu, cr2_or_gpa,
9210                                                   emulation_type))
9211                                 return 1;
9212 
9213                         if (ctxt->have_exception &&
9214                             !(emulation_type & EMULTYPE_SKIP)) {
9215                                 /*
9216                                  * #UD should result in just EMULATION_FAILED, and trap-like
9217                                  * exception should not be encountered during decode.
9218                                  */
9219                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9220                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9221                                 inject_emulated_exception(vcpu);
9222                                 return 1;
9223                         }
9224                         return handle_emulation_failure(vcpu, emulation_type);
9225                 }
9226         }
9227 
9228         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9229             !is_vmware_backdoor_opcode(ctxt)) {
9230                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9231                 return 1;
9232         }
9233 
9234         /*
9235          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9236          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9237          * The caller is responsible for updating interruptibility state and
9238          * injecting single-step #DBs.
9239          */
9240         if (emulation_type & EMULTYPE_SKIP) {
9241                 if (ctxt->mode != X86EMUL_MODE_PROT64)
9242                         ctxt->eip = (u32)ctxt->_eip;
9243                 else
9244                         ctxt->eip = ctxt->_eip;
9245 
9246                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9247                         r = 1;
9248                         goto writeback;
9249                 }
9250 
9251                 kvm_rip_write(vcpu, ctxt->eip);
9252                 if (ctxt->eflags & X86_EFLAGS_RF)
9253                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9254                 return 1;
9255         }
9256 
9257         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9258                 return 1;
9259 
9260         /* this is needed for vmware backdoor interface to work since it
9261            changes registers values  during IO operation */
9262         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9263                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9264                 emulator_invalidate_register_cache(ctxt);
9265         }
9266 
9267 restart:
9268         if (emulation_type & EMULTYPE_PF) {
9269                 /* Save the faulting GPA (cr2) in the address field */
9270                 ctxt->exception.address = cr2_or_gpa;
9271 
9272                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9273                 if (vcpu->arch.mmu->root_role.direct) {
9274                         ctxt->gpa_available = true;
9275                         ctxt->gpa_val = cr2_or_gpa;
9276                 }
9277         } else {
9278                 /* Sanitize the address out of an abundance of paranoia. */
9279                 ctxt->exception.address = 0;
9280         }
9281 
9282         r = x86_emulate_insn(ctxt);
9283 
9284         if (r == EMULATION_INTERCEPTED)
9285                 return 1;
9286 
9287         if (r == EMULATION_FAILED) {
9288                 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9289                         return 1;
9290 
9291                 return handle_emulation_failure(vcpu, emulation_type);
9292         }
9293 
9294         if (ctxt->have_exception) {
9295                 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9296                 vcpu->mmio_needed = false;
9297                 r = 1;
9298                 inject_emulated_exception(vcpu);
9299         } else if (vcpu->arch.pio.count) {
9300                 if (!vcpu->arch.pio.in) {
9301                         /* FIXME: return into emulator if single-stepping.  */
9302                         vcpu->arch.pio.count = 0;
9303                 } else {
9304                         writeback = false;
9305                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
9306                 }
9307                 r = 0;
9308         } else if (vcpu->mmio_needed) {
9309                 ++vcpu->stat.mmio_exits;
9310 
9311                 if (!vcpu->mmio_is_write)
9312                         writeback = false;
9313                 r = 0;
9314                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9315         } else if (vcpu->arch.complete_userspace_io) {
9316                 writeback = false;
9317                 r = 0;
9318         } else if (r == EMULATION_RESTART)
9319                 goto restart;
9320         else
9321                 r = 1;
9322 
9323 writeback:
9324         if (writeback) {
9325                 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9326                 toggle_interruptibility(vcpu, ctxt->interruptibility);
9327                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9328 
9329                 /*
9330                  * Note, EXCPT_DB is assumed to be fault-like as the emulator
9331                  * only supports code breakpoints and general detect #DB, both
9332                  * of which are fault-like.
9333                  */
9334                 if (!ctxt->have_exception ||
9335                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9336                         kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9337                         if (ctxt->is_branch)
9338                                 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9339                         kvm_rip_write(vcpu, ctxt->eip);
9340                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9341                                 r = kvm_vcpu_do_singlestep(vcpu);
9342                         kvm_x86_call(update_emulated_instruction)(vcpu);
9343                         __kvm_set_rflags(vcpu, ctxt->eflags);
9344                 }
9345 
9346                 /*
9347                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9348                  * do nothing, and it will be requested again as soon as
9349                  * the shadow expires.  But we still need to check here,
9350                  * because POPF has no interrupt shadow.
9351                  */
9352                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9353                         kvm_make_request(KVM_REQ_EVENT, vcpu);
9354         } else
9355                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9356 
9357         return r;
9358 }
9359 
9360 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9361 {
9362         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9363 }
9364 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9365 
9366 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9367                                         void *insn, int insn_len)
9368 {
9369         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9370 }
9371 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9372 
9373 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9374 {
9375         vcpu->arch.pio.count = 0;
9376         return 1;
9377 }
9378 
9379 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9380 {
9381         vcpu->arch.pio.count = 0;
9382 
9383         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9384                 return 1;
9385 
9386         return kvm_skip_emulated_instruction(vcpu);
9387 }
9388 
9389 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9390                             unsigned short port)
9391 {
9392         unsigned long val = kvm_rax_read(vcpu);
9393         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9394 
9395         if (ret)
9396                 return ret;
9397 
9398         /*
9399          * Workaround userspace that relies on old KVM behavior of %rip being
9400          * incremented prior to exiting to userspace to handle "OUT 0x7e".
9401          */
9402         if (port == 0x7e &&
9403             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9404                 vcpu->arch.complete_userspace_io =
9405                         complete_fast_pio_out_port_0x7e;
9406                 kvm_skip_emulated_instruction(vcpu);
9407         } else {
9408                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9409                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9410         }
9411         return 0;
9412 }
9413 
9414 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9415 {
9416         unsigned long val;
9417 
9418         /* We should only ever be called with arch.pio.count equal to 1 */
9419         BUG_ON(vcpu->arch.pio.count != 1);
9420 
9421         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9422                 vcpu->arch.pio.count = 0;
9423                 return 1;
9424         }
9425 
9426         /* For size less than 4 we merge, else we zero extend */
9427         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9428 
9429         complete_emulator_pio_in(vcpu, &val);
9430         kvm_rax_write(vcpu, val);
9431 
9432         return kvm_skip_emulated_instruction(vcpu);
9433 }
9434 
9435 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9436                            unsigned short port)
9437 {
9438         unsigned long val;
9439         int ret;
9440 
9441         /* For size less than 4 we merge, else we zero extend */
9442         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9443 
9444         ret = emulator_pio_in(vcpu, size, port, &val, 1);
9445         if (ret) {
9446                 kvm_rax_write(vcpu, val);
9447                 return ret;
9448         }
9449 
9450         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9451         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9452 
9453         return 0;
9454 }
9455 
9456 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9457 {
9458         int ret;
9459 
9460         if (in)
9461                 ret = kvm_fast_pio_in(vcpu, size, port);
9462         else
9463                 ret = kvm_fast_pio_out(vcpu, size, port);
9464         return ret && kvm_skip_emulated_instruction(vcpu);
9465 }
9466 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9467 
9468 static int kvmclock_cpu_down_prep(unsigned int cpu)
9469 {
9470         __this_cpu_write(cpu_tsc_khz, 0);
9471         return 0;
9472 }
9473 
9474 static void tsc_khz_changed(void *data)
9475 {
9476         struct cpufreq_freqs *freq = data;
9477         unsigned long khz;
9478 
9479         WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9480 
9481         if (data)
9482                 khz = freq->new;
9483         else
9484                 khz = cpufreq_quick_get(raw_smp_processor_id());
9485         if (!khz)
9486                 khz = tsc_khz;
9487         __this_cpu_write(cpu_tsc_khz, khz);
9488 }
9489 
9490 #ifdef CONFIG_X86_64
9491 static void kvm_hyperv_tsc_notifier(void)
9492 {
9493         struct kvm *kvm;
9494         int cpu;
9495 
9496         mutex_lock(&kvm_lock);
9497         list_for_each_entry(kvm, &vm_list, vm_list)
9498                 kvm_make_mclock_inprogress_request(kvm);
9499 
9500         /* no guest entries from this point */
9501         hyperv_stop_tsc_emulation();
9502 
9503         /* TSC frequency always matches when on Hyper-V */
9504         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9505                 for_each_present_cpu(cpu)
9506                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9507         }
9508         kvm_caps.max_guest_tsc_khz = tsc_khz;
9509 
9510         list_for_each_entry(kvm, &vm_list, vm_list) {
9511                 __kvm_start_pvclock_update(kvm);
9512                 pvclock_update_vm_gtod_copy(kvm);
9513                 kvm_end_pvclock_update(kvm);
9514         }
9515 
9516         mutex_unlock(&kvm_lock);
9517 }
9518 #endif
9519 
9520 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9521 {
9522         struct kvm *kvm;
9523         struct kvm_vcpu *vcpu;
9524         int send_ipi = 0;
9525         unsigned long i;
9526 
9527         /*
9528          * We allow guests to temporarily run on slowing clocks,
9529          * provided we notify them after, or to run on accelerating
9530          * clocks, provided we notify them before.  Thus time never
9531          * goes backwards.
9532          *
9533          * However, we have a problem.  We can't atomically update
9534          * the frequency of a given CPU from this function; it is
9535          * merely a notifier, which can be called from any CPU.
9536          * Changing the TSC frequency at arbitrary points in time
9537          * requires a recomputation of local variables related to
9538          * the TSC for each VCPU.  We must flag these local variables
9539          * to be updated and be sure the update takes place with the
9540          * new frequency before any guests proceed.
9541          *
9542          * Unfortunately, the combination of hotplug CPU and frequency
9543          * change creates an intractable locking scenario; the order
9544          * of when these callouts happen is undefined with respect to
9545          * CPU hotplug, and they can race with each other.  As such,
9546          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9547          * undefined; you can actually have a CPU frequency change take
9548          * place in between the computation of X and the setting of the
9549          * variable.  To protect against this problem, all updates of
9550          * the per_cpu tsc_khz variable are done in an interrupt
9551          * protected IPI, and all callers wishing to update the value
9552          * must wait for a synchronous IPI to complete (which is trivial
9553          * if the caller is on the CPU already).  This establishes the
9554          * necessary total order on variable updates.
9555          *
9556          * Note that because a guest time update may take place
9557          * anytime after the setting of the VCPU's request bit, the
9558          * correct TSC value must be set before the request.  However,
9559          * to ensure the update actually makes it to any guest which
9560          * starts running in hardware virtualization between the set
9561          * and the acquisition of the spinlock, we must also ping the
9562          * CPU after setting the request bit.
9563          *
9564          */
9565 
9566         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9567 
9568         mutex_lock(&kvm_lock);
9569         list_for_each_entry(kvm, &vm_list, vm_list) {
9570                 kvm_for_each_vcpu(i, vcpu, kvm) {
9571                         if (vcpu->cpu != cpu)
9572                                 continue;
9573                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9574                         if (vcpu->cpu != raw_smp_processor_id())
9575                                 send_ipi = 1;
9576                 }
9577         }
9578         mutex_unlock(&kvm_lock);
9579 
9580         if (freq->old < freq->new && send_ipi) {
9581                 /*
9582                  * We upscale the frequency.  Must make the guest
9583                  * doesn't see old kvmclock values while running with
9584                  * the new frequency, otherwise we risk the guest sees
9585                  * time go backwards.
9586                  *
9587                  * In case we update the frequency for another cpu
9588                  * (which might be in guest context) send an interrupt
9589                  * to kick the cpu out of guest context.  Next time
9590                  * guest context is entered kvmclock will be updated,
9591                  * so the guest will not see stale values.
9592                  */
9593                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9594         }
9595 }
9596 
9597 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9598                                      void *data)
9599 {
9600         struct cpufreq_freqs *freq = data;
9601         int cpu;
9602 
9603         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9604                 return 0;
9605         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9606                 return 0;
9607 
9608         for_each_cpu(cpu, freq->policy->cpus)
9609                 __kvmclock_cpufreq_notifier(freq, cpu);
9610 
9611         return 0;
9612 }
9613 
9614 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9615         .notifier_call  = kvmclock_cpufreq_notifier
9616 };
9617 
9618 static int kvmclock_cpu_online(unsigned int cpu)
9619 {
9620         tsc_khz_changed(NULL);
9621         return 0;
9622 }
9623 
9624 static void kvm_timer_init(void)
9625 {
9626         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9627                 max_tsc_khz = tsc_khz;
9628 
9629                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9630                         struct cpufreq_policy *policy;
9631                         int cpu;
9632 
9633                         cpu = get_cpu();
9634                         policy = cpufreq_cpu_get(cpu);
9635                         if (policy) {
9636                                 if (policy->cpuinfo.max_freq)
9637                                         max_tsc_khz = policy->cpuinfo.max_freq;
9638                                 cpufreq_cpu_put(policy);
9639                         }
9640                         put_cpu();
9641                 }
9642                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9643                                           CPUFREQ_TRANSITION_NOTIFIER);
9644 
9645                 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9646                                   kvmclock_cpu_online, kvmclock_cpu_down_prep);
9647         }
9648 }
9649 
9650 #ifdef CONFIG_X86_64
9651 static void pvclock_gtod_update_fn(struct work_struct *work)
9652 {
9653         struct kvm *kvm;
9654         struct kvm_vcpu *vcpu;
9655         unsigned long i;
9656 
9657         mutex_lock(&kvm_lock);
9658         list_for_each_entry(kvm, &vm_list, vm_list)
9659                 kvm_for_each_vcpu(i, vcpu, kvm)
9660                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9661         atomic_set(&kvm_guest_has_master_clock, 0);
9662         mutex_unlock(&kvm_lock);
9663 }
9664 
9665 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9666 
9667 /*
9668  * Indirection to move queue_work() out of the tk_core.seq write held
9669  * region to prevent possible deadlocks against time accessors which
9670  * are invoked with work related locks held.
9671  */
9672 static void pvclock_irq_work_fn(struct irq_work *w)
9673 {
9674         queue_work(system_long_wq, &pvclock_gtod_work);
9675 }
9676 
9677 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9678 
9679 /*
9680  * Notification about pvclock gtod data update.
9681  */
9682 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9683                                void *priv)
9684 {
9685         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9686         struct timekeeper *tk = priv;
9687 
9688         update_pvclock_gtod(tk);
9689 
9690         /*
9691          * Disable master clock if host does not trust, or does not use,
9692          * TSC based clocksource. Delegate queue_work() to irq_work as
9693          * this is invoked with tk_core.seq write held.
9694          */
9695         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9696             atomic_read(&kvm_guest_has_master_clock) != 0)
9697                 irq_work_queue(&pvclock_irq_work);
9698         return 0;
9699 }
9700 
9701 static struct notifier_block pvclock_gtod_notifier = {
9702         .notifier_call = pvclock_gtod_notify,
9703 };
9704 #endif
9705 
9706 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9707 {
9708         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9709 
9710 #define __KVM_X86_OP(func) \
9711         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9712 #define KVM_X86_OP(func) \
9713         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9714 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9715 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9716         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9717                                            (void *)__static_call_return0);
9718 #include <asm/kvm-x86-ops.h>
9719 #undef __KVM_X86_OP
9720 
9721         kvm_pmu_ops_update(ops->pmu_ops);
9722 }
9723 
9724 static int kvm_x86_check_processor_compatibility(void)
9725 {
9726         int cpu = smp_processor_id();
9727         struct cpuinfo_x86 *c = &cpu_data(cpu);
9728 
9729         /*
9730          * Compatibility checks are done when loading KVM and when enabling
9731          * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9732          * compatible, i.e. KVM should never perform a compatibility check on
9733          * an offline CPU.
9734          */
9735         WARN_ON(!cpu_online(cpu));
9736 
9737         if (__cr4_reserved_bits(cpu_has, c) !=
9738             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9739                 return -EIO;
9740 
9741         return kvm_x86_call(check_processor_compatibility)();
9742 }
9743 
9744 static void kvm_x86_check_cpu_compat(void *ret)
9745 {
9746         *(int *)ret = kvm_x86_check_processor_compatibility();
9747 }
9748 
9749 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9750 {
9751         u64 host_pat;
9752         int r, cpu;
9753 
9754         guard(mutex)(&vendor_module_lock);
9755 
9756         if (kvm_x86_ops.hardware_enable) {
9757                 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9758                 return -EEXIST;
9759         }
9760 
9761         /*
9762          * KVM explicitly assumes that the guest has an FPU and
9763          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9764          * vCPU's FPU state as a fxregs_state struct.
9765          */
9766         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9767                 pr_err("inadequate fpu\n");
9768                 return -EOPNOTSUPP;
9769         }
9770 
9771         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9772                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9773                 return -EOPNOTSUPP;
9774         }
9775 
9776         /*
9777          * KVM assumes that PAT entry '' encodes WB memtype and simply zeroes
9778          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9779          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9780          * with an exception.  PAT[0] is set to WB on RESET and also by the
9781          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9782          */
9783         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9784             (host_pat & GENMASK(2, 0)) != 6) {
9785                 pr_err("host PAT[0] is not WB\n");
9786                 return -EIO;
9787         }
9788 
9789         memset(&kvm_caps, 0, sizeof(kvm_caps));
9790 
9791         x86_emulator_cache = kvm_alloc_emulator_cache();
9792         if (!x86_emulator_cache) {
9793                 pr_err("failed to allocate cache for x86 emulator\n");
9794                 return -ENOMEM;
9795         }
9796 
9797         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9798         if (!user_return_msrs) {
9799                 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9800                 r = -ENOMEM;
9801                 goto out_free_x86_emulator_cache;
9802         }
9803         kvm_nr_uret_msrs = 0;
9804 
9805         r = kvm_mmu_vendor_module_init();
9806         if (r)
9807                 goto out_free_percpu;
9808 
9809         kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9810         kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9811 
9812         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9813                 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9814                 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9815         }
9816 
9817         rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9818 
9819         if (boot_cpu_has(X86_FEATURE_XSAVES))
9820                 rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9821 
9822         kvm_init_pmu_capability(ops->pmu_ops);
9823 
9824         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9825                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9826 
9827         r = ops->hardware_setup();
9828         if (r != 0)
9829                 goto out_mmu_exit;
9830 
9831         kvm_ops_update(ops);
9832 
9833         for_each_online_cpu(cpu) {
9834                 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9835                 if (r < 0)
9836                         goto out_unwind_ops;
9837         }
9838 
9839         /*
9840          * Point of no return!  DO NOT add error paths below this point unless
9841          * absolutely necessary, as most operations from this point forward
9842          * require unwinding.
9843          */
9844         kvm_timer_init();
9845 
9846         if (pi_inject_timer == -1)
9847                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9848 #ifdef CONFIG_X86_64
9849         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9850 
9851         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9852                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9853 #endif
9854 
9855         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9856 
9857         if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9858                 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9859 
9860         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9861                 kvm_caps.supported_xss = 0;
9862 
9863 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9864         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9865 #undef __kvm_cpu_cap_has
9866 
9867         if (kvm_caps.has_tsc_control) {
9868                 /*
9869                  * Make sure the user can only configure tsc_khz values that
9870                  * fit into a signed integer.
9871                  * A min value is not calculated because it will always
9872                  * be 1 on all machines.
9873                  */
9874                 u64 max = min(0x7fffffffULL,
9875                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9876                 kvm_caps.max_guest_tsc_khz = max;
9877         }
9878         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9879         kvm_init_msr_lists();
9880         return 0;
9881 
9882 out_unwind_ops:
9883         kvm_x86_ops.hardware_enable = NULL;
9884         kvm_x86_call(hardware_unsetup)();
9885 out_mmu_exit:
9886         kvm_mmu_vendor_module_exit();
9887 out_free_percpu:
9888         free_percpu(user_return_msrs);
9889 out_free_x86_emulator_cache:
9890         kmem_cache_destroy(x86_emulator_cache);
9891         return r;
9892 }
9893 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9894 
9895 void kvm_x86_vendor_exit(void)
9896 {
9897         kvm_unregister_perf_callbacks();
9898 
9899 #ifdef CONFIG_X86_64
9900         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9901                 clear_hv_tscchange_cb();
9902 #endif
9903         kvm_lapic_exit();
9904 
9905         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9906                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9907                                             CPUFREQ_TRANSITION_NOTIFIER);
9908                 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9909         }
9910 #ifdef CONFIG_X86_64
9911         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9912         irq_work_sync(&pvclock_irq_work);
9913         cancel_work_sync(&pvclock_gtod_work);
9914 #endif
9915         kvm_x86_call(hardware_unsetup)();
9916         kvm_mmu_vendor_module_exit();
9917         free_percpu(user_return_msrs);
9918         kmem_cache_destroy(x86_emulator_cache);
9919 #ifdef CONFIG_KVM_XEN
9920         static_key_deferred_flush(&kvm_xen_enabled);
9921         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9922 #endif
9923         mutex_lock(&vendor_module_lock);
9924         kvm_x86_ops.hardware_enable = NULL;
9925         mutex_unlock(&vendor_module_lock);
9926 }
9927 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9928 
9929 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9930 {
9931         /*
9932          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9933          * local APIC is in-kernel, the run loop will detect the non-runnable
9934          * state and halt the vCPU.  Exit to userspace if the local APIC is
9935          * managed by userspace, in which case userspace is responsible for
9936          * handling wake events.
9937          */
9938         ++vcpu->stat.halt_exits;
9939         if (lapic_in_kernel(vcpu)) {
9940                 vcpu->arch.mp_state = state;
9941                 return 1;
9942         } else {
9943                 vcpu->run->exit_reason = reason;
9944                 return 0;
9945         }
9946 }
9947 
9948 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9949 {
9950         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9951 }
9952 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9953 
9954 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9955 {
9956         int ret = kvm_skip_emulated_instruction(vcpu);
9957         /*
9958          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9959          * KVM_EXIT_DEBUG here.
9960          */
9961         return kvm_emulate_halt_noskip(vcpu) && ret;
9962 }
9963 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9964 
9965 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9966 {
9967         int ret = kvm_skip_emulated_instruction(vcpu);
9968 
9969         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9970                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9971 }
9972 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9973 
9974 #ifdef CONFIG_X86_64
9975 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9976                                 unsigned long clock_type)
9977 {
9978         struct kvm_clock_pairing clock_pairing;
9979         struct timespec64 ts;
9980         u64 cycle;
9981         int ret;
9982 
9983         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9984                 return -KVM_EOPNOTSUPP;
9985 
9986         /*
9987          * When tsc is in permanent catchup mode guests won't be able to use
9988          * pvclock_read_retry loop to get consistent view of pvclock
9989          */
9990         if (vcpu->arch.tsc_always_catchup)
9991                 return -KVM_EOPNOTSUPP;
9992 
9993         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9994                 return -KVM_EOPNOTSUPP;
9995 
9996         clock_pairing.sec = ts.tv_sec;
9997         clock_pairing.nsec = ts.tv_nsec;
9998         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9999         clock_pairing.flags = 0;
10000         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
10001 
10002         ret = 0;
10003         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
10004                             sizeof(struct kvm_clock_pairing)))
10005                 ret = -KVM_EFAULT;
10006 
10007         return ret;
10008 }
10009 #endif
10010 
10011 /*
10012  * kvm_pv_kick_cpu_op:  Kick a vcpu.
10013  *
10014  * @apicid - apicid of vcpu to be kicked.
10015  */
10016 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
10017 {
10018         /*
10019          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
10020          * common code, e.g. for tracing. Defer initialization to the compiler.
10021          */
10022         struct kvm_lapic_irq lapic_irq = {
10023                 .delivery_mode = APIC_DM_REMRD,
10024                 .dest_mode = APIC_DEST_PHYSICAL,
10025                 .shorthand = APIC_DEST_NOSHORT,
10026                 .dest_id = apicid,
10027         };
10028 
10029         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
10030 }
10031 
10032 bool kvm_apicv_activated(struct kvm *kvm)
10033 {
10034         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
10035 }
10036 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
10037 
10038 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10039 {
10040         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10041         ulong vcpu_reasons =
10042                         kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
10043 
10044         return (vm_reasons | vcpu_reasons) == 0;
10045 }
10046 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
10047 
10048 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10049                                        enum kvm_apicv_inhibit reason, bool set)
10050 {
10051         const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
10052 
10053         BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
10054 
10055         if (set)
10056                 __set_bit(reason, inhibits);
10057         else
10058                 __clear_bit(reason, inhibits);
10059 
10060         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10061 }
10062 
10063 static void kvm_apicv_init(struct kvm *kvm)
10064 {
10065         enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10066                                                        APICV_INHIBIT_REASON_DISABLED;
10067 
10068         set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10069 
10070         init_rwsem(&kvm->arch.apicv_update_lock);
10071 }
10072 
10073 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10074 {
10075         struct kvm_vcpu *target = NULL;
10076         struct kvm_apic_map *map;
10077 
10078         vcpu->stat.directed_yield_attempted++;
10079 
10080         if (single_task_running())
10081                 goto no_yield;
10082 
10083         rcu_read_lock();
10084         map = rcu_dereference(vcpu->kvm->arch.apic_map);
10085 
10086         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
10087                 target = map->phys_map[dest_id]->vcpu;
10088 
10089         rcu_read_unlock();
10090 
10091         if (!target || !READ_ONCE(target->ready))
10092                 goto no_yield;
10093 
10094         /* Ignore requests to yield to self */
10095         if (vcpu == target)
10096                 goto no_yield;
10097 
10098         if (kvm_vcpu_yield_to(target) <= 0)
10099                 goto no_yield;
10100 
10101         vcpu->stat.directed_yield_successful++;
10102 
10103 no_yield:
10104         return;
10105 }
10106 
10107 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10108 {
10109         u64 ret = vcpu->run->hypercall.ret;
10110 
10111         if (!is_64_bit_mode(vcpu))
10112                 ret = (u32)ret;
10113         kvm_rax_write(vcpu, ret);
10114         ++vcpu->stat.hypercalls;
10115         return kvm_skip_emulated_instruction(vcpu);
10116 }
10117 
10118 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10119                                       unsigned long a0, unsigned long a1,
10120                                       unsigned long a2, unsigned long a3,
10121                                       int op_64_bit, int cpl)
10122 {
10123         unsigned long ret;
10124 
10125         trace_kvm_hypercall(nr, a0, a1, a2, a3);
10126 
10127         if (!op_64_bit) {
10128                 nr &= 0xFFFFFFFF;
10129                 a0 &= 0xFFFFFFFF;
10130                 a1 &= 0xFFFFFFFF;
10131                 a2 &= 0xFFFFFFFF;
10132                 a3 &= 0xFFFFFFFF;
10133         }
10134 
10135         if (cpl) {
10136                 ret = -KVM_EPERM;
10137                 goto out;
10138         }
10139 
10140         ret = -KVM_ENOSYS;
10141 
10142         switch (nr) {
10143         case KVM_HC_VAPIC_POLL_IRQ:
10144                 ret = 0;
10145                 break;
10146         case KVM_HC_KICK_CPU:
10147                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10148                         break;
10149 
10150                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10151                 kvm_sched_yield(vcpu, a1);
10152                 ret = 0;
10153                 break;
10154 #ifdef CONFIG_X86_64
10155         case KVM_HC_CLOCK_PAIRING:
10156                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10157                 break;
10158 #endif
10159         case KVM_HC_SEND_IPI:
10160                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10161                         break;
10162 
10163                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10164                 break;
10165         case KVM_HC_SCHED_YIELD:
10166                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10167                         break;
10168 
10169                 kvm_sched_yield(vcpu, a0);
10170                 ret = 0;
10171                 break;
10172         case KVM_HC_MAP_GPA_RANGE: {
10173                 u64 gpa = a0, npages = a1, attrs = a2;
10174 
10175                 ret = -KVM_ENOSYS;
10176                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10177                         break;
10178 
10179                 if (!PAGE_ALIGNED(gpa) || !npages ||
10180                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10181                         ret = -KVM_EINVAL;
10182                         break;
10183                 }
10184 
10185                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10186                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10187                 vcpu->run->hypercall.args[0]  = gpa;
10188                 vcpu->run->hypercall.args[1]  = npages;
10189                 vcpu->run->hypercall.args[2]  = attrs;
10190                 vcpu->run->hypercall.flags    = 0;
10191                 if (op_64_bit)
10192                         vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10193 
10194                 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10195                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10196                 /* stat is incremented on completion. */
10197                 return 0;
10198         }
10199         default:
10200                 ret = -KVM_ENOSYS;
10201                 break;
10202         }
10203 
10204 out:
10205         ++vcpu->stat.hypercalls;
10206         return ret;
10207 }
10208 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall);
10209 
10210 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10211 {
10212         unsigned long nr, a0, a1, a2, a3, ret;
10213         int op_64_bit;
10214         int cpl;
10215 
10216         if (kvm_xen_hypercall_enabled(vcpu->kvm))
10217                 return kvm_xen_hypercall(vcpu);
10218 
10219         if (kvm_hv_hypercall_enabled(vcpu))
10220                 return kvm_hv_hypercall(vcpu);
10221 
10222         nr = kvm_rax_read(vcpu);
10223         a0 = kvm_rbx_read(vcpu);
10224         a1 = kvm_rcx_read(vcpu);
10225         a2 = kvm_rdx_read(vcpu);
10226         a3 = kvm_rsi_read(vcpu);
10227         op_64_bit = is_64_bit_hypercall(vcpu);
10228         cpl = kvm_x86_call(get_cpl)(vcpu);
10229 
10230         ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl);
10231         if (nr == KVM_HC_MAP_GPA_RANGE && !ret)
10232                 /* MAP_GPA tosses the request to the user space. */
10233                 return 0;
10234 
10235         if (!op_64_bit)
10236                 ret = (u32)ret;
10237         kvm_rax_write(vcpu, ret);
10238 
10239         return kvm_skip_emulated_instruction(vcpu);
10240 }
10241 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10242 
10243 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10244 {
10245         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10246         char instruction[3];
10247         unsigned long rip = kvm_rip_read(vcpu);
10248 
10249         /*
10250          * If the quirk is disabled, synthesize a #UD and let the guest pick up
10251          * the pieces.
10252          */
10253         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10254                 ctxt->exception.error_code_valid = false;
10255                 ctxt->exception.vector = UD_VECTOR;
10256                 ctxt->have_exception = true;
10257                 return X86EMUL_PROPAGATE_FAULT;
10258         }
10259 
10260         kvm_x86_call(patch_hypercall)(vcpu, instruction);
10261 
10262         return emulator_write_emulated(ctxt, rip, instruction, 3,
10263                 &ctxt->exception);
10264 }
10265 
10266 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10267 {
10268         return vcpu->run->request_interrupt_window &&
10269                 likely(!pic_in_kernel(vcpu->kvm));
10270 }
10271 
10272 /* Called within kvm->srcu read side.  */
10273 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10274 {
10275         struct kvm_run *kvm_run = vcpu->run;
10276 
10277         kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10278         kvm_run->cr8 = kvm_get_cr8(vcpu);
10279         kvm_run->apic_base = kvm_get_apic_base(vcpu);
10280 
10281         kvm_run->ready_for_interrupt_injection =
10282                 pic_in_kernel(vcpu->kvm) ||
10283                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10284 
10285         if (is_smm(vcpu))
10286                 kvm_run->flags |= KVM_RUN_X86_SMM;
10287         if (is_guest_mode(vcpu))
10288                 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10289 }
10290 
10291 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10292 {
10293         int max_irr, tpr;
10294 
10295         if (!kvm_x86_ops.update_cr8_intercept)
10296                 return;
10297 
10298         if (!lapic_in_kernel(vcpu))
10299                 return;
10300 
10301         if (vcpu->arch.apic->apicv_active)
10302                 return;
10303 
10304         if (!vcpu->arch.apic->vapic_addr)
10305                 max_irr = kvm_lapic_find_highest_irr(vcpu);
10306         else
10307                 max_irr = -1;
10308 
10309         if (max_irr != -1)
10310                 max_irr >>= 4;
10311 
10312         tpr = kvm_lapic_get_cr8(vcpu);
10313 
10314         kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10315 }
10316 
10317 
10318 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10319 {
10320         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10321                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10322                 return 1;
10323         }
10324 
10325         return kvm_x86_ops.nested_ops->check_events(vcpu);
10326 }
10327 
10328 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10329 {
10330         /*
10331          * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10332          * exceptions don't report error codes.  The presence of an error code
10333          * is carried with the exception and only stripped when the exception
10334          * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10335          * report an error code despite the CPU being in Real Mode.
10336          */
10337         vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10338 
10339         trace_kvm_inj_exception(vcpu->arch.exception.vector,
10340                                 vcpu->arch.exception.has_error_code,
10341                                 vcpu->arch.exception.error_code,
10342                                 vcpu->arch.exception.injected);
10343 
10344         kvm_x86_call(inject_exception)(vcpu);
10345 }
10346 
10347 /*
10348  * Check for any event (interrupt or exception) that is ready to be injected,
10349  * and if there is at least one event, inject the event with the highest
10350  * priority.  This handles both "pending" events, i.e. events that have never
10351  * been injected into the guest, and "injected" events, i.e. events that were
10352  * injected as part of a previous VM-Enter, but weren't successfully delivered
10353  * and need to be re-injected.
10354  *
10355  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10356  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10357  * be able to inject exceptions in the "middle" of an instruction, and so must
10358  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10359  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10360  * boundaries is necessary and correct.
10361  *
10362  * For simplicity, KVM uses a single path to inject all events (except events
10363  * that are injected directly from L1 to L2) and doesn't explicitly track
10364  * instruction boundaries for asynchronous events.  However, because VM-Exits
10365  * that can occur during instruction execution typically result in KVM skipping
10366  * the instruction or injecting an exception, e.g. instruction and exception
10367  * intercepts, and because pending exceptions have higher priority than pending
10368  * interrupts, KVM still honors instruction boundaries in most scenarios.
10369  *
10370  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10371  * the instruction or inject an exception, then KVM can incorrecty inject a new
10372  * asynchronous event if the event became pending after the CPU fetched the
10373  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10374  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10375  * injected on the restarted instruction instead of being deferred until the
10376  * instruction completes.
10377  *
10378  * In practice, this virtualization hole is unlikely to be observed by the
10379  * guest, and even less likely to cause functional problems.  To detect the
10380  * hole, the guest would have to trigger an event on a side effect of an early
10381  * phase of instruction execution, e.g. on the instruction fetch from memory.
10382  * And for it to be a functional problem, the guest would need to depend on the
10383  * ordering between that side effect, the instruction completing, _and_ the
10384  * delivery of the asynchronous event.
10385  */
10386 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10387                                        bool *req_immediate_exit)
10388 {
10389         bool can_inject;
10390         int r;
10391 
10392         /*
10393          * Process nested events first, as nested VM-Exit supersedes event
10394          * re-injection.  If there's an event queued for re-injection, it will
10395          * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10396          */
10397         if (is_guest_mode(vcpu))
10398                 r = kvm_check_nested_events(vcpu);
10399         else
10400                 r = 0;
10401 
10402         /*
10403          * Re-inject exceptions and events *especially* if immediate entry+exit
10404          * to/from L2 is needed, as any event that has already been injected
10405          * into L2 needs to complete its lifecycle before injecting a new event.
10406          *
10407          * Don't re-inject an NMI or interrupt if there is a pending exception.
10408          * This collision arises if an exception occurred while vectoring the
10409          * injected event, KVM intercepted said exception, and KVM ultimately
10410          * determined the fault belongs to the guest and queues the exception
10411          * for injection back into the guest.
10412          *
10413          * "Injected" interrupts can also collide with pending exceptions if
10414          * userspace ignores the "ready for injection" flag and blindly queues
10415          * an interrupt.  In that case, prioritizing the exception is correct,
10416          * as the exception "occurred" before the exit to userspace.  Trap-like
10417          * exceptions, e.g. most #DBs, have higher priority than interrupts.
10418          * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10419          * priority, they're only generated (pended) during instruction
10420          * execution, and interrupts are recognized at instruction boundaries.
10421          * Thus a pending fault-like exception means the fault occurred on the
10422          * *previous* instruction and must be serviced prior to recognizing any
10423          * new events in order to fully complete the previous instruction.
10424          */
10425         if (vcpu->arch.exception.injected)
10426                 kvm_inject_exception(vcpu);
10427         else if (kvm_is_exception_pending(vcpu))
10428                 ; /* see above */
10429         else if (vcpu->arch.nmi_injected)
10430                 kvm_x86_call(inject_nmi)(vcpu);
10431         else if (vcpu->arch.interrupt.injected)
10432                 kvm_x86_call(inject_irq)(vcpu, true);
10433 
10434         /*
10435          * Exceptions that morph to VM-Exits are handled above, and pending
10436          * exceptions on top of injected exceptions that do not VM-Exit should
10437          * either morph to #DF or, sadly, override the injected exception.
10438          */
10439         WARN_ON_ONCE(vcpu->arch.exception.injected &&
10440                      vcpu->arch.exception.pending);
10441 
10442         /*
10443          * Bail if immediate entry+exit to/from the guest is needed to complete
10444          * nested VM-Enter or event re-injection so that a different pending
10445          * event can be serviced (or if KVM needs to exit to userspace).
10446          *
10447          * Otherwise, continue processing events even if VM-Exit occurred.  The
10448          * VM-Exit will have cleared exceptions that were meant for L2, but
10449          * there may now be events that can be injected into L1.
10450          */
10451         if (r < 0)
10452                 goto out;
10453 
10454         /*
10455          * A pending exception VM-Exit should either result in nested VM-Exit
10456          * or force an immediate re-entry and exit to/from L2, and exception
10457          * VM-Exits cannot be injected (flag should _never_ be set).
10458          */
10459         WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10460                      vcpu->arch.exception_vmexit.pending);
10461 
10462         /*
10463          * New events, other than exceptions, cannot be injected if KVM needs
10464          * to re-inject a previous event.  See above comments on re-injecting
10465          * for why pending exceptions get priority.
10466          */
10467         can_inject = !kvm_event_needs_reinjection(vcpu);
10468 
10469         if (vcpu->arch.exception.pending) {
10470                 /*
10471                  * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10472                  * value pushed on the stack.  Trap-like exception and all #DBs
10473                  * leave RF as-is (KVM follows Intel's behavior in this regard;
10474                  * AMD states that code breakpoint #DBs excplitly clear RF=0).
10475                  *
10476                  * Note, most versions of Intel's SDM and AMD's APM incorrectly
10477                  * describe the behavior of General Detect #DBs, which are
10478                  * fault-like.  They do _not_ set RF, a la code breakpoints.
10479                  */
10480                 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10481                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10482                                              X86_EFLAGS_RF);
10483 
10484                 if (vcpu->arch.exception.vector == DB_VECTOR) {
10485                         kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10486                         if (vcpu->arch.dr7 & DR7_GD) {
10487                                 vcpu->arch.dr7 &= ~DR7_GD;
10488                                 kvm_update_dr7(vcpu);
10489                         }
10490                 }
10491 
10492                 kvm_inject_exception(vcpu);
10493 
10494                 vcpu->arch.exception.pending = false;
10495                 vcpu->arch.exception.injected = true;
10496 
10497                 can_inject = false;
10498         }
10499 
10500         /* Don't inject interrupts if the user asked to avoid doing so */
10501         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10502                 return 0;
10503 
10504         /*
10505          * Finally, inject interrupt events.  If an event cannot be injected
10506          * due to architectural conditions (e.g. IF=0) a window-open exit
10507          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10508          * and can architecturally be injected, but we cannot do it right now:
10509          * an interrupt could have arrived just now and we have to inject it
10510          * as a vmexit, or there could already an event in the queue, which is
10511          * indicated by can_inject.  In that case we request an immediate exit
10512          * in order to make progress and get back here for another iteration.
10513          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10514          */
10515 #ifdef CONFIG_KVM_SMM
10516         if (vcpu->arch.smi_pending) {
10517                 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10518                                  -EBUSY;
10519                 if (r < 0)
10520                         goto out;
10521                 if (r) {
10522                         vcpu->arch.smi_pending = false;
10523                         ++vcpu->arch.smi_count;
10524                         enter_smm(vcpu);
10525                         can_inject = false;
10526                 } else
10527                         kvm_x86_call(enable_smi_window)(vcpu);
10528         }
10529 #endif
10530 
10531         if (vcpu->arch.nmi_pending) {
10532                 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10533                                  -EBUSY;
10534                 if (r < 0)
10535                         goto out;
10536                 if (r) {
10537                         --vcpu->arch.nmi_pending;
10538                         vcpu->arch.nmi_injected = true;
10539                         kvm_x86_call(inject_nmi)(vcpu);
10540                         can_inject = false;
10541                         WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10542                 }
10543                 if (vcpu->arch.nmi_pending)
10544                         kvm_x86_call(enable_nmi_window)(vcpu);
10545         }
10546 
10547         if (kvm_cpu_has_injectable_intr(vcpu)) {
10548                 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10549                                  -EBUSY;
10550                 if (r < 0)
10551                         goto out;
10552                 if (r) {
10553                         int irq = kvm_cpu_get_interrupt(vcpu);
10554 
10555                         if (!WARN_ON_ONCE(irq == -1)) {
10556                                 kvm_queue_interrupt(vcpu, irq, false);
10557                                 kvm_x86_call(inject_irq)(vcpu, false);
10558                                 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10559                         }
10560                 }
10561                 if (kvm_cpu_has_injectable_intr(vcpu))
10562                         kvm_x86_call(enable_irq_window)(vcpu);
10563         }
10564 
10565         if (is_guest_mode(vcpu) &&
10566             kvm_x86_ops.nested_ops->has_events &&
10567             kvm_x86_ops.nested_ops->has_events(vcpu, true))
10568                 *req_immediate_exit = true;
10569 
10570         /*
10571          * KVM must never queue a new exception while injecting an event; KVM
10572          * is done emulating and should only propagate the to-be-injected event
10573          * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10574          * infinite loop as KVM will bail from VM-Enter to inject the pending
10575          * exception and start the cycle all over.
10576          *
10577          * Exempt triple faults as they have special handling and won't put the
10578          * vCPU into an infinite loop.  Triple fault can be queued when running
10579          * VMX without unrestricted guest, as that requires KVM to emulate Real
10580          * Mode events (see kvm_inject_realmode_interrupt()).
10581          */
10582         WARN_ON_ONCE(vcpu->arch.exception.pending ||
10583                      vcpu->arch.exception_vmexit.pending);
10584         return 0;
10585 
10586 out:
10587         if (r == -EBUSY) {
10588                 *req_immediate_exit = true;
10589                 r = 0;
10590         }
10591         return r;
10592 }
10593 
10594 static void process_nmi(struct kvm_vcpu *vcpu)
10595 {
10596         unsigned int limit;
10597 
10598         /*
10599          * x86 is limited to one NMI pending, but because KVM can't react to
10600          * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10601          * scheduled out, KVM needs to play nice with two queued NMIs showing
10602          * up at the same time.  To handle this scenario, allow two NMIs to be
10603          * (temporarily) pending so long as NMIs are not blocked and KVM is not
10604          * waiting for a previous NMI injection to complete (which effectively
10605          * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10606          * will request an NMI window to handle the second NMI.
10607          */
10608         if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10609                 limit = 1;
10610         else
10611                 limit = 2;
10612 
10613         /*
10614          * Adjust the limit to account for pending virtual NMIs, which aren't
10615          * tracked in vcpu->arch.nmi_pending.
10616          */
10617         if (kvm_x86_call(is_vnmi_pending)(vcpu))
10618                 limit--;
10619 
10620         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10621         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10622 
10623         if (vcpu->arch.nmi_pending &&
10624             (kvm_x86_call(set_vnmi_pending)(vcpu)))
10625                 vcpu->arch.nmi_pending--;
10626 
10627         if (vcpu->arch.nmi_pending)
10628                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10629 }
10630 
10631 /* Return total number of NMIs pending injection to the VM */
10632 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10633 {
10634         return vcpu->arch.nmi_pending +
10635                kvm_x86_call(is_vnmi_pending)(vcpu);
10636 }
10637 
10638 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10639                                        unsigned long *vcpu_bitmap)
10640 {
10641         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10642 }
10643 
10644 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10645 {
10646         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10647 }
10648 
10649 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10650 {
10651         struct kvm_lapic *apic = vcpu->arch.apic;
10652         bool activate;
10653 
10654         if (!lapic_in_kernel(vcpu))
10655                 return;
10656 
10657         down_read(&vcpu->kvm->arch.apicv_update_lock);
10658         preempt_disable();
10659 
10660         /* Do not activate APICV when APIC is disabled */
10661         activate = kvm_vcpu_apicv_activated(vcpu) &&
10662                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10663 
10664         if (apic->apicv_active == activate)
10665                 goto out;
10666 
10667         apic->apicv_active = activate;
10668         kvm_apic_update_apicv(vcpu);
10669         kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10670 
10671         /*
10672          * When APICv gets disabled, we may still have injected interrupts
10673          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10674          * still active when the interrupt got accepted. Make sure
10675          * kvm_check_and_inject_events() is called to check for that.
10676          */
10677         if (!apic->apicv_active)
10678                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10679 
10680 out:
10681         preempt_enable();
10682         up_read(&vcpu->kvm->arch.apicv_update_lock);
10683 }
10684 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10685 
10686 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10687 {
10688         if (!lapic_in_kernel(vcpu))
10689                 return;
10690 
10691         /*
10692          * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10693          * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10694          * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10695          * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10696          * this case so that KVM can the AVIC doorbell to inject interrupts to
10697          * running vCPUs, but KVM must not create SPTEs for the APIC base as
10698          * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10699          * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10700          * access page is sticky.
10701          */
10702         if (apic_x2apic_mode(vcpu->arch.apic) &&
10703             kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10704                 kvm_inhibit_apic_access_page(vcpu);
10705 
10706         __kvm_vcpu_update_apicv(vcpu);
10707 }
10708 
10709 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10710                                       enum kvm_apicv_inhibit reason, bool set)
10711 {
10712         unsigned long old, new;
10713 
10714         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10715 
10716         if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10717                 return;
10718 
10719         old = new = kvm->arch.apicv_inhibit_reasons;
10720 
10721         set_or_clear_apicv_inhibit(&new, reason, set);
10722 
10723         if (!!old != !!new) {
10724                 /*
10725                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10726                  * false positives in the sanity check WARN in svm_vcpu_run().
10727                  * This task will wait for all vCPUs to ack the kick IRQ before
10728                  * updating apicv_inhibit_reasons, and all other vCPUs will
10729                  * block on acquiring apicv_update_lock so that vCPUs can't
10730                  * redo svm_vcpu_run() without seeing the new inhibit state.
10731                  *
10732                  * Note, holding apicv_update_lock and taking it in the read
10733                  * side (handling the request) also prevents other vCPUs from
10734                  * servicing the request with a stale apicv_inhibit_reasons.
10735                  */
10736                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10737                 kvm->arch.apicv_inhibit_reasons = new;
10738                 if (new) {
10739                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10740                         int idx = srcu_read_lock(&kvm->srcu);
10741 
10742                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10743                         srcu_read_unlock(&kvm->srcu, idx);
10744                 }
10745         } else {
10746                 kvm->arch.apicv_inhibit_reasons = new;
10747         }
10748 }
10749 
10750 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10751                                     enum kvm_apicv_inhibit reason, bool set)
10752 {
10753         if (!enable_apicv)
10754                 return;
10755 
10756         down_write(&kvm->arch.apicv_update_lock);
10757         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10758         up_write(&kvm->arch.apicv_update_lock);
10759 }
10760 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10761 
10762 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10763 {
10764         if (!kvm_apic_present(vcpu))
10765                 return;
10766 
10767         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10768 
10769         kvm_x86_call(sync_pir_to_irr)(vcpu);
10770 
10771         if (irqchip_split(vcpu->kvm))
10772                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10773         else if (ioapic_in_kernel(vcpu->kvm))
10774                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10775 
10776         if (is_guest_mode(vcpu))
10777                 vcpu->arch.load_eoi_exitmap_pending = true;
10778         else
10779                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10780 }
10781 
10782 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10783 {
10784         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10785                 return;
10786 
10787 #ifdef CONFIG_KVM_HYPERV
10788         if (to_hv_vcpu(vcpu)) {
10789                 u64 eoi_exit_bitmap[4];
10790 
10791                 bitmap_or((ulong *)eoi_exit_bitmap,
10792                           vcpu->arch.ioapic_handled_vectors,
10793                           to_hv_synic(vcpu)->vec_bitmap, 256);
10794                 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10795                 return;
10796         }
10797 #endif
10798         kvm_x86_call(load_eoi_exitmap)(
10799                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10800 }
10801 
10802 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10803 {
10804         kvm_x86_call(guest_memory_reclaimed)(kvm);
10805 }
10806 
10807 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10808 {
10809         if (!lapic_in_kernel(vcpu))
10810                 return;
10811 
10812         kvm_x86_call(set_apic_access_page_addr)(vcpu);
10813 }
10814 
10815 /*
10816  * Called within kvm->srcu read side.
10817  * Returns 1 to let vcpu_run() continue the guest execution loop without
10818  * exiting to the userspace.  Otherwise, the value will be returned to the
10819  * userspace.
10820  */
10821 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10822 {
10823         int r;
10824         bool req_int_win =
10825                 dm_request_for_irq_injection(vcpu) &&
10826                 kvm_cpu_accept_dm_intr(vcpu);
10827         fastpath_t exit_fastpath;
10828 
10829         bool req_immediate_exit = false;
10830 
10831         if (kvm_request_pending(vcpu)) {
10832                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10833                         r = -EIO;
10834                         goto out;
10835                 }
10836 
10837                 if (kvm_dirty_ring_check_request(vcpu)) {
10838                         r = 0;
10839                         goto out;
10840                 }
10841 
10842                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10843                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10844                                 r = 0;
10845                                 goto out;
10846                         }
10847                 }
10848                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10849                         kvm_mmu_free_obsolete_roots(vcpu);
10850                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10851                         __kvm_migrate_timers(vcpu);
10852                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10853                         kvm_update_masterclock(vcpu->kvm);
10854                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10855                         kvm_gen_kvmclock_update(vcpu);
10856                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10857                         r = kvm_guest_time_update(vcpu);
10858                         if (unlikely(r))
10859                                 goto out;
10860                 }
10861                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10862                         kvm_mmu_sync_roots(vcpu);
10863                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10864                         kvm_mmu_load_pgd(vcpu);
10865 
10866                 /*
10867                  * Note, the order matters here, as flushing "all" TLB entries
10868                  * also flushes the "current" TLB entries, i.e. servicing the
10869                  * flush "all" will clear any request to flush "current".
10870                  */
10871                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10872                         kvm_vcpu_flush_tlb_all(vcpu);
10873 
10874                 kvm_service_local_tlb_flush_requests(vcpu);
10875 
10876                 /*
10877                  * Fall back to a "full" guest flush if Hyper-V's precise
10878                  * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10879                  * the flushes are considered "remote" and not "local" because
10880                  * the requests can be initiated from other vCPUs.
10881                  */
10882 #ifdef CONFIG_KVM_HYPERV
10883                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10884                     kvm_hv_vcpu_flush_tlb(vcpu))
10885                         kvm_vcpu_flush_tlb_guest(vcpu);
10886 #endif
10887 
10888                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10889                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10890                         r = 0;
10891                         goto out;
10892                 }
10893                 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10894                         if (is_guest_mode(vcpu))
10895                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10896 
10897                         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10898                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10899                                 vcpu->mmio_needed = 0;
10900                                 r = 0;
10901                                 goto out;
10902                         }
10903                 }
10904                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10905                         /* Page is swapped out. Do synthetic halt */
10906                         vcpu->arch.apf.halted = true;
10907                         r = 1;
10908                         goto out;
10909                 }
10910                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10911                         record_steal_time(vcpu);
10912                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10913                         kvm_pmu_handle_event(vcpu);
10914                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10915                         kvm_pmu_deliver_pmi(vcpu);
10916 #ifdef CONFIG_KVM_SMM
10917                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10918                         process_smi(vcpu);
10919 #endif
10920                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10921                         process_nmi(vcpu);
10922                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10923                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10924                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10925                                      vcpu->arch.ioapic_handled_vectors)) {
10926                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10927                                 vcpu->run->eoi.vector =
10928                                                 vcpu->arch.pending_ioapic_eoi;
10929                                 r = 0;
10930                                 goto out;
10931                         }
10932                 }
10933                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10934                         vcpu_scan_ioapic(vcpu);
10935                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10936                         vcpu_load_eoi_exitmap(vcpu);
10937                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10938                         kvm_vcpu_reload_apic_access_page(vcpu);
10939 #ifdef CONFIG_KVM_HYPERV
10940                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10941                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10942                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10943                         vcpu->run->system_event.ndata = 0;
10944                         r = 0;
10945                         goto out;
10946                 }
10947                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10948                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10949                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10950                         vcpu->run->system_event.ndata = 0;
10951                         r = 0;
10952                         goto out;
10953                 }
10954                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10955                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10956 
10957                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10958                         vcpu->run->hyperv = hv_vcpu->exit;
10959                         r = 0;
10960                         goto out;
10961                 }
10962 
10963                 /*
10964                  * KVM_REQ_HV_STIMER has to be processed after
10965                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10966                  * depend on the guest clock being up-to-date
10967                  */
10968                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10969                         kvm_hv_process_stimers(vcpu);
10970 #endif
10971                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10972                         kvm_vcpu_update_apicv(vcpu);
10973                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10974                         kvm_check_async_pf_completion(vcpu);
10975                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10976                         kvm_x86_call(msr_filter_changed)(vcpu);
10977 
10978                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10979                         kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10980 
10981                 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10982                         kvm_vcpu_reset(vcpu, true);
10983                         if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10984                                 r = 1;
10985                                 goto out;
10986                         }
10987                 }
10988         }
10989 
10990         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10991             kvm_xen_has_interrupt(vcpu)) {
10992                 ++vcpu->stat.req_event;
10993                 r = kvm_apic_accept_events(vcpu);
10994                 if (r < 0) {
10995                         r = 0;
10996                         goto out;
10997                 }
10998                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10999                         r = 1;
11000                         goto out;
11001                 }
11002 
11003                 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
11004                 if (r < 0) {
11005                         r = 0;
11006                         goto out;
11007                 }
11008                 if (req_int_win)
11009                         kvm_x86_call(enable_irq_window)(vcpu);
11010 
11011                 if (kvm_lapic_enabled(vcpu)) {
11012                         update_cr8_intercept(vcpu);
11013                         kvm_lapic_sync_to_vapic(vcpu);
11014                 }
11015         }
11016 
11017         r = kvm_mmu_reload(vcpu);
11018         if (unlikely(r)) {
11019                 goto cancel_injection;
11020         }
11021 
11022         preempt_disable();
11023 
11024         kvm_x86_call(prepare_switch_to_guest)(vcpu);
11025 
11026         /*
11027          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
11028          * IPI are then delayed after guest entry, which ensures that they
11029          * result in virtual interrupt delivery.
11030          */
11031         local_irq_disable();
11032 
11033         /* Store vcpu->apicv_active before vcpu->mode.  */
11034         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
11035 
11036         kvm_vcpu_srcu_read_unlock(vcpu);
11037 
11038         /*
11039          * 1) We should set ->mode before checking ->requests.  Please see
11040          * the comment in kvm_vcpu_exiting_guest_mode().
11041          *
11042          * 2) For APICv, we should set ->mode before checking PID.ON. This
11043          * pairs with the memory barrier implicit in pi_test_and_set_on
11044          * (see vmx_deliver_posted_interrupt).
11045          *
11046          * 3) This also orders the write to mode from any reads to the page
11047          * tables done while the VCPU is running.  Please see the comment
11048          * in kvm_flush_remote_tlbs.
11049          */
11050         smp_mb__after_srcu_read_unlock();
11051 
11052         /*
11053          * Process pending posted interrupts to handle the case where the
11054          * notification IRQ arrived in the host, or was never sent (because the
11055          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
11056          * status, KVM doesn't update assigned devices when APICv is inhibited,
11057          * i.e. they can post interrupts even if APICv is temporarily disabled.
11058          */
11059         if (kvm_lapic_enabled(vcpu))
11060                 kvm_x86_call(sync_pir_to_irr)(vcpu);
11061 
11062         if (kvm_vcpu_exit_request(vcpu)) {
11063                 vcpu->mode = OUTSIDE_GUEST_MODE;
11064                 smp_wmb();
11065                 local_irq_enable();
11066                 preempt_enable();
11067                 kvm_vcpu_srcu_read_lock(vcpu);
11068                 r = 1;
11069                 goto cancel_injection;
11070         }
11071 
11072         if (req_immediate_exit)
11073                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11074 
11075         fpregs_assert_state_consistent();
11076         if (test_thread_flag(TIF_NEED_FPU_LOAD))
11077                 switch_fpu_return();
11078 
11079         if (vcpu->arch.guest_fpu.xfd_err)
11080                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11081 
11082         if (unlikely(vcpu->arch.switch_db_regs)) {
11083                 set_debugreg(0, 7);
11084                 set_debugreg(vcpu->arch.eff_db[0], 0);
11085                 set_debugreg(vcpu->arch.eff_db[1], 1);
11086                 set_debugreg(vcpu->arch.eff_db[2], 2);
11087                 set_debugreg(vcpu->arch.eff_db[3], 3);
11088         } else if (unlikely(hw_breakpoint_active())) {
11089                 set_debugreg(0, 7);
11090         }
11091 
11092         guest_timing_enter_irqoff();
11093 
11094         for (;;) {
11095                 /*
11096                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
11097                  * update must kick and wait for all vCPUs before toggling the
11098                  * per-VM state, and responding vCPUs must wait for the update
11099                  * to complete before servicing KVM_REQ_APICV_UPDATE.
11100                  */
11101                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11102                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11103 
11104                 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
11105                                                        req_immediate_exit);
11106                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11107                         break;
11108 
11109                 if (kvm_lapic_enabled(vcpu))
11110                         kvm_x86_call(sync_pir_to_irr)(vcpu);
11111 
11112                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11113                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11114                         break;
11115                 }
11116 
11117                 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11118                 ++vcpu->stat.exits;
11119         }
11120 
11121         /*
11122          * Do this here before restoring debug registers on the host.  And
11123          * since we do this before handling the vmexit, a DR access vmexit
11124          * can (a) read the correct value of the debug registers, (b) set
11125          * KVM_DEBUGREG_WONT_EXIT again.
11126          */
11127         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11128                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11129                 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11130                 kvm_update_dr0123(vcpu);
11131                 kvm_update_dr7(vcpu);
11132         }
11133 
11134         /*
11135          * If the guest has used debug registers, at least dr7
11136          * will be disabled while returning to the host.
11137          * If we don't have active breakpoints in the host, we don't
11138          * care about the messed up debug address registers. But if
11139          * we have some of them active, restore the old state.
11140          */
11141         if (hw_breakpoint_active())
11142                 hw_breakpoint_restore();
11143 
11144         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11145         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11146 
11147         vcpu->mode = OUTSIDE_GUEST_MODE;
11148         smp_wmb();
11149 
11150         /*
11151          * Sync xfd before calling handle_exit_irqoff() which may
11152          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11153          * in #NM irqoff handler).
11154          */
11155         if (vcpu->arch.xfd_no_write_intercept)
11156                 fpu_sync_guest_vmexit_xfd_state();
11157 
11158         kvm_x86_call(handle_exit_irqoff)(vcpu);
11159 
11160         if (vcpu->arch.guest_fpu.xfd_err)
11161                 wrmsrl(MSR_IA32_XFD_ERR, 0);
11162 
11163         /*
11164          * Consume any pending interrupts, including the possible source of
11165          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11166          * An instruction is required after local_irq_enable() to fully unblock
11167          * interrupts on processors that implement an interrupt shadow, the
11168          * stat.exits increment will do nicely.
11169          */
11170         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11171         local_irq_enable();
11172         ++vcpu->stat.exits;
11173         local_irq_disable();
11174         kvm_after_interrupt(vcpu);
11175 
11176         /*
11177          * Wait until after servicing IRQs to account guest time so that any
11178          * ticks that occurred while running the guest are properly accounted
11179          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11180          * of accounting via context tracking, but the loss of accuracy is
11181          * acceptable for all known use cases.
11182          */
11183         guest_timing_exit_irqoff();
11184 
11185         local_irq_enable();
11186         preempt_enable();
11187 
11188         kvm_vcpu_srcu_read_lock(vcpu);
11189 
11190         /*
11191          * Call this to ensure WC buffers in guest are evicted after each VM
11192          * Exit, so that the evicted WC writes can be snooped across all cpus
11193          */
11194         smp_mb__after_srcu_read_lock();
11195 
11196         /*
11197          * Profile KVM exit RIPs:
11198          */
11199         if (unlikely(prof_on == KVM_PROFILING)) {
11200                 unsigned long rip = kvm_rip_read(vcpu);
11201                 profile_hit(KVM_PROFILING, (void *)rip);
11202         }
11203 
11204         if (unlikely(vcpu->arch.tsc_always_catchup))
11205                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11206 
11207         if (vcpu->arch.apic_attention)
11208                 kvm_lapic_sync_from_vapic(vcpu);
11209 
11210         r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11211         return r;
11212 
11213 cancel_injection:
11214         if (req_immediate_exit)
11215                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11216         kvm_x86_call(cancel_injection)(vcpu);
11217         if (unlikely(vcpu->arch.apic_attention))
11218                 kvm_lapic_sync_from_vapic(vcpu);
11219 out:
11220         return r;
11221 }
11222 
11223 /* Called within kvm->srcu read side.  */
11224 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11225 {
11226         bool hv_timer;
11227 
11228         if (!kvm_arch_vcpu_runnable(vcpu)) {
11229                 /*
11230                  * Switch to the software timer before halt-polling/blocking as
11231                  * the guest's timer may be a break event for the vCPU, and the
11232                  * hypervisor timer runs only when the CPU is in guest mode.
11233                  * Switch before halt-polling so that KVM recognizes an expired
11234                  * timer before blocking.
11235                  */
11236                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11237                 if (hv_timer)
11238                         kvm_lapic_switch_to_sw_timer(vcpu);
11239 
11240                 kvm_vcpu_srcu_read_unlock(vcpu);
11241                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11242                         kvm_vcpu_halt(vcpu);
11243                 else
11244                         kvm_vcpu_block(vcpu);
11245                 kvm_vcpu_srcu_read_lock(vcpu);
11246 
11247                 if (hv_timer)
11248                         kvm_lapic_switch_to_hv_timer(vcpu);
11249 
11250                 /*
11251                  * If the vCPU is not runnable, a signal or another host event
11252                  * of some kind is pending; service it without changing the
11253                  * vCPU's activity state.
11254                  */
11255                 if (!kvm_arch_vcpu_runnable(vcpu))
11256                         return 1;
11257         }
11258 
11259         /*
11260          * Evaluate nested events before exiting the halted state.  This allows
11261          * the halt state to be recorded properly in the VMCS12's activity
11262          * state field (AMD does not have a similar field and a VM-Exit always
11263          * causes a spurious wakeup from HLT).
11264          */
11265         if (is_guest_mode(vcpu)) {
11266                 int r = kvm_check_nested_events(vcpu);
11267 
11268                 WARN_ON_ONCE(r == -EBUSY);
11269                 if (r < 0)
11270                         return 0;
11271         }
11272 
11273         if (kvm_apic_accept_events(vcpu) < 0)
11274                 return 0;
11275         switch(vcpu->arch.mp_state) {
11276         case KVM_MP_STATE_HALTED:
11277         case KVM_MP_STATE_AP_RESET_HOLD:
11278                 vcpu->arch.pv.pv_unhalted = false;
11279                 vcpu->arch.mp_state =
11280                         KVM_MP_STATE_RUNNABLE;
11281                 fallthrough;
11282         case KVM_MP_STATE_RUNNABLE:
11283                 vcpu->arch.apf.halted = false;
11284                 break;
11285         case KVM_MP_STATE_INIT_RECEIVED:
11286                 break;
11287         default:
11288                 WARN_ON_ONCE(1);
11289                 break;
11290         }
11291         return 1;
11292 }
11293 
11294 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11295 {
11296         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11297                 !vcpu->arch.apf.halted);
11298 }
11299 
11300 /* Called within kvm->srcu read side.  */
11301 static int vcpu_run(struct kvm_vcpu *vcpu)
11302 {
11303         int r;
11304 
11305         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11306 
11307         for (;;) {
11308                 /*
11309                  * If another guest vCPU requests a PV TLB flush in the middle
11310                  * of instruction emulation, the rest of the emulation could
11311                  * use a stale page translation. Assume that any code after
11312                  * this point can start executing an instruction.
11313                  */
11314                 vcpu->arch.at_instruction_boundary = false;
11315                 if (kvm_vcpu_running(vcpu)) {
11316                         r = vcpu_enter_guest(vcpu);
11317                 } else {
11318                         r = vcpu_block(vcpu);
11319                 }
11320 
11321                 if (r <= 0)
11322                         break;
11323 
11324                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11325                 if (kvm_xen_has_pending_events(vcpu))
11326                         kvm_xen_inject_pending_events(vcpu);
11327 
11328                 if (kvm_cpu_has_pending_timer(vcpu))
11329                         kvm_inject_pending_timer_irqs(vcpu);
11330 
11331                 if (dm_request_for_irq_injection(vcpu) &&
11332                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11333                         r = 0;
11334                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11335                         ++vcpu->stat.request_irq_exits;
11336                         break;
11337                 }
11338 
11339                 if (__xfer_to_guest_mode_work_pending()) {
11340                         kvm_vcpu_srcu_read_unlock(vcpu);
11341                         r = xfer_to_guest_mode_handle_work(vcpu);
11342                         kvm_vcpu_srcu_read_lock(vcpu);
11343                         if (r)
11344                                 return r;
11345                 }
11346         }
11347 
11348         return r;
11349 }
11350 
11351 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11352 {
11353         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11354 }
11355 
11356 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11357 {
11358         BUG_ON(!vcpu->arch.pio.count);
11359 
11360         return complete_emulated_io(vcpu);
11361 }
11362 
11363 /*
11364  * Implements the following, as a state machine:
11365  *
11366  * read:
11367  *   for each fragment
11368  *     for each mmio piece in the fragment
11369  *       write gpa, len
11370  *       exit
11371  *       copy data
11372  *   execute insn
11373  *
11374  * write:
11375  *   for each fragment
11376  *     for each mmio piece in the fragment
11377  *       write gpa, len
11378  *       copy data
11379  *       exit
11380  */
11381 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11382 {
11383         struct kvm_run *run = vcpu->run;
11384         struct kvm_mmio_fragment *frag;
11385         unsigned len;
11386 
11387         BUG_ON(!vcpu->mmio_needed);
11388 
11389         /* Complete previous fragment */
11390         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11391         len = min(8u, frag->len);
11392         if (!vcpu->mmio_is_write)
11393                 memcpy(frag->data, run->mmio.data, len);
11394 
11395         if (frag->len <= 8) {
11396                 /* Switch to the next fragment. */
11397                 frag++;
11398                 vcpu->mmio_cur_fragment++;
11399         } else {
11400                 /* Go forward to the next mmio piece. */
11401                 frag->data += len;
11402                 frag->gpa += len;
11403                 frag->len -= len;
11404         }
11405 
11406         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11407                 vcpu->mmio_needed = 0;
11408 
11409                 /* FIXME: return into emulator if single-stepping.  */
11410                 if (vcpu->mmio_is_write)
11411                         return 1;
11412                 vcpu->mmio_read_completed = 1;
11413                 return complete_emulated_io(vcpu);
11414         }
11415 
11416         run->exit_reason = KVM_EXIT_MMIO;
11417         run->mmio.phys_addr = frag->gpa;
11418         if (vcpu->mmio_is_write)
11419                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11420         run->mmio.len = min(8u, frag->len);
11421         run->mmio.is_write = vcpu->mmio_is_write;
11422         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11423         return 0;
11424 }
11425 
11426 /* Swap (qemu) user FPU context for the guest FPU context. */
11427 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11428 {
11429         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11430         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11431         trace_kvm_fpu(1);
11432 }
11433 
11434 /* When vcpu_run ends, restore user space FPU context. */
11435 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11436 {
11437         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11438         ++vcpu->stat.fpu_reload;
11439         trace_kvm_fpu(0);
11440 }
11441 
11442 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11443 {
11444         struct kvm_queued_exception *ex = &vcpu->arch.exception;
11445         struct kvm_run *kvm_run = vcpu->run;
11446         int r;
11447 
11448         vcpu_load(vcpu);
11449         kvm_sigset_activate(vcpu);
11450         kvm_run->flags = 0;
11451         kvm_load_guest_fpu(vcpu);
11452 
11453         kvm_vcpu_srcu_read_lock(vcpu);
11454         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11455                 if (!vcpu->wants_to_run) {
11456                         r = -EINTR;
11457                         goto out;
11458                 }
11459 
11460                 /*
11461                  * Don't bother switching APIC timer emulation from the
11462                  * hypervisor timer to the software timer, the only way for the
11463                  * APIC timer to be active is if userspace stuffed vCPU state,
11464                  * i.e. put the vCPU into a nonsensical state.  Only an INIT
11465                  * will transition the vCPU out of UNINITIALIZED (without more
11466                  * state stuffing from userspace), which will reset the local
11467                  * APIC and thus cancel the timer or drop the IRQ (if the timer
11468                  * already expired).
11469                  */
11470                 kvm_vcpu_srcu_read_unlock(vcpu);
11471                 kvm_vcpu_block(vcpu);
11472                 kvm_vcpu_srcu_read_lock(vcpu);
11473 
11474                 if (kvm_apic_accept_events(vcpu) < 0) {
11475                         r = 0;
11476                         goto out;
11477                 }
11478                 r = -EAGAIN;
11479                 if (signal_pending(current)) {
11480                         r = -EINTR;
11481                         kvm_run->exit_reason = KVM_EXIT_INTR;
11482                         ++vcpu->stat.signal_exits;
11483                 }
11484                 goto out;
11485         }
11486 
11487         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11488             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11489                 r = -EINVAL;
11490                 goto out;
11491         }
11492 
11493         if (kvm_run->kvm_dirty_regs) {
11494                 r = sync_regs(vcpu);
11495                 if (r != 0)
11496                         goto out;
11497         }
11498 
11499         /* re-sync apic's tpr */
11500         if (!lapic_in_kernel(vcpu)) {
11501                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11502                         r = -EINVAL;
11503                         goto out;
11504                 }
11505         }
11506 
11507         /*
11508          * If userspace set a pending exception and L2 is active, convert it to
11509          * a pending VM-Exit if L1 wants to intercept the exception.
11510          */
11511         if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11512             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11513                                                         ex->error_code)) {
11514                 kvm_queue_exception_vmexit(vcpu, ex->vector,
11515                                            ex->has_error_code, ex->error_code,
11516                                            ex->has_payload, ex->payload);
11517                 ex->injected = false;
11518                 ex->pending = false;
11519         }
11520         vcpu->arch.exception_from_userspace = false;
11521 
11522         if (unlikely(vcpu->arch.complete_userspace_io)) {
11523                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11524                 vcpu->arch.complete_userspace_io = NULL;
11525                 r = cui(vcpu);
11526                 if (r <= 0)
11527                         goto out;
11528         } else {
11529                 WARN_ON_ONCE(vcpu->arch.pio.count);
11530                 WARN_ON_ONCE(vcpu->mmio_needed);
11531         }
11532 
11533         if (!vcpu->wants_to_run) {
11534                 r = -EINTR;
11535                 goto out;
11536         }
11537 
11538         r = kvm_x86_call(vcpu_pre_run)(vcpu);
11539         if (r <= 0)
11540                 goto out;
11541 
11542         r = vcpu_run(vcpu);
11543 
11544 out:
11545         kvm_put_guest_fpu(vcpu);
11546         if (kvm_run->kvm_valid_regs)
11547                 store_regs(vcpu);
11548         post_kvm_run_save(vcpu);
11549         kvm_vcpu_srcu_read_unlock(vcpu);
11550 
11551         kvm_sigset_deactivate(vcpu);
11552         vcpu_put(vcpu);
11553         return r;
11554 }
11555 
11556 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11557 {
11558         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11559                 /*
11560                  * We are here if userspace calls get_regs() in the middle of
11561                  * instruction emulation. Registers state needs to be copied
11562                  * back from emulation context to vcpu. Userspace shouldn't do
11563                  * that usually, but some bad designed PV devices (vmware
11564                  * backdoor interface) need this to work
11565                  */
11566                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11567                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11568         }
11569         regs->rax = kvm_rax_read(vcpu);
11570         regs->rbx = kvm_rbx_read(vcpu);
11571         regs->rcx = kvm_rcx_read(vcpu);
11572         regs->rdx = kvm_rdx_read(vcpu);
11573         regs->rsi = kvm_rsi_read(vcpu);
11574         regs->rdi = kvm_rdi_read(vcpu);
11575         regs->rsp = kvm_rsp_read(vcpu);
11576         regs->rbp = kvm_rbp_read(vcpu);
11577 #ifdef CONFIG_X86_64
11578         regs->r8 = kvm_r8_read(vcpu);
11579         regs->r9 = kvm_r9_read(vcpu);
11580         regs->r10 = kvm_r10_read(vcpu);
11581         regs->r11 = kvm_r11_read(vcpu);
11582         regs->r12 = kvm_r12_read(vcpu);
11583         regs->r13 = kvm_r13_read(vcpu);
11584         regs->r14 = kvm_r14_read(vcpu);
11585         regs->r15 = kvm_r15_read(vcpu);
11586 #endif
11587 
11588         regs->rip = kvm_rip_read(vcpu);
11589         regs->rflags = kvm_get_rflags(vcpu);
11590 }
11591 
11592 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11593 {
11594         if (vcpu->kvm->arch.has_protected_state &&
11595             vcpu->arch.guest_state_protected)
11596                 return -EINVAL;
11597 
11598         vcpu_load(vcpu);
11599         __get_regs(vcpu, regs);
11600         vcpu_put(vcpu);
11601         return 0;
11602 }
11603 
11604 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11605 {
11606         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11607         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11608 
11609         kvm_rax_write(vcpu, regs->rax);
11610         kvm_rbx_write(vcpu, regs->rbx);
11611         kvm_rcx_write(vcpu, regs->rcx);
11612         kvm_rdx_write(vcpu, regs->rdx);
11613         kvm_rsi_write(vcpu, regs->rsi);
11614         kvm_rdi_write(vcpu, regs->rdi);
11615         kvm_rsp_write(vcpu, regs->rsp);
11616         kvm_rbp_write(vcpu, regs->rbp);
11617 #ifdef CONFIG_X86_64
11618         kvm_r8_write(vcpu, regs->r8);
11619         kvm_r9_write(vcpu, regs->r9);
11620         kvm_r10_write(vcpu, regs->r10);
11621         kvm_r11_write(vcpu, regs->r11);
11622         kvm_r12_write(vcpu, regs->r12);
11623         kvm_r13_write(vcpu, regs->r13);
11624         kvm_r14_write(vcpu, regs->r14);
11625         kvm_r15_write(vcpu, regs->r15);
11626 #endif
11627 
11628         kvm_rip_write(vcpu, regs->rip);
11629         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11630 
11631         vcpu->arch.exception.pending = false;
11632         vcpu->arch.exception_vmexit.pending = false;
11633 
11634         kvm_make_request(KVM_REQ_EVENT, vcpu);
11635 }
11636 
11637 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11638 {
11639         if (vcpu->kvm->arch.has_protected_state &&
11640             vcpu->arch.guest_state_protected)
11641                 return -EINVAL;
11642 
11643         vcpu_load(vcpu);
11644         __set_regs(vcpu, regs);
11645         vcpu_put(vcpu);
11646         return 0;
11647 }
11648 
11649 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11650 {
11651         struct desc_ptr dt;
11652 
11653         if (vcpu->arch.guest_state_protected)
11654                 goto skip_protected_regs;
11655 
11656         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11657         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11658         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11659         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11660         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11661         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11662 
11663         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11664         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11665 
11666         kvm_x86_call(get_idt)(vcpu, &dt);
11667         sregs->idt.limit = dt.size;
11668         sregs->idt.base = dt.address;
11669         kvm_x86_call(get_gdt)(vcpu, &dt);
11670         sregs->gdt.limit = dt.size;
11671         sregs->gdt.base = dt.address;
11672 
11673         sregs->cr2 = vcpu->arch.cr2;
11674         sregs->cr3 = kvm_read_cr3(vcpu);
11675 
11676 skip_protected_regs:
11677         sregs->cr0 = kvm_read_cr0(vcpu);
11678         sregs->cr4 = kvm_read_cr4(vcpu);
11679         sregs->cr8 = kvm_get_cr8(vcpu);
11680         sregs->efer = vcpu->arch.efer;
11681         sregs->apic_base = kvm_get_apic_base(vcpu);
11682 }
11683 
11684 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11685 {
11686         __get_sregs_common(vcpu, sregs);
11687 
11688         if (vcpu->arch.guest_state_protected)
11689                 return;
11690 
11691         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11692                 set_bit(vcpu->arch.interrupt.nr,
11693                         (unsigned long *)sregs->interrupt_bitmap);
11694 }
11695 
11696 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11697 {
11698         int i;
11699 
11700         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11701 
11702         if (vcpu->arch.guest_state_protected)
11703                 return;
11704 
11705         if (is_pae_paging(vcpu)) {
11706                 for (i = 0 ; i < 4 ; i++)
11707                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11708                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11709         }
11710 }
11711 
11712 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11713                                   struct kvm_sregs *sregs)
11714 {
11715         if (vcpu->kvm->arch.has_protected_state &&
11716             vcpu->arch.guest_state_protected)
11717                 return -EINVAL;
11718 
11719         vcpu_load(vcpu);
11720         __get_sregs(vcpu, sregs);
11721         vcpu_put(vcpu);
11722         return 0;
11723 }
11724 
11725 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11726                                     struct kvm_mp_state *mp_state)
11727 {
11728         int r;
11729 
11730         vcpu_load(vcpu);
11731         if (kvm_mpx_supported())
11732                 kvm_load_guest_fpu(vcpu);
11733 
11734         r = kvm_apic_accept_events(vcpu);
11735         if (r < 0)
11736                 goto out;
11737         r = 0;
11738 
11739         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11740              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11741             vcpu->arch.pv.pv_unhalted)
11742                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11743         else
11744                 mp_state->mp_state = vcpu->arch.mp_state;
11745 
11746 out:
11747         if (kvm_mpx_supported())
11748                 kvm_put_guest_fpu(vcpu);
11749         vcpu_put(vcpu);
11750         return r;
11751 }
11752 
11753 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11754                                     struct kvm_mp_state *mp_state)
11755 {
11756         int ret = -EINVAL;
11757 
11758         vcpu_load(vcpu);
11759 
11760         switch (mp_state->mp_state) {
11761         case KVM_MP_STATE_UNINITIALIZED:
11762         case KVM_MP_STATE_HALTED:
11763         case KVM_MP_STATE_AP_RESET_HOLD:
11764         case KVM_MP_STATE_INIT_RECEIVED:
11765         case KVM_MP_STATE_SIPI_RECEIVED:
11766                 if (!lapic_in_kernel(vcpu))
11767                         goto out;
11768                 break;
11769 
11770         case KVM_MP_STATE_RUNNABLE:
11771                 break;
11772 
11773         default:
11774                 goto out;
11775         }
11776 
11777         /*
11778          * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11779          * forcing the guest into INIT/SIPI if those events are supposed to be
11780          * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11781          * if an SMI is pending as well.
11782          */
11783         if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11784             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11785              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11786                 goto out;
11787 
11788         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11789                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11790                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11791         } else
11792                 vcpu->arch.mp_state = mp_state->mp_state;
11793         kvm_make_request(KVM_REQ_EVENT, vcpu);
11794 
11795         ret = 0;
11796 out:
11797         vcpu_put(vcpu);
11798         return ret;
11799 }
11800 
11801 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11802                     int reason, bool has_error_code, u32 error_code)
11803 {
11804         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11805         int ret;
11806 
11807         init_emulate_ctxt(vcpu);
11808 
11809         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11810                                    has_error_code, error_code);
11811 
11812         /*
11813          * Report an error userspace if MMIO is needed, as KVM doesn't support
11814          * MMIO during a task switch (or any other complex operation).
11815          */
11816         if (ret || vcpu->mmio_needed) {
11817                 vcpu->mmio_needed = false;
11818                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11819                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11820                 vcpu->run->internal.ndata = 0;
11821                 return 0;
11822         }
11823 
11824         kvm_rip_write(vcpu, ctxt->eip);
11825         kvm_set_rflags(vcpu, ctxt->eflags);
11826         return 1;
11827 }
11828 EXPORT_SYMBOL_GPL(kvm_task_switch);
11829 
11830 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11831 {
11832         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11833                 /*
11834                  * When EFER.LME and CR0.PG are set, the processor is in
11835                  * 64-bit mode (though maybe in a 32-bit code segment).
11836                  * CR4.PAE and EFER.LMA must be set.
11837                  */
11838                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11839                         return false;
11840                 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11841                         return false;
11842         } else {
11843                 /*
11844                  * Not in 64-bit mode: EFER.LMA is clear and the code
11845                  * segment cannot be 64-bit.
11846                  */
11847                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11848                         return false;
11849         }
11850 
11851         return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11852                kvm_is_valid_cr0(vcpu, sregs->cr0);
11853 }
11854 
11855 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11856                 int *mmu_reset_needed, bool update_pdptrs)
11857 {
11858         struct msr_data apic_base_msr;
11859         int idx;
11860         struct desc_ptr dt;
11861 
11862         if (!kvm_is_valid_sregs(vcpu, sregs))
11863                 return -EINVAL;
11864 
11865         apic_base_msr.data = sregs->apic_base;
11866         apic_base_msr.host_initiated = true;
11867         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11868                 return -EINVAL;
11869 
11870         if (vcpu->arch.guest_state_protected)
11871                 return 0;
11872 
11873         dt.size = sregs->idt.limit;
11874         dt.address = sregs->idt.base;
11875         kvm_x86_call(set_idt)(vcpu, &dt);
11876         dt.size = sregs->gdt.limit;
11877         dt.address = sregs->gdt.base;
11878         kvm_x86_call(set_gdt)(vcpu, &dt);
11879 
11880         vcpu->arch.cr2 = sregs->cr2;
11881         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11882         vcpu->arch.cr3 = sregs->cr3;
11883         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11884         kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11885 
11886         kvm_set_cr8(vcpu, sregs->cr8);
11887 
11888         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11889         kvm_x86_call(set_efer)(vcpu, sregs->efer);
11890 
11891         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11892         kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11893 
11894         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11895         kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11896 
11897         if (update_pdptrs) {
11898                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11899                 if (is_pae_paging(vcpu)) {
11900                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11901                         *mmu_reset_needed = 1;
11902                 }
11903                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11904         }
11905 
11906         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11907         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11908         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11909         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11910         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11911         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11912 
11913         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11914         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11915 
11916         update_cr8_intercept(vcpu);
11917 
11918         /* Older userspace won't unhalt the vcpu on reset. */
11919         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11920             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11921             !is_protmode(vcpu))
11922                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11923 
11924         return 0;
11925 }
11926 
11927 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11928 {
11929         int pending_vec, max_bits;
11930         int mmu_reset_needed = 0;
11931         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11932 
11933         if (ret)
11934                 return ret;
11935 
11936         if (mmu_reset_needed) {
11937                 kvm_mmu_reset_context(vcpu);
11938                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11939         }
11940 
11941         max_bits = KVM_NR_INTERRUPTS;
11942         pending_vec = find_first_bit(
11943                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11944 
11945         if (pending_vec < max_bits) {
11946                 kvm_queue_interrupt(vcpu, pending_vec, false);
11947                 pr_debug("Set back pending irq %d\n", pending_vec);
11948                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11949         }
11950         return 0;
11951 }
11952 
11953 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11954 {
11955         int mmu_reset_needed = 0;
11956         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11957         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11958                 !(sregs2->efer & EFER_LMA);
11959         int i, ret;
11960 
11961         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11962                 return -EINVAL;
11963 
11964         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11965                 return -EINVAL;
11966 
11967         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11968                                  &mmu_reset_needed, !valid_pdptrs);
11969         if (ret)
11970                 return ret;
11971 
11972         if (valid_pdptrs) {
11973                 for (i = 0; i < 4 ; i++)
11974                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11975 
11976                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11977                 mmu_reset_needed = 1;
11978                 vcpu->arch.pdptrs_from_userspace = true;
11979         }
11980         if (mmu_reset_needed) {
11981                 kvm_mmu_reset_context(vcpu);
11982                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11983         }
11984         return 0;
11985 }
11986 
11987 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11988                                   struct kvm_sregs *sregs)
11989 {
11990         int ret;
11991 
11992         if (vcpu->kvm->arch.has_protected_state &&
11993             vcpu->arch.guest_state_protected)
11994                 return -EINVAL;
11995 
11996         vcpu_load(vcpu);
11997         ret = __set_sregs(vcpu, sregs);
11998         vcpu_put(vcpu);
11999         return ret;
12000 }
12001 
12002 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12003 {
12004         bool set = false;
12005         struct kvm_vcpu *vcpu;
12006         unsigned long i;
12007 
12008         if (!enable_apicv)
12009                 return;
12010 
12011         down_write(&kvm->arch.apicv_update_lock);
12012 
12013         kvm_for_each_vcpu(i, vcpu, kvm) {
12014                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12015                         set = true;
12016                         break;
12017                 }
12018         }
12019         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12020         up_write(&kvm->arch.apicv_update_lock);
12021 }
12022 
12023 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12024                                         struct kvm_guest_debug *dbg)
12025 {
12026         unsigned long rflags;
12027         int i, r;
12028 
12029         if (vcpu->arch.guest_state_protected)
12030                 return -EINVAL;
12031 
12032         vcpu_load(vcpu);
12033 
12034         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12035                 r = -EBUSY;
12036                 if (kvm_is_exception_pending(vcpu))
12037                         goto out;
12038                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12039                         kvm_queue_exception(vcpu, DB_VECTOR);
12040                 else
12041                         kvm_queue_exception(vcpu, BP_VECTOR);
12042         }
12043 
12044         /*
12045          * Read rflags as long as potentially injected trace flags are still
12046          * filtered out.
12047          */
12048         rflags = kvm_get_rflags(vcpu);
12049 
12050         vcpu->guest_debug = dbg->control;
12051         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12052                 vcpu->guest_debug = 0;
12053 
12054         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12055                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12056                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12057                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12058         } else {
12059                 for (i = 0; i < KVM_NR_DB_REGS; i++)
12060                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12061         }
12062         kvm_update_dr7(vcpu);
12063 
12064         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12065                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12066 
12067         /*
12068          * Trigger an rflags update that will inject or remove the trace
12069          * flags.
12070          */
12071         kvm_set_rflags(vcpu, rflags);
12072 
12073         kvm_x86_call(update_exception_bitmap)(vcpu);
12074 
12075         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12076 
12077         r = 0;
12078 
12079 out:
12080         vcpu_put(vcpu);
12081         return r;
12082 }
12083 
12084 /*
12085  * Translate a guest virtual address to a guest physical address.
12086  */
12087 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12088                                     struct kvm_translation *tr)
12089 {
12090         unsigned long vaddr = tr->linear_address;
12091         gpa_t gpa;
12092         int idx;
12093 
12094         vcpu_load(vcpu);
12095 
12096         idx = srcu_read_lock(&vcpu->kvm->srcu);
12097         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12098         srcu_read_unlock(&vcpu->kvm->srcu, idx);
12099         tr->physical_address = gpa;
12100         tr->valid = gpa != INVALID_GPA;
12101         tr->writeable = 1;
12102         tr->usermode = 0;
12103 
12104         vcpu_put(vcpu);
12105         return 0;
12106 }
12107 
12108 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12109 {
12110         struct fxregs_state *fxsave;
12111 
12112         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12113                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12114 
12115         vcpu_load(vcpu);
12116 
12117         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12118         memcpy(fpu->fpr, fxsave->st_space, 128);
12119         fpu->fcw = fxsave->cwd;
12120         fpu->fsw = fxsave->swd;
12121         fpu->ftwx = fxsave->twd;
12122         fpu->last_opcode = fxsave->fop;
12123         fpu->last_ip = fxsave->rip;
12124         fpu->last_dp = fxsave->rdp;
12125         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12126 
12127         vcpu_put(vcpu);
12128         return 0;
12129 }
12130 
12131 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12132 {
12133         struct fxregs_state *fxsave;
12134 
12135         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12136                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12137 
12138         vcpu_load(vcpu);
12139 
12140         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12141 
12142         memcpy(fxsave->st_space, fpu->fpr, 128);
12143         fxsave->cwd = fpu->fcw;
12144         fxsave->swd = fpu->fsw;
12145         fxsave->twd = fpu->ftwx;
12146         fxsave->fop = fpu->last_opcode;
12147         fxsave->rip = fpu->last_ip;
12148         fxsave->rdp = fpu->last_dp;
12149         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12150 
12151         vcpu_put(vcpu);
12152         return 0;
12153 }
12154 
12155 static void store_regs(struct kvm_vcpu *vcpu)
12156 {
12157         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12158 
12159         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12160                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12161 
12162         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12163                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12164 
12165         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12166                 kvm_vcpu_ioctl_x86_get_vcpu_events(
12167                                 vcpu, &vcpu->run->s.regs.events);
12168 }
12169 
12170 static int sync_regs(struct kvm_vcpu *vcpu)
12171 {
12172         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12173                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12174                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12175         }
12176 
12177         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12178                 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12179 
12180                 if (__set_sregs(vcpu, &sregs))
12181                         return -EINVAL;
12182 
12183                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12184         }
12185 
12186         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12187                 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12188 
12189                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12190                         return -EINVAL;
12191 
12192                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12193         }
12194 
12195         return 0;
12196 }
12197 
12198 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12199 {
12200         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12201                 pr_warn_once("SMP vm created on host with unstable TSC; "
12202                              "guest TSC will not be reliable\n");
12203 
12204         if (!kvm->arch.max_vcpu_ids)
12205                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12206 
12207         if (id >= kvm->arch.max_vcpu_ids)
12208                 return -EINVAL;
12209 
12210         return kvm_x86_call(vcpu_precreate)(kvm);
12211 }
12212 
12213 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12214 {
12215         struct page *page;
12216         int r;
12217 
12218         vcpu->arch.last_vmentry_cpu = -1;
12219         vcpu->arch.regs_avail = ~0;
12220         vcpu->arch.regs_dirty = ~0;
12221 
12222         kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12223 
12224         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12225                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12226         else
12227                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12228 
12229         r = kvm_mmu_create(vcpu);
12230         if (r < 0)
12231                 return r;
12232 
12233         r = kvm_create_lapic(vcpu);
12234         if (r < 0)
12235                 goto fail_mmu_destroy;
12236 
12237         r = -ENOMEM;
12238 
12239         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12240         if (!page)
12241                 goto fail_free_lapic;
12242         vcpu->arch.pio_data = page_address(page);
12243 
12244         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12245                                        GFP_KERNEL_ACCOUNT);
12246         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12247                                             GFP_KERNEL_ACCOUNT);
12248         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12249                 goto fail_free_mce_banks;
12250         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12251 
12252         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12253                                 GFP_KERNEL_ACCOUNT))
12254                 goto fail_free_mce_banks;
12255 
12256         if (!alloc_emulate_ctxt(vcpu))
12257                 goto free_wbinvd_dirty_mask;
12258 
12259         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12260                 pr_err("failed to allocate vcpu's fpu\n");
12261                 goto free_emulate_ctxt;
12262         }
12263 
12264         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12265         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12266 
12267         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12268 
12269         kvm_async_pf_hash_reset(vcpu);
12270 
12271         vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12272         kvm_pmu_init(vcpu);
12273 
12274         vcpu->arch.pending_external_vector = -1;
12275         vcpu->arch.preempted_in_kernel = false;
12276 
12277 #if IS_ENABLED(CONFIG_HYPERV)
12278         vcpu->arch.hv_root_tdp = INVALID_PAGE;
12279 #endif
12280 
12281         r = kvm_x86_call(vcpu_create)(vcpu);
12282         if (r)
12283                 goto free_guest_fpu;
12284 
12285         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12286         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12287         kvm_xen_init_vcpu(vcpu);
12288         vcpu_load(vcpu);
12289         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12290         kvm_vcpu_reset(vcpu, false);
12291         kvm_init_mmu(vcpu);
12292         vcpu_put(vcpu);
12293         return 0;
12294 
12295 free_guest_fpu:
12296         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12297 free_emulate_ctxt:
12298         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12299 free_wbinvd_dirty_mask:
12300         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12301 fail_free_mce_banks:
12302         kfree(vcpu->arch.mce_banks);
12303         kfree(vcpu->arch.mci_ctl2_banks);
12304         free_page((unsigned long)vcpu->arch.pio_data);
12305 fail_free_lapic:
12306         kvm_free_lapic(vcpu);
12307 fail_mmu_destroy:
12308         kvm_mmu_destroy(vcpu);
12309         return r;
12310 }
12311 
12312 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12313 {
12314         struct kvm *kvm = vcpu->kvm;
12315 
12316         if (mutex_lock_killable(&vcpu->mutex))
12317                 return;
12318         vcpu_load(vcpu);
12319         kvm_synchronize_tsc(vcpu, NULL);
12320         vcpu_put(vcpu);
12321 
12322         /* poll control enabled by default */
12323         vcpu->arch.msr_kvm_poll_control = 1;
12324 
12325         mutex_unlock(&vcpu->mutex);
12326 
12327         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12328                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12329                                                 KVMCLOCK_SYNC_PERIOD);
12330 }
12331 
12332 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12333 {
12334         int idx;
12335 
12336         kvmclock_reset(vcpu);
12337 
12338         kvm_x86_call(vcpu_free)(vcpu);
12339 
12340         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12341         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12342         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12343 
12344         kvm_xen_destroy_vcpu(vcpu);
12345         kvm_hv_vcpu_uninit(vcpu);
12346         kvm_pmu_destroy(vcpu);
12347         kfree(vcpu->arch.mce_banks);
12348         kfree(vcpu->arch.mci_ctl2_banks);
12349         kvm_free_lapic(vcpu);
12350         idx = srcu_read_lock(&vcpu->kvm->srcu);
12351         kvm_mmu_destroy(vcpu);
12352         srcu_read_unlock(&vcpu->kvm->srcu, idx);
12353         free_page((unsigned long)vcpu->arch.pio_data);
12354         kvfree(vcpu->arch.cpuid_entries);
12355 }
12356 
12357 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12358 {
12359         struct kvm_cpuid_entry2 *cpuid_0x1;
12360         unsigned long old_cr0 = kvm_read_cr0(vcpu);
12361         unsigned long new_cr0;
12362 
12363         /*
12364          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12365          * to handle side effects.  RESET emulation hits those flows and relies
12366          * on emulated/virtualized registers, including those that are loaded
12367          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12368          * to detect improper or missing initialization.
12369          */
12370         WARN_ON_ONCE(!init_event &&
12371                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12372 
12373         /*
12374          * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12375          * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12376          * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12377          * bits), i.e. virtualization is disabled.
12378          */
12379         if (is_guest_mode(vcpu))
12380                 kvm_leave_nested(vcpu);
12381 
12382         kvm_lapic_reset(vcpu, init_event);
12383 
12384         WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12385         vcpu->arch.hflags = 0;
12386 
12387         vcpu->arch.smi_pending = 0;
12388         vcpu->arch.smi_count = 0;
12389         atomic_set(&vcpu->arch.nmi_queued, 0);
12390         vcpu->arch.nmi_pending = 0;
12391         vcpu->arch.nmi_injected = false;
12392         kvm_clear_interrupt_queue(vcpu);
12393         kvm_clear_exception_queue(vcpu);
12394 
12395         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12396         kvm_update_dr0123(vcpu);
12397         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12398         vcpu->arch.dr7 = DR7_FIXED_1;
12399         kvm_update_dr7(vcpu);
12400 
12401         vcpu->arch.cr2 = 0;
12402 
12403         kvm_make_request(KVM_REQ_EVENT, vcpu);
12404         vcpu->arch.apf.msr_en_val = 0;
12405         vcpu->arch.apf.msr_int_val = 0;
12406         vcpu->arch.st.msr_val = 0;
12407 
12408         kvmclock_reset(vcpu);
12409 
12410         kvm_clear_async_pf_completion_queue(vcpu);
12411         kvm_async_pf_hash_reset(vcpu);
12412         vcpu->arch.apf.halted = false;
12413 
12414         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12415                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12416 
12417                 /*
12418                  * All paths that lead to INIT are required to load the guest's
12419                  * FPU state (because most paths are buried in KVM_RUN).
12420                  */
12421                 if (init_event)
12422                         kvm_put_guest_fpu(vcpu);
12423 
12424                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12425                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12426 
12427                 if (init_event)
12428                         kvm_load_guest_fpu(vcpu);
12429         }
12430 
12431         if (!init_event) {
12432                 vcpu->arch.smbase = 0x30000;
12433 
12434                 vcpu->arch.msr_misc_features_enables = 0;
12435                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12436                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12437 
12438                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12439                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12440         }
12441 
12442         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12443         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12444         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12445 
12446         /*
12447          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12448          * if no CPUID match is found.  Note, it's impossible to get a match at
12449          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12450          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12451          * on RESET.  But, go through the motions in case that's ever remedied.
12452          */
12453         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12454         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12455 
12456         kvm_x86_call(vcpu_reset)(vcpu, init_event);
12457 
12458         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12459         kvm_rip_write(vcpu, 0xfff0);
12460 
12461         vcpu->arch.cr3 = 0;
12462         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12463 
12464         /*
12465          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12466          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12467          * (or qualify) that with a footnote stating that CD/NW are preserved.
12468          */
12469         new_cr0 = X86_CR0_ET;
12470         if (init_event)
12471                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12472         else
12473                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12474 
12475         kvm_x86_call(set_cr0)(vcpu, new_cr0);
12476         kvm_x86_call(set_cr4)(vcpu, 0);
12477         kvm_x86_call(set_efer)(vcpu, 0);
12478         kvm_x86_call(update_exception_bitmap)(vcpu);
12479 
12480         /*
12481          * On the standard CR0/CR4/EFER modification paths, there are several
12482          * complex conditions determining whether the MMU has to be reset and/or
12483          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12484          * bits in CR4 and EFER are irrelevant if CR0.PG was ''; and a reset+flush
12485          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12486          * CR0 will be '' prior to RESET).  So we only need to check CR0.PG here.
12487          */
12488         if (old_cr0 & X86_CR0_PG) {
12489                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12490                 kvm_mmu_reset_context(vcpu);
12491         }
12492 
12493         /*
12494          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12495          * APM states the TLBs are untouched by INIT, but it also states that
12496          * the TLBs are flushed on "External initialization of the processor."
12497          * Flush the guest TLB regardless of vendor, there is no meaningful
12498          * benefit in relying on the guest to flush the TLB immediately after
12499          * INIT.  A spurious TLB flush is benign and likely negligible from a
12500          * performance perspective.
12501          */
12502         if (init_event)
12503                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12504 }
12505 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12506 
12507 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12508 {
12509         struct kvm_segment cs;
12510 
12511         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12512         cs.selector = vector << 8;
12513         cs.base = vector << 12;
12514         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12515         kvm_rip_write(vcpu, 0);
12516 }
12517 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12518 
12519 int kvm_arch_hardware_enable(void)
12520 {
12521         struct kvm *kvm;
12522         struct kvm_vcpu *vcpu;
12523         unsigned long i;
12524         int ret;
12525         u64 local_tsc;
12526         u64 max_tsc = 0;
12527         bool stable, backwards_tsc = false;
12528 
12529         kvm_user_return_msr_cpu_online();
12530 
12531         ret = kvm_x86_check_processor_compatibility();
12532         if (ret)
12533                 return ret;
12534 
12535         ret = kvm_x86_call(hardware_enable)();
12536         if (ret != 0)
12537                 return ret;
12538 
12539         local_tsc = rdtsc();
12540         stable = !kvm_check_tsc_unstable();
12541         list_for_each_entry(kvm, &vm_list, vm_list) {
12542                 kvm_for_each_vcpu(i, vcpu, kvm) {
12543                         if (!stable && vcpu->cpu == smp_processor_id())
12544                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12545                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12546                                 backwards_tsc = true;
12547                                 if (vcpu->arch.last_host_tsc > max_tsc)
12548                                         max_tsc = vcpu->arch.last_host_tsc;
12549                         }
12550                 }
12551         }
12552 
12553         /*
12554          * Sometimes, even reliable TSCs go backwards.  This happens on
12555          * platforms that reset TSC during suspend or hibernate actions, but
12556          * maintain synchronization.  We must compensate.  Fortunately, we can
12557          * detect that condition here, which happens early in CPU bringup,
12558          * before any KVM threads can be running.  Unfortunately, we can't
12559          * bring the TSCs fully up to date with real time, as we aren't yet far
12560          * enough into CPU bringup that we know how much real time has actually
12561          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12562          * variables that haven't been updated yet.
12563          *
12564          * So we simply find the maximum observed TSC above, then record the
12565          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12566          * the adjustment will be applied.  Note that we accumulate
12567          * adjustments, in case multiple suspend cycles happen before some VCPU
12568          * gets a chance to run again.  In the event that no KVM threads get a
12569          * chance to run, we will miss the entire elapsed period, as we'll have
12570          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12571          * loose cycle time.  This isn't too big a deal, since the loss will be
12572          * uniform across all VCPUs (not to mention the scenario is extremely
12573          * unlikely). It is possible that a second hibernate recovery happens
12574          * much faster than a first, causing the observed TSC here to be
12575          * smaller; this would require additional padding adjustment, which is
12576          * why we set last_host_tsc to the local tsc observed here.
12577          *
12578          * N.B. - this code below runs only on platforms with reliable TSC,
12579          * as that is the only way backwards_tsc is set above.  Also note
12580          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12581          * have the same delta_cyc adjustment applied if backwards_tsc
12582          * is detected.  Note further, this adjustment is only done once,
12583          * as we reset last_host_tsc on all VCPUs to stop this from being
12584          * called multiple times (one for each physical CPU bringup).
12585          *
12586          * Platforms with unreliable TSCs don't have to deal with this, they
12587          * will be compensated by the logic in vcpu_load, which sets the TSC to
12588          * catchup mode.  This will catchup all VCPUs to real time, but cannot
12589          * guarantee that they stay in perfect synchronization.
12590          */
12591         if (backwards_tsc) {
12592                 u64 delta_cyc = max_tsc - local_tsc;
12593                 list_for_each_entry(kvm, &vm_list, vm_list) {
12594                         kvm->arch.backwards_tsc_observed = true;
12595                         kvm_for_each_vcpu(i, vcpu, kvm) {
12596                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12597                                 vcpu->arch.last_host_tsc = local_tsc;
12598                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12599                         }
12600 
12601                         /*
12602                          * We have to disable TSC offset matching.. if you were
12603                          * booting a VM while issuing an S4 host suspend....
12604                          * you may have some problem.  Solving this issue is
12605                          * left as an exercise to the reader.
12606                          */
12607                         kvm->arch.last_tsc_nsec = 0;
12608                         kvm->arch.last_tsc_write = 0;
12609                 }
12610 
12611         }
12612         return 0;
12613 }
12614 
12615 void kvm_arch_hardware_disable(void)
12616 {
12617         kvm_x86_call(hardware_disable)();
12618         drop_user_return_notifiers();
12619 }
12620 
12621 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12622 {
12623         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12624 }
12625 
12626 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12627 {
12628         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12629 }
12630 
12631 void kvm_arch_free_vm(struct kvm *kvm)
12632 {
12633 #if IS_ENABLED(CONFIG_HYPERV)
12634         kfree(kvm->arch.hv_pa_pg);
12635 #endif
12636         __kvm_arch_free_vm(kvm);
12637 }
12638 
12639 
12640 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12641 {
12642         int ret;
12643         unsigned long flags;
12644 
12645         if (!kvm_is_vm_type_supported(type))
12646                 return -EINVAL;
12647 
12648         kvm->arch.vm_type = type;
12649         kvm->arch.has_private_mem =
12650                 (type == KVM_X86_SW_PROTECTED_VM);
12651         /* Decided by the vendor code for other VM types.  */
12652         kvm->arch.pre_fault_allowed =
12653                 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12654 
12655         ret = kvm_page_track_init(kvm);
12656         if (ret)
12657                 goto out;
12658 
12659         kvm_mmu_init_vm(kvm);
12660 
12661         ret = kvm_x86_call(vm_init)(kvm);
12662         if (ret)
12663                 goto out_uninit_mmu;
12664 
12665         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12666         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12667 
12668         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12669         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12670         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12671         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12672                 &kvm->arch.irq_sources_bitmap);
12673 
12674         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12675         mutex_init(&kvm->arch.apic_map_lock);
12676         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12677         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12678 
12679         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12680         pvclock_update_vm_gtod_copy(kvm);
12681         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12682 
12683         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12684         kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12685         kvm->arch.guest_can_read_msr_platform_info = true;
12686         kvm->arch.enable_pmu = enable_pmu;
12687 
12688 #if IS_ENABLED(CONFIG_HYPERV)
12689         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12690         kvm->arch.hv_root_tdp = INVALID_PAGE;
12691 #endif
12692 
12693         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12694         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12695 
12696         kvm_apicv_init(kvm);
12697         kvm_hv_init_vm(kvm);
12698         kvm_xen_init_vm(kvm);
12699 
12700         return 0;
12701 
12702 out_uninit_mmu:
12703         kvm_mmu_uninit_vm(kvm);
12704         kvm_page_track_cleanup(kvm);
12705 out:
12706         return ret;
12707 }
12708 
12709 int kvm_arch_post_init_vm(struct kvm *kvm)
12710 {
12711         return kvm_mmu_post_init_vm(kvm);
12712 }
12713 
12714 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12715 {
12716         vcpu_load(vcpu);
12717         kvm_mmu_unload(vcpu);
12718         vcpu_put(vcpu);
12719 }
12720 
12721 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12722 {
12723         unsigned long i;
12724         struct kvm_vcpu *vcpu;
12725 
12726         kvm_for_each_vcpu(i, vcpu, kvm) {
12727                 kvm_clear_async_pf_completion_queue(vcpu);
12728                 kvm_unload_vcpu_mmu(vcpu);
12729         }
12730 }
12731 
12732 void kvm_arch_sync_events(struct kvm *kvm)
12733 {
12734         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12735         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12736         kvm_free_pit(kvm);
12737 }
12738 
12739 /**
12740  * __x86_set_memory_region: Setup KVM internal memory slot
12741  *
12742  * @kvm: the kvm pointer to the VM.
12743  * @id: the slot ID to setup.
12744  * @gpa: the GPA to install the slot (unused when @size == 0).
12745  * @size: the size of the slot. Set to zero to uninstall a slot.
12746  *
12747  * This function helps to setup a KVM internal memory slot.  Specify
12748  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12749  * slot.  The return code can be one of the following:
12750  *
12751  *   HVA:           on success (uninstall will return a bogus HVA)
12752  *   -errno:        on error
12753  *
12754  * The caller should always use IS_ERR() to check the return value
12755  * before use.  Note, the KVM internal memory slots are guaranteed to
12756  * remain valid and unchanged until the VM is destroyed, i.e., the
12757  * GPA->HVA translation will not change.  However, the HVA is a user
12758  * address, i.e. its accessibility is not guaranteed, and must be
12759  * accessed via __copy_{to,from}_user().
12760  */
12761 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12762                                       u32 size)
12763 {
12764         int i, r;
12765         unsigned long hva, old_npages;
12766         struct kvm_memslots *slots = kvm_memslots(kvm);
12767         struct kvm_memory_slot *slot;
12768 
12769         /* Called with kvm->slots_lock held.  */
12770         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12771                 return ERR_PTR_USR(-EINVAL);
12772 
12773         slot = id_to_memslot(slots, id);
12774         if (size) {
12775                 if (slot && slot->npages)
12776                         return ERR_PTR_USR(-EEXIST);
12777 
12778                 /*
12779                  * MAP_SHARED to prevent internal slot pages from being moved
12780                  * by fork()/COW.
12781                  */
12782                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12783                               MAP_SHARED | MAP_ANONYMOUS, 0);
12784                 if (IS_ERR_VALUE(hva))
12785                         return (void __user *)hva;
12786         } else {
12787                 if (!slot || !slot->npages)
12788                         return NULL;
12789 
12790                 old_npages = slot->npages;
12791                 hva = slot->userspace_addr;
12792         }
12793 
12794         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12795                 struct kvm_userspace_memory_region2 m;
12796 
12797                 m.slot = id | (i << 16);
12798                 m.flags = 0;
12799                 m.guest_phys_addr = gpa;
12800                 m.userspace_addr = hva;
12801                 m.memory_size = size;
12802                 r = __kvm_set_memory_region(kvm, &m);
12803                 if (r < 0)
12804                         return ERR_PTR_USR(r);
12805         }
12806 
12807         if (!size)
12808                 vm_munmap(hva, old_npages * PAGE_SIZE);
12809 
12810         return (void __user *)hva;
12811 }
12812 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12813 
12814 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12815 {
12816         kvm_mmu_pre_destroy_vm(kvm);
12817 }
12818 
12819 void kvm_arch_destroy_vm(struct kvm *kvm)
12820 {
12821         if (current->mm == kvm->mm) {
12822                 /*
12823                  * Free memory regions allocated on behalf of userspace,
12824                  * unless the memory map has changed due to process exit
12825                  * or fd copying.
12826                  */
12827                 mutex_lock(&kvm->slots_lock);
12828                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12829                                         0, 0);
12830                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12831                                         0, 0);
12832                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12833                 mutex_unlock(&kvm->slots_lock);
12834         }
12835         kvm_unload_vcpu_mmus(kvm);
12836         kvm_x86_call(vm_destroy)(kvm);
12837         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12838         kvm_pic_destroy(kvm);
12839         kvm_ioapic_destroy(kvm);
12840         kvm_destroy_vcpus(kvm);
12841         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12842         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12843         kvm_mmu_uninit_vm(kvm);
12844         kvm_page_track_cleanup(kvm);
12845         kvm_xen_destroy_vm(kvm);
12846         kvm_hv_destroy_vm(kvm);
12847 }
12848 
12849 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12850 {
12851         int i;
12852 
12853         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12854                 vfree(slot->arch.rmap[i]);
12855                 slot->arch.rmap[i] = NULL;
12856         }
12857 }
12858 
12859 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12860 {
12861         int i;
12862 
12863         memslot_rmap_free(slot);
12864 
12865         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12866                 vfree(slot->arch.lpage_info[i - 1]);
12867                 slot->arch.lpage_info[i - 1] = NULL;
12868         }
12869 
12870         kvm_page_track_free_memslot(slot);
12871 }
12872 
12873 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12874 {
12875         const int sz = sizeof(*slot->arch.rmap[0]);
12876         int i;
12877 
12878         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12879                 int level = i + 1;
12880                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12881 
12882                 if (slot->arch.rmap[i])
12883                         continue;
12884 
12885                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12886                 if (!slot->arch.rmap[i]) {
12887                         memslot_rmap_free(slot);
12888                         return -ENOMEM;
12889                 }
12890         }
12891 
12892         return 0;
12893 }
12894 
12895 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12896                                       struct kvm_memory_slot *slot)
12897 {
12898         unsigned long npages = slot->npages;
12899         int i, r;
12900 
12901         /*
12902          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12903          * old arrays will be freed by __kvm_set_memory_region() if installing
12904          * the new memslot is successful.
12905          */
12906         memset(&slot->arch, 0, sizeof(slot->arch));
12907 
12908         if (kvm_memslots_have_rmaps(kvm)) {
12909                 r = memslot_rmap_alloc(slot, npages);
12910                 if (r)
12911                         return r;
12912         }
12913 
12914         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12915                 struct kvm_lpage_info *linfo;
12916                 unsigned long ugfn;
12917                 int lpages;
12918                 int level = i + 1;
12919 
12920                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12921 
12922                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12923                 if (!linfo)
12924                         goto out_free;
12925 
12926                 slot->arch.lpage_info[i - 1] = linfo;
12927 
12928                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12929                         linfo[0].disallow_lpage = 1;
12930                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12931                         linfo[lpages - 1].disallow_lpage = 1;
12932                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12933                 /*
12934                  * If the gfn and userspace address are not aligned wrt each
12935                  * other, disable large page support for this slot.
12936                  */
12937                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12938                         unsigned long j;
12939 
12940                         for (j = 0; j < lpages; ++j)
12941                                 linfo[j].disallow_lpage = 1;
12942                 }
12943         }
12944 
12945 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12946         kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12947 #endif
12948 
12949         if (kvm_page_track_create_memslot(kvm, slot, npages))
12950                 goto out_free;
12951 
12952         return 0;
12953 
12954 out_free:
12955         memslot_rmap_free(slot);
12956 
12957         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12958                 vfree(slot->arch.lpage_info[i - 1]);
12959                 slot->arch.lpage_info[i - 1] = NULL;
12960         }
12961         return -ENOMEM;
12962 }
12963 
12964 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12965 {
12966         struct kvm_vcpu *vcpu;
12967         unsigned long i;
12968 
12969         /*
12970          * memslots->generation has been incremented.
12971          * mmio generation may have reached its maximum value.
12972          */
12973         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12974 
12975         /* Force re-initialization of steal_time cache */
12976         kvm_for_each_vcpu(i, vcpu, kvm)
12977                 kvm_vcpu_kick(vcpu);
12978 }
12979 
12980 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12981                                    const struct kvm_memory_slot *old,
12982                                    struct kvm_memory_slot *new,
12983                                    enum kvm_mr_change change)
12984 {
12985         /*
12986          * KVM doesn't support moving memslots when there are external page
12987          * trackers attached to the VM, i.e. if KVMGT is in use.
12988          */
12989         if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12990                 return -EINVAL;
12991 
12992         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12993                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12994                         return -EINVAL;
12995 
12996                 return kvm_alloc_memslot_metadata(kvm, new);
12997         }
12998 
12999         if (change == KVM_MR_FLAGS_ONLY)
13000                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13001         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13002                 return -EIO;
13003 
13004         return 0;
13005 }
13006 
13007 
13008 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13009 {
13010         int nr_slots;
13011 
13012         if (!kvm_x86_ops.cpu_dirty_log_size)
13013                 return;
13014 
13015         nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13016         if ((enable && nr_slots == 1) || !nr_slots)
13017                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13018 }
13019 
13020 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13021                                      struct kvm_memory_slot *old,
13022                                      const struct kvm_memory_slot *new,
13023                                      enum kvm_mr_change change)
13024 {
13025         u32 old_flags = old ? old->flags : 0;
13026         u32 new_flags = new ? new->flags : 0;
13027         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13028 
13029         /*
13030          * Update CPU dirty logging if dirty logging is being toggled.  This
13031          * applies to all operations.
13032          */
13033         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13034                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13035 
13036         /*
13037          * Nothing more to do for RO slots (which can't be dirtied and can't be
13038          * made writable) or CREATE/MOVE/DELETE of a slot.
13039          *
13040          * For a memslot with dirty logging disabled:
13041          * CREATE:      No dirty mappings will already exist.
13042          * MOVE/DELETE: The old mappings will already have been cleaned up by
13043          *              kvm_arch_flush_shadow_memslot()
13044          *
13045          * For a memslot with dirty logging enabled:
13046          * CREATE:      No shadow pages exist, thus nothing to write-protect
13047          *              and no dirty bits to clear.
13048          * MOVE/DELETE: The old mappings will already have been cleaned up by
13049          *              kvm_arch_flush_shadow_memslot().
13050          */
13051         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13052                 return;
13053 
13054         /*
13055          * READONLY and non-flags changes were filtered out above, and the only
13056          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13057          * logging isn't being toggled on or off.
13058          */
13059         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13060                 return;
13061 
13062         if (!log_dirty_pages) {
13063                 /*
13064                  * Dirty logging tracks sptes in 4k granularity, meaning that
13065                  * large sptes have to be split.  If live migration succeeds,
13066                  * the guest in the source machine will be destroyed and large
13067                  * sptes will be created in the destination.  However, if the
13068                  * guest continues to run in the source machine (for example if
13069                  * live migration fails), small sptes will remain around and
13070                  * cause bad performance.
13071                  *
13072                  * Scan sptes if dirty logging has been stopped, dropping those
13073                  * which can be collapsed into a single large-page spte.  Later
13074                  * page faults will create the large-page sptes.
13075                  */
13076                 kvm_mmu_zap_collapsible_sptes(kvm, new);
13077         } else {
13078                 /*
13079                  * Initially-all-set does not require write protecting any page,
13080                  * because they're all assumed to be dirty.
13081                  */
13082                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13083                         return;
13084 
13085                 if (READ_ONCE(eager_page_split))
13086                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13087 
13088                 if (kvm_x86_ops.cpu_dirty_log_size) {
13089                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13090                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13091                 } else {
13092                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13093                 }
13094 
13095                 /*
13096                  * Unconditionally flush the TLBs after enabling dirty logging.
13097                  * A flush is almost always going to be necessary (see below),
13098                  * and unconditionally flushing allows the helpers to omit
13099                  * the subtly complex checks when removing write access.
13100                  *
13101                  * Do the flush outside of mmu_lock to reduce the amount of
13102                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
13103                  * safe as KVM only needs to guarantee the slot is fully
13104                  * write-protected before returning to userspace, i.e. before
13105                  * userspace can consume the dirty status.
13106                  *
13107                  * Flushing outside of mmu_lock requires KVM to be careful when
13108                  * making decisions based on writable status of an SPTE, e.g. a
13109                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
13110                  *
13111                  * Specifically, KVM also write-protects guest page tables to
13112                  * monitor changes when using shadow paging, and must guarantee
13113                  * no CPUs can write to those page before mmu_lock is dropped.
13114                  * Because CPUs may have stale TLB entries at this point, a
13115                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
13116                  *
13117                  * KVM also allows making SPTES writable outside of mmu_lock,
13118                  * e.g. to allow dirty logging without taking mmu_lock.
13119                  *
13120                  * To handle these scenarios, KVM uses a separate software-only
13121                  * bit (MMU-writable) to track if a SPTE is !writable due to
13122                  * a guest page table being write-protected (KVM clears the
13123                  * MMU-writable flag when write-protecting for shadow paging).
13124                  *
13125                  * The use of MMU-writable is also the primary motivation for
13126                  * the unconditional flush.  Because KVM must guarantee that a
13127                  * CPU doesn't contain stale, writable TLB entries for a
13128                  * !MMU-writable SPTE, KVM must flush if it encounters any
13129                  * MMU-writable SPTE regardless of whether the actual hardware
13130                  * writable bit was set.  I.e. KVM is almost guaranteed to need
13131                  * to flush, while unconditionally flushing allows the "remove
13132                  * write access" helpers to ignore MMU-writable entirely.
13133                  *
13134                  * See is_writable_pte() for more details (the case involving
13135                  * access-tracked SPTEs is particularly relevant).
13136                  */
13137                 kvm_flush_remote_tlbs_memslot(kvm, new);
13138         }
13139 }
13140 
13141 void kvm_arch_commit_memory_region(struct kvm *kvm,
13142                                 struct kvm_memory_slot *old,
13143                                 const struct kvm_memory_slot *new,
13144                                 enum kvm_mr_change change)
13145 {
13146         if (change == KVM_MR_DELETE)
13147                 kvm_page_track_delete_slot(kvm, old);
13148 
13149         if (!kvm->arch.n_requested_mmu_pages &&
13150             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13151                 unsigned long nr_mmu_pages;
13152 
13153                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13154                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13155                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13156         }
13157 
13158         kvm_mmu_slot_apply_flags(kvm, old, new, change);
13159 
13160         /* Free the arrays associated with the old memslot. */
13161         if (change == KVM_MR_MOVE)
13162                 kvm_arch_free_memslot(kvm, old);
13163 }
13164 
13165 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13166 {
13167         if (!list_empty_careful(&vcpu->async_pf.done))
13168                 return true;
13169 
13170         if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13171             kvm_apic_init_sipi_allowed(vcpu))
13172                 return true;
13173 
13174         if (vcpu->arch.pv.pv_unhalted)
13175                 return true;
13176 
13177         if (kvm_is_exception_pending(vcpu))
13178                 return true;
13179 
13180         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13181             (vcpu->arch.nmi_pending &&
13182              kvm_x86_call(nmi_allowed)(vcpu, false)))
13183                 return true;
13184 
13185 #ifdef CONFIG_KVM_SMM
13186         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13187             (vcpu->arch.smi_pending &&
13188              kvm_x86_call(smi_allowed)(vcpu, false)))
13189                 return true;
13190 #endif
13191 
13192         if (kvm_test_request(KVM_REQ_PMI, vcpu))
13193                 return true;
13194 
13195         if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
13196                 return true;
13197 
13198         if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
13199                 return true;
13200 
13201         if (kvm_hv_has_stimer_pending(vcpu))
13202                 return true;
13203 
13204         if (is_guest_mode(vcpu) &&
13205             kvm_x86_ops.nested_ops->has_events &&
13206             kvm_x86_ops.nested_ops->has_events(vcpu, false))
13207                 return true;
13208 
13209         if (kvm_xen_has_pending_events(vcpu))
13210                 return true;
13211 
13212         return false;
13213 }
13214 
13215 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13216 {
13217         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13218 }
13219 
13220 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13221 {
13222         return kvm_vcpu_apicv_active(vcpu) &&
13223                kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
13224 }
13225 
13226 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
13227 {
13228         return vcpu->arch.preempted_in_kernel;
13229 }
13230 
13231 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13232 {
13233         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13234                 return true;
13235 
13236         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13237 #ifdef CONFIG_KVM_SMM
13238                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
13239 #endif
13240                  kvm_test_request(KVM_REQ_EVENT, vcpu))
13241                 return true;
13242 
13243         return kvm_arch_dy_has_pending_interrupt(vcpu);
13244 }
13245 
13246 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13247 {
13248         if (vcpu->arch.guest_state_protected)
13249                 return true;
13250 
13251         return kvm_x86_call(get_cpl)(vcpu) == 0;
13252 }
13253 
13254 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13255 {
13256         return kvm_rip_read(vcpu);
13257 }
13258 
13259 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13260 {
13261         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13262 }
13263 
13264 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13265 {
13266         return kvm_x86_call(interrupt_allowed)(vcpu, false);
13267 }
13268 
13269 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13270 {
13271         /* Can't read the RIP when guest state is protected, just return 0 */
13272         if (vcpu->arch.guest_state_protected)
13273                 return 0;
13274 
13275         if (is_64_bit_mode(vcpu))
13276                 return kvm_rip_read(vcpu);
13277         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13278                      kvm_rip_read(vcpu));
13279 }
13280 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13281 
13282 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13283 {
13284         return kvm_get_linear_rip(vcpu) == linear_rip;
13285 }
13286 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13287 
13288 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13289 {
13290         unsigned long rflags;
13291 
13292         rflags = kvm_x86_call(get_rflags)(vcpu);
13293         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13294                 rflags &= ~X86_EFLAGS_TF;
13295         return rflags;
13296 }
13297 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13298 
13299 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13300 {
13301         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13302             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13303                 rflags |= X86_EFLAGS_TF;
13304         kvm_x86_call(set_rflags)(vcpu, rflags);
13305 }
13306 
13307 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13308 {
13309         __kvm_set_rflags(vcpu, rflags);
13310         kvm_make_request(KVM_REQ_EVENT, vcpu);
13311 }
13312 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13313 
13314 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13315 {
13316         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13317 
13318         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13319 }
13320 
13321 static inline u32 kvm_async_pf_next_probe(u32 key)
13322 {
13323         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13324 }
13325 
13326 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13327 {
13328         u32 key = kvm_async_pf_hash_fn(gfn);
13329 
13330         while (vcpu->arch.apf.gfns[key] != ~0)
13331                 key = kvm_async_pf_next_probe(key);
13332 
13333         vcpu->arch.apf.gfns[key] = gfn;
13334 }
13335 
13336 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13337 {
13338         int i;
13339         u32 key = kvm_async_pf_hash_fn(gfn);
13340 
13341         for (i = 0; i < ASYNC_PF_PER_VCPU &&
13342                      (vcpu->arch.apf.gfns[key] != gfn &&
13343                       vcpu->arch.apf.gfns[key] != ~0); i++)
13344                 key = kvm_async_pf_next_probe(key);
13345 
13346         return key;
13347 }
13348 
13349 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13350 {
13351         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13352 }
13353 
13354 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13355 {
13356         u32 i, j, k;
13357 
13358         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13359 
13360         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13361                 return;
13362 
13363         while (true) {
13364                 vcpu->arch.apf.gfns[i] = ~0;
13365                 do {
13366                         j = kvm_async_pf_next_probe(j);
13367                         if (vcpu->arch.apf.gfns[j] == ~0)
13368                                 return;
13369                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13370                         /*
13371                          * k lies cyclically in ]i,j]
13372                          * |    i.k.j |
13373                          * |....j i.k.| or  |.k..j i...|
13374                          */
13375                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13376                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13377                 i = j;
13378         }
13379 }
13380 
13381 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13382 {
13383         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13384 
13385         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13386                                       sizeof(reason));
13387 }
13388 
13389 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13390 {
13391         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13392 
13393         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13394                                              &token, offset, sizeof(token));
13395 }
13396 
13397 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13398 {
13399         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13400         u32 val;
13401 
13402         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13403                                          &val, offset, sizeof(val)))
13404                 return false;
13405 
13406         return !val;
13407 }
13408 
13409 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13410 {
13411 
13412         if (!kvm_pv_async_pf_enabled(vcpu))
13413                 return false;
13414 
13415         if (vcpu->arch.apf.send_user_only &&
13416             kvm_x86_call(get_cpl)(vcpu) == 0)
13417                 return false;
13418 
13419         if (is_guest_mode(vcpu)) {
13420                 /*
13421                  * L1 needs to opt into the special #PF vmexits that are
13422                  * used to deliver async page faults.
13423                  */
13424                 return vcpu->arch.apf.delivery_as_pf_vmexit;
13425         } else {
13426                 /*
13427                  * Play it safe in case the guest temporarily disables paging.
13428                  * The real mode IDT in particular is unlikely to have a #PF
13429                  * exception setup.
13430                  */
13431                 return is_paging(vcpu);
13432         }
13433 }
13434 
13435 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13436 {
13437         if (unlikely(!lapic_in_kernel(vcpu) ||
13438                      kvm_event_needs_reinjection(vcpu) ||
13439                      kvm_is_exception_pending(vcpu)))
13440                 return false;
13441 
13442         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13443                 return false;
13444 
13445         /*
13446          * If interrupts are off we cannot even use an artificial
13447          * halt state.
13448          */
13449         return kvm_arch_interrupt_allowed(vcpu);
13450 }
13451 
13452 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13453                                      struct kvm_async_pf *work)
13454 {
13455         struct x86_exception fault;
13456 
13457         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13458         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13459 
13460         if (kvm_can_deliver_async_pf(vcpu) &&
13461             !apf_put_user_notpresent(vcpu)) {
13462                 fault.vector = PF_VECTOR;
13463                 fault.error_code_valid = true;
13464                 fault.error_code = 0;
13465                 fault.nested_page_fault = false;
13466                 fault.address = work->arch.token;
13467                 fault.async_page_fault = true;
13468                 kvm_inject_page_fault(vcpu, &fault);
13469                 return true;
13470         } else {
13471                 /*
13472                  * It is not possible to deliver a paravirtualized asynchronous
13473                  * page fault, but putting the guest in an artificial halt state
13474                  * can be beneficial nevertheless: if an interrupt arrives, we
13475                  * can deliver it timely and perhaps the guest will schedule
13476                  * another process.  When the instruction that triggered a page
13477                  * fault is retried, hopefully the page will be ready in the host.
13478                  */
13479                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13480                 return false;
13481         }
13482 }
13483 
13484 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13485                                  struct kvm_async_pf *work)
13486 {
13487         struct kvm_lapic_irq irq = {
13488                 .delivery_mode = APIC_DM_FIXED,
13489                 .vector = vcpu->arch.apf.vec
13490         };
13491 
13492         if (work->wakeup_all)
13493                 work->arch.token = ~0; /* broadcast wakeup */
13494         else
13495                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13496         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13497 
13498         if ((work->wakeup_all || work->notpresent_injected) &&
13499             kvm_pv_async_pf_enabled(vcpu) &&
13500             !apf_put_user_ready(vcpu, work->arch.token)) {
13501                 vcpu->arch.apf.pageready_pending = true;
13502                 kvm_apic_set_irq(vcpu, &irq, NULL);
13503         }
13504 
13505         vcpu->arch.apf.halted = false;
13506         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13507 }
13508 
13509 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13510 {
13511         kvm_make_request(KVM_REQ_APF_READY, vcpu);
13512         if (!vcpu->arch.apf.pageready_pending)
13513                 kvm_vcpu_kick(vcpu);
13514 }
13515 
13516 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13517 {
13518         if (!kvm_pv_async_pf_enabled(vcpu))
13519                 return true;
13520         else
13521                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13522 }
13523 
13524 void kvm_arch_start_assignment(struct kvm *kvm)
13525 {
13526         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13527                 kvm_x86_call(pi_start_assignment)(kvm);
13528 }
13529 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13530 
13531 void kvm_arch_end_assignment(struct kvm *kvm)
13532 {
13533         atomic_dec(&kvm->arch.assigned_device_count);
13534 }
13535 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13536 
13537 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13538 {
13539         return raw_atomic_read(&kvm->arch.assigned_device_count);
13540 }
13541 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13542 
13543 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13544 {
13545         /*
13546          * Non-coherent DMA assignment and de-assignment may affect whether or
13547          * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13548          * due to toggling the "ignore PAT" bit.  Zap all SPTEs when the first
13549          * (or last) non-coherent device is (un)registered to so that new SPTEs
13550          * with the correct "ignore guest PAT" setting are created.
13551          */
13552         if (kvm_mmu_may_ignore_guest_pat())
13553                 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13554 }
13555 
13556 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13557 {
13558         if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13559                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13560 }
13561 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13562 
13563 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13564 {
13565         if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13566                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13567 }
13568 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13569 
13570 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13571 {
13572         return atomic_read(&kvm->arch.noncoherent_dma_count);
13573 }
13574 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13575 
13576 bool kvm_arch_has_irq_bypass(void)
13577 {
13578         return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13579 }
13580 
13581 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13582                                       struct irq_bypass_producer *prod)
13583 {
13584         struct kvm_kernel_irqfd *irqfd =
13585                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13586         int ret;
13587 
13588         irqfd->producer = prod;
13589         kvm_arch_start_assignment(irqfd->kvm);
13590         ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13591                                            prod->irq, irqfd->gsi, 1);
13592         if (ret)
13593                 kvm_arch_end_assignment(irqfd->kvm);
13594 
13595         return ret;
13596 }
13597 
13598 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13599                                       struct irq_bypass_producer *prod)
13600 {
13601         int ret;
13602         struct kvm_kernel_irqfd *irqfd =
13603                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13604 
13605         WARN_ON(irqfd->producer != prod);
13606         irqfd->producer = NULL;
13607 
13608         /*
13609          * When producer of consumer is unregistered, we change back to
13610          * remapped mode, so we can re-use the current implementation
13611          * when the irq is masked/disabled or the consumer side (KVM
13612          * int this case doesn't want to receive the interrupts.
13613         */
13614         ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13615                                            prod->irq, irqfd->gsi, 0);
13616         if (ret)
13617                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13618                        " fails: %d\n", irqfd->consumer.token, ret);
13619 
13620         kvm_arch_end_assignment(irqfd->kvm);
13621 }
13622 
13623 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13624                                    uint32_t guest_irq, bool set)
13625 {
13626         return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13627 }
13628 
13629 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13630                                   struct kvm_kernel_irq_routing_entry *new)
13631 {
13632         if (new->type != KVM_IRQ_ROUTING_MSI)
13633                 return true;
13634 
13635         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13636 }
13637 
13638 bool kvm_vector_hashing_enabled(void)
13639 {
13640         return vector_hashing;
13641 }
13642 
13643 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13644 {
13645         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13646 }
13647 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13648 
13649 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
13650 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13651 {
13652         return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13653 }
13654 #endif
13655 
13656 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
13657 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13658 {
13659         kvm_x86_call(gmem_invalidate)(start, end);
13660 }
13661 #endif
13662 
13663 int kvm_spec_ctrl_test_value(u64 value)
13664 {
13665         /*
13666          * test that setting IA32_SPEC_CTRL to given value
13667          * is allowed by the host processor
13668          */
13669 
13670         u64 saved_value;
13671         unsigned long flags;
13672         int ret = 0;
13673 
13674         local_irq_save(flags);
13675 
13676         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13677                 ret = 1;
13678         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13679                 ret = 1;
13680         else
13681                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13682 
13683         local_irq_restore(flags);
13684 
13685         return ret;
13686 }
13687 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13688 
13689 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13690 {
13691         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13692         struct x86_exception fault;
13693         u64 access = error_code &
13694                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13695 
13696         if (!(error_code & PFERR_PRESENT_MASK) ||
13697             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13698                 /*
13699                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13700                  * tables probably do not match the TLB.  Just proceed
13701                  * with the error code that the processor gave.
13702                  */
13703                 fault.vector = PF_VECTOR;
13704                 fault.error_code_valid = true;
13705                 fault.error_code = error_code;
13706                 fault.nested_page_fault = false;
13707                 fault.address = gva;
13708                 fault.async_page_fault = false;
13709         }
13710         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13711 }
13712 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13713 
13714 /*
13715  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13716  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13717  * indicates whether exit to userspace is needed.
13718  */
13719 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13720                               struct x86_exception *e)
13721 {
13722         if (r == X86EMUL_PROPAGATE_FAULT) {
13723                 if (KVM_BUG_ON(!e, vcpu->kvm))
13724                         return -EIO;
13725 
13726                 kvm_inject_emulated_page_fault(vcpu, e);
13727                 return 1;
13728         }
13729 
13730         /*
13731          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13732          * while handling a VMX instruction KVM could've handled the request
13733          * correctly by exiting to userspace and performing I/O but there
13734          * doesn't seem to be a real use-case behind such requests, just return
13735          * KVM_EXIT_INTERNAL_ERROR for now.
13736          */
13737         kvm_prepare_emulation_failure_exit(vcpu);
13738 
13739         return 0;
13740 }
13741 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13742 
13743 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13744 {
13745         bool pcid_enabled;
13746         struct x86_exception e;
13747         struct {
13748                 u64 pcid;
13749                 u64 gla;
13750         } operand;
13751         int r;
13752 
13753         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13754         if (r != X86EMUL_CONTINUE)
13755                 return kvm_handle_memory_failure(vcpu, r, &e);
13756 
13757         if (operand.pcid >> 12 != 0) {
13758                 kvm_inject_gp(vcpu, 0);
13759                 return 1;
13760         }
13761 
13762         pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13763 
13764         switch (type) {
13765         case INVPCID_TYPE_INDIV_ADDR:
13766                 /*
13767                  * LAM doesn't apply to addresses that are inputs to TLB
13768                  * invalidation.
13769                  */
13770                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13771                     is_noncanonical_address(operand.gla, vcpu)) {
13772                         kvm_inject_gp(vcpu, 0);
13773                         return 1;
13774                 }
13775                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13776                 return kvm_skip_emulated_instruction(vcpu);
13777 
13778         case INVPCID_TYPE_SINGLE_CTXT:
13779                 if (!pcid_enabled && (operand.pcid != 0)) {
13780                         kvm_inject_gp(vcpu, 0);
13781                         return 1;
13782                 }
13783 
13784                 kvm_invalidate_pcid(vcpu, operand.pcid);
13785                 return kvm_skip_emulated_instruction(vcpu);
13786 
13787         case INVPCID_TYPE_ALL_NON_GLOBAL:
13788                 /*
13789                  * Currently, KVM doesn't mark global entries in the shadow
13790                  * page tables, so a non-global flush just degenerates to a
13791                  * global flush. If needed, we could optimize this later by
13792                  * keeping track of global entries in shadow page tables.
13793                  */
13794 
13795                 fallthrough;
13796         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13797                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13798                 return kvm_skip_emulated_instruction(vcpu);
13799 
13800         default:
13801                 kvm_inject_gp(vcpu, 0);
13802                 return 1;
13803         }
13804 }
13805 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13806 
13807 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13808 {
13809         struct kvm_run *run = vcpu->run;
13810         struct kvm_mmio_fragment *frag;
13811         unsigned int len;
13812 
13813         BUG_ON(!vcpu->mmio_needed);
13814 
13815         /* Complete previous fragment */
13816         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13817         len = min(8u, frag->len);
13818         if (!vcpu->mmio_is_write)
13819                 memcpy(frag->data, run->mmio.data, len);
13820 
13821         if (frag->len <= 8) {
13822                 /* Switch to the next fragment. */
13823                 frag++;
13824                 vcpu->mmio_cur_fragment++;
13825         } else {
13826                 /* Go forward to the next mmio piece. */
13827                 frag->data += len;
13828                 frag->gpa += len;
13829                 frag->len -= len;
13830         }
13831 
13832         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13833                 vcpu->mmio_needed = 0;
13834 
13835                 // VMG change, at this point, we're always done
13836                 // RIP has already been advanced
13837                 return 1;
13838         }
13839 
13840         // More MMIO is needed
13841         run->mmio.phys_addr = frag->gpa;
13842         run->mmio.len = min(8u, frag->len);
13843         run->mmio.is_write = vcpu->mmio_is_write;
13844         if (run->mmio.is_write)
13845                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13846         run->exit_reason = KVM_EXIT_MMIO;
13847 
13848         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13849 
13850         return 0;
13851 }
13852 
13853 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13854                           void *data)
13855 {
13856         int handled;
13857         struct kvm_mmio_fragment *frag;
13858 
13859         if (!data)
13860                 return -EINVAL;
13861 
13862         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13863         if (handled == bytes)
13864                 return 1;
13865 
13866         bytes -= handled;
13867         gpa += handled;
13868         data += handled;
13869 
13870         /*TODO: Check if need to increment number of frags */
13871         frag = vcpu->mmio_fragments;
13872         vcpu->mmio_nr_fragments = 1;
13873         frag->len = bytes;
13874         frag->gpa = gpa;
13875         frag->data = data;
13876 
13877         vcpu->mmio_needed = 1;
13878         vcpu->mmio_cur_fragment = 0;
13879 
13880         vcpu->run->mmio.phys_addr = gpa;
13881         vcpu->run->mmio.len = min(8u, frag->len);
13882         vcpu->run->mmio.is_write = 1;
13883         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13884         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13885 
13886         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13887 
13888         return 0;
13889 }
13890 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13891 
13892 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13893                          void *data)
13894 {
13895         int handled;
13896         struct kvm_mmio_fragment *frag;
13897 
13898         if (!data)
13899                 return -EINVAL;
13900 
13901         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13902         if (handled == bytes)
13903                 return 1;
13904 
13905         bytes -= handled;
13906         gpa += handled;
13907         data += handled;
13908 
13909         /*TODO: Check if need to increment number of frags */
13910         frag = vcpu->mmio_fragments;
13911         vcpu->mmio_nr_fragments = 1;
13912         frag->len = bytes;
13913         frag->gpa = gpa;
13914         frag->data = data;
13915 
13916         vcpu->mmio_needed = 1;
13917         vcpu->mmio_cur_fragment = 0;
13918 
13919         vcpu->run->mmio.phys_addr = gpa;
13920         vcpu->run->mmio.len = min(8u, frag->len);
13921         vcpu->run->mmio.is_write = 0;
13922         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13923 
13924         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13925 
13926         return 0;
13927 }
13928 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13929 
13930 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13931 {
13932         vcpu->arch.sev_pio_count -= count;
13933         vcpu->arch.sev_pio_data += count * size;
13934 }
13935 
13936 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13937                            unsigned int port);
13938 
13939 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13940 {
13941         int size = vcpu->arch.pio.size;
13942         int port = vcpu->arch.pio.port;
13943 
13944         vcpu->arch.pio.count = 0;
13945         if (vcpu->arch.sev_pio_count)
13946                 return kvm_sev_es_outs(vcpu, size, port);
13947         return 1;
13948 }
13949 
13950 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13951                            unsigned int port)
13952 {
13953         for (;;) {
13954                 unsigned int count =
13955                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13956                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13957 
13958                 /* memcpy done already by emulator_pio_out.  */
13959                 advance_sev_es_emulated_pio(vcpu, count, size);
13960                 if (!ret)
13961                         break;
13962 
13963                 /* Emulation done by the kernel.  */
13964                 if (!vcpu->arch.sev_pio_count)
13965                         return 1;
13966         }
13967 
13968         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13969         return 0;
13970 }
13971 
13972 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13973                           unsigned int port);
13974 
13975 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13976 {
13977         unsigned count = vcpu->arch.pio.count;
13978         int size = vcpu->arch.pio.size;
13979         int port = vcpu->arch.pio.port;
13980 
13981         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13982         advance_sev_es_emulated_pio(vcpu, count, size);
13983         if (vcpu->arch.sev_pio_count)
13984                 return kvm_sev_es_ins(vcpu, size, port);
13985         return 1;
13986 }
13987 
13988 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13989                           unsigned int port)
13990 {
13991         for (;;) {
13992                 unsigned int count =
13993                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13994                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13995                         break;
13996 
13997                 /* Emulation done by the kernel.  */
13998                 advance_sev_es_emulated_pio(vcpu, count, size);
13999                 if (!vcpu->arch.sev_pio_count)
14000                         return 1;
14001         }
14002 
14003         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
14004         return 0;
14005 }
14006 
14007 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14008                          unsigned int port, void *data,  unsigned int count,
14009                          int in)
14010 {
14011         vcpu->arch.sev_pio_data = data;
14012         vcpu->arch.sev_pio_count = count;
14013         return in ? kvm_sev_es_ins(vcpu, size, port)
14014                   : kvm_sev_es_outs(vcpu, size, port);
14015 }
14016 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
14017 
14018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14019 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14030 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14031 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14032 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14033 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14034 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14035 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14036 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
14037 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14038 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14039 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14040 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14041 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14042 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14043 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14044 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14045 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14046 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14047 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14048 
14049 static int __init kvm_x86_init(void)
14050 {
14051         kvm_mmu_x86_module_init();
14052         mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14053         return 0;
14054 }
14055 module_init(kvm_x86_init);
14056 
14057 static void __exit kvm_x86_exit(void)
14058 {
14059         WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14060 }
14061 module_exit(kvm_x86_exit);
14062 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php