1 // SPDX-License-Identifier: GPL-2.0 2 /*---------------------------------------------------------------------------+ 3 | poly_sin.c | 4 | | 5 | Computation of an approximation of the sin function and the cosine | 6 | function by a polynomial. | 7 | | 8 | Copyright (C) 1992,1993,1994,1997,1999 | 9 | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | 10 | E-mail billm@melbpc.org.au | 11 | | 12 | | 13 +---------------------------------------------------------------------------*/ 14 15 #include "exception.h" 16 #include "reg_constant.h" 17 #include "fpu_emu.h" 18 #include "fpu_system.h" 19 #include "control_w.h" 20 #include "poly.h" 21 22 #define N_COEFF_P 4 23 #define N_COEFF_N 4 24 25 static const unsigned long long pos_terms_l[N_COEFF_P] = { 26 0xaaaaaaaaaaaaaaabLL, 27 0x00d00d00d00cf906LL, 28 0x000006b99159a8bbLL, 29 0x000000000d7392e6LL 30 }; 31 32 static const unsigned long long neg_terms_l[N_COEFF_N] = { 33 0x2222222222222167LL, 34 0x0002e3bc74aab624LL, 35 0x0000000b09229062LL, 36 0x00000000000c7973LL 37 }; 38 39 #define N_COEFF_PH 4 40 #define N_COEFF_NH 4 41 static const unsigned long long pos_terms_h[N_COEFF_PH] = { 42 0x0000000000000000LL, 43 0x05b05b05b05b0406LL, 44 0x000049f93edd91a9LL, 45 0x00000000c9c9ed62LL 46 }; 47 48 static const unsigned long long neg_terms_h[N_COEFF_NH] = { 49 0xaaaaaaaaaaaaaa98LL, 50 0x001a01a01a019064LL, 51 0x0000008f76c68a77LL, 52 0x0000000000d58f5eLL 53 }; 54 55 /*--- poly_sine() -----------------------------------------------------------+ 56 | | 57 +---------------------------------------------------------------------------*/ 58 void poly_sine(FPU_REG *st0_ptr) 59 { 60 int exponent, echange; 61 Xsig accumulator, argSqrd, argTo4; 62 unsigned long fix_up, adj; 63 unsigned long long fixed_arg; 64 FPU_REG result; 65 66 exponent = exponent(st0_ptr); 67 68 accumulator.lsw = accumulator.midw = accumulator.msw = 0; 69 70 /* Split into two ranges, for arguments below and above 1.0 */ 71 /* The boundary between upper and lower is approx 0.88309101259 */ 72 if ((exponent < -1) 73 || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) { 74 /* The argument is <= 0.88309101259 */ 75 76 argSqrd.msw = st0_ptr->sigh; 77 argSqrd.midw = st0_ptr->sigl; 78 argSqrd.lsw = 0; 79 mul64_Xsig(&argSqrd, &significand(st0_ptr)); 80 shr_Xsig(&argSqrd, 2 * (-1 - exponent)); 81 argTo4.msw = argSqrd.msw; 82 argTo4.midw = argSqrd.midw; 83 argTo4.lsw = argSqrd.lsw; 84 mul_Xsig_Xsig(&argTo4, &argTo4); 85 86 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, 87 N_COEFF_N - 1); 88 mul_Xsig_Xsig(&accumulator, &argSqrd); 89 negate_Xsig(&accumulator); 90 91 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, 92 N_COEFF_P - 1); 93 94 shr_Xsig(&accumulator, 2); /* Divide by four */ 95 accumulator.msw |= 0x80000000; /* Add 1.0 */ 96 97 mul64_Xsig(&accumulator, &significand(st0_ptr)); 98 mul64_Xsig(&accumulator, &significand(st0_ptr)); 99 mul64_Xsig(&accumulator, &significand(st0_ptr)); 100 101 /* Divide by four, FPU_REG compatible, etc */ 102 exponent = 3 * exponent; 103 104 /* The minimum exponent difference is 3 */ 105 shr_Xsig(&accumulator, exponent(st0_ptr) - exponent); 106 107 negate_Xsig(&accumulator); 108 XSIG_LL(accumulator) += significand(st0_ptr); 109 110 echange = round_Xsig(&accumulator); 111 112 setexponentpos(&result, exponent(st0_ptr) + echange); 113 } else { 114 /* The argument is > 0.88309101259 */ 115 /* We use sin(st(0)) = cos(pi/2-st(0)) */ 116 117 fixed_arg = significand(st0_ptr); 118 119 if (exponent == 0) { 120 /* The argument is >= 1.0 */ 121 122 /* Put the binary point at the left. */ 123 fixed_arg <<= 1; 124 } 125 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ 126 fixed_arg = 0x921fb54442d18469LL - fixed_arg; 127 /* There is a special case which arises due to rounding, to fix here. */ 128 if (fixed_arg == 0xffffffffffffffffLL) 129 fixed_arg = 0; 130 131 XSIG_LL(argSqrd) = fixed_arg; 132 argSqrd.lsw = 0; 133 mul64_Xsig(&argSqrd, &fixed_arg); 134 135 XSIG_LL(argTo4) = XSIG_LL(argSqrd); 136 argTo4.lsw = argSqrd.lsw; 137 mul_Xsig_Xsig(&argTo4, &argTo4); 138 139 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, 140 N_COEFF_NH - 1); 141 mul_Xsig_Xsig(&accumulator, &argSqrd); 142 negate_Xsig(&accumulator); 143 144 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, 145 N_COEFF_PH - 1); 146 negate_Xsig(&accumulator); 147 148 mul64_Xsig(&accumulator, &fixed_arg); 149 mul64_Xsig(&accumulator, &fixed_arg); 150 151 shr_Xsig(&accumulator, 3); 152 negate_Xsig(&accumulator); 153 154 add_Xsig_Xsig(&accumulator, &argSqrd); 155 156 shr_Xsig(&accumulator, 1); 157 158 accumulator.lsw |= 1; /* A zero accumulator here would cause problems */ 159 negate_Xsig(&accumulator); 160 161 /* The basic computation is complete. Now fix the answer to 162 compensate for the error due to the approximation used for 163 pi/2 164 */ 165 166 /* This has an exponent of -65 */ 167 fix_up = 0x898cc517; 168 /* The fix-up needs to be improved for larger args */ 169 if (argSqrd.msw & 0xffc00000) { 170 /* Get about 32 bit precision in these: */ 171 fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6; 172 } 173 fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg)); 174 175 adj = accumulator.lsw; /* temp save */ 176 accumulator.lsw -= fix_up; 177 if (accumulator.lsw > adj) 178 XSIG_LL(accumulator)--; 179 180 echange = round_Xsig(&accumulator); 181 182 setexponentpos(&result, echange - 1); 183 } 184 185 significand(&result) = XSIG_LL(accumulator); 186 setsign(&result, getsign(st0_ptr)); 187 FPU_copy_to_reg0(&result, TAG_Valid); 188 189 #ifdef PARANOID 190 if ((exponent(&result) >= 0) 191 && (significand(&result) > 0x8000000000000000LL)) { 192 EXCEPTION(EX_INTERNAL | 0x150); 193 } 194 #endif /* PARANOID */ 195 196 } 197 198 /*--- poly_cos() ------------------------------------------------------------+ 199 | | 200 +---------------------------------------------------------------------------*/ 201 void poly_cos(FPU_REG *st0_ptr) 202 { 203 FPU_REG result; 204 long int exponent, exp2, echange; 205 Xsig accumulator, argSqrd, fix_up, argTo4; 206 unsigned long long fixed_arg; 207 208 #ifdef PARANOID 209 if ((exponent(st0_ptr) > 0) 210 || ((exponent(st0_ptr) == 0) 211 && (significand(st0_ptr) > 0xc90fdaa22168c234LL))) { 212 EXCEPTION(EX_Invalid); 213 FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); 214 return; 215 } 216 #endif /* PARANOID */ 217 218 exponent = exponent(st0_ptr); 219 220 accumulator.lsw = accumulator.midw = accumulator.msw = 0; 221 222 if ((exponent < -1) 223 || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) { 224 /* arg is < 0.687705 */ 225 226 argSqrd.msw = st0_ptr->sigh; 227 argSqrd.midw = st0_ptr->sigl; 228 argSqrd.lsw = 0; 229 mul64_Xsig(&argSqrd, &significand(st0_ptr)); 230 231 if (exponent < -1) { 232 /* shift the argument right by the required places */ 233 shr_Xsig(&argSqrd, 2 * (-1 - exponent)); 234 } 235 236 argTo4.msw = argSqrd.msw; 237 argTo4.midw = argSqrd.midw; 238 argTo4.lsw = argSqrd.lsw; 239 mul_Xsig_Xsig(&argTo4, &argTo4); 240 241 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, 242 N_COEFF_NH - 1); 243 mul_Xsig_Xsig(&accumulator, &argSqrd); 244 negate_Xsig(&accumulator); 245 246 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, 247 N_COEFF_PH - 1); 248 negate_Xsig(&accumulator); 249 250 mul64_Xsig(&accumulator, &significand(st0_ptr)); 251 mul64_Xsig(&accumulator, &significand(st0_ptr)); 252 shr_Xsig(&accumulator, -2 * (1 + exponent)); 253 254 shr_Xsig(&accumulator, 3); 255 negate_Xsig(&accumulator); 256 257 add_Xsig_Xsig(&accumulator, &argSqrd); 258 259 shr_Xsig(&accumulator, 1); 260 261 /* It doesn't matter if accumulator is all zero here, the 262 following code will work ok */ 263 negate_Xsig(&accumulator); 264 265 if (accumulator.lsw & 0x80000000) 266 XSIG_LL(accumulator)++; 267 if (accumulator.msw == 0) { 268 /* The result is 1.0 */ 269 FPU_copy_to_reg0(&CONST_1, TAG_Valid); 270 return; 271 } else { 272 significand(&result) = XSIG_LL(accumulator); 273 274 /* will be a valid positive nr with expon = -1 */ 275 setexponentpos(&result, -1); 276 } 277 } else { 278 fixed_arg = significand(st0_ptr); 279 280 if (exponent == 0) { 281 /* The argument is >= 1.0 */ 282 283 /* Put the binary point at the left. */ 284 fixed_arg <<= 1; 285 } 286 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ 287 fixed_arg = 0x921fb54442d18469LL - fixed_arg; 288 /* There is a special case which arises due to rounding, to fix here. */ 289 if (fixed_arg == 0xffffffffffffffffLL) 290 fixed_arg = 0; 291 292 exponent = -1; 293 exp2 = -1; 294 295 /* A shift is needed here only for a narrow range of arguments, 296 i.e. for fixed_arg approx 2^-32, but we pick up more... */ 297 if (!(LL_MSW(fixed_arg) & 0xffff0000)) { 298 fixed_arg <<= 16; 299 exponent -= 16; 300 exp2 -= 16; 301 } 302 303 XSIG_LL(argSqrd) = fixed_arg; 304 argSqrd.lsw = 0; 305 mul64_Xsig(&argSqrd, &fixed_arg); 306 307 if (exponent < -1) { 308 /* shift the argument right by the required places */ 309 shr_Xsig(&argSqrd, 2 * (-1 - exponent)); 310 } 311 312 argTo4.msw = argSqrd.msw; 313 argTo4.midw = argSqrd.midw; 314 argTo4.lsw = argSqrd.lsw; 315 mul_Xsig_Xsig(&argTo4, &argTo4); 316 317 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, 318 N_COEFF_N - 1); 319 mul_Xsig_Xsig(&accumulator, &argSqrd); 320 negate_Xsig(&accumulator); 321 322 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, 323 N_COEFF_P - 1); 324 325 shr_Xsig(&accumulator, 2); /* Divide by four */ 326 accumulator.msw |= 0x80000000; /* Add 1.0 */ 327 328 mul64_Xsig(&accumulator, &fixed_arg); 329 mul64_Xsig(&accumulator, &fixed_arg); 330 mul64_Xsig(&accumulator, &fixed_arg); 331 332 /* Divide by four, FPU_REG compatible, etc */ 333 exponent = 3 * exponent; 334 335 /* The minimum exponent difference is 3 */ 336 shr_Xsig(&accumulator, exp2 - exponent); 337 338 negate_Xsig(&accumulator); 339 XSIG_LL(accumulator) += fixed_arg; 340 341 /* The basic computation is complete. Now fix the answer to 342 compensate for the error due to the approximation used for 343 pi/2 344 */ 345 346 /* This has an exponent of -65 */ 347 XSIG_LL(fix_up) = 0x898cc51701b839a2ll; 348 fix_up.lsw = 0; 349 350 /* The fix-up needs to be improved for larger args */ 351 if (argSqrd.msw & 0xffc00000) { 352 /* Get about 32 bit precision in these: */ 353 fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2; 354 fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24; 355 } 356 357 exp2 += norm_Xsig(&accumulator); 358 shr_Xsig(&accumulator, 1); /* Prevent overflow */ 359 exp2++; 360 shr_Xsig(&fix_up, 65 + exp2); 361 362 add_Xsig_Xsig(&accumulator, &fix_up); 363 364 echange = round_Xsig(&accumulator); 365 366 setexponentpos(&result, exp2 + echange); 367 significand(&result) = XSIG_LL(accumulator); 368 } 369 370 FPU_copy_to_reg0(&result, TAG_Valid); 371 372 #ifdef PARANOID 373 if ((exponent(&result) >= 0) 374 && (significand(&result) > 0x8000000000000000LL)) { 375 EXCEPTION(EX_INTERNAL | 0x151); 376 } 377 #endif /* PARANOID */ 378 379 } 380
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.