~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/lib/insn-eval.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Utility functions for x86 operand and address decoding
  3  *
  4  * Copyright (C) Intel Corporation 2017
  5  */
  6 #include <linux/kernel.h>
  7 #include <linux/string.h>
  8 #include <linux/ratelimit.h>
  9 #include <linux/mmu_context.h>
 10 #include <asm/desc_defs.h>
 11 #include <asm/desc.h>
 12 #include <asm/inat.h>
 13 #include <asm/insn.h>
 14 #include <asm/insn-eval.h>
 15 #include <asm/ldt.h>
 16 #include <asm/vm86.h>
 17 
 18 #undef pr_fmt
 19 #define pr_fmt(fmt) "insn: " fmt
 20 
 21 enum reg_type {
 22         REG_TYPE_RM = 0,
 23         REG_TYPE_REG,
 24         REG_TYPE_INDEX,
 25         REG_TYPE_BASE,
 26 };
 27 
 28 /**
 29  * is_string_insn() - Determine if instruction is a string instruction
 30  * @insn:       Instruction containing the opcode to inspect
 31  *
 32  * Returns:
 33  *
 34  * true if the instruction, determined by the opcode, is any of the
 35  * string instructions as defined in the Intel Software Development manual.
 36  * False otherwise.
 37  */
 38 static bool is_string_insn(struct insn *insn)
 39 {
 40         /* All string instructions have a 1-byte opcode. */
 41         if (insn->opcode.nbytes != 1)
 42                 return false;
 43 
 44         switch (insn->opcode.bytes[0]) {
 45         case 0x6c ... 0x6f:     /* INS, OUTS */
 46         case 0xa4 ... 0xa7:     /* MOVS, CMPS */
 47         case 0xaa ... 0xaf:     /* STOS, LODS, SCAS */
 48                 return true;
 49         default:
 50                 return false;
 51         }
 52 }
 53 
 54 /**
 55  * insn_has_rep_prefix() - Determine if instruction has a REP prefix
 56  * @insn:       Instruction containing the prefix to inspect
 57  *
 58  * Returns:
 59  *
 60  * true if the instruction has a REP prefix, false if not.
 61  */
 62 bool insn_has_rep_prefix(struct insn *insn)
 63 {
 64         insn_byte_t p;
 65         int i;
 66 
 67         insn_get_prefixes(insn);
 68 
 69         for_each_insn_prefix(insn, i, p) {
 70                 if (p == 0xf2 || p == 0xf3)
 71                         return true;
 72         }
 73 
 74         return false;
 75 }
 76 
 77 /**
 78  * get_seg_reg_override_idx() - obtain segment register override index
 79  * @insn:       Valid instruction with segment override prefixes
 80  *
 81  * Inspect the instruction prefixes in @insn and find segment overrides, if any.
 82  *
 83  * Returns:
 84  *
 85  * A constant identifying the segment register to use, among CS, SS, DS,
 86  * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
 87  * prefixes were found.
 88  *
 89  * -EINVAL in case of error.
 90  */
 91 static int get_seg_reg_override_idx(struct insn *insn)
 92 {
 93         int idx = INAT_SEG_REG_DEFAULT;
 94         int num_overrides = 0, i;
 95         insn_byte_t p;
 96 
 97         insn_get_prefixes(insn);
 98 
 99         /* Look for any segment override prefixes. */
100         for_each_insn_prefix(insn, i, p) {
101                 insn_attr_t attr;
102 
103                 attr = inat_get_opcode_attribute(p);
104                 switch (attr) {
105                 case INAT_MAKE_PREFIX(INAT_PFX_CS):
106                         idx = INAT_SEG_REG_CS;
107                         num_overrides++;
108                         break;
109                 case INAT_MAKE_PREFIX(INAT_PFX_SS):
110                         idx = INAT_SEG_REG_SS;
111                         num_overrides++;
112                         break;
113                 case INAT_MAKE_PREFIX(INAT_PFX_DS):
114                         idx = INAT_SEG_REG_DS;
115                         num_overrides++;
116                         break;
117                 case INAT_MAKE_PREFIX(INAT_PFX_ES):
118                         idx = INAT_SEG_REG_ES;
119                         num_overrides++;
120                         break;
121                 case INAT_MAKE_PREFIX(INAT_PFX_FS):
122                         idx = INAT_SEG_REG_FS;
123                         num_overrides++;
124                         break;
125                 case INAT_MAKE_PREFIX(INAT_PFX_GS):
126                         idx = INAT_SEG_REG_GS;
127                         num_overrides++;
128                         break;
129                 /* No default action needed. */
130                 }
131         }
132 
133         /* More than one segment override prefix leads to undefined behavior. */
134         if (num_overrides > 1)
135                 return -EINVAL;
136 
137         return idx;
138 }
139 
140 /**
141  * check_seg_overrides() - check if segment override prefixes are allowed
142  * @insn:       Valid instruction with segment override prefixes
143  * @regoff:     Operand offset, in pt_regs, for which the check is performed
144  *
145  * For a particular register used in register-indirect addressing, determine if
146  * segment override prefixes can be used. Specifically, no overrides are allowed
147  * for rDI if used with a string instruction.
148  *
149  * Returns:
150  *
151  * True if segment override prefixes can be used with the register indicated
152  * in @regoff. False if otherwise.
153  */
154 static bool check_seg_overrides(struct insn *insn, int regoff)
155 {
156         if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
157                 return false;
158 
159         return true;
160 }
161 
162 /**
163  * resolve_default_seg() - resolve default segment register index for an operand
164  * @insn:       Instruction with opcode and address size. Must be valid.
165  * @regs:       Register values as seen when entering kernel mode
166  * @off:        Operand offset, in pt_regs, for which resolution is needed
167  *
168  * Resolve the default segment register index associated with the instruction
169  * operand register indicated by @off. Such index is resolved based on defaults
170  * described in the Intel Software Development Manual.
171  *
172  * Returns:
173  *
174  * If in protected mode, a constant identifying the segment register to use,
175  * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
176  *
177  * -EINVAL in case of error.
178  */
179 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
180 {
181         if (any_64bit_mode(regs))
182                 return INAT_SEG_REG_IGNORE;
183         /*
184          * Resolve the default segment register as described in Section 3.7.4
185          * of the Intel Software Development Manual Vol. 1:
186          *
187          *  + DS for all references involving r[ABCD]X, and rSI.
188          *  + If used in a string instruction, ES for rDI. Otherwise, DS.
189          *  + AX, CX and DX are not valid register operands in 16-bit address
190          *    encodings but are valid for 32-bit and 64-bit encodings.
191          *  + -EDOM is reserved to identify for cases in which no register
192          *    is used (i.e., displacement-only addressing). Use DS.
193          *  + SS for rSP or rBP.
194          *  + CS for rIP.
195          */
196 
197         switch (off) {
198         case offsetof(struct pt_regs, ax):
199         case offsetof(struct pt_regs, cx):
200         case offsetof(struct pt_regs, dx):
201                 /* Need insn to verify address size. */
202                 if (insn->addr_bytes == 2)
203                         return -EINVAL;
204 
205                 fallthrough;
206 
207         case -EDOM:
208         case offsetof(struct pt_regs, bx):
209         case offsetof(struct pt_regs, si):
210                 return INAT_SEG_REG_DS;
211 
212         case offsetof(struct pt_regs, di):
213                 if (is_string_insn(insn))
214                         return INAT_SEG_REG_ES;
215                 return INAT_SEG_REG_DS;
216 
217         case offsetof(struct pt_regs, bp):
218         case offsetof(struct pt_regs, sp):
219                 return INAT_SEG_REG_SS;
220 
221         case offsetof(struct pt_regs, ip):
222                 return INAT_SEG_REG_CS;
223 
224         default:
225                 return -EINVAL;
226         }
227 }
228 
229 /**
230  * resolve_seg_reg() - obtain segment register index
231  * @insn:       Instruction with operands
232  * @regs:       Register values as seen when entering kernel mode
233  * @regoff:     Operand offset, in pt_regs, used to determine segment register
234  *
235  * Determine the segment register associated with the operands and, if
236  * applicable, prefixes and the instruction pointed by @insn.
237  *
238  * The segment register associated to an operand used in register-indirect
239  * addressing depends on:
240  *
241  * a) Whether running in long mode (in such a case segments are ignored, except
242  * if FS or GS are used).
243  *
244  * b) Whether segment override prefixes can be used. Certain instructions and
245  *    registers do not allow override prefixes.
246  *
247  * c) Whether segment overrides prefixes are found in the instruction prefixes.
248  *
249  * d) If there are not segment override prefixes or they cannot be used, the
250  *    default segment register associated with the operand register is used.
251  *
252  * The function checks first if segment override prefixes can be used with the
253  * operand indicated by @regoff. If allowed, obtain such overridden segment
254  * register index. Lastly, if not prefixes were found or cannot be used, resolve
255  * the segment register index to use based on the defaults described in the
256  * Intel documentation. In long mode, all segment register indexes will be
257  * ignored, except if overrides were found for FS or GS. All these operations
258  * are done using helper functions.
259  *
260  * The operand register, @regoff, is represented as the offset from the base of
261  * pt_regs.
262  *
263  * As stated, the main use of this function is to determine the segment register
264  * index based on the instruction, its operands and prefixes. Hence, @insn
265  * must be valid. However, if @regoff indicates rIP, we don't need to inspect
266  * @insn at all as in this case CS is used in all cases. This case is checked
267  * before proceeding further.
268  *
269  * Please note that this function does not return the value in the segment
270  * register (i.e., the segment selector) but our defined index. The segment
271  * selector needs to be obtained using get_segment_selector() and passing the
272  * segment register index resolved by this function.
273  *
274  * Returns:
275  *
276  * An index identifying the segment register to use, among CS, SS, DS,
277  * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
278  *
279  * -EINVAL in case of error.
280  */
281 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
282 {
283         int idx;
284 
285         /*
286          * In the unlikely event of having to resolve the segment register
287          * index for rIP, do it first. Segment override prefixes should not
288          * be used. Hence, it is not necessary to inspect the instruction,
289          * which may be invalid at this point.
290          */
291         if (regoff == offsetof(struct pt_regs, ip)) {
292                 if (any_64bit_mode(regs))
293                         return INAT_SEG_REG_IGNORE;
294                 else
295                         return INAT_SEG_REG_CS;
296         }
297 
298         if (!insn)
299                 return -EINVAL;
300 
301         if (!check_seg_overrides(insn, regoff))
302                 return resolve_default_seg(insn, regs, regoff);
303 
304         idx = get_seg_reg_override_idx(insn);
305         if (idx < 0)
306                 return idx;
307 
308         if (idx == INAT_SEG_REG_DEFAULT)
309                 return resolve_default_seg(insn, regs, regoff);
310 
311         /*
312          * In long mode, segment override prefixes are ignored, except for
313          * overrides for FS and GS.
314          */
315         if (any_64bit_mode(regs)) {
316                 if (idx != INAT_SEG_REG_FS &&
317                     idx != INAT_SEG_REG_GS)
318                         idx = INAT_SEG_REG_IGNORE;
319         }
320 
321         return idx;
322 }
323 
324 /**
325  * get_segment_selector() - obtain segment selector
326  * @regs:               Register values as seen when entering kernel mode
327  * @seg_reg_idx:        Segment register index to use
328  *
329  * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
330  * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
331  * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
332  * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
333  * registers. This done for only for completeness as in CONFIG_X86_64 segment
334  * registers are ignored.
335  *
336  * Returns:
337  *
338  * Value of the segment selector, including null when running in
339  * long mode.
340  *
341  * -EINVAL on error.
342  */
343 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
344 {
345         unsigned short sel;
346 
347 #ifdef CONFIG_X86_64
348         switch (seg_reg_idx) {
349         case INAT_SEG_REG_IGNORE:
350                 return 0;
351         case INAT_SEG_REG_CS:
352                 return (unsigned short)(regs->cs & 0xffff);
353         case INAT_SEG_REG_SS:
354                 return (unsigned short)(regs->ss & 0xffff);
355         case INAT_SEG_REG_DS:
356                 savesegment(ds, sel);
357                 return sel;
358         case INAT_SEG_REG_ES:
359                 savesegment(es, sel);
360                 return sel;
361         case INAT_SEG_REG_FS:
362                 savesegment(fs, sel);
363                 return sel;
364         case INAT_SEG_REG_GS:
365                 savesegment(gs, sel);
366                 return sel;
367         default:
368                 return -EINVAL;
369         }
370 #else /* CONFIG_X86_32 */
371         struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
372 
373         if (v8086_mode(regs)) {
374                 switch (seg_reg_idx) {
375                 case INAT_SEG_REG_CS:
376                         return (unsigned short)(regs->cs & 0xffff);
377                 case INAT_SEG_REG_SS:
378                         return (unsigned short)(regs->ss & 0xffff);
379                 case INAT_SEG_REG_DS:
380                         return vm86regs->ds;
381                 case INAT_SEG_REG_ES:
382                         return vm86regs->es;
383                 case INAT_SEG_REG_FS:
384                         return vm86regs->fs;
385                 case INAT_SEG_REG_GS:
386                         return vm86regs->gs;
387                 case INAT_SEG_REG_IGNORE:
388                 default:
389                         return -EINVAL;
390                 }
391         }
392 
393         switch (seg_reg_idx) {
394         case INAT_SEG_REG_CS:
395                 return (unsigned short)(regs->cs & 0xffff);
396         case INAT_SEG_REG_SS:
397                 return (unsigned short)(regs->ss & 0xffff);
398         case INAT_SEG_REG_DS:
399                 return (unsigned short)(regs->ds & 0xffff);
400         case INAT_SEG_REG_ES:
401                 return (unsigned short)(regs->es & 0xffff);
402         case INAT_SEG_REG_FS:
403                 return (unsigned short)(regs->fs & 0xffff);
404         case INAT_SEG_REG_GS:
405                 savesegment(gs, sel);
406                 return sel;
407         case INAT_SEG_REG_IGNORE:
408         default:
409                 return -EINVAL;
410         }
411 #endif /* CONFIG_X86_64 */
412 }
413 
414 static const int pt_regoff[] = {
415         offsetof(struct pt_regs, ax),
416         offsetof(struct pt_regs, cx),
417         offsetof(struct pt_regs, dx),
418         offsetof(struct pt_regs, bx),
419         offsetof(struct pt_regs, sp),
420         offsetof(struct pt_regs, bp),
421         offsetof(struct pt_regs, si),
422         offsetof(struct pt_regs, di),
423 #ifdef CONFIG_X86_64
424         offsetof(struct pt_regs, r8),
425         offsetof(struct pt_regs, r9),
426         offsetof(struct pt_regs, r10),
427         offsetof(struct pt_regs, r11),
428         offsetof(struct pt_regs, r12),
429         offsetof(struct pt_regs, r13),
430         offsetof(struct pt_regs, r14),
431         offsetof(struct pt_regs, r15),
432 #else
433         offsetof(struct pt_regs, ds),
434         offsetof(struct pt_regs, es),
435         offsetof(struct pt_regs, fs),
436         offsetof(struct pt_regs, gs),
437 #endif
438 };
439 
440 int pt_regs_offset(struct pt_regs *regs, int regno)
441 {
442         if ((unsigned)regno < ARRAY_SIZE(pt_regoff))
443                 return pt_regoff[regno];
444         return -EDOM;
445 }
446 
447 static int get_regno(struct insn *insn, enum reg_type type)
448 {
449         int nr_registers = ARRAY_SIZE(pt_regoff);
450         int regno = 0;
451 
452         /*
453          * Don't possibly decode a 32-bit instructions as
454          * reading a 64-bit-only register.
455          */
456         if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
457                 nr_registers -= 8;
458 
459         switch (type) {
460         case REG_TYPE_RM:
461                 regno = X86_MODRM_RM(insn->modrm.value);
462 
463                 /*
464                  * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
465                  * follows the ModRM byte.
466                  */
467                 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
468                         return -EDOM;
469 
470                 if (X86_REX_B(insn->rex_prefix.value))
471                         regno += 8;
472                 break;
473 
474         case REG_TYPE_REG:
475                 regno = X86_MODRM_REG(insn->modrm.value);
476 
477                 if (X86_REX_R(insn->rex_prefix.value))
478                         regno += 8;
479                 break;
480 
481         case REG_TYPE_INDEX:
482                 regno = X86_SIB_INDEX(insn->sib.value);
483                 if (X86_REX_X(insn->rex_prefix.value))
484                         regno += 8;
485 
486                 /*
487                  * If ModRM.mod != 3 and SIB.index = 4 the scale*index
488                  * portion of the address computation is null. This is
489                  * true only if REX.X is 0. In such a case, the SIB index
490                  * is used in the address computation.
491                  */
492                 if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
493                         return -EDOM;
494                 break;
495 
496         case REG_TYPE_BASE:
497                 regno = X86_SIB_BASE(insn->sib.value);
498                 /*
499                  * If ModRM.mod is 0 and SIB.base == 5, the base of the
500                  * register-indirect addressing is 0. In this case, a
501                  * 32-bit displacement follows the SIB byte.
502                  */
503                 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
504                         return -EDOM;
505 
506                 if (X86_REX_B(insn->rex_prefix.value))
507                         regno += 8;
508                 break;
509 
510         default:
511                 pr_err_ratelimited("invalid register type: %d\n", type);
512                 return -EINVAL;
513         }
514 
515         if (regno >= nr_registers) {
516                 WARN_ONCE(1, "decoded an instruction with an invalid register");
517                 return -EINVAL;
518         }
519         return regno;
520 }
521 
522 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
523                           enum reg_type type)
524 {
525         int regno = get_regno(insn, type);
526 
527         if (regno < 0)
528                 return regno;
529 
530         return pt_regs_offset(regs, regno);
531 }
532 
533 /**
534  * get_reg_offset_16() - Obtain offset of register indicated by instruction
535  * @insn:       Instruction containing ModRM byte
536  * @regs:       Register values as seen when entering kernel mode
537  * @offs1:      Offset of the first operand register
538  * @offs2:      Offset of the second operand register, if applicable
539  *
540  * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
541  * in @insn. This function is to be used with 16-bit address encodings. The
542  * @offs1 and @offs2 will be written with the offset of the two registers
543  * indicated by the instruction. In cases where any of the registers is not
544  * referenced by the instruction, the value will be set to -EDOM.
545  *
546  * Returns:
547  *
548  * 0 on success, -EINVAL on error.
549  */
550 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
551                              int *offs1, int *offs2)
552 {
553         /*
554          * 16-bit addressing can use one or two registers. Specifics of
555          * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
556          * ModR/M Byte" of the Intel Software Development Manual.
557          */
558         static const int regoff1[] = {
559                 offsetof(struct pt_regs, bx),
560                 offsetof(struct pt_regs, bx),
561                 offsetof(struct pt_regs, bp),
562                 offsetof(struct pt_regs, bp),
563                 offsetof(struct pt_regs, si),
564                 offsetof(struct pt_regs, di),
565                 offsetof(struct pt_regs, bp),
566                 offsetof(struct pt_regs, bx),
567         };
568 
569         static const int regoff2[] = {
570                 offsetof(struct pt_regs, si),
571                 offsetof(struct pt_regs, di),
572                 offsetof(struct pt_regs, si),
573                 offsetof(struct pt_regs, di),
574                 -EDOM,
575                 -EDOM,
576                 -EDOM,
577                 -EDOM,
578         };
579 
580         if (!offs1 || !offs2)
581                 return -EINVAL;
582 
583         /* Operand is a register, use the generic function. */
584         if (X86_MODRM_MOD(insn->modrm.value) == 3) {
585                 *offs1 = insn_get_modrm_rm_off(insn, regs);
586                 *offs2 = -EDOM;
587                 return 0;
588         }
589 
590         *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
591         *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
592 
593         /*
594          * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
595          * only addressing. This means that no registers are involved in
596          * computing the effective address. Thus, ensure that the first
597          * register offset is invalid. The second register offset is already
598          * invalid under the aforementioned conditions.
599          */
600         if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
601             (X86_MODRM_RM(insn->modrm.value) == 6))
602                 *offs1 = -EDOM;
603 
604         return 0;
605 }
606 
607 /**
608  * get_desc() - Obtain contents of a segment descriptor
609  * @out:        Segment descriptor contents on success
610  * @sel:        Segment selector
611  *
612  * Given a segment selector, obtain a pointer to the segment descriptor.
613  * Both global and local descriptor tables are supported.
614  *
615  * Returns:
616  *
617  * True on success, false on failure.
618  *
619  * NULL on error.
620  */
621 static bool get_desc(struct desc_struct *out, unsigned short sel)
622 {
623         struct desc_ptr gdt_desc = {0, 0};
624         unsigned long desc_base;
625 
626 #ifdef CONFIG_MODIFY_LDT_SYSCALL
627         if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
628                 bool success = false;
629                 struct ldt_struct *ldt;
630 
631                 /* Bits [15:3] contain the index of the desired entry. */
632                 sel >>= 3;
633 
634                 mutex_lock(&current->active_mm->context.lock);
635                 ldt = current->active_mm->context.ldt;
636                 if (ldt && sel < ldt->nr_entries) {
637                         *out = ldt->entries[sel];
638                         success = true;
639                 }
640 
641                 mutex_unlock(&current->active_mm->context.lock);
642 
643                 return success;
644         }
645 #endif
646         native_store_gdt(&gdt_desc);
647 
648         /*
649          * Segment descriptors have a size of 8 bytes. Thus, the index is
650          * multiplied by 8 to obtain the memory offset of the desired descriptor
651          * from the base of the GDT. As bits [15:3] of the segment selector
652          * contain the index, it can be regarded as multiplied by 8 already.
653          * All that remains is to clear bits [2:0].
654          */
655         desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
656 
657         if (desc_base > gdt_desc.size)
658                 return false;
659 
660         *out = *(struct desc_struct *)(gdt_desc.address + desc_base);
661         return true;
662 }
663 
664 /**
665  * insn_get_seg_base() - Obtain base address of segment descriptor.
666  * @regs:               Register values as seen when entering kernel mode
667  * @seg_reg_idx:        Index of the segment register pointing to seg descriptor
668  *
669  * Obtain the base address of the segment as indicated by the segment descriptor
670  * pointed by the segment selector. The segment selector is obtained from the
671  * input segment register index @seg_reg_idx.
672  *
673  * Returns:
674  *
675  * In protected mode, base address of the segment. Zero in long mode,
676  * except when FS or GS are used. In virtual-8086 mode, the segment
677  * selector shifted 4 bits to the right.
678  *
679  * -1L in case of error.
680  */
681 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
682 {
683         struct desc_struct desc;
684         short sel;
685 
686         sel = get_segment_selector(regs, seg_reg_idx);
687         if (sel < 0)
688                 return -1L;
689 
690         if (v8086_mode(regs))
691                 /*
692                  * Base is simply the segment selector shifted 4
693                  * bits to the right.
694                  */
695                 return (unsigned long)(sel << 4);
696 
697         if (any_64bit_mode(regs)) {
698                 /*
699                  * Only FS or GS will have a base address, the rest of
700                  * the segments' bases are forced to 0.
701                  */
702                 unsigned long base;
703 
704                 if (seg_reg_idx == INAT_SEG_REG_FS) {
705                         rdmsrl(MSR_FS_BASE, base);
706                 } else if (seg_reg_idx == INAT_SEG_REG_GS) {
707                         /*
708                          * swapgs was called at the kernel entry point. Thus,
709                          * MSR_KERNEL_GS_BASE will have the user-space GS base.
710                          */
711                         if (user_mode(regs))
712                                 rdmsrl(MSR_KERNEL_GS_BASE, base);
713                         else
714                                 rdmsrl(MSR_GS_BASE, base);
715                 } else {
716                         base = 0;
717                 }
718                 return base;
719         }
720 
721         /* In protected mode the segment selector cannot be null. */
722         if (!sel)
723                 return -1L;
724 
725         if (!get_desc(&desc, sel))
726                 return -1L;
727 
728         return get_desc_base(&desc);
729 }
730 
731 /**
732  * get_seg_limit() - Obtain the limit of a segment descriptor
733  * @regs:               Register values as seen when entering kernel mode
734  * @seg_reg_idx:        Index of the segment register pointing to seg descriptor
735  *
736  * Obtain the limit of the segment as indicated by the segment descriptor
737  * pointed by the segment selector. The segment selector is obtained from the
738  * input segment register index @seg_reg_idx.
739  *
740  * Returns:
741  *
742  * In protected mode, the limit of the segment descriptor in bytes.
743  * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
744  * limit is returned as -1L to imply a limit-less segment.
745  *
746  * Zero is returned on error.
747  */
748 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
749 {
750         struct desc_struct desc;
751         unsigned long limit;
752         short sel;
753 
754         sel = get_segment_selector(regs, seg_reg_idx);
755         if (sel < 0)
756                 return 0;
757 
758         if (any_64bit_mode(regs) || v8086_mode(regs))
759                 return -1L;
760 
761         if (!sel)
762                 return 0;
763 
764         if (!get_desc(&desc, sel))
765                 return 0;
766 
767         /*
768          * If the granularity bit is set, the limit is given in multiples
769          * of 4096. This also means that the 12 least significant bits are
770          * not tested when checking the segment limits. In practice,
771          * this means that the segment ends in (limit << 12) + 0xfff.
772          */
773         limit = get_desc_limit(&desc);
774         if (desc.g)
775                 limit = (limit << 12) + 0xfff;
776 
777         return limit;
778 }
779 
780 /**
781  * insn_get_code_seg_params() - Obtain code segment parameters
782  * @regs:       Structure with register values as seen when entering kernel mode
783  *
784  * Obtain address and operand sizes of the code segment. It is obtained from the
785  * selector contained in the CS register in regs. In protected mode, the default
786  * address is determined by inspecting the L and D bits of the segment
787  * descriptor. In virtual-8086 mode, the default is always two bytes for both
788  * address and operand sizes.
789  *
790  * Returns:
791  *
792  * An int containing ORed-in default parameters on success.
793  *
794  * -EINVAL on error.
795  */
796 int insn_get_code_seg_params(struct pt_regs *regs)
797 {
798         struct desc_struct desc;
799         short sel;
800 
801         if (v8086_mode(regs))
802                 /* Address and operand size are both 16-bit. */
803                 return INSN_CODE_SEG_PARAMS(2, 2);
804 
805         sel = get_segment_selector(regs, INAT_SEG_REG_CS);
806         if (sel < 0)
807                 return sel;
808 
809         if (!get_desc(&desc, sel))
810                 return -EINVAL;
811 
812         /*
813          * The most significant byte of the Type field of the segment descriptor
814          * determines whether a segment contains data or code. If this is a data
815          * segment, return error.
816          */
817         if (!(desc.type & BIT(3)))
818                 return -EINVAL;
819 
820         switch ((desc.l << 1) | desc.d) {
821         case 0: /*
822                  * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
823                  * both 16-bit.
824                  */
825                 return INSN_CODE_SEG_PARAMS(2, 2);
826         case 1: /*
827                  * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
828                  * both 32-bit.
829                  */
830                 return INSN_CODE_SEG_PARAMS(4, 4);
831         case 2: /*
832                  * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
833                  * operand size is 32-bit.
834                  */
835                 return INSN_CODE_SEG_PARAMS(4, 8);
836         case 3: /* Invalid setting. CS.L=1, CS.D=1 */
837                 fallthrough;
838         default:
839                 return -EINVAL;
840         }
841 }
842 
843 /**
844  * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
845  * @insn:       Instruction containing the ModRM byte
846  * @regs:       Register values as seen when entering kernel mode
847  *
848  * Returns:
849  *
850  * The register indicated by the r/m part of the ModRM byte. The
851  * register is obtained as an offset from the base of pt_regs. In specific
852  * cases, the returned value can be -EDOM to indicate that the particular value
853  * of ModRM does not refer to a register and shall be ignored.
854  */
855 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
856 {
857         return get_reg_offset(insn, regs, REG_TYPE_RM);
858 }
859 
860 /**
861  * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte
862  * @insn:       Instruction containing the ModRM byte
863  * @regs:       Register values as seen when entering kernel mode
864  *
865  * Returns:
866  *
867  * The register indicated by the reg part of the ModRM byte. The
868  * register is obtained as an offset from the base of pt_regs.
869  */
870 int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs)
871 {
872         return get_reg_offset(insn, regs, REG_TYPE_REG);
873 }
874 
875 /**
876  * insn_get_modrm_reg_ptr() - Obtain register pointer based on ModRM byte
877  * @insn:       Instruction containing the ModRM byte
878  * @regs:       Register values as seen when entering kernel mode
879  *
880  * Returns:
881  *
882  * The register indicated by the reg part of the ModRM byte.
883  * The register is obtained as a pointer within pt_regs.
884  */
885 unsigned long *insn_get_modrm_reg_ptr(struct insn *insn, struct pt_regs *regs)
886 {
887         int offset;
888 
889         offset = insn_get_modrm_reg_off(insn, regs);
890         if (offset < 0)
891                 return NULL;
892         return (void *)regs + offset;
893 }
894 
895 /**
896  * get_seg_base_limit() - obtain base address and limit of a segment
897  * @insn:       Instruction. Must be valid.
898  * @regs:       Register values as seen when entering kernel mode
899  * @regoff:     Operand offset, in pt_regs, used to resolve segment descriptor
900  * @base:       Obtained segment base
901  * @limit:      Obtained segment limit
902  *
903  * Obtain the base address and limit of the segment associated with the operand
904  * @regoff and, if any or allowed, override prefixes in @insn. This function is
905  * different from insn_get_seg_base() as the latter does not resolve the segment
906  * associated with the instruction operand. If a limit is not needed (e.g.,
907  * when running in long mode), @limit can be NULL.
908  *
909  * Returns:
910  *
911  * 0 on success. @base and @limit will contain the base address and of the
912  * resolved segment, respectively.
913  *
914  * -EINVAL on error.
915  */
916 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
917                               int regoff, unsigned long *base,
918                               unsigned long *limit)
919 {
920         int seg_reg_idx;
921 
922         if (!base)
923                 return -EINVAL;
924 
925         seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
926         if (seg_reg_idx < 0)
927                 return seg_reg_idx;
928 
929         *base = insn_get_seg_base(regs, seg_reg_idx);
930         if (*base == -1L)
931                 return -EINVAL;
932 
933         if (!limit)
934                 return 0;
935 
936         *limit = get_seg_limit(regs, seg_reg_idx);
937         if (!(*limit))
938                 return -EINVAL;
939 
940         return 0;
941 }
942 
943 /**
944  * get_eff_addr_reg() - Obtain effective address from register operand
945  * @insn:       Instruction. Must be valid.
946  * @regs:       Register values as seen when entering kernel mode
947  * @regoff:     Obtained operand offset, in pt_regs, with the effective address
948  * @eff_addr:   Obtained effective address
949  *
950  * Obtain the effective address stored in the register operand as indicated by
951  * the ModRM byte. This function is to be used only with register addressing
952  * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
953  * register operand, as an offset from the base of pt_regs, is saved in @regoff;
954  * such offset can then be used to resolve the segment associated with the
955  * operand. This function can be used with any of the supported address sizes
956  * in x86.
957  *
958  * Returns:
959  *
960  * 0 on success. @eff_addr will have the effective address stored in the
961  * operand indicated by ModRM. @regoff will have such operand as an offset from
962  * the base of pt_regs.
963  *
964  * -EINVAL on error.
965  */
966 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
967                             int *regoff, long *eff_addr)
968 {
969         int ret;
970 
971         ret = insn_get_modrm(insn);
972         if (ret)
973                 return ret;
974 
975         if (X86_MODRM_MOD(insn->modrm.value) != 3)
976                 return -EINVAL;
977 
978         *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
979         if (*regoff < 0)
980                 return -EINVAL;
981 
982         /* Ignore bytes that are outside the address size. */
983         if (insn->addr_bytes == 2)
984                 *eff_addr = regs_get_register(regs, *regoff) & 0xffff;
985         else if (insn->addr_bytes == 4)
986                 *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
987         else /* 64-bit address */
988                 *eff_addr = regs_get_register(regs, *regoff);
989 
990         return 0;
991 }
992 
993 /**
994  * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
995  * @insn:       Instruction. Must be valid.
996  * @regs:       Register values as seen when entering kernel mode
997  * @regoff:     Obtained operand offset, in pt_regs, associated with segment
998  * @eff_addr:   Obtained effective address
999  *
1000  * Obtain the effective address referenced by the ModRM byte of @insn. After
1001  * identifying the registers involved in the register-indirect memory reference,
1002  * its value is obtained from the operands in @regs. The computed address is
1003  * stored @eff_addr. Also, the register operand that indicates the associated
1004  * segment is stored in @regoff, this parameter can later be used to determine
1005  * such segment.
1006  *
1007  * Returns:
1008  *
1009  * 0 on success. @eff_addr will have the referenced effective address. @regoff
1010  * will have a register, as an offset from the base of pt_regs, that can be used
1011  * to resolve the associated segment.
1012  *
1013  * -EINVAL on error.
1014  */
1015 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
1016                               int *regoff, long *eff_addr)
1017 {
1018         long tmp;
1019         int ret;
1020 
1021         if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1022                 return -EINVAL;
1023 
1024         ret = insn_get_modrm(insn);
1025         if (ret)
1026                 return ret;
1027 
1028         if (X86_MODRM_MOD(insn->modrm.value) > 2)
1029                 return -EINVAL;
1030 
1031         *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
1032 
1033         /*
1034          * -EDOM means that we must ignore the address_offset. In such a case,
1035          * in 64-bit mode the effective address relative to the rIP of the
1036          * following instruction.
1037          */
1038         if (*regoff == -EDOM) {
1039                 if (any_64bit_mode(regs))
1040                         tmp = regs->ip + insn->length;
1041                 else
1042                         tmp = 0;
1043         } else if (*regoff < 0) {
1044                 return -EINVAL;
1045         } else {
1046                 tmp = regs_get_register(regs, *regoff);
1047         }
1048 
1049         if (insn->addr_bytes == 4) {
1050                 int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
1051 
1052                 *eff_addr = addr32 & 0xffffffff;
1053         } else {
1054                 *eff_addr = tmp + insn->displacement.value;
1055         }
1056 
1057         return 0;
1058 }
1059 
1060 /**
1061  * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
1062  * @insn:       Instruction. Must be valid.
1063  * @regs:       Register values as seen when entering kernel mode
1064  * @regoff:     Obtained operand offset, in pt_regs, associated with segment
1065  * @eff_addr:   Obtained effective address
1066  *
1067  * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
1068  * After identifying the registers involved in the register-indirect memory
1069  * reference, its value is obtained from the operands in @regs. The computed
1070  * address is stored @eff_addr. Also, the register operand that indicates
1071  * the associated segment is stored in @regoff, this parameter can later be used
1072  * to determine such segment.
1073  *
1074  * Returns:
1075  *
1076  * 0 on success. @eff_addr will have the referenced effective address. @regoff
1077  * will have a register, as an offset from the base of pt_regs, that can be used
1078  * to resolve the associated segment.
1079  *
1080  * -EINVAL on error.
1081  */
1082 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
1083                                  int *regoff, short *eff_addr)
1084 {
1085         int addr_offset1, addr_offset2, ret;
1086         short addr1 = 0, addr2 = 0, displacement;
1087 
1088         if (insn->addr_bytes != 2)
1089                 return -EINVAL;
1090 
1091         insn_get_modrm(insn);
1092 
1093         if (!insn->modrm.nbytes)
1094                 return -EINVAL;
1095 
1096         if (X86_MODRM_MOD(insn->modrm.value) > 2)
1097                 return -EINVAL;
1098 
1099         ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1100         if (ret < 0)
1101                 return -EINVAL;
1102 
1103         /*
1104          * Don't fail on invalid offset values. They might be invalid because
1105          * they cannot be used for this particular value of ModRM. Instead, use
1106          * them in the computation only if they contain a valid value.
1107          */
1108         if (addr_offset1 != -EDOM)
1109                 addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1110 
1111         if (addr_offset2 != -EDOM)
1112                 addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1113 
1114         displacement = insn->displacement.value & 0xffff;
1115         *eff_addr = addr1 + addr2 + displacement;
1116 
1117         /*
1118          * The first operand register could indicate to use of either SS or DS
1119          * registers to obtain the segment selector.  The second operand
1120          * register can only indicate the use of DS. Thus, the first operand
1121          * will be used to obtain the segment selector.
1122          */
1123         *regoff = addr_offset1;
1124 
1125         return 0;
1126 }
1127 
1128 /**
1129  * get_eff_addr_sib() - Obtain referenced effective address via SIB
1130  * @insn:       Instruction. Must be valid.
1131  * @regs:       Register values as seen when entering kernel mode
1132  * @base_offset: Obtained operand offset, in pt_regs, associated with segment
1133  * @eff_addr:   Obtained effective address
1134  *
1135  * Obtain the effective address referenced by the SIB byte of @insn. After
1136  * identifying the registers involved in the indexed, register-indirect memory
1137  * reference, its value is obtained from the operands in @regs. The computed
1138  * address is stored @eff_addr. Also, the register operand that indicates the
1139  * associated segment is stored in @base_offset; this parameter can later be
1140  * used to determine such segment.
1141  *
1142  * Returns:
1143  *
1144  * 0 on success. @eff_addr will have the referenced effective address.
1145  * @base_offset will have a register, as an offset from the base of pt_regs,
1146  * that can be used to resolve the associated segment.
1147  *
1148  * Negative value on error.
1149  */
1150 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1151                             int *base_offset, long *eff_addr)
1152 {
1153         long base, indx;
1154         int indx_offset;
1155         int ret;
1156 
1157         if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1158                 return -EINVAL;
1159 
1160         ret = insn_get_modrm(insn);
1161         if (ret)
1162                 return ret;
1163 
1164         if (!insn->modrm.nbytes)
1165                 return -EINVAL;
1166 
1167         if (X86_MODRM_MOD(insn->modrm.value) > 2)
1168                 return -EINVAL;
1169 
1170         ret = insn_get_sib(insn);
1171         if (ret)
1172                 return ret;
1173 
1174         if (!insn->sib.nbytes)
1175                 return -EINVAL;
1176 
1177         *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1178         indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1179 
1180         /*
1181          * Negative values in the base and index offset means an error when
1182          * decoding the SIB byte. Except -EDOM, which means that the registers
1183          * should not be used in the address computation.
1184          */
1185         if (*base_offset == -EDOM)
1186                 base = 0;
1187         else if (*base_offset < 0)
1188                 return -EINVAL;
1189         else
1190                 base = regs_get_register(regs, *base_offset);
1191 
1192         if (indx_offset == -EDOM)
1193                 indx = 0;
1194         else if (indx_offset < 0)
1195                 return -EINVAL;
1196         else
1197                 indx = regs_get_register(regs, indx_offset);
1198 
1199         if (insn->addr_bytes == 4) {
1200                 int addr32, base32, idx32;
1201 
1202                 base32 = base & 0xffffffff;
1203                 idx32 = indx & 0xffffffff;
1204 
1205                 addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1206                 addr32 += insn->displacement.value;
1207 
1208                 *eff_addr = addr32 & 0xffffffff;
1209         } else {
1210                 *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1211                 *eff_addr += insn->displacement.value;
1212         }
1213 
1214         return 0;
1215 }
1216 
1217 /**
1218  * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1219  * @insn:       Instruction containing ModRM byte and displacement
1220  * @regs:       Register values as seen when entering kernel mode
1221  *
1222  * This function is to be used with 16-bit address encodings. Obtain the memory
1223  * address referred by the instruction's ModRM and displacement bytes. Also, the
1224  * segment used as base is determined by either any segment override prefixes in
1225  * @insn or the default segment of the registers involved in the address
1226  * computation. In protected mode, segment limits are enforced.
1227  *
1228  * Returns:
1229  *
1230  * Linear address referenced by the instruction operands on success.
1231  *
1232  * -1L on error.
1233  */
1234 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1235 {
1236         unsigned long linear_addr = -1L, seg_base, seg_limit;
1237         int ret, regoff;
1238         short eff_addr;
1239         long tmp;
1240 
1241         if (insn_get_displacement(insn))
1242                 goto out;
1243 
1244         if (insn->addr_bytes != 2)
1245                 goto out;
1246 
1247         if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1248                 ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1249                 if (ret)
1250                         goto out;
1251 
1252                 eff_addr = tmp;
1253         } else {
1254                 ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1255                 if (ret)
1256                         goto out;
1257         }
1258 
1259         ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1260         if (ret)
1261                 goto out;
1262 
1263         /*
1264          * Before computing the linear address, make sure the effective address
1265          * is within the limits of the segment. In virtual-8086 mode, segment
1266          * limits are not enforced. In such a case, the segment limit is -1L to
1267          * reflect this fact.
1268          */
1269         if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1270                 goto out;
1271 
1272         linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1273 
1274         /* Limit linear address to 20 bits */
1275         if (v8086_mode(regs))
1276                 linear_addr &= 0xfffff;
1277 
1278 out:
1279         return (void __user *)linear_addr;
1280 }
1281 
1282 /**
1283  * get_addr_ref_32() - Obtain a 32-bit linear address
1284  * @insn:       Instruction with ModRM, SIB bytes and displacement
1285  * @regs:       Register values as seen when entering kernel mode
1286  *
1287  * This function is to be used with 32-bit address encodings to obtain the
1288  * linear memory address referred by the instruction's ModRM, SIB,
1289  * displacement bytes and segment base address, as applicable. If in protected
1290  * mode, segment limits are enforced.
1291  *
1292  * Returns:
1293  *
1294  * Linear address referenced by instruction and registers on success.
1295  *
1296  * -1L on error.
1297  */
1298 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1299 {
1300         unsigned long linear_addr = -1L, seg_base, seg_limit;
1301         int eff_addr, regoff;
1302         long tmp;
1303         int ret;
1304 
1305         if (insn->addr_bytes != 4)
1306                 goto out;
1307 
1308         if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1309                 ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1310                 if (ret)
1311                         goto out;
1312 
1313                 eff_addr = tmp;
1314 
1315         } else {
1316                 if (insn->sib.nbytes) {
1317                         ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1318                         if (ret)
1319                                 goto out;
1320 
1321                         eff_addr = tmp;
1322                 } else {
1323                         ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1324                         if (ret)
1325                                 goto out;
1326 
1327                         eff_addr = tmp;
1328                 }
1329         }
1330 
1331         ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1332         if (ret)
1333                 goto out;
1334 
1335         /*
1336          * In protected mode, before computing the linear address, make sure
1337          * the effective address is within the limits of the segment.
1338          * 32-bit addresses can be used in long and virtual-8086 modes if an
1339          * address override prefix is used. In such cases, segment limits are
1340          * not enforced. When in virtual-8086 mode, the segment limit is -1L
1341          * to reflect this situation.
1342          *
1343          * After computed, the effective address is treated as an unsigned
1344          * quantity.
1345          */
1346         if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1347                 goto out;
1348 
1349         /*
1350          * Even though 32-bit address encodings are allowed in virtual-8086
1351          * mode, the address range is still limited to [0x-0xffff].
1352          */
1353         if (v8086_mode(regs) && (eff_addr & ~0xffff))
1354                 goto out;
1355 
1356         /*
1357          * Data type long could be 64 bits in size. Ensure that our 32-bit
1358          * effective address is not sign-extended when computing the linear
1359          * address.
1360          */
1361         linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1362 
1363         /* Limit linear address to 20 bits */
1364         if (v8086_mode(regs))
1365                 linear_addr &= 0xfffff;
1366 
1367 out:
1368         return (void __user *)linear_addr;
1369 }
1370 
1371 /**
1372  * get_addr_ref_64() - Obtain a 64-bit linear address
1373  * @insn:       Instruction struct with ModRM and SIB bytes and displacement
1374  * @regs:       Structure with register values as seen when entering kernel mode
1375  *
1376  * This function is to be used with 64-bit address encodings to obtain the
1377  * linear memory address referred by the instruction's ModRM, SIB,
1378  * displacement bytes and segment base address, as applicable.
1379  *
1380  * Returns:
1381  *
1382  * Linear address referenced by instruction and registers on success.
1383  *
1384  * -1L on error.
1385  */
1386 #ifndef CONFIG_X86_64
1387 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1388 {
1389         return (void __user *)-1L;
1390 }
1391 #else
1392 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1393 {
1394         unsigned long linear_addr = -1L, seg_base;
1395         int regoff, ret;
1396         long eff_addr;
1397 
1398         if (insn->addr_bytes != 8)
1399                 goto out;
1400 
1401         if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1402                 ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1403                 if (ret)
1404                         goto out;
1405 
1406         } else {
1407                 if (insn->sib.nbytes) {
1408                         ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1409                         if (ret)
1410                                 goto out;
1411                 } else {
1412                         ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1413                         if (ret)
1414                                 goto out;
1415                 }
1416 
1417         }
1418 
1419         ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1420         if (ret)
1421                 goto out;
1422 
1423         linear_addr = (unsigned long)eff_addr + seg_base;
1424 
1425 out:
1426         return (void __user *)linear_addr;
1427 }
1428 #endif /* CONFIG_X86_64 */
1429 
1430 /**
1431  * insn_get_addr_ref() - Obtain the linear address referred by instruction
1432  * @insn:       Instruction structure containing ModRM byte and displacement
1433  * @regs:       Structure with register values as seen when entering kernel mode
1434  *
1435  * Obtain the linear address referred by the instruction's ModRM, SIB and
1436  * displacement bytes, and segment base, as applicable. In protected mode,
1437  * segment limits are enforced.
1438  *
1439  * Returns:
1440  *
1441  * Linear address referenced by instruction and registers on success.
1442  *
1443  * -1L on error.
1444  */
1445 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1446 {
1447         if (!insn || !regs)
1448                 return (void __user *)-1L;
1449 
1450         if (insn_get_opcode(insn))
1451                 return (void __user *)-1L;
1452 
1453         switch (insn->addr_bytes) {
1454         case 2:
1455                 return get_addr_ref_16(insn, regs);
1456         case 4:
1457                 return get_addr_ref_32(insn, regs);
1458         case 8:
1459                 return get_addr_ref_64(insn, regs);
1460         default:
1461                 return (void __user *)-1L;
1462         }
1463 }
1464 
1465 int insn_get_effective_ip(struct pt_regs *regs, unsigned long *ip)
1466 {
1467         unsigned long seg_base = 0;
1468 
1469         /*
1470          * If not in user-space long mode, a custom code segment could be in
1471          * use. This is true in protected mode (if the process defined a local
1472          * descriptor table), or virtual-8086 mode. In most of the cases
1473          * seg_base will be zero as in USER_CS.
1474          */
1475         if (!user_64bit_mode(regs)) {
1476                 seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);
1477                 if (seg_base == -1L)
1478                         return -EINVAL;
1479         }
1480 
1481         *ip = seg_base + regs->ip;
1482 
1483         return 0;
1484 }
1485 
1486 /**
1487  * insn_fetch_from_user() - Copy instruction bytes from user-space memory
1488  * @regs:       Structure with register values as seen when entering kernel mode
1489  * @buf:        Array to store the fetched instruction
1490  *
1491  * Gets the linear address of the instruction and copies the instruction bytes
1492  * to the buf.
1493  *
1494  * Returns:
1495  *
1496  * - number of instruction bytes copied.
1497  * - 0 if nothing was copied.
1498  * - -EINVAL if the linear address of the instruction could not be calculated
1499  */
1500 int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1501 {
1502         unsigned long ip;
1503         int not_copied;
1504 
1505         if (insn_get_effective_ip(regs, &ip))
1506                 return -EINVAL;
1507 
1508         not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE);
1509 
1510         return MAX_INSN_SIZE - not_copied;
1511 }
1512 
1513 /**
1514  * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory
1515  *                                   while in atomic code
1516  * @regs:       Structure with register values as seen when entering kernel mode
1517  * @buf:        Array to store the fetched instruction
1518  *
1519  * Gets the linear address of the instruction and copies the instruction bytes
1520  * to the buf. This function must be used in atomic context.
1521  *
1522  * Returns:
1523  *
1524  *  - number of instruction bytes copied.
1525  *  - 0 if nothing was copied.
1526  *  - -EINVAL if the linear address of the instruction could not be calculated.
1527  */
1528 int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1529 {
1530         unsigned long ip;
1531         int not_copied;
1532 
1533         if (insn_get_effective_ip(regs, &ip))
1534                 return -EINVAL;
1535 
1536         not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE);
1537 
1538         return MAX_INSN_SIZE - not_copied;
1539 }
1540 
1541 /**
1542  * insn_decode_from_regs() - Decode an instruction
1543  * @insn:       Structure to store decoded instruction
1544  * @regs:       Structure with register values as seen when entering kernel mode
1545  * @buf:        Buffer containing the instruction bytes
1546  * @buf_size:   Number of instruction bytes available in buf
1547  *
1548  * Decodes the instruction provided in buf and stores the decoding results in
1549  * insn. Also determines the correct address and operand sizes.
1550  *
1551  * Returns:
1552  *
1553  * True if instruction was decoded, False otherwise.
1554  */
1555 bool insn_decode_from_regs(struct insn *insn, struct pt_regs *regs,
1556                            unsigned char buf[MAX_INSN_SIZE], int buf_size)
1557 {
1558         int seg_defs;
1559 
1560         insn_init(insn, buf, buf_size, user_64bit_mode(regs));
1561 
1562         /*
1563          * Override the default operand and address sizes with what is specified
1564          * in the code segment descriptor. The instruction decoder only sets
1565          * the address size it to either 4 or 8 address bytes and does nothing
1566          * for the operand bytes. This OK for most of the cases, but we could
1567          * have special cases where, for instance, a 16-bit code segment
1568          * descriptor is used.
1569          * If there is an address override prefix, the instruction decoder
1570          * correctly updates these values, even for 16-bit defaults.
1571          */
1572         seg_defs = insn_get_code_seg_params(regs);
1573         if (seg_defs == -EINVAL)
1574                 return false;
1575 
1576         insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
1577         insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);
1578 
1579         if (insn_get_length(insn))
1580                 return false;
1581 
1582         if (buf_size < insn->length)
1583                 return false;
1584 
1585         return true;
1586 }
1587 
1588 /**
1589  * insn_decode_mmio() - Decode a MMIO instruction
1590  * @insn:       Structure to store decoded instruction
1591  * @bytes:      Returns size of memory operand
1592  *
1593  * Decodes instruction that used for Memory-mapped I/O.
1594  *
1595  * Returns:
1596  *
1597  * Type of the instruction. Size of the memory operand is stored in
1598  * @bytes. If decode failed, INSN_MMIO_DECODE_FAILED returned.
1599  */
1600 enum insn_mmio_type insn_decode_mmio(struct insn *insn, int *bytes)
1601 {
1602         enum insn_mmio_type type = INSN_MMIO_DECODE_FAILED;
1603 
1604         *bytes = 0;
1605 
1606         if (insn_get_opcode(insn))
1607                 return INSN_MMIO_DECODE_FAILED;
1608 
1609         switch (insn->opcode.bytes[0]) {
1610         case 0x88: /* MOV m8,r8 */
1611                 *bytes = 1;
1612                 fallthrough;
1613         case 0x89: /* MOV m16/m32/m64, r16/m32/m64 */
1614                 if (!*bytes)
1615                         *bytes = insn->opnd_bytes;
1616                 type = INSN_MMIO_WRITE;
1617                 break;
1618 
1619         case 0xc6: /* MOV m8, imm8 */
1620                 *bytes = 1;
1621                 fallthrough;
1622         case 0xc7: /* MOV m16/m32/m64, imm16/imm32/imm64 */
1623                 if (!*bytes)
1624                         *bytes = insn->opnd_bytes;
1625                 type = INSN_MMIO_WRITE_IMM;
1626                 break;
1627 
1628         case 0x8a: /* MOV r8, m8 */
1629                 *bytes = 1;
1630                 fallthrough;
1631         case 0x8b: /* MOV r16/r32/r64, m16/m32/m64 */
1632                 if (!*bytes)
1633                         *bytes = insn->opnd_bytes;
1634                 type = INSN_MMIO_READ;
1635                 break;
1636 
1637         case 0xa4: /* MOVS m8, m8 */
1638                 *bytes = 1;
1639                 fallthrough;
1640         case 0xa5: /* MOVS m16/m32/m64, m16/m32/m64 */
1641                 if (!*bytes)
1642                         *bytes = insn->opnd_bytes;
1643                 type = INSN_MMIO_MOVS;
1644                 break;
1645 
1646         case 0x0f: /* Two-byte instruction */
1647                 switch (insn->opcode.bytes[1]) {
1648                 case 0xb6: /* MOVZX r16/r32/r64, m8 */
1649                         *bytes = 1;
1650                         fallthrough;
1651                 case 0xb7: /* MOVZX r32/r64, m16 */
1652                         if (!*bytes)
1653                                 *bytes = 2;
1654                         type = INSN_MMIO_READ_ZERO_EXTEND;
1655                         break;
1656 
1657                 case 0xbe: /* MOVSX r16/r32/r64, m8 */
1658                         *bytes = 1;
1659                         fallthrough;
1660                 case 0xbf: /* MOVSX r32/r64, m16 */
1661                         if (!*bytes)
1662                                 *bytes = 2;
1663                         type = INSN_MMIO_READ_SIGN_EXTEND;
1664                         break;
1665                 }
1666                 break;
1667         }
1668 
1669         return type;
1670 }
1671 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php