~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/lib/insn.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * x86 instruction analysis
  4  *
  5  * Copyright (C) IBM Corporation, 2002, 2004, 2009
  6  */
  7 
  8 #include <linux/kernel.h>
  9 #ifdef __KERNEL__
 10 #include <linux/string.h>
 11 #else
 12 #include <string.h>
 13 #endif
 14 #include <asm/inat.h> /*__ignore_sync_check__ */
 15 #include <asm/insn.h> /* __ignore_sync_check__ */
 16 #include <asm/unaligned.h> /* __ignore_sync_check__ */
 17 
 18 #include <linux/errno.h>
 19 #include <linux/kconfig.h>
 20 
 21 #include <asm/emulate_prefix.h> /* __ignore_sync_check__ */
 22 
 23 #define leXX_to_cpu(t, r)                                               \
 24 ({                                                                      \
 25         __typeof__(t) v;                                                \
 26         switch (sizeof(t)) {                                            \
 27         case 4: v = le32_to_cpu(r); break;                              \
 28         case 2: v = le16_to_cpu(r); break;                              \
 29         case 1: v = r; break;                                           \
 30         default:                                                        \
 31                 BUILD_BUG(); break;                                     \
 32         }                                                               \
 33         v;                                                              \
 34 })
 35 
 36 /* Verify next sizeof(t) bytes can be on the same instruction */
 37 #define validate_next(t, insn, n)       \
 38         ((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
 39 
 40 #define __get_next(t, insn)     \
 41         ({ t r = get_unaligned((t *)(insn)->next_byte); (insn)->next_byte += sizeof(t); leXX_to_cpu(t, r); })
 42 
 43 #define __peek_nbyte_next(t, insn, n)   \
 44         ({ t r = get_unaligned((t *)(insn)->next_byte + n); leXX_to_cpu(t, r); })
 45 
 46 #define get_next(t, insn)       \
 47         ({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
 48 
 49 #define peek_nbyte_next(t, insn, n)     \
 50         ({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
 51 
 52 #define peek_next(t, insn)      peek_nbyte_next(t, insn, 0)
 53 
 54 /**
 55  * insn_init() - initialize struct insn
 56  * @insn:       &struct insn to be initialized
 57  * @kaddr:      address (in kernel memory) of instruction (or copy thereof)
 58  * @buf_len:    length of the insn buffer at @kaddr
 59  * @x86_64:     !0 for 64-bit kernel or 64-bit app
 60  */
 61 void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
 62 {
 63         /*
 64          * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
 65          * even if the input buffer is long enough to hold them.
 66          */
 67         if (buf_len > MAX_INSN_SIZE)
 68                 buf_len = MAX_INSN_SIZE;
 69 
 70         memset(insn, 0, sizeof(*insn));
 71         insn->kaddr = kaddr;
 72         insn->end_kaddr = kaddr + buf_len;
 73         insn->next_byte = kaddr;
 74         insn->x86_64 = x86_64;
 75         insn->opnd_bytes = 4;
 76         if (x86_64)
 77                 insn->addr_bytes = 8;
 78         else
 79                 insn->addr_bytes = 4;
 80 }
 81 
 82 static const insn_byte_t xen_prefix[] = { __XEN_EMULATE_PREFIX };
 83 static const insn_byte_t kvm_prefix[] = { __KVM_EMULATE_PREFIX };
 84 
 85 static int __insn_get_emulate_prefix(struct insn *insn,
 86                                      const insn_byte_t *prefix, size_t len)
 87 {
 88         size_t i;
 89 
 90         for (i = 0; i < len; i++) {
 91                 if (peek_nbyte_next(insn_byte_t, insn, i) != prefix[i])
 92                         goto err_out;
 93         }
 94 
 95         insn->emulate_prefix_size = len;
 96         insn->next_byte += len;
 97 
 98         return 1;
 99 
100 err_out:
101         return 0;
102 }
103 
104 static void insn_get_emulate_prefix(struct insn *insn)
105 {
106         if (__insn_get_emulate_prefix(insn, xen_prefix, sizeof(xen_prefix)))
107                 return;
108 
109         __insn_get_emulate_prefix(insn, kvm_prefix, sizeof(kvm_prefix));
110 }
111 
112 /**
113  * insn_get_prefixes - scan x86 instruction prefix bytes
114  * @insn:       &struct insn containing instruction
115  *
116  * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
117  * to point to the (first) opcode.  No effect if @insn->prefixes.got
118  * is already set.
119  *
120  * * Returns:
121  * 0:  on success
122  * < 0: on error
123  */
124 int insn_get_prefixes(struct insn *insn)
125 {
126         struct insn_field *prefixes = &insn->prefixes;
127         insn_attr_t attr;
128         insn_byte_t b, lb;
129         int i, nb;
130 
131         if (prefixes->got)
132                 return 0;
133 
134         insn_get_emulate_prefix(insn);
135 
136         nb = 0;
137         lb = 0;
138         b = peek_next(insn_byte_t, insn);
139         attr = inat_get_opcode_attribute(b);
140         while (inat_is_legacy_prefix(attr)) {
141                 /* Skip if same prefix */
142                 for (i = 0; i < nb; i++)
143                         if (prefixes->bytes[i] == b)
144                                 goto found;
145                 if (nb == 4)
146                         /* Invalid instruction */
147                         break;
148                 prefixes->bytes[nb++] = b;
149                 if (inat_is_address_size_prefix(attr)) {
150                         /* address size switches 2/4 or 4/8 */
151                         if (insn->x86_64)
152                                 insn->addr_bytes ^= 12;
153                         else
154                                 insn->addr_bytes ^= 6;
155                 } else if (inat_is_operand_size_prefix(attr)) {
156                         /* oprand size switches 2/4 */
157                         insn->opnd_bytes ^= 6;
158                 }
159 found:
160                 prefixes->nbytes++;
161                 insn->next_byte++;
162                 lb = b;
163                 b = peek_next(insn_byte_t, insn);
164                 attr = inat_get_opcode_attribute(b);
165         }
166         /* Set the last prefix */
167         if (lb && lb != insn->prefixes.bytes[3]) {
168                 if (unlikely(insn->prefixes.bytes[3])) {
169                         /* Swap the last prefix */
170                         b = insn->prefixes.bytes[3];
171                         for (i = 0; i < nb; i++)
172                                 if (prefixes->bytes[i] == lb)
173                                         insn_set_byte(prefixes, i, b);
174                 }
175                 insn_set_byte(&insn->prefixes, 3, lb);
176         }
177 
178         /* Decode REX prefix */
179         if (insn->x86_64) {
180                 b = peek_next(insn_byte_t, insn);
181                 attr = inat_get_opcode_attribute(b);
182                 if (inat_is_rex_prefix(attr)) {
183                         insn_field_set(&insn->rex_prefix, b, 1);
184                         insn->next_byte++;
185                         if (X86_REX_W(b))
186                                 /* REX.W overrides opnd_size */
187                                 insn->opnd_bytes = 8;
188                 } else if (inat_is_rex2_prefix(attr)) {
189                         insn_set_byte(&insn->rex_prefix, 0, b);
190                         b = peek_nbyte_next(insn_byte_t, insn, 1);
191                         insn_set_byte(&insn->rex_prefix, 1, b);
192                         insn->rex_prefix.nbytes = 2;
193                         insn->next_byte += 2;
194                         if (X86_REX_W(b))
195                                 /* REX.W overrides opnd_size */
196                                 insn->opnd_bytes = 8;
197                         insn->rex_prefix.got = 1;
198                         goto vex_end;
199                 }
200         }
201         insn->rex_prefix.got = 1;
202 
203         /* Decode VEX prefix */
204         b = peek_next(insn_byte_t, insn);
205         attr = inat_get_opcode_attribute(b);
206         if (inat_is_vex_prefix(attr)) {
207                 insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
208                 if (!insn->x86_64) {
209                         /*
210                          * In 32-bits mode, if the [7:6] bits (mod bits of
211                          * ModRM) on the second byte are not 11b, it is
212                          * LDS or LES or BOUND.
213                          */
214                         if (X86_MODRM_MOD(b2) != 3)
215                                 goto vex_end;
216                 }
217                 insn_set_byte(&insn->vex_prefix, 0, b);
218                 insn_set_byte(&insn->vex_prefix, 1, b2);
219                 if (inat_is_evex_prefix(attr)) {
220                         b2 = peek_nbyte_next(insn_byte_t, insn, 2);
221                         insn_set_byte(&insn->vex_prefix, 2, b2);
222                         b2 = peek_nbyte_next(insn_byte_t, insn, 3);
223                         insn_set_byte(&insn->vex_prefix, 3, b2);
224                         insn->vex_prefix.nbytes = 4;
225                         insn->next_byte += 4;
226                         if (insn->x86_64 && X86_VEX_W(b2))
227                                 /* VEX.W overrides opnd_size */
228                                 insn->opnd_bytes = 8;
229                 } else if (inat_is_vex3_prefix(attr)) {
230                         b2 = peek_nbyte_next(insn_byte_t, insn, 2);
231                         insn_set_byte(&insn->vex_prefix, 2, b2);
232                         insn->vex_prefix.nbytes = 3;
233                         insn->next_byte += 3;
234                         if (insn->x86_64 && X86_VEX_W(b2))
235                                 /* VEX.W overrides opnd_size */
236                                 insn->opnd_bytes = 8;
237                 } else {
238                         /*
239                          * For VEX2, fake VEX3-like byte#2.
240                          * Makes it easier to decode vex.W, vex.vvvv,
241                          * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
242                          */
243                         insn_set_byte(&insn->vex_prefix, 2, b2 & 0x7f);
244                         insn->vex_prefix.nbytes = 2;
245                         insn->next_byte += 2;
246                 }
247         }
248 vex_end:
249         insn->vex_prefix.got = 1;
250 
251         prefixes->got = 1;
252 
253         return 0;
254 
255 err_out:
256         return -ENODATA;
257 }
258 
259 /**
260  * insn_get_opcode - collect opcode(s)
261  * @insn:       &struct insn containing instruction
262  *
263  * Populates @insn->opcode, updates @insn->next_byte to point past the
264  * opcode byte(s), and set @insn->attr (except for groups).
265  * If necessary, first collects any preceding (prefix) bytes.
266  * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
267  * is already 1.
268  *
269  * Returns:
270  * 0:  on success
271  * < 0: on error
272  */
273 int insn_get_opcode(struct insn *insn)
274 {
275         struct insn_field *opcode = &insn->opcode;
276         int pfx_id, ret;
277         insn_byte_t op;
278 
279         if (opcode->got)
280                 return 0;
281 
282         ret = insn_get_prefixes(insn);
283         if (ret)
284                 return ret;
285 
286         /* Get first opcode */
287         op = get_next(insn_byte_t, insn);
288         insn_set_byte(opcode, 0, op);
289         opcode->nbytes = 1;
290 
291         /* Check if there is VEX prefix or not */
292         if (insn_is_avx(insn)) {
293                 insn_byte_t m, p;
294                 m = insn_vex_m_bits(insn);
295                 p = insn_vex_p_bits(insn);
296                 insn->attr = inat_get_avx_attribute(op, m, p);
297                 /* SCALABLE EVEX uses p bits to encode operand size */
298                 if (inat_evex_scalable(insn->attr) && !insn_vex_w_bit(insn) &&
299                     p == INAT_PFX_OPNDSZ)
300                         insn->opnd_bytes = 2;
301                 if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
302                     (!inat_accept_vex(insn->attr) &&
303                      !inat_is_group(insn->attr))) {
304                         /* This instruction is bad */
305                         insn->attr = 0;
306                         return -EINVAL;
307                 }
308                 /* VEX has only 1 byte for opcode */
309                 goto end;
310         }
311 
312         /* Check if there is REX2 prefix or not */
313         if (insn_is_rex2(insn)) {
314                 if (insn_rex2_m_bit(insn)) {
315                         /* map 1 is escape 0x0f */
316                         insn_attr_t esc_attr = inat_get_opcode_attribute(0x0f);
317 
318                         pfx_id = insn_last_prefix_id(insn);
319                         insn->attr = inat_get_escape_attribute(op, pfx_id, esc_attr);
320                 } else {
321                         insn->attr = inat_get_opcode_attribute(op);
322                 }
323                 goto end;
324         }
325 
326         insn->attr = inat_get_opcode_attribute(op);
327         while (inat_is_escape(insn->attr)) {
328                 /* Get escaped opcode */
329                 op = get_next(insn_byte_t, insn);
330                 opcode->bytes[opcode->nbytes++] = op;
331                 pfx_id = insn_last_prefix_id(insn);
332                 insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
333         }
334 
335         if (inat_must_vex(insn->attr)) {
336                 /* This instruction is bad */
337                 insn->attr = 0;
338                 return -EINVAL;
339         }
340 end:
341         opcode->got = 1;
342         return 0;
343 
344 err_out:
345         return -ENODATA;
346 }
347 
348 /**
349  * insn_get_modrm - collect ModRM byte, if any
350  * @insn:       &struct insn containing instruction
351  *
352  * Populates @insn->modrm and updates @insn->next_byte to point past the
353  * ModRM byte, if any.  If necessary, first collects the preceding bytes
354  * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
355  *
356  * Returns:
357  * 0:  on success
358  * < 0: on error
359  */
360 int insn_get_modrm(struct insn *insn)
361 {
362         struct insn_field *modrm = &insn->modrm;
363         insn_byte_t pfx_id, mod;
364         int ret;
365 
366         if (modrm->got)
367                 return 0;
368 
369         ret = insn_get_opcode(insn);
370         if (ret)
371                 return ret;
372 
373         if (inat_has_modrm(insn->attr)) {
374                 mod = get_next(insn_byte_t, insn);
375                 insn_field_set(modrm, mod, 1);
376                 if (inat_is_group(insn->attr)) {
377                         pfx_id = insn_last_prefix_id(insn);
378                         insn->attr = inat_get_group_attribute(mod, pfx_id,
379                                                               insn->attr);
380                         if (insn_is_avx(insn) && !inat_accept_vex(insn->attr)) {
381                                 /* Bad insn */
382                                 insn->attr = 0;
383                                 return -EINVAL;
384                         }
385                 }
386         }
387 
388         if (insn->x86_64 && inat_is_force64(insn->attr))
389                 insn->opnd_bytes = 8;
390 
391         modrm->got = 1;
392         return 0;
393 
394 err_out:
395         return -ENODATA;
396 }
397 
398 
399 /**
400  * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
401  * @insn:       &struct insn containing instruction
402  *
403  * If necessary, first collects the instruction up to and including the
404  * ModRM byte.  No effect if @insn->x86_64 is 0.
405  */
406 int insn_rip_relative(struct insn *insn)
407 {
408         struct insn_field *modrm = &insn->modrm;
409         int ret;
410 
411         if (!insn->x86_64)
412                 return 0;
413 
414         ret = insn_get_modrm(insn);
415         if (ret)
416                 return 0;
417         /*
418          * For rip-relative instructions, the mod field (top 2 bits)
419          * is zero and the r/m field (bottom 3 bits) is 0x5.
420          */
421         return (modrm->nbytes && (modrm->bytes[0] & 0xc7) == 0x5);
422 }
423 
424 /**
425  * insn_get_sib() - Get the SIB byte of instruction
426  * @insn:       &struct insn containing instruction
427  *
428  * If necessary, first collects the instruction up to and including the
429  * ModRM byte.
430  *
431  * Returns:
432  * 0: if decoding succeeded
433  * < 0: otherwise.
434  */
435 int insn_get_sib(struct insn *insn)
436 {
437         insn_byte_t modrm;
438         int ret;
439 
440         if (insn->sib.got)
441                 return 0;
442 
443         ret = insn_get_modrm(insn);
444         if (ret)
445                 return ret;
446 
447         if (insn->modrm.nbytes) {
448                 modrm = insn->modrm.bytes[0];
449                 if (insn->addr_bytes != 2 &&
450                     X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
451                         insn_field_set(&insn->sib,
452                                        get_next(insn_byte_t, insn), 1);
453                 }
454         }
455         insn->sib.got = 1;
456 
457         return 0;
458 
459 err_out:
460         return -ENODATA;
461 }
462 
463 
464 /**
465  * insn_get_displacement() - Get the displacement of instruction
466  * @insn:       &struct insn containing instruction
467  *
468  * If necessary, first collects the instruction up to and including the
469  * SIB byte.
470  * Displacement value is sign-expanded.
471  *
472  * * Returns:
473  * 0: if decoding succeeded
474  * < 0: otherwise.
475  */
476 int insn_get_displacement(struct insn *insn)
477 {
478         insn_byte_t mod, rm, base;
479         int ret;
480 
481         if (insn->displacement.got)
482                 return 0;
483 
484         ret = insn_get_sib(insn);
485         if (ret)
486                 return ret;
487 
488         if (insn->modrm.nbytes) {
489                 /*
490                  * Interpreting the modrm byte:
491                  * mod = 00 - no displacement fields (exceptions below)
492                  * mod = 01 - 1-byte displacement field
493                  * mod = 10 - displacement field is 4 bytes, or 2 bytes if
494                  *      address size = 2 (0x67 prefix in 32-bit mode)
495                  * mod = 11 - no memory operand
496                  *
497                  * If address size = 2...
498                  * mod = 00, r/m = 110 - displacement field is 2 bytes
499                  *
500                  * If address size != 2...
501                  * mod != 11, r/m = 100 - SIB byte exists
502                  * mod = 00, SIB base = 101 - displacement field is 4 bytes
503                  * mod = 00, r/m = 101 - rip-relative addressing, displacement
504                  *      field is 4 bytes
505                  */
506                 mod = X86_MODRM_MOD(insn->modrm.value);
507                 rm = X86_MODRM_RM(insn->modrm.value);
508                 base = X86_SIB_BASE(insn->sib.value);
509                 if (mod == 3)
510                         goto out;
511                 if (mod == 1) {
512                         insn_field_set(&insn->displacement,
513                                        get_next(signed char, insn), 1);
514                 } else if (insn->addr_bytes == 2) {
515                         if ((mod == 0 && rm == 6) || mod == 2) {
516                                 insn_field_set(&insn->displacement,
517                                                get_next(short, insn), 2);
518                         }
519                 } else {
520                         if ((mod == 0 && rm == 5) || mod == 2 ||
521                             (mod == 0 && base == 5)) {
522                                 insn_field_set(&insn->displacement,
523                                                get_next(int, insn), 4);
524                         }
525                 }
526         }
527 out:
528         insn->displacement.got = 1;
529         return 0;
530 
531 err_out:
532         return -ENODATA;
533 }
534 
535 /* Decode moffset16/32/64. Return 0 if failed */
536 static int __get_moffset(struct insn *insn)
537 {
538         switch (insn->addr_bytes) {
539         case 2:
540                 insn_field_set(&insn->moffset1, get_next(short, insn), 2);
541                 break;
542         case 4:
543                 insn_field_set(&insn->moffset1, get_next(int, insn), 4);
544                 break;
545         case 8:
546                 insn_field_set(&insn->moffset1, get_next(int, insn), 4);
547                 insn_field_set(&insn->moffset2, get_next(int, insn), 4);
548                 break;
549         default:        /* opnd_bytes must be modified manually */
550                 goto err_out;
551         }
552         insn->moffset1.got = insn->moffset2.got = 1;
553 
554         return 1;
555 
556 err_out:
557         return 0;
558 }
559 
560 /* Decode imm v32(Iz). Return 0 if failed */
561 static int __get_immv32(struct insn *insn)
562 {
563         switch (insn->opnd_bytes) {
564         case 2:
565                 insn_field_set(&insn->immediate, get_next(short, insn), 2);
566                 break;
567         case 4:
568         case 8:
569                 insn_field_set(&insn->immediate, get_next(int, insn), 4);
570                 break;
571         default:        /* opnd_bytes must be modified manually */
572                 goto err_out;
573         }
574 
575         return 1;
576 
577 err_out:
578         return 0;
579 }
580 
581 /* Decode imm v64(Iv/Ov), Return 0 if failed */
582 static int __get_immv(struct insn *insn)
583 {
584         switch (insn->opnd_bytes) {
585         case 2:
586                 insn_field_set(&insn->immediate1, get_next(short, insn), 2);
587                 break;
588         case 4:
589                 insn_field_set(&insn->immediate1, get_next(int, insn), 4);
590                 insn->immediate1.nbytes = 4;
591                 break;
592         case 8:
593                 insn_field_set(&insn->immediate1, get_next(int, insn), 4);
594                 insn_field_set(&insn->immediate2, get_next(int, insn), 4);
595                 break;
596         default:        /* opnd_bytes must be modified manually */
597                 goto err_out;
598         }
599         insn->immediate1.got = insn->immediate2.got = 1;
600 
601         return 1;
602 err_out:
603         return 0;
604 }
605 
606 /* Decode ptr16:16/32(Ap) */
607 static int __get_immptr(struct insn *insn)
608 {
609         switch (insn->opnd_bytes) {
610         case 2:
611                 insn_field_set(&insn->immediate1, get_next(short, insn), 2);
612                 break;
613         case 4:
614                 insn_field_set(&insn->immediate1, get_next(int, insn), 4);
615                 break;
616         case 8:
617                 /* ptr16:64 is not exist (no segment) */
618                 return 0;
619         default:        /* opnd_bytes must be modified manually */
620                 goto err_out;
621         }
622         insn_field_set(&insn->immediate2, get_next(unsigned short, insn), 2);
623         insn->immediate1.got = insn->immediate2.got = 1;
624 
625         return 1;
626 err_out:
627         return 0;
628 }
629 
630 /**
631  * insn_get_immediate() - Get the immediate in an instruction
632  * @insn:       &struct insn containing instruction
633  *
634  * If necessary, first collects the instruction up to and including the
635  * displacement bytes.
636  * Basically, most of immediates are sign-expanded. Unsigned-value can be
637  * computed by bit masking with ((1 << (nbytes * 8)) - 1)
638  *
639  * Returns:
640  * 0:  on success
641  * < 0: on error
642  */
643 int insn_get_immediate(struct insn *insn)
644 {
645         int ret;
646 
647         if (insn->immediate.got)
648                 return 0;
649 
650         ret = insn_get_displacement(insn);
651         if (ret)
652                 return ret;
653 
654         if (inat_has_moffset(insn->attr)) {
655                 if (!__get_moffset(insn))
656                         goto err_out;
657                 goto done;
658         }
659 
660         if (!inat_has_immediate(insn->attr))
661                 /* no immediates */
662                 goto done;
663 
664         switch (inat_immediate_size(insn->attr)) {
665         case INAT_IMM_BYTE:
666                 insn_field_set(&insn->immediate, get_next(signed char, insn), 1);
667                 break;
668         case INAT_IMM_WORD:
669                 insn_field_set(&insn->immediate, get_next(short, insn), 2);
670                 break;
671         case INAT_IMM_DWORD:
672                 insn_field_set(&insn->immediate, get_next(int, insn), 4);
673                 break;
674         case INAT_IMM_QWORD:
675                 insn_field_set(&insn->immediate1, get_next(int, insn), 4);
676                 insn_field_set(&insn->immediate2, get_next(int, insn), 4);
677                 break;
678         case INAT_IMM_PTR:
679                 if (!__get_immptr(insn))
680                         goto err_out;
681                 break;
682         case INAT_IMM_VWORD32:
683                 if (!__get_immv32(insn))
684                         goto err_out;
685                 break;
686         case INAT_IMM_VWORD:
687                 if (!__get_immv(insn))
688                         goto err_out;
689                 break;
690         default:
691                 /* Here, insn must have an immediate, but failed */
692                 goto err_out;
693         }
694         if (inat_has_second_immediate(insn->attr)) {
695                 insn_field_set(&insn->immediate2, get_next(signed char, insn), 1);
696         }
697 done:
698         insn->immediate.got = 1;
699         return 0;
700 
701 err_out:
702         return -ENODATA;
703 }
704 
705 /**
706  * insn_get_length() - Get the length of instruction
707  * @insn:       &struct insn containing instruction
708  *
709  * If necessary, first collects the instruction up to and including the
710  * immediates bytes.
711  *
712  * Returns:
713  *  - 0 on success
714  *  - < 0 on error
715 */
716 int insn_get_length(struct insn *insn)
717 {
718         int ret;
719 
720         if (insn->length)
721                 return 0;
722 
723         ret = insn_get_immediate(insn);
724         if (ret)
725                 return ret;
726 
727         insn->length = (unsigned char)((unsigned long)insn->next_byte
728                                      - (unsigned long)insn->kaddr);
729 
730         return 0;
731 }
732 
733 /* Ensure this instruction is decoded completely */
734 static inline int insn_complete(struct insn *insn)
735 {
736         return insn->opcode.got && insn->modrm.got && insn->sib.got &&
737                 insn->displacement.got && insn->immediate.got;
738 }
739 
740 /**
741  * insn_decode() - Decode an x86 instruction
742  * @insn:       &struct insn to be initialized
743  * @kaddr:      address (in kernel memory) of instruction (or copy thereof)
744  * @buf_len:    length of the insn buffer at @kaddr
745  * @m:          insn mode, see enum insn_mode
746  *
747  * Returns:
748  * 0: if decoding succeeded
749  * < 0: otherwise.
750  */
751 int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m)
752 {
753         int ret;
754 
755 /* #define INSN_MODE_KERN       -1 __ignore_sync_check__ mode is only valid in the kernel */
756 
757         if (m == INSN_MODE_KERN)
758                 insn_init(insn, kaddr, buf_len, IS_ENABLED(CONFIG_X86_64));
759         else
760                 insn_init(insn, kaddr, buf_len, m == INSN_MODE_64);
761 
762         ret = insn_get_length(insn);
763         if (ret)
764                 return ret;
765 
766         if (insn_complete(insn))
767                 return 0;
768 
769         return -EINVAL;
770 }
771 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php